Skip to main content
Log in

Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper builds on a recently developed immersogeometric fluid–structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism. In addition, the paper presents a comparison between FSI analysis and standalone structural dynamics simulation driven by prescribed transvalvular pressure, the latter being a more common modeling choice for this class of problems. The FSI computation achieved better physiological realism in predicting the valve leaflet deformation than its standalone structural dynamics counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Maximum in-plane principal Green-Lagrange strain, the largest eigenvalue of \({\mathbf {E}}\).

References

  1. Schoen FJ, Levy RJ (2005) Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg 79(3):1072–1080

    Article  Google Scholar 

  2. Pibarot P, Dumesnil JG (2009) Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 119(7):1034–1048

    Article  Google Scholar 

  3. Li C-P, Chen S-F, Lo C-W, Lu P-C (2011) Turbulence characteristics downstream of a new trileaflet mechanical heart valve. ASAIO Journal 57(3):188–196

    Article  Google Scholar 

  4. Yun BM, Wu J, Simon HA, Arjunon S, Sotiropoulos F, Aidun CK, Yoganathan AP (2012) A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase. Ann Biomed Eng 40(7):1468–1485

    Article  Google Scholar 

  5. Siddiqui RF, Abraham JR, Butany J (2009) Bioprosthetic heart valves: modes of failure. Histopathology 55:135–144

    Article  Google Scholar 

  6. Sacks MS, Schoen FJ (2002) Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J Biomed Mater Res 62(3):359–371

    Article  Google Scholar 

  7. Sacks MS, Mirnajafi A, Sun W, Schmidt P (2006) Bioprosthetic heart valve heterograft biomaterials: structure, mechanical behavior and computational simulation. Expert Rev Med Devices 3(6):817–834

    Article  Google Scholar 

  8. Sun W, Abad A, Sacks MS (2005) Simulated bioprosthetic heart valve deformation under quasi-static loading. J Biomech Eng 127(6):905–914

    Article  Google Scholar 

  9. Saleeb AF, Kumar A, Thomas VS (2013) The important roles of tissue anisotropy and tissue-to-tissue contact on the dynamical behavior of a symmetric tri-leaflet valve during multiple cardiac pressure cycles. Med Eng Phys 35(1):23–35

    Article  Google Scholar 

  10. Auricchio F, Conti M, Ferrara A, Morganti S, Reali A (2014) Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance. Comput Methods Biomech Biomed Eng 17(3):277–285

    Article  Google Scholar 

  11. Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053

    Article  MathSciNet  Google Scholar 

  12. Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014) Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055–1071

    Article  MATH  MathSciNet  Google Scholar 

  13. Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10(2):252–271

    Article  MATH  Google Scholar 

  14. Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517

    Article  MATH  MathSciNet  Google Scholar 

  15. Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261

    Article  MathSciNet  Google Scholar 

  16. Sotiropoulos F, Yang X (2014) Immersed boundary methods for simulating fluid-structure interaction. Prog Aerosp Sci 65:1–21

  17. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  18. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester

    Book  Google Scholar 

  19. Hsu M-C, Wang C, Herrema AJ, Schillinger D, Ghoshal A, Bazilevs Y (2015) An interactive geometry modeling and parametric design platform for isogeometric analysis. Computers & Mathematics with Applications. doi:10.1016/j.camwa.2015.04.002

  20. Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914

    Article  MATH  Google Scholar 

  21. Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416

    Article  MATH  Google Scholar 

  22. Kiendl J, Hsu M-C, Wu MCH, Reali A (2015) Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering. doi:10.1016/j.cma.2015.03.010

  23. Rhinoceros (2015). http://www.rhino3d.com/

  24. Autodesk T-Splines Plug-in for Rhino (2015). http://www.tsplines.com/products/tsplines-for-rhino.html

  25. Piegl L, Tiller W (1997) The NURBS Book (Monographs in Visual Communication), 2nd edn. Springer, New York

    Book  Google Scholar 

  26. Scott MA, Hughes TJR, Sederberg TW, Sederberg MT (2014) An integrated approach to engineering design and analysis using the Autodesk T-spline plugin for Rhino3d. ICES REPORT 14–33, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, Sept 2014

  27. Li X, Zheng J, Sederberg TW, Hughes TJR, Scott MA (2012) On linear independence of T-spline blending functions. Comput Aided Geom Des 29(1):63–76

    Article  MATH  MathSciNet  Google Scholar 

  28. Li X, Scott MA (2014) Analysis-suitable T-splines: Characterization, refineability, and approximation. Mathematical Models and Methods in Applied Sciences 24:1141–1164

    Article  MATH  MathSciNet  Google Scholar 

  29. Grasshopper (2015). http://www.grasshopper3d.com/

  30. Rhino Developer Tools (2015). http://wiki.mcneel.com/developer/home

  31. Kim H, Lu J, Sacks MS, Chandran KB (2008) Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann Biomed Eng 36(2):262–275

    Article  Google Scholar 

  32. Sederberg TW, Cardon DL, Finnigan GT, North NS, Zheng J, Lyche T (2004) T-spline simplification and local refinement. ACM Trans Graph 23(3):276–283

    Article  Google Scholar 

  33. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester

    Google Scholar 

  34. Scott MA, Borden MJ, Verhoosel CV, Sederberg TW, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of T-splines. Int J Numer Methods Eng 88:126–156

    Article  MATH  MathSciNet  Google Scholar 

  35. Kamensky D, Evans JA, Hsu M-C (2015) Stability and conservation properties of collocated constraints in immersogeometric fluid-thin structure interaction analysis. Communications in Computational Physics. Accepted

  36. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349

    Article  MATH  MathSciNet  Google Scholar 

  37. Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput Methods Appl Mech Eng 33(1–3):689–723

    Article  MATH  Google Scholar 

  38. Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561–582

    Article  MATH  MathSciNet  Google Scholar 

  39. Gerbeau J-F, Vidrascu M, Frey P (2005) Fluid-structure interaction in blood flows on geometries based on medical imaging. Comput Struct 83:155–165

    Article  Google Scholar 

  40. Nobile F, Vergara C (2008) An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J Sci Comput 30:731–763

    Article  MATH  MathSciNet  Google Scholar 

  41. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16

    Article  MATH  MathSciNet  Google Scholar 

  42. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid-structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498

    Article  Google Scholar 

  43. Perego M, Veneziani A, Vergara C (2011) A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem. SIAM J Sci Comput 33:1181–1211

    Article  MATH  MathSciNet  Google Scholar 

  44. Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations. Finite Elem Anal Des 47:593–599

    Article  MathSciNet  Google Scholar 

  45. Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch Comput Methods Eng 19:171–225

    Article  MathSciNet  Google Scholar 

  46. Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486

    Article  MATH  MathSciNet  Google Scholar 

  47. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44

    MATH  MathSciNet  Google Scholar 

  48. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575

    Article  MATH  MathSciNet  Google Scholar 

  49. Tezduyar TE, Sathe S (2007) Modelling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54(6–8):855–900

    Article  MATH  MathSciNet  Google Scholar 

  50. Takizawa K, Tezduyar TE (2011) Multiscale space-time fluid-structure interaction techniques. Comput Mech 48:247–267

    Article  MATH  MathSciNet  Google Scholar 

  51. Takizawa K, Tezduyar TE (2012) Space-time fluid-structure interaction methods. Math Models Methods Appl Sci 22:1230001

    Article  MathSciNet  Google Scholar 

  52. Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061–1073

    Article  MATH  MathSciNet  Google Scholar 

  53. Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space-time interface-tracking with topology change (ST-TC). Comput Mech 54:955–971

    Article  MATH  MathSciNet  Google Scholar 

  54. Takizawa K, Torii R, Takagi H, Tezduyar TE, Xu XY (2014) Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates. Comput Mech 54:1047–1053

    Article  MATH  Google Scholar 

  55. Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space-time fluid mechanics computation of heart valve models. Comput Mech 54:973–986

    Article  MATH  MathSciNet  Google Scholar 

  56. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322

    Article  MATH  MathSciNet  Google Scholar 

  57. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37

    Article  MATH  MathSciNet  Google Scholar 

  58. Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math Models Methods Appl Sci 22:1230002

    Article  Google Scholar 

  59. Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and Space-Time methods. Arch Comput Methods Eng 21:481–508

    Article  MathSciNet  Google Scholar 

  60. Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21:359–398

    Article  MathSciNet  Google Scholar 

  61. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    Article  MATH  MathSciNet  Google Scholar 

  62. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430

    Article  MATH  Google Scholar 

  63. Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Vis Sci 3:47–59

    Article  MATH  Google Scholar 

  64. Hughes TJR, Mazzei L, Oberai AA, Wray A (2001) The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence. Phys Fluids 13:505–512

    Article  Google Scholar 

  65. Hughes TJR, Scovazzi G, Franca LP (2004) Multiscale and stabilized methods. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, Vol. 3: Fluids, chap. 2. Wiley, Hoboken

    Google Scholar 

  66. Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201

    Article  MATH  Google Scholar 

  67. Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199:828–840

    Article  MATH  MathSciNet  Google Scholar 

  68. Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41

    Article  MathSciNet  Google Scholar 

  69. Wriggers P (2006) Comput Contact Mech, 2nd edn. Springer, Berlin Heidelberg

    Book  Google Scholar 

  70. Laursen TA (2003) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin Heidelberg

    Book  Google Scholar 

  71. Morganti S, Auricchio F, Benson DJ, Gambarin FI, Hartmann S, Hughes TJR, Reali A (2015) Patient-specific isogeometric structural analysis of aortic valve closure. Comput Methods Appl Mech Eng 284:508–520

    Article  MathSciNet  Google Scholar 

  72. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550

    Article  MATH  MathSciNet  Google Scholar 

  73. Esmaily-Moghadam M, Bazilevs Y, Hsia T-Y, Vignon-Clementel IE, MOCHA (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48:277–291

    Article  MATH  MathSciNet  Google Scholar 

  74. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–375

    Article  MATH  MathSciNet  Google Scholar 

  75. Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190:305–319

    Article  MATH  MathSciNet  Google Scholar 

  76. Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid-structure interactions with the space-time formulations. Comput Methods Appl Mech Eng 195:5743–5753

    Article  MATH  MathSciNet  Google Scholar 

  77. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195:2002–2027

    Article  MATH  MathSciNet  Google Scholar 

  78. Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900

    Article  MATH  MathSciNet  Google Scholar 

  79. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, Chichester

    Book  Google Scholar 

  80. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space-time finite element computation of complex fluid-structure interactions. Int J Numer Methods Fluids 64:1201– 1218

    Article  MATH  Google Scholar 

  81. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130

    Article  MATH  Google Scholar 

  82. Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36:2–11

    Article  MATH  Google Scholar 

  83. Cruchaga MA, Celentano DJ, Tezduyar TE (2007) A numerical model based on the mixed interface-tracking/interface-capturing technique (MITICT) for flows with fluid-solid and fluid-fluid interfaces. Int J Numer Methods Fluids 54:1021–1030

    Article  MATH  Google Scholar 

  84. Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2011) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. Journal of Applied Mechanics, accepted for publication

  85. Wick T (2014) Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity. Comput Mech 53(1):29–43

    Article  MATH  MathSciNet  Google Scholar 

  86. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10): 27–36

    Article  Google Scholar 

  87. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94

    Article  MATH  Google Scholar 

  88. Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid-structure interactions with large displacements. J Appl Mech 70:58–63

    Article  MATH  Google Scholar 

  89. Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032

    Article  MATH  Google Scholar 

  90. Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36: 12–26

    Article  MATH  MathSciNet  Google Scholar 

  91. Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196:4853–4862

    Article  MATH  MathSciNet  Google Scholar 

  92. Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199:780–790

    Article  MATH  MathSciNet  Google Scholar 

  93. Hsu M-C, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE-VMS: validation and the role of weakly enforced boundary conditions. Comput Mech 50:499–511

    Article  MATH  MathSciNet  Google Scholar 

  94. Tong P, Fung Y-C (1976) The stress-strain relationship for the skin. J Biomech 9(10):649–657

    Article  Google Scholar 

  95. Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York

    Book  Google Scholar 

  96. Sun W, Sacks MS, Sellaro TL, Slaughter WS, Scott MJ (2003) Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. J Biomech Eng 125(3):372–380

    Article  Google Scholar 

  97. Fan R, Sacks MS (2014) Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J Biomech 47(9):2043–2054

    Article  Google Scholar 

  98. Mirnajafi A, Raymer J, Scott MJ, Sacks MS (2005) The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials. Biomaterials 26(7):795–804

  99. Kim H, Chandran KB, Sacks MS, Lu J (2007) An experimentally derived stress resultant shell model for heart valve dynamic simulations. Ann Biomed Eng 35(1):30–44

    Article  Google Scholar 

  100. Li K, Sun W (2010) Simulated thin pericardial bioprosthetic valve leaflet deformation under static pressure-only loading conditions: implications for percutaneous valves. Ann Biomed Eng 38(8):2690–2701

    Article  Google Scholar 

  101. Burriesci G, Howard IC, Patterson EA (1999) Influence of anisotropy on the mechanical behaviour of bioprosthetic heart valves. J Med Eng Technol 23(6):203–215

    Article  Google Scholar 

  102. Huynh VL, Nguyen T, Lam HL, Guo XG, Kafesjian R (2003) Cloth-covered stents for tissue heart valves, US Patent 6,585,766

  103. Piazza N, Bleiziffer S, Brockmann G, Hendrick R, Deutsch MA, Opitz A, Mazzitelli D, Tassani-Prell P, Schreiber C, Lange R (2011) Transcatheter aortic valve implantation for failing surgical aortic bioprosthetic valve. JACC 4(7):721–732

    Article  Google Scholar 

  104. Gao ZB, Pandya S, Hosein N, Sacks MS, Hwang NHC (2000) Bioprosthetic heart valve leaflet motion monitored by dual camera stereo photogrammetry. J Biomech 33(2):199–207

    Article  Google Scholar 

  105. Gao BZ, Pandya S, Arana C, Hwang NHC (2002) Bioprosthetic heart valve leaflet deformation monitored by double-pulse stereo photogrammetry. Ann Biomed Eng 30(1):11–18

    Article  Google Scholar 

  106. Iyengar AKS, Sugimoto H, Smith DB, Sacks MS (2001) Dynamic in vitro quantification of bioprosthetic heart valve leaflet motion using structured light projection. Ann Biomed Eng 29(11): 963–973

    Article  Google Scholar 

  107. Bellhouse BJ, Bellhouse FH (1968) Mechanism of closure of the aortic valve. Nature 217(5123):86–87

    Article  Google Scholar 

  108. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  109. Kenner T (1989) The measurement of blood density and its meaning. Basic Res Cardiol 84(2):111–124

    Article  Google Scholar 

  110. Rosencranz R, Bogen SA (2006) Clinical laboratory measurement of serum, plasma, and blood viscosity. Am J Clin Pathol 125: S78–S86

    Google Scholar 

  111. Yap CH, Saikrishnan N, Tamilselvan G, Yoganathan AP (2011) Experimental technique of measuring dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. J Biomech Eng 133(6):061007

    Article  Google Scholar 

Download references

Acknowledgments

M.S. Sacks was supported by NIH/NHLBI Grant R01 HL108330. D. Kamensky was partially supported by the CSEM Graduate Fellowship. M.-C. Hsu, C. Wang and Y. Bazilevs were partially supported by the ARO Grant No. W911NF-14-1-0296. J. Kiendl and A. Reali were partially supported by the European Research Council through the FP7 Ideas Starting Grant No. 259229 ISOBIO. We thank the Texas Advanced Computing Center (TACC) at the University of Texas at Austin for providing HPC resources that have contributed to the research results reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Chen Hsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, MC., Kamensky, D., Xu, F. et al. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech 55, 1211–1225 (2015). https://doi.org/10.1007/s00466-015-1166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1166-x

Keywords

Navigation