Skip to main content
Log in

Perceptual and Neural Responses to Sweet Taste in Humans and Rodents

  • Published:
Chemosensory Perception

Abstract

Introduction

This mini-review discusses some of the parallels between rodent neurophysiological and human psychophysical data concerning temperature effects on sweet taste.

Methods and Purpose

“Sweet” is an innately rewarding taste sensation that is associated in part with foods that contain calories in the form of sugars. Humans and other mammals show unconditioned preference for select sweet stimuli. Such preference is poised to influence diet selection and, in turn, nutritional status, which underscores the importance of delineating the physiological mechanisms for sweet taste with respect to their influence on human health. Advances in our knowledge of the biology of sweet taste in humans have arisen in part through studies on mechanisms of gustatory processing in rodent models. Along this line, recent work has revealed there are operational parallels in neural systems for sweet taste between mice and humans, as indexed by similarities in the effects of temperature on central neurophysiological and psychophysical responses to sucrose in these species. Such association strengthens the postulate that rodents can serve as effective models of particular mechanisms of appetitive taste processing. Data supporting this link are discussed here, as are rodent and human data that shed light on relationships between mechanisms for sweet taste and ingestive disorders, such as alcohol abuse.

Results and Conclusions

Rodent models have utility for understanding mechanisms of taste processing that may pertain to human flavor perception. Importantly, there are limitations to generalizing data from rodents, albeit parallels across species do exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avena NM, Rada P, Moise N, Hoebel BG (2006) Sucrose sham feeding on a binge schedule releases accumbens dopamine repeatedly and eliminates the acetylcholine satiety response. Neuroscience 139:813–820

    Article  CAS  Google Scholar 

  • Bachmanov AA, Reed DR, Ninomiya Y, Inoue M, Tordoff MG, Price RA, Beauchamp GK (1997) Sucrose consumption in mice: major influence of two genetic loci affecting peripheral sensory responses. Mamm Genome 8:545–548

    Article  CAS  Google Scholar 

  • Bachmanov AA et al (2001a) Positional cloning of the mouse saccharin preference (Sac) locus. Chem Senses 26:925–933

    Article  CAS  Google Scholar 

  • Bachmanov AA, Tordoff MG, Beauchamp GK (2001b) Sweetener preference of C57BL/6ByJ and 129P3/J mice. Chem Senses 26:905–913

    Article  CAS  Google Scholar 

  • Bachmanov AA, Reed DR, Li X, Li S, Beauchamp GK, Tordoff MG (2002) Voluntary ethanol consumption by mice: genome-wide analysis of quantitative trait loci and their interactions in a C57BL/6ByJ x 129P3/JF2 intercross. Genome Res 12:1257–1268

    Article  CAS  Google Scholar 

  • Bartoshuk LM, Rennert K, Rodin J, Stevens JC (1982) Effects of temperature on the perceived sweetness of sucrose. Physiol Behav 28:905–910

    Article  CAS  Google Scholar 

  • Belknap JK, Crabbe JC, Young ER (1993) Voluntary consumption of ethanol in 15 inbred mouse strains. Psychopharmacology (Berl) 112:503–510

    Article  CAS  Google Scholar 

  • Bertino M, Beauchamp GK, Engelman K (1986) Increasing dietary salt alters salt taste preference. Physiol Behav 38:203–213

    Article  CAS  Google Scholar 

  • Blednov YA, Walker D, Martinez M, Levine M, Damak S, Margolskee RF (2008) Perception of sweet taste is important for voluntary alcohol consumption in mice. Genes Brain Behav 7:1–13

    Article  CAS  Google Scholar 

  • Blizard DA, Kotlus B, Frank ME (1999) Quantitative trait loci associated with short-term intake of sucrose, saccharin and quinine solutions in laboratory mice. Chem Senses 24:373–385

    Article  CAS  Google Scholar 

  • Brasser SM, Norman MB, Lemon CH (2010) T1r3 taste receptor involvement in gustatory neural responses to ethanol and oral ethanol preference. Physiol Genomics 41:232–243

    Article  CAS  Google Scholar 

  • Brasser SM, Silbaugh BC, Ketchum MJ, Olney JJ, Lemon CH (2012) Chemosensory responsiveness to ethanol and its individual sensory components in alcohol-preferring, alcohol-nonpreferring and genetically heterogeneous rats. Addict Biol 17:423–436

    Article  CAS  Google Scholar 

  • Brasser SM, Castro N, Feretic B (2014) Alcohol sensory processing and its relevance for ingestion. Physiol Behav. doi:10.1016/j.physbeh.2014.09.004

    Google Scholar 

  • Breza JM, Curtis KS, Contreras RJ (2006) Temperature modulates taste responsiveness and stimulates gustatory neurons in the rat geniculate ganglion. J Neurophysiol 95:674–685

    Article  Google Scholar 

  • Calvino AM (1986) Perception of sweetness: the effects of concentration and temperature. Physiol Behav 36:1021–1028

    Article  CAS  Google Scholar 

  • Crook C (1978) Taste perception in the newborn infant. Infant Behav Dev 1:52–69

    Article  Google Scholar 

  • Damak S et al (2003) Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301:850–853

    Article  CAS  Google Scholar 

  • Doyon WM, York JL, Diaz LM, Samson HH, Czachowski CL, Gonzales RA (2003) Dopamine activity in the nucleus accumbens during consummatory phases of oral ethanol self-administration. Alcohol Clin Exp Res 27:1573–1582

    Article  CAS  Google Scholar 

  • Dudley R (2000) Evolutionary origins of human alcoholism in primate frugivory. Q Rev Biol 75:3–15

    Article  CAS  Google Scholar 

  • Feigin MB, Sclafani A, Sunday SR (1987) Species differences in polysaccharide and sugar taste preferences. Neurosci Biobehav Rev 11:231–240

    Article  CAS  Google Scholar 

  • Fuller JL (1974) Single-locus control of saccharin preference in mice. J Hered 65:33–36

    CAS  Google Scholar 

  • Fushan AA, Simons CT, Slack JP, Manichaikul A, Drayna D (2009) Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose. Curr Biol 19:1288–1293

    Article  CAS  Google Scholar 

  • Green BG, Frankmann SP (1987) The effect of cooling the tongue on the perceived intensity of taste. Chem Senses 12:609–619

    Article  CAS  Google Scholar 

  • Green BG, Frankmann SP (1988) The effect of cooling on the perception of carbohydrate and intensive sweeteners. Physiol Behav 43:515–519

    Article  CAS  Google Scholar 

  • Green BG, Nachtigal D (2012) Somatosensory factors in taste perception: effects of active tasting and solution temperature. Physiol Behav 107:488–495

    Article  CAS  Google Scholar 

  • Hajnal A, Smith GP, Norgren R (2004) Oral sucrose stimulation increases accumbens dopamine in the rat. Am J Physiol Regul Integr Comp Physiol 286:R31–R37

    Article  CAS  Google Scholar 

  • Jiang P et al (2014) The bamboo-eating giant panda (Ailuropoda melanoleuca) has a sweet tooth: behavioral and molecular responses to compounds that taste sweet to humans. PLoS One 9:e93043

    Article  Google Scholar 

  • Kampov-Polevoy A, Garbutt JC, Janowsky D (1997) Evidence of preference for a high-concentration sucrose solution in alcoholic men. Am J Psychiatry 154:269–270

    Article  CAS  Google Scholar 

  • Kampov-Polevoy AB, Garbutt JC, Davis CE, Janowsky DS (1998) Preference for higher sugar concentrations and Tridimensional Personality Questionnaire scores in alcoholic and nonalcoholic men. Alcohol Clin Exp Res 22:610–614

    Article  CAS  Google Scholar 

  • Kampov-Polevoy AB, Garbutt JC, Khalitov E (2003a) Family history of alcoholism and response to sweets. Alcohol Clin Exp Res 27:1743–1749

    Article  Google Scholar 

  • Kampov-Polevoy AB et al (2003b) Association between sweet preference and paternal history of alcoholism in psychiatric and substance abuse patients. Alcohol Clin Exp Res 27:1929–1936

    Article  CAS  Google Scholar 

  • Kareken DA, Dzemidzic M, Oberlin BG, Eiler WJ 2nd (2013) A preliminary study of the human brain response to oral sucrose and its association with recent drinking. Alcohol Clin Exp Res 37:2058–2065

    Article  CAS  Google Scholar 

  • Kawai K, Sugimoto K, Nakashima K, Miura H, Ninomiya Y (2000) Leptin as a modulator of sweet taste sensitivities in mice. Proc Natl Acad Sci U S A 97:11044–11049

    Article  CAS  Google Scholar 

  • Kitagawa M, Kusakabe Y, Miura H, Ninomiya Y, Hino A (2001) Molecular genetic identification of a candidate receptor gene for sweet taste. Biochem Biophys Res Commun 283:236–242

    Article  CAS  Google Scholar 

  • LaMotte RH, Campbell JN (1978) Comparison of responses of warm and nociceptive C-fiber afferents in monkey with human judgments of thermal pain. J Neurophysiol 41:509–528

    CAS  Google Scholar 

  • Lemon CH, Brasser SM, Smith DV (2004) Alcohol activates a sucrose-responsive gustatory neural pathway. J Neurophysiol 92:536–544

    Article  CAS  Google Scholar 

  • Lemon CH, Wilson DM, Brasser SM (2011) Differential neural representation of oral ethanol by central taste-sensitive neurons in ethanol-preferring and genetically heterogeneous rats. J Neurophysiol 106:3145–3156

    Article  CAS  Google Scholar 

  • Liu B, Ha M, Meng XY, Khaleduzzaman M, Zhang Z, Li X, Cui M (2012) Functional characterization of the heterodimeric sweet taste receptor T1R2 and T1R3 from a New World monkey species (squirrel monkey) and its response to sweet-tasting proteins. Biochem Biophys Res Commun 427:431–437

    Article  CAS  Google Scholar 

  • Lu B, Breza JM, Nikonov AA, Paedae AB, Contreras RJ (2012) Leptin increases temperature-dependent chorda tympani nerve responses to sucrose in mice. Physiol Behav 107:533–539

    Article  CAS  Google Scholar 

  • Lush IE (1989) The genetics of tasting in mice. VI. Saccharin, acesulfame, dulcin and sucrose. Genet Res 53:95–99

    Article  CAS  Google Scholar 

  • Lush IE, Hornigold N, King P, Stoye JP (1995) The genetics of tasting in mice. VII. Glycine revisited, and the chromosomal location of Sac and Soa. Genet Res 66:167–174

    Article  CAS  Google Scholar 

  • Max M et al (2001) Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat Genet 28:58–63

    CAS  Google Scholar 

  • Mennella JA, Lukasewycz LD, Griffith JW, Beauchamp GK (2011) Evaluation of the Monell forced-choice, paired-comparison tracking procedure for determining sweet taste preferences across the lifespan. Chem Senses 36:345–355

    Article  Google Scholar 

  • Mennella JA, Finkbeiner S, Reed DR (2012) The proof is in the pudding: children prefer lower fat but higher sugar than do mothers. Int J Obes 36:1285–1291

    Article  CAS  Google Scholar 

  • Montmayeur JP, Liberles SD, Matsunami H, Buck LB (2001) A candidate taste receptor gene near a sweet taste locus. Nat Neurosci 4:492–498

    CAS  Google Scholar 

  • Nakamura Y et al (2008) Diurnal variation of human sweet taste recognition thresholds is correlated with plasma leptin levels. Diabetes 57:2661–2665

    Article  CAS  Google Scholar 

  • Newsome WT, Britten KH, Movshon JA (1989) Neuronal correlates of a perceptual decision. Nature 341:52–54

    Article  CAS  Google Scholar 

  • Nicola SM (2010) The flexible approach hypothesis: unification of effort and cue-responding hypotheses for the role of nucleus accumbens dopamine in the activation of reward-seeking behavior. J Neurosci 30:16585–16600

    Article  CAS  Google Scholar 

  • Nowlis GH, Kessen W (1976) Human newborns differentiate differing concentrations of sucrose and glucose. Science 191:865–866

    Article  CAS  Google Scholar 

  • Perez CA et al (2002) A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5:1169–1176

    Article  CAS  Google Scholar 

  • Reed DR et al (2004) Polymorphisms in the taste receptor gene (Tas1r3) region are associated with saccharin preference in 30 mouse strains. J Neurosci 24:938–946

    Article  CAS  Google Scholar 

  • Sainz E, Korley JN, Battey JF, Sullivan SL (2001) Identification of a novel member of the T1R family of putative taste receptors. J Neurochem 77:896–903

    Article  CAS  Google Scholar 

  • Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology (Berl) 191:461–482

    Article  CAS  Google Scholar 

  • Samuelsen CL, Gardner MP, Fontanini A (2012) Effects of cue-triggered expectation on cortical processing of taste. Neuron 74:410–422

    Article  CAS  Google Scholar 

  • Sclafani A, Abrams M (1986) Rats show only a weak preference for the artificial sweetener aspartame. Physiol Behav 37:253–256

    Article  CAS  Google Scholar 

  • Sclafani A, Clare RA (2004) Female rats show a bimodal preference response to the artificial sweetener sucralose. Chem Senses 29:523–528

    Article  CAS  Google Scholar 

  • Small DM, Green BG (2012) A proposed model of a flavor modality. In: Murray MM, Wallace MT (eds) The neural bases of multisensory processes. Frontiers in Neuroscience, Boca Raton

    Google Scholar 

  • Small DM, Jones-Gotman M, Dagher A (2003) Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 19:1709–1715

    Article  Google Scholar 

  • Smith DV, Ye MK, Li CS (2005) Medullary taste responses are modulated by the bed nucleus of the stria terminalis. Chem Senses 30:421–434

    Article  Google Scholar 

  • Steiner JE (1979) Human facial expressions in response to taste and smell stimulation. Adv Child Dev Behav 13:257–295

    Article  CAS  Google Scholar 

  • Talavera K et al (2005) Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438:1022–1025

    Article  CAS  Google Scholar 

  • Treesukosol Y, Spector AC (2012) Orosensory detection of sucrose, maltose, and glucose is severely impaired in mice lacking T1R2 or T1R3, but polycose sensitivity remains relatively normal. Am J Physiol Regul Integr Comp Physiol 303:R218–R235

    Article  CAS  Google Scholar 

  • Wilson DM, Lemon CH (2013) Modulation of central gustatory coding by temperature. J Neurophysiol 110:1117–1129

    Article  CAS  Google Scholar 

  • Wilson DM, Lemon CH (2014) Temperature systematically modifies neural activity for sweet taste. J Neurophysiol 112:1667–1677

    Article  Google Scholar 

  • Yamashita S, Sato M (1965) The effects of temperature on gustatory response of rats. J Cell Compar Physl 66:1–18

    Article  CAS  Google Scholar 

  • Zhang Y et al (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112:293–301

    Article  CAS  Google Scholar 

  • Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS (2003) The receptors for mammalian sweet and umami taste. Cell 115:255–266

    Article  CAS  Google Scholar 

Download references

Compliance with Ethics Requirements

Conflict of Interest

The author declares no conflict of interest.

Funding

This work was supported in part by the National Institutes of Health grant DC-011579 to C.H.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian H. Lemon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemon, C.H. Perceptual and Neural Responses to Sweet Taste in Humans and Rodents. Chem. Percept. 8, 46–52 (2015). https://doi.org/10.1007/s12078-015-9177-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12078-015-9177-8

Keywords

Navigation