Skip to main content
Log in

The involvement of the T1R3 receptor protein in the control of glucose metabolism in mice at different levels of glycemia

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The heterodimeric protein T1R2/T1R3 is a chemoreceptor mediating taste perception of sugars, several amino acids, and non-caloric sweeteners in humans and many other vertebrate species. The T1R2 and T1R3 proteins are expressed not only in the oral cavity, but also in the intestine, pancreas, liver, adipose tissue, and in structures of the central nervous system, which suggests their involvement in functions other than gustatory perception. In this study, we analyzed the role of the T1R3 protein in regulation of glucose metabolism in experiments with the gene-knockout mouse strain C57BL/6J-Tas1r3 tm1Rfm (Tas1r3-/-), with a deletion of the Tas1r3 gene encoding T1R3, and the control strain C57BL/6ByJ with the intact gene. Glucose tolerance was measured in euglycemic or food-deprived mice after intraperitoneal or intragastric glucose administration. We have shown that in the Tas1r3-/- strain, in addition to the disappearance of taste preference for sucrose, glucose tolerance is also substantially reduced, and insulin resistance is observed. The effect of the Tas1r3 gene knockout on glucose utilization was more pronounced in the euglycemic state than after food deprivation. The baseline glucose level after food deprivation was lower in the Tas1r3-/- strain than in the control strain, which suggests that T1R3 is involved in regulation of endogenous glucose production. These data suggest that the T1R3-mediated glucoreception interacts with the KATP-dependent mechanisms of regulation of the glucose metabolism, and that the main role is likely played by T1R3 expressed in the pancreas and possibly in the central nervous system, but not in the intestinal mucosa, as it was suggested earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polakof, S., Mommsen, T.P., and Soengas, J.L., Glucosensing and glucose homeostasis: from fish to mammals, Comp. Biochem. Physiol. B Biochem. Mol Biol., 2011, vol. 160, no. 4, pp. 123–149.

    Article  PubMed  CAS  Google Scholar 

  2. Herman, M.A. and Kahn, B.B., Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony, J. Clin. Invest., 2006, vol. 116, no. 7, pp. 1767–1775.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Hiriart, M. and Aguilar-Bryan, L., Channel regulation of glucose sensing in the pancreatic beta-cell, Am. J. Physiol. Endocrinol. Metab., 2008, vol. 295, no. 6, pp. E1298–1306.

    Article  PubMed  CAS  Google Scholar 

  4. Schuit, F.C., Huypens, P., Heimberg, H., and Pipeleers, D.G., Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus, Diabetes, 2001, vol. 50, no. 1, pp. 1–11.

    Article  PubMed  CAS  Google Scholar 

  5. Wang, S.Y., Chi, M.M., Li, L., Moley, K.H., and Wice, B.M., Studies with GIP/Ins cells indicate secretion by gut K cells is KATP channel independent, Am. J. Physiol. Endocrinol. Metab., 2003, vol. 284, no. 5, pp. E988–1000.

    PubMed  CAS  Google Scholar 

  6. Reimann, F., Habib, A.M., Tolhurst, G., Parker, H.E., Rogers, G.J., and Gribble, F.M., Glucose sensing in L cells: a primary cell study, Cell Metab., 2008, vol. 8, no. 6, pp. 532–539.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Miki, T., Liss, B., Minami, K., Shiuchi, T., Saraya, A., Kashima, Y., Horiuchi, M., Ashcroft, F., Minokoshi, Y., Roeper, J., and Seino, S., ATPsensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis, Nat. Neurosci., 2001, vol. 4, no. 5, pp. 507–512.

    PubMed  CAS  Google Scholar 

  8. Gembal, M., Gilon, P., and Henquin, J.C., Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse β-cells, J. Clin. Invest., 1992, vol. 89, no. 4, pp. 1288–1295.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Straub, S.G. and Sharp, G.W., Glucose-stimulated signaling pathways in biphasic insulin secretion (Review), Diabetes Metab. Res. Rev., 2002, vol. 18, pp. 451–463.

    Article  PubMed  CAS  Google Scholar 

  10. Fioramonti, X., Lorsignol, A., Taupignon, A., and Pénicaud, L., A new ATP-sensitive K+ channel-independent mechanism is involved in glucose-excited neurons of mouse arcuate nucleus, Diabetes, 2004, vol. 53, no. 11, pp. 2767–2775.

    Article  PubMed  CAS  Google Scholar 

  11. Chandrashekar, J., Hoon, M.A., Ryba, N., and Zuker, C.S., The receptors and cells for mammalian taste, Nature, 2006, vol. 444, pp. 288–294.

    Article  PubMed  CAS  Google Scholar 

  12. Bachmanov, A.A., Bosak, N.P., Floriano, W.B., Inoue, M., Li, X., Lin, C., Murovets, V.O., Reed, D.R., Zolotarev, V.A., and Beauchamp, G.K., Genetics of sweet taste preferences, Flavour Fragrance J., 2011, vol. 26, Iss. 4, pp. 286–294.

    Article  CAS  Google Scholar 

  13. Bachmanov, A.A. and Beauchamp, G.K., Taste receptor genes, Annu. Rev. Nutr., 2007, vol. 27, pp. 389–414.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Murovets, V.O., Zolotarev, V.A., and Bachmanov, A.A., The role of the sac locus in the development of taste preference for alcohol in inbred lines of mice, Dokl. Akad. Nauk, 2010, vol. 432, no. 3, pp. 420–422.

    Google Scholar 

  15. Raliou, M., Wiencis, A., Pillias, A.M., Planchais, A., Eloit, C., Boucher, Y., Trotier, D., Montmayeur, J.P., and Faurion, A., Nonsynonymous single nucleotide polymorphisms in human tas1r1, tas1r3, and mGluR1 and individual taste sensitivity to glutamate, Am. J. Clin. Nutr., 2009, vol. 90, pp. 789S–799S.

    Article  PubMed  CAS  Google Scholar 

  16. Shi, P. and Zhang, J., Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes, Mol. Biol. Ev., 2006, vol. 23, no. 2, pp. 292–300.

    Article  CAS  Google Scholar 

  17. Nakagawa, Y., Nagasawa, M., Yamada, S., Hara, A., Mogami, H., Nikolaev, V.O., Lohse, M.J., Shigemura, N., Ninomiya, Y., and Kojima, I., Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion, PLoS One, 2009, vol. 4, no. 4, p. e5106.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Oya, M., Suzuki, H., Watanabe, Y., Sato, M., and Tsuboi, T., Amino acid taste receptor regulates in sulin secretion in pancreatic β-cell line MIN6 cells, Genes Cells, 2011, vol. 16, no. 5, pp. 608–616.

    Article  PubMed  CAS  Google Scholar 

  19. Kyriazis, G.A., Soundarapandian, M.M., and Tyrberg, B., Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucosestimulated insulin secretion, PNAS, 2012, vol. 109, no. 8. pp. E524-E532.

    Google Scholar 

  20. Jang, H.J., Kokrashvili, Z., Theodorakis, M.J., Carlson, O.D., Kim, B.J., Zhou, J., Kim, H.H., Xu, X., Chan, S.L., Juhaszova, M., Bernier, M., Mosinger, B., Margolskee, R.F., and Egan, J.M., Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 38, pp. 15 069–15 074.

    Article  CAS  Google Scholar 

  21. Rozengurt, N., Wu, S.V., Chen, M.C., Huang, C., Sternini, C., and Rozengurt, E., Colocalization of the alphasubunit of gustducin with PYY and GLP-1 in L cells of human colon, Am. J. Physiol. Gastrointest. Liver Physiol., 2006, vol. 291, pp. G792–802.

    Article  PubMed  CAS  Google Scholar 

  22. Rozengurt, E. and Sternini, C., Taste receptor signaling in the mammalian gut, Curr. Opin. Pharmacol., 2007, vol. 7, no. 6, pp. 557–562.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Sutherland, K., Young, R.L., Cooper, N.J., Horowitz, M., and Blackshaw, L.A., Phenotypic characterization of taste cells of the mouse small intestine, Am. J. Physiol. Gastrointest. Liver Physiol., 2007, vol. 292, pp. G1420–1428.

    Article  PubMed  CAS  Google Scholar 

  24. Ren, X., Zhou, L., Terwilliger, R., Newton, S.S, and de Araujo, I.E., Sweet taste signaling functions as a hypothalamic glucose sensor, Front. Integr. Neurosci., 2009, vol. 3, Article 12, pp. 1–15.

    Article  Google Scholar 

  25. Kokrashvili, Z., Mosinger, B., and Margolskee, R.F., T1R3 and alpha-gustducin in gut regulate secretion of glucagon-like peptide-1, Ann. N. Y. Acad. Sci., 2009, vol. 1170, pp. 91–94.

    Article  PubMed  CAS  Google Scholar 

  26. Gerspach, A.C., Steinert, R.E., Schönenberger, L., Graber-Maier, A., and Beglinger, C., The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans, Am. J. Physiol. Endocrinol. Metab., 2011, vol. 301, no. 2, pp. E317–325.

    Article  PubMed  CAS  Google Scholar 

  27. Geraedts, M.C.P., Takahashi, T., Vigues, S., Markwardt, M.L., Nkobena, A., Cockerham, R.E., Hajnal, A., Dotson, C.D., Rizzo, M.A., and Munger, S.D., Transformation of post-ingestive glucose responses after deletion of sweet taste receptor subunits or gastric bypass surgery, Am. J. Physiol. Endocrinol. Metab., 2012, vol. 303, no. 4, pp. E464–474.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Margolskee, R.F., Dyer, J., Kokrashvili, Z., Salmon, K.S., Ilegems, E., Daly, K., Maillet, E.L., Ninomiya, Y., Mosinger, B., and Shirazi-Beechey, S.P., T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 38, pp. 15075–15080.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Mace, O.J., Affleck, J., Patel, N., and Kellett, G.L., Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2, J. Physiol., 2007, vol. 582, Pt. 1, pp. 379–392.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Kojima, I. and Nakagawa, Y., The role of the sweet taste receptor in enteroendocrine cells and pancreatic β-cells, Diabetes, Metab. J., 2011, vol. 35, no. 5, pp. 451–457.

    Article  Google Scholar 

  31. Fujita, Y., Wideman, R.D., Speck, M., Asadi, A., King, D.S., Webber, T.D., Haneda, M., and Kieffer, T.J., Incretin release from gut is acutely enhanced by sugar but not by sweeteners in vivo, Am. J. Physiol. Endocrinol. Metab., 2009, vol. 296, no. 3, pp. E473–E479.

    Article  PubMed  CAS  Google Scholar 

  32. Ma, J., Bellon, M., Wishart, J.M., Young, R., Blackshaw, L.A., Jones, K.L., Horowitz, M., and Rayner, C.K., Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects, Am. J. Physiol. Gastrointest. Liver Physiol., 2009, vol. 296, no. 4, pp. G735–739.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Yee, K.K., Sukumaran, S.K., Kotha, R., Gilbertson, T.A., and Margolskee, R.F., Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1R3)-expressing taste cells, Proc. Natl. Acad. Sci. USA, 2011, vol. 108, no. 13, pp. 5431–5436.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Damak, S., Rong, M., Yasumatsu, K., Kokrashvili, Z., Varadarajan, V., Zou, S., Jiang, P., Ninomiya, Y., and Margolskee, R.F., Detection of sweet and umami taste in the absence of taste receptor T1R3, Science, 2003, vol. 301, pp. 850–853.

    Article  PubMed  CAS  Google Scholar 

  35. Glendinning, J.I., Gresack, J., and Spector, A.C., A high-throughoutput screening procedure for identifying mice with aberrant taste and oromotor function, Chem. Senses, 2002, vol. 27, pp. 461–447.

    Article  PubMed  Google Scholar 

  36. Spector, A.C., Physiological evaluation of taste function in non-human mammals, Handbook of Olfaction and Gustation, 2nd Edn, NY, 2002.

    Google Scholar 

  37. Ayala, J.E., Samuel, V.T., Morton, G.J., Obici, S., Croniger, C.M., Shulman, G.I., Wasserman, D.H., and McGuinness, O.P., Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice, Dis. Model. Mech., 2010, vol. 3, no. 9–10, pp. 525–534.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Zhao, G.Q., Zhang, Y., Hoon, M.A., Chandrashekar, J., Erlenbach, I., Ryba, N.J.P., and Zuker, C.S., The receptors for mammalian sweet and umami taste, Cell, 2003, vol. 115, pp. 255–266.

    Article  PubMed  CAS  Google Scholar 

  39. Ohkuri, T., Yasumatsu, K., Horio, N., Jyotaki, M., Margolskee, R.F., and Ninomiya, Y., Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, vol. 296, no. 4, pp. R960–971.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Touzani, K., Bodnar, R.J., and Sclafani, A., Neuropharmacology of learned flavor preferences, Pharmacol. Biochem. Behav., 2010, vol. 97, no. 1, pp. 55–62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Mutel, E., Gautier-Stein, A., Abdul-Wahed, A., Amigó-Correig, M., Zitoun, C., Stefanutti, A., Houberdon, I., Tourette, J.A., Mithieux, G., and Rajas, F., Control of blood glucose in the absence of hepatic glucose production during prolonged fasting in mice: induction of renal and intestinal gluconeogenesis by glucagon, Diabetes, 2011, vol. 60, no. 12, pp. 3121–3131.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Andrikopoulos, S., Blair, A.R., Deluca, N., Fam, B.C., and Proietto, J., Evaluating the glucose tolerance test in mice, Am. J. Physiol. Endocrinol. Metab., 2008, vol. 295, no. 6, pp. E1323–1332.

    Article  PubMed  CAS  Google Scholar 

  43. Heijboer, A.C., Donga, E., Voshol, P.J., Dang, Z.C., Havekes, L.M., Romijn, J.A., and Corssmit, E.P., Sixteen hours of fasting differentially affects hepatic and muscle insulin sensitivity in mice, J. Lipid Res., 2005, vol. 46, pp. 582–588.

    Article  PubMed  CAS  Google Scholar 

  44. Renwick, A.G. and Molinary, S.V., Sweet-taste receptors, low-energy sweeteners, glucose absorption and insulin release, Br. J. Nutr., 2010, vol. 104, no. 10, pp. 1415–1420.

    Article  PubMed  CAS  Google Scholar 

  45. Egan, J.M. and Margolskee, R.F., Taste cells of the gut and gastrointestinal chemosensation, Mol. Interv., 2008, vol. 8, no. 2, pp. 78–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. McIntyre, N., Holdsworth, C.D., and Turner, D.S., New interpretation of oral glucose tolerance, Lancet, 1964, vol. 284, no. 7349, pp. 20–21.

    Article  Google Scholar 

  47. Erlick, H., Stimmler, L., Hlad, C.J. (Jr.), and Arai, Y., Plasma insulin response to oral and intravenous glucose administration, J. Clin. Endocrinol. Metab., 1964, vol. 24, pp. 1076–1082.

    Article  Google Scholar 

  48. Yki-Jarvinen, H., Helve, E., and Koivisto, V.A., Hyperglycemia decreases glucose uptake in type I diabetes, Diabetes, 1987, vol. 36, pp. 892–896.

    Article  PubMed  CAS  Google Scholar 

  49. Rossetti, L., Giaccari, A., and DeFronzo, R.A., Glucose toxicity, Diabetes Care, 1990, vol. 13, pp. 610–630.

    Article  PubMed  CAS  Google Scholar 

  50. Buse, M.G., Hexosamines, insulin resistance, and the complications of diabetes: current status, Am. J. Physiol. Endocrinol. Metab., 2006, vol. 290, no. 1, pp. E1–E8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Murovets.

Additional information

Original Russian Text © V.O. Murovets, A.A. Bachmanov, S.V. Travnikov, A.A. Churikova, V.A. Zolotarev, 2014, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2014, Vol. 50, No. 4, pp. 296s-304.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murovets, V.O., Bachmanov, A.A., Travnikov, S.V. et al. The involvement of the T1R3 receptor protein in the control of glucose metabolism in mice at different levels of glycemia. J Evol Biochem Phys 50, 334–344 (2014). https://doi.org/10.1134/S0022093014040061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093014040061

Key words

Navigation