- 热门
-
综合
- All
- Adv. Phys.
- Adv. Phys. X
- Adv. Sci.
- Aip Adv.
- Ann. Henri Poincaré
- Ann. N. Y. Acad. Sci.
- Ann. Phys.
- Ann. Phys.
- Annu. Rev. Public Health
- Arab. J. Sci. Eng.
- Braz. J. Phys.
- Bull. Lebedev Phys. Inst.
- Bull. Russ. Acad. Sci. Phys.
- Cell Rep. Phys. Sci.
- Chin. Phys. B
- Chin. Phys. Lett.
- Commun. Math. Phys.
- Commun. Phys.
- Commun. Theor. Phys.
- Contem. Phys.
- Dokl. Phys.
- Entropy
- EPL
- Eur. J. Phys.
- Eur. Phys. J. A
- Eur. Phys. J. C
- Eur. Phys. J. D
- Eur. Phys. J. E
- Eur. Phys. J. Plus
- Eur. Phys. J. Spec. Top.
- Faraday Discuss.
- Found. Phys.
- Front Phys.
- Front. Phys.
- Gen. Relativ. Gravit.
- High Press. Res.
- Indian J. Phys.
- Indian J. Pure Appl. Phys.
- Int. J. Numer. Meth. Eng.
- Int. J. Theor. Phys.
- Iran. J. Sci. Technol. Trans. Sci.
- J. Acoust. Soc. Am.
- J. Adv. Res.
- J. Contemp. Phys.
- J. Exp. Theor. Phys.
- J. Indian Inst. Sci.
- J. King Saud Univ. Sci.
- J. Korean Phys. Soc.
- J. Low. Temp. Phys.
- J. Phys. Commun.
- J. Phys. Condens. Matter
- J. Phys. Conf. Ser.
- J. Phys. Soc. Jpn.
- J. R. Soc. N. Z.
- J. Royal Soc. Interface
- J. Stat. Phys.
- Jetp Lett.
- Jpn. J. Appl. Phys.
- Matter Radiat. Extreme.
- Moscow Univ. Phys. Bull.
- Nat. Commun.
- Nat. Methods
- Nat. Phys.
- Nat. Protoc.
- Nat. Rev. Phys.
- Natl. Acad. Sci. Lett.
- Nature
- New J. Phys.
- Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip.
- Open Phys.
- Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci.
- Phys. D Nonlinear Phenom.
- Phys. Lett. A
- Phys. Lett. B
- Phys. Rep.
- Phys. Rev. Lett.
- Phys. Rev. Research
- Phys. Rev. X
- Phys. Scripta
- Phys. Status Solidi A
- Phys. World
- Phys.-Usp.
- Physica A
- PLOS ONE
- Polar Rec.
- Pramana
- Proc. Natl. Acad. Sci. U.S.A.
- Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.
- Proc. Royal Soc. A: Math. Phys. Eng. Sci.
- Prog. Theor. Exp. Phys.
- Rep. Prog. Phys.
- Results Phys.
- Rev. Mod. Phys.
- Riv. Nuovo Cim.
- Royal Soc. Open Sci.
- Sci. Adv.
- Sci. China Phys. Mech. Astronomy
- Sci. Edu.
- Sci. Nat.
- Sci. Progess
- Sci. Rep.
- Science
- SciPost Phys.
- Universe
- Wave Motion
-
光学
- All
- ACS Photonics
- Adv. Opt. Photon.
- APL Photonics
- Appl. Phys. B
- Appl. Spectrosc.
- Cont. Lens Anterior Eye
- Displays
- Fiber Integr. Opt.
- IEEE Photon. J.
- IEEE Photon. Technol. Lett.
- IEEE Sens. J.
- Int. J. Imaging Syst. Technol.
- Int. J. Mod. Phys. B
- Int. J. Opt.
- Int. J. Optomechatron.
- Int. J. Photoenergy
- J. Astron. Telesc. Instrum. Syst.
- J. Biomed. Opt.
- J. Eur. Opt. Soc. Rapid Publ.
- J. Infrared Millim. Terahertz Waves
- J. Innov. Opt. Health Sci.
- J. Lightw. Technol.
- J. Lumin.
- J. Micro/Nanolithogr. MEMS MOEMS
- J. Mod. Optic.
- J. Mol. Spectrosc.
- J. Nanophotonics
- J. Nonlinear Opt. Phys. Mater.
- J. Opt.
- J. Opt. Soc. Am. A
- J. Opt. Soc. Amer. B
- J. Photonics Energy
- J. Phys. B: At. Mol. Opt. Phys.
- J. Phys. Photonics
- J. Russ. Laser Res.
- J. Spectr. Theory
- J. Synchrotron Radiat.
- J. X-Ray Sci. Technol.
- Laser Part. Beams
- Laser Photonics Rev.
- Laser Phys.
- Laser Phys. Lett.
- LEUKOS
- Light Sci. Appl.
- Microw. Opt. Technol. Lett.
- Mod. Phys. Lett. B
- Nanophotonics
- Nat. Photon.
- Neurophotonics
- Opt. Commun.
- Opt. Eng.
- Opt. Express
- Opt. Laser Eng.
- Opt. Laser Technol.
- Opt. Lett.
- Opt. Mater.
- Opt. Mater. Express
- Opt. Mem. Neural Networks
- Opt. Quant. Electron.
- Opt. Rev.
- Optica
- Optik
- Photonics Nanostruct. Fundam. Appl.
- Photonics Res.
- Phys. Rev. A
- Phys. Solid State
- Sens. Actuators Rep.
- Sens. Bio-Sens. Res.
- Sensors
- Solid State Electron.
- Ultrasonics
-
流体
- All
- AIAA J.
- Annu. Rev. Fluid Mech.
- Appl. Rheol.
- Comput. Fluids
- Contrib. Plasm. Phys.
- Cryogenics
- Eng. Appl. Comput. Fluid Mech.
- Eur. J. Mech. B Fluids
- Exp. Fluids
- Exp. Therm. Fluid Sci.
- Fluid Dyn.
- Fluid Dyn. Res.
- Fluid Phase Equilibr.
- Int. J. Comput. Fluid Dyn.
- Int. J. Heat Fluid Flow
- Int. J. Multiphase Flow
- Int. J. Numer. Methods Fluids
- Int. J. Numer. Methods Heat Fluid Flow
- Int. J. Optomechatron.
- J. Aircr.
- J. Appl. Mech. Tech. Phy.
- J. Fluid Mech.
- J. Hydrodyn.
- J. Math. Fluid Mech.
- J. Mech.
- J. Non-Newtonian Fluid Mech.
- J. Rheol.
- J. Supercrit. Fluids
- J. Turbul.
- Korea Aust. Rheol. J.
- Microfluid. Nanofluid.
- Phys. Chem. Liq.
- Phys. fluids
- Phys. Plasmas
- Phys. Rev. E
- Phys. Rev. Fluids
- Plasm. Sci. tech.
- Propuls. Power Res.
- Stoch. PDE Anal. Comp.
- Theor. Comput. Fluid Dyn.
- Thermophys. Aeromech.
- Transp Porous Media
-
力学
- All
- Acta. Mech.
- AIAA J.
- Annu. Rev. Fluid Mech.
- Appl. Rheol.
- Arch. Appl. Mech.
- Biomech. Model. Mechanobiol.
- Comput. Methods Appl. Mech. Eng.
- Contin. Mech. Thermodyn.
- Eng. Appl. Comput. Fluid Mech.
- Eur. J. Mech. B Fluids
- Exp. Mech.
- Exp. Tech.
- Fluid Dyn. Res.
- Funct. Anal. Its Appl.
- Heat Transf. Eng.
- Ind. Lubr. Tribol.
- Int. J. Appl. Electromagn. Mech.
- Int. J. Appl. Mech.
- Int. J. Comput. Fluid Dyn.
- Int. J. Damage Mech.
- Int. J. Fatigue
- Int. J. Non-Linear Mech.
- Int. J. Nonlinear Sci. Numer. Simul.
- Int. J. Numer. Anal. Methods Geomech.
- Int. J. Numer. Methods Fluids
- Int. J. Numer. Methods Heat Fluid Flow
- Int. J. Solids Struct.
- J. Aircr.
- J. Appl. Mech. Tech. Phy.
- J. Elast.
- J. Engin. Thermophys.
- J. Fluid Mech.
- J. Geometr. Mech.
- J. Hydrodyn.
- J. Hydrol. Hydromech.
- J. Mach. Manuf. Reliab.
- J. Math. Fluid Mech.
- J. Mech.
- J. Mech. Mater. Struct.
- J. Mech. Med. Biol.
- J. Mech. Phys. Solids
- J. Non Equilib. Thermodyn.
- J. Non-Newtonian Fluid Mech.
- J. Porous Media
- J. Rheol.
- J. Stat. Mech.
- Journal of Theoretical and Applied Mechanics
- Korea Aust. Rheol. J.
- Math. Mech. Solids
- Meccanica
- Mech. Adv. Mater. Mod. Process.
- Mech. Adv. Mater. Struct.
- Mech. Based Des. Struct. Mach.
- Mech. Compos. Mater.
- Mech. Res. Commun.
- Mech. Solids
- Mod. Phys. Lett. A
- Moscow Univ. Mech. Bull.
- Nonlinear Anal. Model. Control
- Numer. Heat Transf. Part A Appl.
- Numer. Heat Transf. Part B Fundam.
- Phys. Mesomech.
- Probab. Eng. Mech.
- Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn.
- Q. J. Mech. Appl. Math.
- Regul. Chaot. Dyn.
- Rep. Math. Phys.
- Shock Waves
- Stoch. PDE Anal. Comp.
- Surf. Eng.
- Theor. Comput. Fluid Dyn.
- Thermophys. Aeromech.
- Tribol. Lett.
- ZAMM
- 相对论
-
量子
- All
- Appl. Phys. Express
- Chaos An Interdiscip. J. Nonlinear Sci.
- Classical Quant. Grav.
- EPJ Quantum Technol.
- Eur. Phys. J. B
- Fortschritte der Physik Prog. Phys.
- IEEE J. Sel. Top. Quantum Electron.
- Int. J. Quantum Inf.
- J. Phys. Chem. Solids
- Mod. Phys. Lett. A
- npj Quant. Mater.
- npj Quantum Inform.
- Phys. Rev. A
- Prog. Quant. Electron.
- Quantum Electron.
- Quantum Inf. Process.
- Quantum Sci. Technol.
- Quantum Topol.
- Rep. Math. Phys.
- Theor. Math. Phys.
-
凝聚态
- All
- Adv. Condens. Matter Phys.
- Adv. Theory Simul.
- Annu. Rev. Condens. Matter Phys.
- EPJ Quantum Technol.
- Eur. Phys. J. B
- Int. J. Mod. Phys. B
- Integr. Ferroelectr.
- J. Appl. Crystallogr.
- J. Clust. Sci.
- J. Phys. B: At. Mol. Opt. Phys.
- J. Synch. Investig.
- Mod. Phys. Lett. B
- Mol. Cryst. Liq. Cryst.
- Philos. Mag.
- Philos. Mag. Lett.
- Phys. B Condens. Matter
- Phys. Mesomech.
- Phys. Part. Nuclei
- Phys. Part. Nuclei Lett.
- Phys. Rev. B
- Phys. Solid State
- Phys. Status Solidi B
- Phys. Status Solidi. Rapid Res. Lett.
- Physica C
- Physica E Low Dimens. Syst. Nanostruct.
- Prog. Surf. Sci.
- Soft Matter
- Solid State Commun.
- Solid State Ionics
- Solid State Sci.
- Struct. Dyn.
- Superlattices Microstruct.
- Surf. Interfaces
- Surf. Sci.
- Surf. Sci. Rep.
-
核物理
- All
- Ann. Nucl. Energy
- Annu. Rev. Nucl. Part. Sci.
- Atom. Data Nucl. Data Tables
- Atom. Energy
- Chin. Phys. C
- Fusion Eng. Des.
- Fusion Sci. Technol.
- IEEE Trans. Nucl. Sci.
- Int. J. Mod. Phys. E
- J. Nucl. Sci. Technol.
- J. Phys. G Nucl. Partic. Phys.
- J. Radiat. Res. Appl. Sci.
- Mod. Phys. Lett. A
- Nucl. Data Sheets
- Nucl. Eng. Des.
- Nucl. Eng. Technol.
- Nucl. Fusion
- Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
- Nucl. Phys. A
- Nucl. Phys. B
- Nucl. Technol.
- Phys. Atomic Nucl.
- Phys. Part. Nuclei
- Phys. Part. Nuclei Lett.
- Phys. Rev. C
- Plasma Phys. Control. Fusion
- Prog. Nucl. Energy
- Prog. Part. Nucl. Phys.
- Radiat. Meas.
- Radiochemistry
- Sci. Technol. Nuclear Install.
- Theor. Math. Phys.
-
应用
- All
- APL Mater.
- Appl. Phys. A
- Appl. Phys. B
- Appl. Phys. Express
- Appl. Phys. Lett.
- Appl. Phys. Rev.
- At. Sprays
- Biomed. Phys. Eng. Express
- Chaos An Interdiscip. J. Nonlinear Sci.
- Comp. Part. Mech.
- Cryogenics
- Curr. Appl. Phys.
- High Temp.
- IEEE Magn. Lett.
- IEEE T. Magn.
- IEEE Trans. Appl. Supercond.
- Int. J. Appl. Electromagn. Mech.
- Int. J. Thermophys.
- Integr. Ferroelectr.
- J. Appl. Phys.
- J. Comput. Electron.
- J. Comput. Theor. Transp.
- J. Electromagn. Waves Appl.
- J. Infrared Millim. Terahertz Waves
- J. Phys. D: Appl. Phys.
- J. Phys. Energy
- J. Phys. Mater.
- J. Synchrotron Radiat.
- J. Vac. Sci. Technol. A
- J. Vac. Sci. Technol. B
- J. X-Ray Sci. Technol.
- Laser Phys.
- Low Temp. Phys.
- MAPAN
- Microelectron. Eng.
- MRS Bull.
- Nanomater. Nanotechnol.
- Nanophotonics
- Nanotechnol. Rev.
- Phys. Rev. Appl.
- Phys. Status Solidi. Rapid Res. Lett.
- Physica C
- Quant. InfraRed Thermogr. J.
- Quantum Electron.
- Radiophys. Quantum Electron.
- Rev. Sci. Instrum.
- Russ. Phys. J.
- Sens. Actuators Rep.
- Sens. Bio-Sens. Res.
- Surf. Interfaces
- Tech. Phys. Lett.
-
天体物理
- All
- Adv. Astron.
- Adv. Space Res.
- Annu. Rev. Astron. Astrophys.
- Annu. Rev. Earth Planet. Sci.
- Astron. Astrophys. Rev.
- Astron. Geophys.
- Astron. Nachr.
- Astropart. Phys.
- Astrophys. Bull.
- Astrophys. J.
- Astrophys. J. Suppl. Ser.
- Astrophysics
- Celest. Mech. Dyn. Astr.
- Comput. Astrophys. Cosmol.
- Exp. Astron.
- Gravit. Cosmol.
- Int. J. Mod. Phys. A
- Int. J. Mod. Phys. D
- J. Astrophys. Astron.
- J. Cosmol. Astropart. Phys.
- Kinemat. Phys. Celest. Bodies
- Living Rev. Sol. Phys.
- Nat. Astron.
- Publ. Astron. Soc. Aust.
- Radiat. Meas.
- Radio Sci.
- Res. Astron. Astrophys.
- Res. Notes AAS
- Sol. Phys.
- Solar Syst. Res.
- Space Weather
-
热力学
- All
- AIAA J.
- Case Stud. Therm. Eng.
- Combust. Theory Model.
- Contin. Mech. Thermodyn.
- Cryogenics
- Exp. Heat Transf.
- Exp. Therm. Fluid Sci.
- Fortschritte der Physik Prog. Phys.
- Heat Mass Transfer
- Heat Transf. Eng.
- Heat Transf. Res.
- Int. J. Appl. Mech.
- Int. J. Spray Combust. Dyn.
- Int. J. Therm. Sci.
- Int. J. Thermophys.
- J. Engin. Thermophys.
- J. Enhanc. Heat Transf.
- J. Non Equilib. Thermodyn.
- J. Porous Media
- J. Therm. Stresses
- J. Thermophys. Heat Transf.
- Nanoscale Microscale Thermophys. Eng.
- Numer. Heat Transf. Part A Appl.
- Numer. Heat Transf. Part B Fundam.
- Proc. Inst. Mech. Eng. Part A J. Power Energy
- Propuls. Power Res.
- Sci. Tech. Built Environ.
- Thermophys. Aeromech.
-
电磁
- All
- Electromagnetics
- IEEE Microw. Wirel. Compon. Lett.
- IEEE Trans. Electromagn Compat.
- IEEE Trans. Plasma Sci.
- Int. J. Microw. Wirel. Technol.
- Int. J. Optomechatron.
- J. Electromagn. Waves Appl.
- J. Quant. Spectrosc. Radiat. Transf.
- J. Radiat. Res. Appl. Sci.
- Phys. Solid State
- Plasma Phys. Rep.
- Radiat. Phys. Chem.
- Sens. Actuators Rep.
- Sens. Bio-Sens. Res.
- Solid State Nucl. Magn. Reson.
-
其他
- All
- Acoust. Aust.
- Acoust. Phys.
- Adv. Complex Syst.
- Adv. High Energy Phys.
- Adv. Math. Phys.
- Adv. Theor. Math. Phys.
- Aerosol Sci. Technol.
- Am. J. Phys.
- Appl. Radiat. Isot.
- Appl. Surf. Sci.
- Arch. Phys. Med. Rehabilit.
- Atten. Percept. Psychophys.
- Biointerphases
- Biophysics
- bioRxiv. Biophys.
- Br. J. Philos. Sci.
- Braz. J. Phys. Ther.
- Cell Biochem. Biophys.
- Chem. Phys. Lipids
- Commun. Number Theory Phys.
- Comput. Phys. Commun.
- Cont. Shelf Res.
- Crys. Rev.
- Discrete Contin. Dyn. Syst. A
- Discrete Contin. Dyn. Syst. B
- Discrete Contin. Dyn. Syst. S
- Dokl. Math.
- EJNMMI Phys.
- Electron. Struct.
- Eur. Phys. J. H
- Few-Body Syst.
- Fluct. Noise Lett.
- Granular Matter
- Health Phys.
- High Energy Density Phys.
- High Power Laser Sci. Eng.
- Infin. Dimens. Anal. Quantum Probab. Relat. Top.
- Infrared Phys. Technol.
- Instrum. Sci. Technol.
- Int. Commun. Heat Mass Transf.
- Int. J. Geom. Methods Mod. Phys.
- Int. J. Heat Mass Transf.
- Int. J. Hyperth.
- Int. J. Mod. Phys. C
- Int. J. Plasticity
- Int. J. Radiat. Biol.
- Int. J. Therm. Sci.
- Interfaces Free Bound.
- IOP SciNotes
- Izv. Phys. Solid Earth
- J. Aerosol Sci.
- J. Appl. Clin. Med. Phys.
- J. Appl. Ind. Math.
- J. Atmos. Sol. Terr. Phys.
- J. Biol. Phys.
- J. Comput. Phys.
- J. Geometr. Phys.
- J. High Energy Phys.
- J. Homotopy Relat. Struct.
- J. Laser Appl.
- J. Low Freq. Noise Vib. Act. Control
- J. Mater.
- J. Math. Phys.
- J. Nonlinear Math. Phys.
- J. Phys. A: Math. Theor.
- J. Phys. Complex
- J. Plasma Phys.
- J. Sound Vib.
- J. Theor. Comput. Acoust.
- Lett. Math. Phys.
- Mater. Chem. Phys.
- Mater. Technol.
- Mater. Today Phys.
- Math. Models Methods Appl. Sci.
- Math. Phys. Anal. Geom.
- Meas. Sci. Rev.
- Med Phys
- Methods Appl. Fluoresc.
- Microgravity Sci. Technol.
- Microsc. Res. Tech.
- Nat. Electron.
- Netw. Heterog. Media
- Notes Rec. Royal Soc. J. History of Sci.
- Phys. Educ.
- Phys. Med. Biol.
- Phys. Perspect.
- Phys. Rev. Accel. Beams
- Phys. Rev. D
- Phys. Rev. Materials
- Phys. Rev. Phys. Educ. Res.
- Phys. Wave Phen.
- Plasma Res. Express
- Plasma Sources Sci. Technol.
- Plasmonics
- Proc. Jpn. Acad. Ser. B
- Radiat. Eff. Defects Solids
- Rev. Math. Phys.
- Russ. J. Math. Phys.
- Speech Commun.
- Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys.
- Supercond. Sci. Technol.
- Surf. Rev. Lett.
- Syst. Control Lett.
- Tech. Phys.
- Technometrics
- Ultrason Imaging
- Wave. Random Complex Media
- X-Ray Spectrom.
- Z. Krist. Cryst. Mater.
-
A study of the structural and magnetic properties of nitrides of iron and nickel (XN; X = Fe, Ni) using density functional theory approach Electron. Struct. Pub Date : 2021-02-14 T Atsue; I B Ogunniranye; O E Oyewande
Transition metal nitrides possess important properties of interest such as superconductivity, high hardness, optical, electronic and magnetic among others which are relevant for technological applications. In this study, structural and magnetic properties of nitrides of iron and nickel have been investigated using generalized gradient approximation of Perdew–Burke–Ernzerhof revised for solids (GGA-PBEsol)
-
Type-II band alignment in single crystalline TiO2 nanowires under twisting Electron. Struct. Pub Date : 2021-02-14 Zhao Liu; Dong-Bo Zhang
Electronic structures with the type-II band alignment usually exist only in heterostructures. Using the generalized Bloch theorem, we reveal that an effective type-II band alignment can be induced in the single crystalline TiO2 nanowires (NWs) by an axial twisting deformation. With this, we further reveal distinct responses of the the valence band (VB) states and the conduction band (CB) states in
-
Zero-point energies prevent a trigonal to simple cubic transition in high-pressure sulfur Electron. Struct. Pub Date : 2021-01-27 Jack Whaley-Baldwin
Recently published density functional theory results using the PBE functional (Whaley-Baldwin and Needs 2020 New J. Phys. 22 023020) suggest that elemental sulfur does not adopt the simple-cubic (SC) phase at high pressures, in disagreement with previous works (Rudin and Liu 1999 Phys. Rev. Lett. 83 3049--52; Gavryushkin et al 2017 Phys. Status Solidi B 254 1600857). We carry out an extensive set of
-
Extracting the local electronic states of Pt polycrystalline films surface under electrochemical conditions using polarization-dependent total reflection fluorescence x-ray absorption near edge structure spectroscopy Electron. Struct. Pub Date : 2021-01-23 Yuki Wakisaka; Hiromitsu Uehara; Qiuyi Yuan; Daiki Kido; Takahiro Wada; Motohiro Uo; Yohei Uemura; Toshihiko Yokoyama; Yutaro Kamei; Seiichi Kuroda; Akihiro Ohira; Satoru Takakusagi; Kiyotaka Asakura
The local atomic information about the interface between the 30 nm-thick Pt polycrystalline films and the solution with and without perfluorosulfonic acid polymers (Nafion) for the model cathode catalyst of fuel cell has been captured under electrochemical conditions using polarization-dependent total reflection fluorescence x-ray absorption near edge structure spectroscopy (PTRF–XANES). The results
-
Predi-XY: a python program for automated generation of NICS-XY-scans based on an additivity scheme Electron. Struct. Pub Date : 2021-01-01 Alexandra Wahab; Felix Fleckenstein; Stefan Feusi; Renana Gershoni-Poranne
Polycyclic aromatic systems are prevalent in chemistry and materials science because their thermodynamic stability, planarity, and tunable electronic properties make them uniquely suited for various uses. These properties are closely linked to the aromaticity of the systems. Therefore, characterizing the aromatic behavior is useful for designing new functional compounds and understanding their reactivity
-
High-resolution angle-resolved photoemission spectroscopy and microscopy Electron. Struct. Pub Date : 2020-12-18 Hideaki Iwasawa
This review outlines fundamental principles, instrumentation, and capabilities of angle-resolved photoemission spectroscopy (ARPES) and microscopy. We will present how high-resolution ARPES enables to investigate fine structures of electronic band dispersions, Fermi surfaces, gap structures, and many-body interactions, and how angle-resolved photoemission microscopy (spatially-resolved ARPES) utilizing
-
Electronic structure and finite temperature magnetism of yttrium iron garnet Electron. Struct. Pub Date : 2020-12-18 Joseph Barker; Dimitar Pashov; Jerome Jackson
Yttrium iron garnet is a complex ferrimagnetic insulator with 20 magnon modes which is used extensively in fundamental experimental studies of magnetisation dynamics. As a transition metal oxide with moderate gap (2.8eV), yttrium iron garnet requires a careful treatment of electronic correlation. We have applied quasiparticle self-consistent GW to provide a fully ab initio description of the electronic
-
The transport properties of Cl-decorated arsenene controlled by electric field Electron. Struct. Pub Date : 2020-11-17 Bowen Li; Lin Zhu; Chunyan Wu; Huanyu Cheng; Kailun Yao
The large contact resistance is an insurmountable problem for the Schottky contact between the semiconducting two-dimensional channel material and the metal electrode. One solution to the Schottky contact issue is to decrease the contact resistance. Here, by using the first-principles calculations combined with the non-equilibrium Green’s function technique, we find that when monolayer arsenene is
-
Glovebox-integrated XES and XAS station for in situ studies in tender x-ray region Electron. Struct. Pub Date : 2020-10-09 Mohsen Shakouri, William M Holden, Yongfeng Hu, Qunfeng Xiao, Ru Igarashi, Bryan Schreiner, Michael Bree, Minsi Li, Weihan Li, Xueliang Sun and Tsun-Kong Sham
X-ray emission spectroscopy (XES), as a complementary technique to x-ray absorption spectroscopy (XAS), is powerful in the analysis of the electronic structure of the materials by probing the occupied density of states with high energy resolution. Recently, an XES spectrometer optimized for the tender x-ray region (2–5 keV) was successfully installed into an inert atmosphere glovebox, and the entire
-
X-ray absorption fine structure measurements on Ru–Zn/ZSM-5 during heterogeneous catalysis using an in situ spectroscopic cell Electron. Struct. Pub Date : 2020-09-13 Lijia Liu, Peng He, Yujian Xia, Hua Song, Lo-Yueh Chang, Jeng-Lung Chen and Chih-Wen Pao
We introduce a design of a portable, multi-functional spectroscopic cell for in situ structural probe of materials using hard x-rays. This versatile reaction cell allows x-ray absorption fine structure (XAFS) and x-ray diffraction measurements in transmission mode on solids at a controlled temperature, pressure, and gas environment. A model heterogeneous catalysis system, co-aromatization of octane
-
Robust mixing in self-consistent linearized augmented planewave calculations Electron. Struct. Pub Date : 2020-08-24 Jongmin Kim, Andris Gulans and Claudia Draxl
We devise a mixing algorithm for full-potential (FP) all-electron calculations in the linearized augmented planewave (LAPW) method. Pulay’s direct inversion in the iterative subspace is complemented with the Kerker preconditioner and further improvements to achieve smooth convergence, avoiding charge sloshing and noise in the exchange–correlation potential. As the Kerker preconditioner was originally
-
Hartree theory calculations of quasiparticle properties in twisted bilayer graphene Electron. Struct. Pub Date : 2020-08-03 Zachary A H Goodwin, Valerio Vitale, Xia Liang, Arash A Mostofi and Johannes Lischner
A detailed understanding of interacting electrons in twisted bilayer graphene (tBLG) near the magic angle is required to gain insights into the physical origin of the observed broken symmetry phases. Here, we present extensive atomistic Hartree theory calculations of the electronic properties of tBLG in the (semi-)metallic phase as function of doping and twist angle. Specifically, we calculate quasiparticle
-
Pentacene and tetracene molecules and films on H/Si(111): level alignment from hybrid density functional theory Electron. Struct. Pub Date : 2020-08-03 Svenja M Janke, Mariana Rossi, Sergey V Levchenko, Sebastian Kokott, Matthias Scheffler and Volker Blum
The electronic properties of hybrid organic–inorganic semiconductor interfaces depend strongly on the alignment of the electronic carrier levels in the organic/inorganic components. In the present work, we address this energy level alignment from first principles theory for two paradigmatic organic–inorganic semiconductor interfaces, the singlet fission materials tetracene and pentacene on H/Si(111)
-
Indium doped phosphorene as a potential gas sensor: a study using density functional theory Electron. Struct. Pub Date : 2020-08-03 Mohammad Ubaid, A Aziz and Bhalchandra S Pujari
The adsorption of molecules NH 3 , CH 4 , and H 2 O are studied on pristine and indium doped phosphorene (In@P). For adsorption, armchair (AC), zigzag, and isotropic/square supercells are used. We have calculated structural, adsorption energies and electronic properties using the first-principles method. The most stable configurations for adsorption on doped phosphorene are determined, and the adsorption
-
The pseudoatomic orbital basis: electronic accuracy and soft-mode distortions in ABO 3 perovskites Electron. Struct. Pub Date : 2020-06-24 Jack S Baker, Tsuyoshi Miyazaki and David R Bowler
The perovskite oxides are known to be susceptible to structural distortions over a long wavelength when compared to their parent cubic structures. From an ab initio simulation perspective, this requires accurate calculations including many thousands of atoms; a task well beyond the remit of traditional plane wave-based density functional theory (DFT). We suggest that this void can be filled using the
-
Hafnium and zirconium nitrides with rock-salt and Th 3 P 4 structures: electronic and phonon band structure calculations to examine hot carrier solar cell and thermoelectric properties Electron. Struct. Pub Date : 2020-06-24 Bharat Thapa, Robert Patterson, Milos Dubajic, Gavin Conibeer and Santosh Shrestha
Hafnium and zirconium mononitrides (HfN and ZrN) have been of interest for the hot carrier solar cell (HCSC) concept as a bulk absorber material and in thermoelectric power generation as a superlattice structure. Slowed hot carrier (HC) cooling is a fundamental requirement in an HCSC device because the carriers must be collected at high energy levels via energy selective contacts before they cool down
-
Electronic structure of MPX 3 trichalcogenide monolayers in density functional theory: a case study with four compounds (M = Mn, Fe; X = S, Se) Electron. Struct. Pub Date : 2020-06-24 Prasenjit Sen and Rajiv K Chouhan
Structural, electronic and magnetic properties of four transition metal tri-chalcogenide monolayers—MnPS 3 , MnPSe 3 , FePS 3 and FePSe 3 —are studied using density functional theory. Lattice structures in good agreement with experiments are obtained. Electronic structure of the Mn compounds obtained using the PBE-GGA functional is in qualitative agreement with the experiments, apart from the well
-
Electron localisation descriptors in ONETEP: a tool for interpreting localisation and bonding in large-scale DFT calculations Electron. Struct. Pub Date : 2020-06-23 R J Clements, J C Womack and C-K Skylaris
Electron localisation descriptors, such as the electron localisation function (ELF) and localised orbital locator (LOL) provide a visual tool for interpreting the results of electronic structure calculations. The descriptors produce a quantum valence shell electron pair repulsion (VSEPR) representation, indicating the localisation of electron pairs into bonding pairs and lone pairs in single molecules
-
Studies on covalent functionalization of single layer black phosphorus from GW calculations based on the many body perturbation theory Electron. Struct. Pub Date : 2020-06-23 Yazhuo Zheng, Yuchen Ma, Ran Jia, Huichao Li and Zhijun Yi
The major challenge of black phosphorus (BP) is its fast-oxidative degradation in air. Organic covalent chemical modification of BP flakes could suppress the chemical degradation. Here we focus on the effects of covalent chemical modification on the electronic structures of single layer BP. We employed the state-of-the-art first principles GW method, which is based on the many body green functions