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Renaissance of brown adipose tissue research: integrating
the old and new
JG Granneman

The recent demonstration of active brown adipose tissue (BAT) in adult humans, along with the discovery of vast cellular and metabolic
plasticity of adipocyte phenotypes, has given new hope of targeting adipose tissue for therapeutic benefit. Application of principles
learned from the first wave of obesity-related BAT research, conducted 30 years earlier, suggests that the activity and/or mass of brown
fat will need to be greatly expanded for it to significantly contribute to total energy expenditure. Although the thermogenic capacity of
human brown fat is very modest, its presence often correlates with improved metabolic status, suggesting possible beneficial endocrine
functions. Recent advances in our understanding of the nature of progenitors and the transcriptional programs that guide phenotypic
diversity have demonstrated the possibility of expanding the population of brown adipocytes in rodent models. Expanded populations
of brown and beige adipocytes will require tight control of their metabolic activity, which might be achieved by selective neural
activation, tissue-selective signaling or direct activation of lipolysis, which supplies the central fuel of thermogenesis.
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The past 4 years has seen an explosion of interest in brown
adipose tissue (BAT) that has been fueled by the unequivocal
identification of active BAT in adult humans, and by the growing
appreciation of the intrinsic metabolic and cellular plasticity of
mammalian adipocyte phenotypes. Whether and how this new
appreciation might translate into new therapeutics for the treatment
of obesity-related disorders is uncertain at present. Nevertheless,
there is no doubt that these recent findings have ushered in a
renaissance of interest into mechanisms by which various adipose
tissue depots might contribute to energy expenditure. The recent
interest in BAT as a therapeutic target was preceded by a ‘first wave’
of research that examined, and largely abandoned, the adipocyte/
thermogenesis approach. Although this first wave of research lacked
the molecular and genetic tools of today and was based on a
simplistic view of adipocyte complexity, this experience nevertheless
provides important parameters that may help define and inform
current approaches.

THE CENTRAL ROLE OF BAT IN NONSHIVERING THERMOGENESIS,
AND THE MYTH OF DIET-INDUCED THERMOGENESIS
The first wave of interest in BAT as a potential target for obesity-
related disease was triggered by three key discoveries in the late
1970s and early 1980s. At that time, the concept of luxuskon-
sumption, that the efficiency of metabolism diminished under
conditions of overnutrition, had been discussed for decades. Aside
from the fact that the phenomenon only had anecdotal support, it
certainly lacked a physiological mechanism and tissue target.
Three papers were subsequently published that crystallized the
concept of diet-induced thermogenesis into testable physiological
reality. The first paper was the clear demonstration by Foster and
Frydman that BAT is the dominant site of cold-induced
nonshivering thermogenesis in rats.1,2 It was well known that
cold adaptation increased the thermogenic responsiveness of rats

to injection of norepinephrine (NE), and the work of Foster and
Frydman demonstrated, using measurement of blood flow and
oxygen extraction, that BAT is the dominant (but not exclusive)
site of NE-induced thermogenesis in rats. It should also be noted
that the relative contribution of BAT was significantly less in warm-
adapted animals, and that the response of more selective
activators of BAT (that is, β3 receptor agonists) was less than
NE.3 Nonetheless, experiments in the intervening years have
clearly established that BAT is critical for nonshivering thermo-
genesis in rodents, and that in the absence of functional brown fat
alternative mechanisms that are less effective must be engaged.4,5

In addition, in the late 1970s, Young and Landsberg6–8

published a series of papers demonstrating that nutritional
interventions, such as sucrose feeding, increase the activity of the
sympathetic nervous system (SNS) to several key targets, including
BAT. As it was well established that SNS activity activates BAT and
leads to its expansion during cold stress,9–11 a potential link between
diet, overnutrition and BAT thermogenesis could be drawn.
Perhaps, the influential paper for founding the first wave of BAT

research was published in late 1979 in Nature by Rothwell and
Stock.12 In that paper, rats were fed a complex ‘cafeteria’ diet that
promoted overconsumption of energy, but did not result in the
expected retention of energy in the form of carcass fat. According
to the authors, the ‘missing’ energy implied a thermogenic
process that was triggered by diet, perhaps in a manner similar to
that observed in pigs fed a low-protein diet.13 These investigators
went on to show that cafeteria-fed rats had larger brown fat
depots and were significantly more responsive to the thermogenic
effects of NE injection. As BAT is the dominant site of energy
expenditure in cold-adapted rats, and sympathetic activity is the
main driver of cold-induced BAT expansion, the clear inference
was that BAT is a major site of diet-induced thermogenesis. If so,
then one might propose that defects in diet-induced BAT
thermogenesis might contribute to obesity.
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In the next 15 years, scores of studies were produced that
addressed the phenomenon of diet-induced thermogenesis and
the potential role of BAT. The general outcome of this work was
inconclusive, at best. The concept of diet-induced thermogenesis
in rodents remains highly controversial: in fact, the same cafeteria
feeding protocol used by Rothwell and Stock12 as evidence of BAT
involvement failed to increase BAT thermogenesis when directly
measured by blood flow studies.14 Despite much effort, there is no
conclusive demonstration that overnutrition increases responsive-
ness of humans to catecholamines or increases metabolic rate in a
manner that is not predicted by increased body mass.15–17

It is important to note that the lack of evidence for clear
involvement of BAT in diet-induced thermogenesis4 is not to deny
the importance of BAT-mediated thermoregulatory thermogenesis
in energy balance, particularly in small rodents. For example, the
difference in energy accumulation in pair-fed ob/ob and wild-type
mice markedly declines as housing temperature increases,
owing mostly to greater energy retention by wild-type mice.18

Conversely, cold adaptation greatly increases insulin sensitivity
and glucose transport in BAT.19,20 Thus, adrenergic activation of
BAT clearly provides a sink for excess calories and a means of
avoiding systemic lipotoxicity during overnutrition.21,22

THE HOPE OF Β3 ADRENERGIC RECEPTORS (ADRB3)
The major physiological regulator of brown fat thermogenesis is
activation by the SNS. Work performed on rodents established
that the responsiveness of animals to the thermogenic effects of
NE correlated so well with the degree of cold adaptation that the
two phenomena became nearly synonymous.23 NE is known to
increase the metabolic rate in humans, and work in the 1960s
established that the thermogenic effects of NE in man depend on
lipolysis and fatty acid oxidation.24,25 Experiments in rodents have
clearly established that mobilized free fatty acids are central to
BAT thermogenesis: first, free fatty acids are direct allosteric
activators of uncoupling protein-1 and are sufficient to trigger
thermogenesis in the absence of protein kinase A activation.26,27

Second, free fatty acids are the fuel of BAT thermogenesis, and
defects in fatty acid mobilization,28 activation,29 transport30 or
oxidation31 profoundly disrupt cold-induced thermogenesis. Thus,
lipolysis is both necessary and sufficient to induce thermogenesis,
and it may be the final common pathway by which catechola-
mines elevate metabolic rate.
Perhaps, the clearest demonstration of the role of adipocyte

lipolysis came from the discovery, in 1984 by Arch et al.32,33 at
Beecham Pharmaceuticals, of novel compounds that activated
adipocyte lipolysis selectively and thereby triggered robust
thermogenesis. These compounds were highly effective in
increasing thermogenesis, and when given chronically they
reproduced the beneficial effects of cold adaptation on insulin
sensitivity in rodent models. Years later, the molecular reality of
the ‘atypical beta receptor’ was confirmed with the molecular
cloning of the β3-adrenergic receptor,34–36 which provided new
tools for improving compound efficacy and selectivity, and
manipulating the system genetically. Selective β3 agonists have
been extremely important tools for probing adipose tissue
function in vivo. These agents activate classic BAT, recruit inducible
‘beige’ adipocytes in subcutaneous white adipose tissue (WAT)
depots, and promote proliferation and differentiation of brown
adipocytes in abdominal WAT.37–40 However, ADRB3 agonists
have not been proven to be effective for obesity-related disorders
in humans (although one, mirabegron,41 is an approved treatment
for urinary incontinence). Why? One reason almost certainly
relates to species differences in the expression of ADRB3. In
humans, ADRB3 is expressed in BAT, but not in WAT,36,42,43 and
experiments from the Lowell laboratory demonstrated that ADRB3
must be expressed in both WAT and BAT to achieve full
thermogenic response.44 Indeed, the thermogenic response of BAT

alone is only 20–25% of that achieved in wild-type mice. These
results indicate that adrenergically mediated thermogenic responses
require activation of both BAT and WAT, and the latter may be
involved in uncoupling protein-1-independent thermogenesis.37,45

NEW ERA: HUMANS HAVE COLD-ACTIVATABLE BAT, AND
ADIPOSE TISSUE EXHIBITS TREMENDOUS CELLULAR AND
METABOLIC PLASTICITY
As mentioned in the introduction, the renaissance of interest in
BAT derives from the synergy of two lines of research. The first line
of research is the clear demonstration that many, and perhaps
most, adult individuals have depots of BAT that can be activated
by mild cold stress.46–49 The second line of research is the
recognition of the tremendous heterogeneity of adipocytes
throughout the body with regard to cellular origins and metabolic
plasticity.50–52 This new research raises the hope that one might
target the intrinsic cellular and metabolic plasticity of adipocytes
and adipocyte progenitors for therapeutic benefit. These are
clearly early days, and it may be useful to reflect on how
conclusions from the first wave of BAT research might be
integrated to advance the exciting new era.
Positron emission tomography (PET) imaging studies conclu-

sively demonstrate that mild cold stress produces an impressive
increase in uptake of 18F fluorodeoxyglucose. One key question is
as follows: what does 18F fluorodeoxyglucose uptake mean with
respect to energy expenditure? On one hand, glucose uptake is
thought to supply o10% of calories burned in BAT, as fatty acids
are the main source of fuel for BAT thermogenesis. Thus, elevated
glucose uptake, although small (o20 kcal), could be the ‘tip of the
iceberg’ with respect to energy expenditure. To address this
question, we applied the logic used by Foster and Frydman2 and
used PET to directly image blood flow and oxygen extraction during
cold-induced BAT activation.53,54 The results of these experiments
demonstrate that despite high 18F fluorodeoxyglucose uptake, the
increases in oxidative metabolism, as measured by 15O PET, were
o10 kcal per day. As oxygen delivery sets the upper limit on oxygen
consumption, those studies that have measured blood flow agree
that the metabolic rate of cold-activated supraclavicular BAT is
o20 kcal per 100 g per day.53–56 To put this in perspective, BAT of
cold-adapted rats can achieve blood flow of 1000ml per min per
100 g versus 15–20ml per min in warm-adapted humans. The clear
conclusion is that the abundance and/or magnitude of thermogenic
activation of BAT would need to be increased by 20- to 50-fold to
achieve an effect similar to brief exercise.
PET imaging experiments are not without limitations. PET imaging

averages over several cubic millimeters of tissue, and thus
microscopic patches of brown adipocytes may not register above
the background of typical white adipocytes. In this regard, we and
others have noted that individuals with PET-defined BAT exhibit an
increase in metabolic rate in response to cold, whereas those
without brown fat do not. This observation suggests three
possibilities: first, thermogenesis may be because of widely
distributed brown adipocytes in white fat whose activity is difficult
to image by PET. In this regard, we noted that the activity of white
fat was also correlated with cold-induced energy expenditure.53,57

The second possibility is that BAT engages downstream thermo-
genic mechanisms, perhaps by the release of hormones such as
FGF21.58,59 Last, BAT thermogenesis in humans may simply be a
small component of a larger metabolic response that is driven by a
common factor, such as the SNS. Regardless, identification of the
sites of cold-induced energy expenditure and the signaling
mechanisms involved are important unresolved questions.
The amount and activity of brown fat varies widely among

individuals, and an important task of future research is to
identify the signaling and transcriptional networks that guide
commitment and differentiation of progenitors into active brown
adipocytes. In this regard, recent lineage-tracing studies have
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highlighted the developmental and anatomic heterogeneity
among adipocytes that can express uncoupling protein-1.40,52,60

As detailed in the following papers, work by Kajimura has
demonstrated the importance of PRDM16 in specifying the brown
fat lineage, including the central role of EMH1.61–63 Work from the
Tseng laboratory was among the first to establish the cellular
complexity of cells capable of uncoupling protein-1 expression,51

including the critical role of BMP7 signaling in classic and
inducible brown adipogenesis.64–66 Each of these discoveries has
provided new insights and tools for assessing brown fat function.
Our own lineage-tracing experiments have identified progenitors
in abdominal white fat that are capable of brown or white
adipogenesis, depending on activating signals.39,40 The cells are a
subset of stromal vascular cells that express PDGFRA, ScaI and
CD34, and are highly committed to the adipocyte lineage.67

Interestingly, these cells appear to be the main source of new
adipocytes that are produced in response to cell death in adult
adipose tissues.39 Given the large heterogeneity among adipocyte
depots in rodents, at present it is unclear how our understanding
of a specific marker in mice will translate to humans. As reported
in this compilation, work from the Enerback laboratory suggests
similar heterogeneity of classical BAT, and beige adipose tissue is
likely to be found in humans.68,69

Although making more BAT may be necessary for achieving
therapeutic effect, precise means of regulating the thermogenic and
endocrine functions of brown adipocytes will need to be discovered.
The SNS is well established as the dominant regulator of classic
brown fat function. Activation of the SNS is stimulus dependent, and
cold stress triggers a pattern of activation that is distinct from other
physiological stimuli.70 The work of Bartness and colleagues71,72 has
provided a deeper understanding of the circuits involved in the
regulation of BAT and WAT, which may lead to a more effective
means of activation of energy expenditure, without unintended
effects on the cardiovascular system. Alternative means of increasing
the thermogenic potential of BAT include retinoic acid, TGR5
agonist, thyroid hormone and irisin (reviewed in Villarroya and
Vidal-Puig73). Recent results suggest that transient receptor potential
channels may provide a novel means of indirect and direct
activation of BAT-dependent thermogenesis.74,75

As mentioned above, there are compelling data indicating that
BAT thermogenesis relies on lipolysis, and that both brown and
white adipocytes contribute to the total thermogenic response of
lipolytic agents. In view of the failure of ADRB3 agonists to work as
thermogenic agonists in humans, other means of activating lipolysis
need to be exploited. In this regard, the recent appreciation that
natriuretic peptide signaling leads to activation of classic and
inducible brown fat by the Collins laboratory offer a novel strategy
for inducing energy expenditure without the deleterious effects of
systemic sympathomimetics.76,77 In addition, recent advances in our
understanding of lipolytic mechanisms that are downstream of
protein kinase A may offer new targets for fat-specific activation of
lipolysis and catabolic remodeling of both BAT and WATs.78,79
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