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Abstract
A model was developed for long term metformin tissue retention based upon temporally inclusive models of serum/plasma

concentration (C) having power function tails called the gamma-Pareto type I convolution (GPC) model and was contrasted

with biexponential (E2) and noncompartmental (NC) metformin models. GPC models of C have a peripheral venous first

arrival of drug-times parameter, early C peaks and very slow washouts of C. The GPC, E2 and NC models were applied to

a total of 148 serum samples drawn from 20 min to 72 h following bolus intravenous metformin in seven healthy mongrel

dogs. The GPC model was used to calculate area under the curve (AUC), clearance (CL), and functions of time, f(t), for

drug mass remaining (M), apparent volume of distribution (Vd), as well as t1=2 f ðtÞ for C, M and Vd . The GPC models of C

yielded metformin CL-values that were 84.8% of total renal plasma flow (RPF) as estimated from meta-analysis. The GPC

CL-values were significantly less than the corresponding NC and E2 CL-values of 104.7% and 123.7% of RPF, respec-

tively. The GPC plasma/serum only model predicted 78.9% drug M average urinary recovery at 72 h; similar to prior

human urine drug M collection results. The GPC model t1=2 of M, C and Vd, were asymptotically proportional to elapsed

time, with a constant limiting t1=2 ratio of M/C averaging 7.0 times, a result in keeping with prior simultaneous C and urine

M collection studies and exhibiting a rate of apparent volume growth of Vd that achieved limiting constant values. A

simulated constant average drug mass multidosing protocol exhibited increased Vd and t1=2 with elapsing time, effects that

have been observed experimentally during same-dose multidosing. The GPC heavy-tailed models explained multiple

documented phenomena that were unexplained with lighter-tailed models.
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Abbreviations
AUC Area under the curve

C(t) Concentration (model)

CDF Cumulative density function

CI Confidence interval, default 95%

CinðtÞ Concentration, constant infusion

CL Plasma or serum clearance

Cmax Local peak concentration

CobsðtÞ Observed concentrations (vector)

CSS Steady-state concentration, terminal CinðtÞ
CV% Coefficient of variation

D Dose mass

df Degrees of freedom

DF(n) Fractional dose multiplier

DR An acronym of dosing rate

E1 Monoexponential c e�k t

E2 Biexponential

EDn Exponential density of n terms

EPAH Renal extraction fraction PAH

GD Gamma distribution

GM Geometric mean

GPC Gamma Pareto distribution

H-MRT Harmonic mean residence time
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hOCT Human organic cation transporter

IQR Interquartile range

IV Intravenous

j Equivalent to AUC

L2 Euclidean norm; vector distance

L2
2 L2ð Þ2, sum of squares, OLS norm

M(t) Drug mass in body (model)

MRT Mean residence time

N Normal distribution

NC Noncompartmental (analysis)

OLS Ordinary least squares

PAH Para-aminohippuric acid

PBPK Physiologic based pharmacokinetic

PD Pareto distribution

pdf (Probability) density function

R Multiple correlation

r Pearson correlation

rs Rank correlation

qc Lin’s concordance correlation

RPF Renal plasma flow

RT Residence time

S(t) Survival function, e.g., SGDðtÞ
SEM Standard error of the mean

SET Sum of exponential terms

Ss Mean dose mass during s
t1=2ðtÞ Half-life of anything as an f(t)

s Dose interval time

hðtÞ Unit step function

VdðtÞ Variable apparent volume of distribution

V 0
dðtÞ Rate of change of VdðtÞ

Vd-area Terminal apparent volume of distribution

Vd-RT Volume of distribution, a constant from some

residence time

VH-MRT Volume of distribution from H-MRT

VSS Apparent steady-state volume of distribution

Introduction

Metformin (1,1-dimethylbiguanide), average molecular

weight 129.164 g/mol, is a þ1 cation at physiological pH

with apparent volumes of distribution (dogs) [1] so large

that it may be problematic to use classical pharmacokinetic

methods to calculate those volumes. Metformin is used

among numerous indications as the default first-line treat-

ment for type II diabetes and for cancer chemotherapy in

humans. There is a developing interest in treating feline

and canine cancer with metformin, which in dogs is more

typically used as an anti-hyperglycaemic agent to treat

obesity or insulin resistance [1, 2]. In humans, the postu-

lated cancer cell susceptibility to metformin is from

defective mitochondrial oxidative phosphorylation and low

glucose levels [3]. Metformin is non-metabolised and

exclusively plasma-phase renal cleared at an estimated

90–100% of total renal plasma flow in humans [4]. Seen in

association with impaired renal function is dose related

lactic acidosis, a rare but serious condition [5–7] suggest-

ing a maximum safe dosing. Also, antineoplastic

chemotherapy with metformin potentiates temsirolimus

side effects [8], such that secondary metformin effects

during therapy are also concerning. For example, extra-

mitochondrial secondary metformin effects are suppression

of glycogenolysis, and enhanced cellular glucose uptake

relevant to metformin’s pharmacodynamics in type II dia-

betic therapy [9].

During oral dosing, washed jejunal tissue biopsies had

about 30–300� higher metformin concentrations than that

in plasma (human) [10]. Metformin accumulates in the

cytosol of erythrocytes, small intestine, skeletal and cardiac

muscle cells, hepatocytes, and brain [4, 11–13]. Met-

formin’s primary effect is to suppress gluconeogenesis in

mitochondria [14]. Metformin mitochondrial concentration

from cultured rat hepatoma cells was 1000� that in plasma

at 60 h [15]. Metformin’s extra-mitochondrial drug effects

appear to occur in other intracellular locations. For exam-

ple, control of gluconeogenesis was time-delayed using a

same-dose regimen [16], and unrelated to blood concen-

trations [17]. As mitochondria have a very high affinity for

metformin, and most eukaryotic cells (except mature ery-

throcytes) contain many mitochondria, which occupy up to

25 percent of the cytoplasmic volume [18], and are the sites

of metformin tumoricidal drug action, with elapsing time

one would expect a predominance of body drug mass to be

in close proximity to the mitochondrial effector sites.

Intracellular localised metformin effects and plasma

drug concentration are kinetically distinct as supported by

the observations in rats, dogs and humans that half-lives of

drug mass in urine or in erythrocytes are approximately 4.2

to 11.1 times longer than in plasma [4, 13, 19–22]. The

difference of half-lives relates to persistent redistribution.

To cause persistent redistribution, it would not be enough

to add a solitary extra compartment to our model, but with

elapsing time even more compartments would be needed.

Variable-volume, variable half-life pharmacokinetic mod-

elling is a relatively recent development that allows volume

of distribution to be added to a model with elapsing time

[23]. The additional concept of a half-life that is not static

may seem novel, but was shown to arise in nonequilibrium

states (i.e., when the mass half-life is longer than the

plasma half-life), and occurs transiently before a com-

partmental model achieves dynamic equilibrium (i.e., when
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mass half-life and plasma half-life are equal). Thus, rather

than just accept that metformin plasma concentration half-

lives are poorly characterised [11], we note that Xie et al.

[4] as well as Sambol et al. [24], the latter for oral multi-

dosing, have commented that metformin half-life increased

with elapsing time. Indeed, bolus intravenous metformin

plasma half-life was 1.5 h as last sampled at 8 h [20], 4.5 h

as last sampled at 12 h [22], and 20.4 h, as last sampled at

72 h (dogs) [1], such that there is good evidence that

metformin plasma half-lives increase with elapsing time.

To duplicate metformin half-lives of drug mass in urine

and erythrocytes that are persistently multiple times longer

than in plasma, classical drug models like the sum of

exponential terms (SET) and noncompartmental (NC)

exponential models are perhaps not the best choices as only

a terminal drug mass to plasma concentration half-life ratio

of one is possible for those models. SET functions yield

transient nonequilibrium models whose time to dynamic

equilibrium can be prolonged 7.5 times but not eliminated

using gamma distributions with greater than exponential

log-convexity enforced using adaptive Tikhonov regular-

ization [23, 25, 26]. It is not surprising then that for many

bolus drug experiments, a late-time exponential tail

underestimates the actual amount of drug remaining in the

body [5, 27]. Many intravenously administered drugs has

been observed to follow the very heavy-tailed, power-law

at late times [28–34]. The statistical form for a power law

is the Pareto distribution (PD), which like the Cauchy

distribution, has tails so heavy they confer unusual statis-

tical properties and have been given the name fat-tailed

distributions. Power laws are scale independent and

intrinsically fractal. Fractal drug models are consistent with

carrier transport [35], and metformin is principally hOCT

transported [7]. However, a power-law model does not

accurately model the first few hours of concentration

[36, 37]. The incorporation of a power function tail into a

semi-infinite support model, 0� t\1, was explored with

fractional calculus [38], but without consideration of mass

conservation and nonequilibrium dynamics. Explored is

whether the inclusion of power function tail into a tem-

porally more inclusive model of serum or plasma concen-

tration will yield the permanent nonequilibrium that

explains and duplicates the observed persistent mass to

concentration ratio of half-lives and whether that forms an

accurate enough concentration model to suggest clinical

usefulness.

Convolution of a washout model (a monotonic

decreasing function) with a gamma distribution (GD) has

been used before for correcting the contribution to total

residence time of early concentrations [37]. In the current

paper, a gamma-Pareto type I convolution (GPC) concen-

tration density function of time was used to model the

pharmacokinetics of single bolus intravenous metformin

injections is each of seven dogs, most having 22 time-

samples collected over 20 min to 72 h. In a GPC model, the

PD models the terminal tail of the drug’s plasma concen-

tration after the lighter-tailed gamma density (GD) has

decayed. Hyperglycaemia therapy with metformin multi-

dosing has shown a progressively increasing effect of

decreasing fasting plasma glucose for at least the 8 weeks

of testing [39]. Thus, the longer metformin drug mass in

tissue may be better linked to drug effect than serum

concentration [17], and the modelling introduced should

generate accurate drug mass curves from serum data alone,

and to be useful should allow for a multidosing regimen

that rapidly establishes a constant drug mass in the body, as

opposed to dosing for many weeks for that to occur. This

may be relevant for cancer chemotherapy as the alterna-

tives are either to wait for months for tissue build up of

metformin, which may not provide optimal therapy for

rapidly growing tumours, or to give large dosages without

knowing when unnecessarily high metformin tissue con-

centration will occur.

The residual drug masses imply tissue retentions and

excretions that were contrasted with published urinary

excretion and erythrocyte retention results. The modifica-

tions of pharmacokinetic parameters resulting from the

application of the new models are presented and discussed

for bolus intravenous metformin disposition curves and

body drug mass as functions of time and their half-life

functions together with some distinct pharmacodynamic

implications arising from them. As some of the results are

compared to exponential tailed model results, some sta-

tistical characterisation and comparative data analysis of

exponential based models is also provided.

Background

To obtain ratios of half-lives of mass and concentration that

do not tend to unity from persistently non-equilibrated

models required defining half-life as a function of time.

Said ratios naturally arise in the context of variable

apparent volume of distribution models, VdðtÞ. The first

mathematically correct VdðtÞ models were proposed by

Niazi for SET functions [40]. Those models were simul-

taneously compartmental models and variable volume

models, but the interpretations of those different models are

distinct. Niazi’s work was generalised by some of us for

any density function supported on the time is ½0; 1Þ
interval having a varying apparent volume of drug distri-

bution in time, VdðtÞ, with half-life expressions that vary in

time [23]. For variable volume modelling VdðtÞ is a drug-o-
centric volume of distribution in time. For metformin, the

drug is either in the body, or has been eliminated to the

urine. We do not know where the M(t) drug mass is in the
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body. We only know that mass is concentration times

volume. That apparent volume of distribution is the

imaginary volume that the drug would occupy if it were

everywhere at the same concentration as it was observed to

be in plasma at that time, and CL eliminates drug mass

from that single volume no matter how big that volume is.

The general basic equations of variable volume mod-

elling with variable half-life and constant clearance are

listed as Eqs. (1)–(10). Note well that these equations are

for bolus conditions; dose delivered rapidly under intra-

venous conditions, and do not include dose that remains in

any syringe, tubing or vial, nor any depo caused by inad-

vertent subcutaneous extravasation, i.e., a common, but

largely unrecognised problem [41]. Drug mass, M(t),

means drug mass in the body, not drug mass excreted.

Equations (1, 2) require clearance CL to be proportional to

plasma/serum concentration and constant in time. Strictly

speaking, the observed concentrations, CobsðtÞ, for these

two equations should be measured where elimination is

occurring, which for metformin is where the renal artery

contents are cleared in the kidney, and the C(t) model fit to

those observations. Note that Eq. (1) reduces to D ¼
CL AUC for t ¼ 0, where D ¼ Mðt ¼ 0Þ is the dose, CL is

plasma/serum clearance and AUC is the area under the

curve of C(t) from t ¼ 0 to1. Equation (2) is a mass ratio;

the quotient of Eq. (1) evaluated at t divided by its eval-

uation at t ¼ 0, is the complementary cumulative density

function and defines a density function’s right-hand tail

area (pdf often have two-tails). As a matter of convenience,

the complementary cumulative density function is referred

to as a survival function SðtÞ ¼def 1� CDFðtÞ, where CDF(t)
is the cumulative density function and

CDFðtÞ ¼def
R t

0
pdfðuÞdu. This is common practice despite

the confusion it causes. That is, a survival function in the

strictest sense is discrete, which is not how the term is

being used here. Although the name survival arose from

actuarial usage as the fraction of an initial population

surviving in time, here it is the fraction surviving in the

body of a unit dose mass at time t. Sometimes, survival

functions are also used to calculate ‘‘Relative tail heavi-

ness’’ as per the Appendix Section. Survival functions and

CDF are dimensionless (units cancel).

A list of equations for bolus-dose, constant-clearance,

intravenous conditions follows:

Mass as an f(t),

MðtÞ ¼ CL

Z 1

t

CðuÞ du: ð1Þ

Survival function definition,

SðtÞ ¼def
Z 1

t

pdfðuÞ du ¼ MðtÞ
Mð0Þ ¼

R1
t

CðuÞ du
R1
0

CðuÞ du
: ð2Þ

Conservation of mass,

MðtÞ ¼ VdðtÞCðtÞ: ð3Þ

Concentration parsing,

�C 0ðtÞ
CðtÞ ¼ �M 0ðtÞ

MðtÞ þ V 0
dðtÞ

VdðtÞ
: ð4Þ

Two time-sample exponential half-life,

n ¼ � lnð2Þ tiþ1 � ti

lnðCiþ1Þ � lnðCiÞ
: ð5Þ

Instantaneous half-life,

t1=2; f ðtÞ ¼
def� lnð2Þ f ðtÞ

f 0ðtÞ : ð6Þ

Half-life of drug mass,

t1=2;MðtÞ ¼ lnð2Þ
CL

VdðtÞ: ð7Þ

Half-life of concentration,

t1=2;CðtÞ ¼
lnð2Þ

CLþ V 0
d tð Þ VdðtÞ: ð8Þ

Ratio of M(t) to C(t) half-lives,

t1=2;MðtÞ
t1=2;CðtÞ

¼ CLþ V 0
dðtÞ

CL
: ð9Þ

Harmonic sum of half-lives,

1

t1=2;CðtÞ
¼ 1

t1=2;MðtÞ þ
1

�t1=2;VdðtÞ
: ð10Þ

Equations (3)–(10) are variable apparent volume of

distribution equations and/or variable half-life equations.

Of these equations, Eq. (3) and the derivative of its loga-

rithm, parsing of concentration Eq. (4), are the direct

results of conservation of mass. For these equations, VdðtÞ
at t ¼ 0 is either undefined for a short time when C(t)

models a peripheral venous sample or a C(t) is used that

models more proximal concentrations at the injection site

itself. Equation (4) relates that the negative relative change

in concentration (i.e., a positive number for decreasing

concentration) is the negative relative change of mass (also

typically positive) plus the relative drug volume of distri-

bution apparent growth, which latter dilutes/rarefies the

relative concentration. For a constant volume of distribu-

tion, Vd-RT ¼ CL RT can be used, where RT is whichever

type of residence time is appropriate to the model under

consideration—see the ‘‘Residence Time’’ Appendix

Subsection.

Equation (5) is common knowledge for any two time-

samples, fti;Cig and ftiþ1;Ciþ1g. Use of this equation for

non-compartmental conditions when tiþ1 � ti is small is

done with median values from all of the dogs’ samples to
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obtain tractable results—see the ‘‘Noncompartmental time-

sample group, median half-life’’ Appendix Subsection for

details. However, Eq. (5) only applies for monoexponential

conditions or in the limit if we substitute f ðtÞ � Ci, and

tiþi ¼ ti þ Dt and let Dt ! 0þ, where f(t) is any continu-

ously differentiable function. That yields Eq. (6), which is

of classical mechanical type, and applies equally well to

the evolution of half-life of satellite orbital decay [42] as to

variable half-life of concentration of any drug. Half-lives

can be both positive and negative. For an f(t) that increases

in time, the t1=2 is negative. For example, this occurs when

concentration is increasing in time in a peripheral vein

shortly after intravenous injection. It easier to understand a

negative half-life of an increasing function of time when

some maximum total value of a measurement is being

approached in time by subtracting the measured values

from that maximum and viewing the result as a positive

half-life of a decreasing function in time, as is done, for

example, using total dosage administered for a urinary drug

recovery t1=2 calculation. However, growth of any function

in time, including drug mass accumulating in urine, actu-

ally has a negative half-life.

For the half-life of drug mass from the Eq. (6) defini-

tion, we substitute Eq. (3) for f(t), and the derivative of

Eq. (1) for f 0ðtÞ, which yields Eq. (7). To find the plasma/

serum clearance half-life, Eq. (8), we eliminate the mass

terms in concentration parsing Eq. (4) using MðtÞ ¼
VdðtÞCðtÞ and M0ðtÞ ¼ �CLCðtÞ, then rearrange terms to

put them into the form of Eq. (6). V 0
dðtÞ is concentration

dilution having the same units as CL, e.g., ml min�1kg�1.

Next, we form the ratio of the mass and concentration half-

lives above to yield Eq. (9). We hypothesise that this can

have different concentration parsing limits,

V 0
d 1ð Þ ¼ 0 or[ 0, [23] and Eq. (33) below, respectively.

In the first case, V 0
dðtÞ eventually shrinks to zero, volume

dilution of concentration stops, and dynamic equilibrium is

achieved. Thereafter, mass half-life is the same as the half-

life in plasma/serum. In the second case, V 0
dð1Þ is a pos-

itive constant and t1=2;MðtÞ remains longer, e.g., as wit-

nessed as �t1=2 of metformin mass in urine, than t1=2;CðtÞ
in plasma/serum. The half-life of VdðtÞ adds harmonically,

i.e., reciprocally, with mass and concentration half-lives, as

follows. Substituting the mass and concentration half-lives,

Eqs. (8, 9), into concentration parsing Eq. (4) yields

Eq. (10).

Constant infusion

Let us assume that elimination rate is proportional to

concentration, and that superposition is valid. Using as

impulse-response the infinitesimal of an intravenous bolus

C(t) model and as constant input of that model, hðtÞ, the
unit step function in the role of its transfer or control

function, their convolution is a constant infusion concen-

tration model. Then as hðxÞ � pdfðxÞ ðtÞ ¼ CDFðtÞ, where
CDF is the cumulative density function,

CinðtÞ ¼ CðxÞ � hðxÞ tð Þ

¼
Z t

0

CðxÞdx ¼
Z 1

0

CðxÞdx
Z t

0

pdf xð Þdx

¼ AUCbolusCDF tð Þ � CSSCDF tð Þ ¼ DR

CL
CDFðtÞ;

ð11Þ

where the ’in’ of CinðtÞ is for ’infusion’, and where

CSS ¼ DR=CL is the steady state concentration [23]. DR, an

acronym of dosing rate, was used and elsewhere R0 or k0
are often used. A CDFðtÞ has a maximum amplitude of 1

terminally; the occurrence time of a steady state concen-

tration, CSS. Thus, to scale CDFðtÞ, we multiply it by CSS

the magnitude of which is
R1
0

CðxÞdx from the above

convolution, such that CSS � AUCbolus. Note that there is

no bolus physically, just a result that can predict the

magnitude of CinðtÞ in terms of a previously observed bolus

function.

Methods

This section includes new material such as constant aver-

age drug mass multidosing and the explanatory statistical

treatment of models as scaled density functions.

Data collection

The metformin serum concentration data was published

elsewhere [1] was reused to reexamine basic modelling

assumptions. In that study, seven healthy adult mixed-

breed dogs were used including 2 sexually intact males, 2

neutered males, 1 sexually intact female, and 2 spayed

females. The dogs were between 2 and 3 years old and

weighed between 25.7 and 29.2 kg. The animal study was

approved by the University of Saskatchewan’s Animal

Research Ethics Board, and adhered to the Canadian

Council on Animal Care guidelines for humane animal use.

Following single intravenous bolus doses of metformin in

each of seven dogs, (18.2 mg/kg in dog 1 and 19.5 mg/kg

in the other six dogs), 19 to 22 serum samples drawn

between 20 min and 72 h were used for modelling—see the

Appendix ‘‘Concentration data and fitting it’’, as well as the

.xlsx file data worksheet in Supplementary Materials 1 for

further information.
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Fitting metformin concentrations

Area under the curve (AUC) inherits its units from those of

the curve being used to calculate that area. For example,

density functions have a total AUCpdf of 1, i.e.,
R1
0

pdfðtÞ dt ¼def 1, with no units (dimensionless) whereas

for concentration AUCCðtÞ has units like
mg�h
L . The acro-

nym pdf was used for density functions even though the p

for probability was irrelevant. That is, concentration is not

a probability, and a fraction of total AUC per unit time at

time t density function, i.e., pdfðtÞ ¼ CðtÞ=AUCCðtÞ (e.g.,

units h�1), obeys similar rules to those that would apply to

any other density per x-axis unit function (pdf) in whatever

context the x-axis units and (x, y) coordinated values pro-

vide. In our case, fitting data with CðtÞ ¼ j pdf ðtÞ yields a
concentration curve model, C(t), where AUCCðtÞ ¼ j.

Peripheral venous drug concentration is observed,

CobsðtÞ, to be smoothed and delayed by its passage through

the circulatory system causing zero initial concentration,

Cobsð0Þ ¼ 0, to be observed peripherally. In this paper, a

virtual washout signal with a t ¼ 0 start time, i.e., a gamma

distribution, is convolved with a Pareto distribution having

a 25—30 s start time to yield a peripheral C(t) model.

Ideally, one should minimise bolus error; to not leave drug

in the needle track within the dermis by using a large flush

bolus injectate to wash the needle and to deliver a high-

concentration, low drug volume quickly enough to improve

and standardise circulatory mixing [41].

To select disposition curve models one needs to be

mindful of which statistical distributions have the best

chance of being useful. These selection criteria include

inspection of each distribution’s parameter types. A dis-

tribution’s parameter types influence the distribution’s

derivative fidelity for following the curve shape, and

influences the well-posedness of the AUC determination,

i.e., whether a unique (global) solution that is not sensitive

to noise, called a stable solution exists. Stable solutions

were obtained in high precision using the Nelder-Mead

global optimisation method [43], The practical choice for

the modeller is to either find a robust concentration model

whose fit to the curve is accurate or to relax the goodness-

of-fit criteria, for example by treating AUC as an ill-posed

integral of the first kind with use of an inverse method for

fitting [25]. Distributions generally take one or more of

three types of parameters, those of shape, location and

scale. For example, the exponential distribution has a scale

parameter, but no shape or location parameters. A location

parameter indicates where a distribution is positioned on

the x-axis. Depending on the distribution, the location may

be a best measurement of centrality, but more generally

just indicates an x-axis position. Compared to a distribution

without a shape parameter, if we choose a distribution with

one or more shape parameters, not only will our goodness

of fit generally improve, but the curve shape will be better

fitted. Some functions, like the gamma distribution (GD),

which has a shape and a scale parameter, may still have an

ill-posed AUC, such that fitting with Tikhonov regular-

ization rather than ordinary regression may be needed to

find a Tikhonov well-posed clearance at the price of a small

penalty in goodness-of-fit [25].

To fit concentrations we used proportional error min-

imisation, i.e., 1=C 2
obsðtÞ weighted ordinary least squares

fitting of models to data [37, 44–47]—see the ‘‘Concen-

tration data and fitting it’’ Subsection of the Appendix for

details on this and on proportional assay error, how to

quantify root mean square proportional error (rrms), and

noncompartmental methods. The GPC function was the

experimental model fit to data. It is calculated from hun-

dreds of sums using 65 decimal place arithmetic to mitigate

roundoff error. The GPC algorithm with Nelder-Mead

regression was designed for precision and accuracy to

converge to 30 decimal places. The GPC algorithm used,

Eq. (25) below, purpose written in Mathematica 12.0.0.0

code, was not optimised for speed such that the run time for

each case was 34	 12 min on a 2.7 GHz Intel Core i7 CPU

using four parallel processors. In post hoc testing this was

reduced to 28 min using series acceleration methods, i.e.,

not much faster and that despite reducing the call to the

GPC algorithm from 45 to 19 ms average. Thus, much of

the elapsed time for regression is due to factors other than

GPC algorithm run time, for example performing con-

strained rather than unconstrained regression and the use of

extended precision. Individual subject parameter statistics

(CV%) are not a feature of the global optimisation search

method used, and see the ‘‘Parameter errors from model-

based bootstrap’’ Appendix Section for a computationally

intensive analysis of algorithmic robustness. For E2,

parameter CV% are typically calculated from local opti-

misation gradients, e.g., using the Levenberg–Marquardt

method and similar methods, which may not be the CV%

from least error, i.e., global, solutions, and only indirectly

examine for robustness. Sample-time groups are used in the

text, especially in ‘‘Noncompartmental time-sample group,

median half-life’’. These are merely groups of samples

having in common the same times following bolus injec-

tion that were used for drawing samples from all of the

subjects.

Dose regimen models

The simplest dose regimen is repeat constant dosing.

Another dose regimen of possible interest for vasoactive

drugs, e.g., dipyridamole, would be to keep the mean
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plasma drug concentration constant for each dose interval.

A dose regimen for drugs like metformin that have major

effects in cytosol and mitochondria and that accumulate in

cytosol, may have as a goal to dose for the same mean drug

mass retained in the body during each dose interval.

Let us assume first order elimination and superposition.

Then, a protocol for keeping a constant mean unit dose

drug mass in the body starts with a unit intravenous dose

from the identity function for a density,
R1
0

pdfðtÞ dt ¼ 1,

break it into dose periods of s, and divide that series by s to
calculate the average fraction of a unit dose mass per unit

time during each dosing interval, which is the average mass

over the dose interval, which written from the survival

function equals DSðtÞ=s, i.e., SsðiÞ ¼ 1
s S½sði� 1Þ
�f SðsiÞg,

for i ¼ 1; 2; 3; . . .

1

s
¼ 1

s

Z s

0

pdfðtÞdt

þ 1

s

Z 2s

s
pdfðtÞdt þ 1

s

Z 3s

2s
pdfðtÞdt þ . . .

ð12aÞ

¼ Ssð1Þ þ Ssð2Þ þ Ssð3Þ þ . . . : ð12bÞ

During the first dose interval of duration s, to augment the

dosage to yield an average drug mass during s to be a unit

dose, the dose administered is augmented by multiplying

the unit dose by the reciprocals of the first terms of right

sides Eqs. (12a) and (12b) to yield the dose factor, DF

DFð1Þ ¼ s
R s
0
pdf ðtÞ dt

¼ 1

Ssð1Þ � 1 : ð13Þ

To obtain a dose factor for a constant average unit dose

mass during the second s interval one includes the contri-

bution from the first dose second dose interval, and the

second dose first dose interval, which simplifies to yield

DFð2Þ ¼ DFð1Þ 1� DFð1Þ Ssð2Þ½ 
 :

For n� 2, this equation generalises to be the recursion,

DFðnÞ ¼ DFð1Þ 1�
Xn�1

i¼1

DFðiÞ Ssðnþ 1� iÞ
" #

: ð14Þ

Note that as n ! 1, DFðnÞ goes to that fractional dose

multiplier, [ 0, that allows an average of a unit dose to be

maintained in the body during the nth dose interval. A word

of caution, for accurate results from Eq. (14), the terminal

tail of the model used must accurately match plasma/serum

drug concentrations.

Distributions

This subsection presents the distributions (pdf) used. Some

properties of these distributions are: The convolution of

two pdf is a pdf. The AUC of a pdf is 1. CðtÞ ¼ j pdf where

j is the AUC of C(t). A survival function, S(t), is the t to 1
integral of the pdf. For intravenous bolus conditions,

regardless of distribution type, when t ¼ 0, Sð0Þ ¼ 1, and

the entire dose fraction is within the body.

Gamma distribution

The gamma distribution (GD) is given by

GDða; b; tÞ ¼ 1

t

e�b tðb tÞ a

CðaÞ hðtÞ ; ð15Þ

where the gamma function satisfies CðaÞ ¼
R1
0

e�tta�1 dt,

and hðtÞ is the unit step function, i.e., 0 for t\ 0 and 1 for

t� 0. The GD is an exponential density (ED, below) when

a ¼ 1. The GD also has a (þ1) discontinuity at t ¼ 0

when 0\ a\ 1. However, that discontinuity is integrable

with zero area in the limit as t ! 0. Thus, the survival

function (SGD) is defined at t ¼ 0, and,

SGDða; b; tÞ ¼
Cða; b tÞ
CðaÞ hðtÞ ¼ Qða; b tÞ hðtÞ ; ð16Þ

where the upper incomplete gamma function satisfies

Cða; zÞ ¼
R1
z

ua�1e�udu, and Q(a, z) is its regularised

form. The GD rate parameter is b, whereas 1
b
is the scale

parameter. The shape parameter for the GD is a. The shape

parameter aids in fitting disposition curves and their

shapes. There is no location parameter.

Pareto distribution

Negative power functions of time have an undefined (þ1)

discontinuity at t ¼ 0 that is not integrable (þ1). Thus, a

power function as a density function could have a mini-

mum positive start time, b[ 0, thereby allowing for

integration that avoids the discontinuity. Just such a func-

tion is the type I Pareto distribution (PD),

PDða; b; tÞ ¼ a
t

b
t

� �a

hðt � bÞ : ð17Þ

Note the shift to the right of the unit step function;

hðt � bÞ, i.e., the PD function is zero for t\ b. The PD

survival function (SPD) is,

SPDða; b; tÞ ¼

b
t

� �a

t� b

1 0� t\b

0 t\0

8
>>><

>>>:

: ð18Þ

b is the scale parameter. The shape parameter is a. There is
no location parameter.
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Sums of exponential term distribution

Sums of exponential terms (SET) models are equivalently

CSETðtÞ ¼ hðtÞ
Pn

i¼1 ci e
�ki t, where n is any positive inte-

ger including 1, and without loss of generality

k1 � k2 � k3:::� kn [ 0. SET models have been incorrectly

criticised as having meaningless ci coefficients. In a sta-

tistical context note that ke�kt is an exponential density,

then let
Pn

i¼1 pi ¼ 1, where the pi (not probabilities here)

are the fractions of the model’s total density attributed to

each exponential density term. Then,

EDnðtÞ ¼ hðtÞ
Xn

i¼1

pi ki e
�ki t; ð19Þ

where the ki decay coefficients are rate (i.e., 1/scale)

parameters. The ci of SET functions relate to the EDn

parameters as ci ¼ j ki pi, where concentration is

CSETðtÞ ¼ jEDn in which j ¼
R1
0

CSETðtÞdt ¼ AUC

ðCSETÞ. Note that a scaled monoexponential, an E1, is not a

monoexponential density, ED, as E1¼ AUCE1 ED. So

when we refer to a biexponential we write E2, where a

biexponential density is an ED2. The survival function is

SEDn ¼ hðtÞ
Xn

i¼1

pi e
�ki t : ð20Þ

Note that EDn, SEDn and SET only have scale parameters

(or their reciprocals). There are no shape parameters to aid

for fitting curve shapes or for extrapolation, and the solu-

tions for SETn� 2 lack robustness. For example, biexpo-

nentials (E2) solved for 4 time-samples sometimes have

solutions as 2 C, not 2 R [36]. There are no location

parameters.

The gamma-Pareto convolution distribution, basic formulas

Derived from series expansion of the GD exponential,

Eq. (15), followed by convolution with a PD, Eq. (17) and

summation of the expanded parts,1 the GPC model inherits

two shape parameters, a and a, and two scale parameters, b

and b from its convolved pdf’s,

GPC
a b

a b

�
�
� t

� �

¼ GDða; b; xÞ � PDða; b; xÞ ðtÞ

¼ hðt � bÞ ab
aba

CðaÞ
X1

n¼0

1

n!
ð�1Þnbnta�aþn�1B

1�b
t
ðaþ n;�aÞ ;

ð21Þ

where the incomplete beta function is

Bzða; bÞ ¼
R z

0
ua�1ð1� uÞb�1

du. The GPC function has a

concentration start time, b[ 0, and a circulatory mixing

start time of 0. In practice, GPC models chain, i.e., con-

volve, two independent washout functions (monotonic

decreasing; GD iff a� 1 and a PD) that only when com-

bined produce a circulatory peak concentration. The GD

washout models relate to the circulatory mixing that starts

at t ¼ 0, whereas the PD models relate to the injection to

sampling venous-venous delay of a few dozen seconds

(¼ b) and the terminal rate of the increase in apparent

volume of distribution in time [CL=a, Eq. (33), below].
For use with M(t), and other functions, we integrate the

GPC function from 0 to t to construct its cumulative den-

sity function (proof by differentiation),

CDFGPC
a b

a b

�
�
� t

� �

¼ hðt � bÞ ab
aba

CðaÞ

�
X1

n¼0

ð�1Þnbn
n!ða� aþ nÞ

ta�aþn � ba�aþn
� �

B
1�b

t
ðaþ n;�aÞ

�ba�aþn

t

b
� 1

� �aþn

aþ n
þ Bb

t
ð�a; aþ nÞ � Bð�a; aþ nÞ

2

6
6
6
4

3

7
7
7
5

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

;

ð22Þ

where for z ¼ 1, Bzða; bÞ becomes the beta function

Bða; bÞ ¼ CðaÞCðbÞ
CðaþbÞ . As it is needed for the half-life of con-

centration, we take the derivative of the GPC,

GPC 0 a b

a b

�
�
� t

� �

¼ hðt � bÞ ab
aba

CðaÞ

�
X1

n¼0

ð�bÞn

n!
t�1

�

ða� aþ n� 1Þta�aþn�1

B
1�b

t

ðaþ n;�aÞ þ b�aðt � bÞaþn�1
i

:

ð23Þ

Asymptotes of the gamma-Pareto convolution

Two asymptotes to the GPC function were identified for t is

a sufficiently long time. The first is the Pareto Type I

distribution itself, and is the desired result; to write a power

function tail into a more general PK model,

GPC
a b

a b

�
�
� t

� �

� abat�1�a ; ð24Þ

and is a straight line on a log-log plot, where (� ) means

asymptotic to. This occurs because the GD tail decays
1 This is parallel to the development of the type II Pareto, GPC model

[48].
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quickly and the PD tail decays very slowly, see ‘‘Relative

tail heaviness’’.

The second GPC asymptote was obtained by Taylor

series expansion of Eq. (21), with the proof appearing as

the .pdf file labelled Supplementary Materials 2,

GPC
a b

a b

�
�
� t

� �

¼ �hðt � bÞ ab
aba

CðaÞ ta�a�1
X1

n¼0

ð�b tÞn

n!
Bb

t

ð�a; aþ nÞ

þ hðt � bÞababaCð�aÞta�a�1
1
~F1ða; a� a;�b tÞ ;

ð25Þ

where 1
~F1ða; b; zÞ ¼

def
CðbÞ

P1
k¼0

ðaÞk
ðbÞk

zk

k! is the regularised

form of Kummer’s confluent hypergeometric function of

the first kind wherein ðaÞk and ðbÞk are Pochhammer sym

bols, i.e., generalised ascending factorials,

ðaÞk ¼ aðaþ 1Þ. . .ðaþ k � 1Þ ¼ Cðaþ kÞ=CðaÞ. The

closed form term (beginning þh) of Eq. (25) is positive

when 0\a\1 and b t are sufficiently large, while the limit

of the sum converges to zero. This forms a second GPC

asymptote that approaches the GPC more rapidly than the

PD tail, and finds use for computing the GPC when t is

long, e.g., approximately [ 100 h. That is, for 0\a\1

and t sufficiently long, that term and the GCP are asymp-

totic to each other,

GPC
a b

a b

�
�
� t

� �

� hðt � bÞababaCð�aÞta�a�1
1
~F1ða; a� a;�b tÞ :

ð26Þ

What the concentration models imply

Drug mass

The drug mass remaining in the body, is from the GPC

CDF, Eq. (22) applied to Eq. (2),

MðtÞ ¼ DSGPC ¼ D 1� CDFGPC
a b

a b

�
�
� t

� �� �

; ð27Þ

where Mð0Þ ¼ D is the dose.

Half-life functions

The half-life function of metformin model concentration,

t1=2;CðtÞ, as observed in a peripheral venous sampling site,

comes from substituting the GPCðtÞ, Eq. (21), and its

derivative Eq. (23) for the f(t) and f 0ðtÞ of Eq. (6),

t1=2;CðtÞ ¼ � lnð2Þ
GPC

a b

a b

�
�
� t

� �

GPC 0 a b

a b

�
�
� t

� � : ð28Þ

Next, the half-life of drug mass remaining in the body from

Eqs. (2), (6), (21), and (22) is

t1=2;MðtÞ ¼ lnð2Þ
1� CDFGPC

a b

a b

�
�
� t

� �

GPC
a b

a b

�
�
� t

� � : ð29Þ

The asymptotic half-life of the GPC concentration model

was obtained by substitution of the first GPC asymptote,

Eq. (24), and its derivative into half-life Eq. (6), and is

linear

t1=2;CðtÞ�
lnð2Þ
aþ 1

t ; t ! 1 : ð30Þ

Similarly, the half-life of drug mass is asymptotic to

t1=2;MðtÞ� lnð2Þ
a

t ; t ! 1 ; ð31Þ

a linear function of time. Equations (30) and (31) suggest

that metformin GPC half-lives can be any time, no matter

how long, just by measuring that half-life at a corre-

spondingly late time. From Eqs. (31) divided by (30) the

terminal ratio of half-lives of drug mass remaining in the

body to serum concentration is

t1=2;MðtÞ
t1=2;CðtÞ

� aþ 1

a
; t ! 1 ð32Þ

which as a[ 0, is [ 1. That this limit is not equal to 1, as

it would be for lighter-tailed models, exemplifies why

Pareto distribution tails have been called fat-tailed histor-

ically; because of their provocatively different properties

from those of lighter-tailed distributions.2 There are now

two expressions for the mass to concentration ratio, one of

them for any variable volume model, Eq. (9), and the other

from the PD asymptote to the GPC, Eq. (24). Combining

these expressions yields the terminal rate for volume of

distribution apparent growth for our fat-tailed model of

V 0
dð1Þ,

V 0
dðtÞ�

CL

a
; t ! 1 : ð33Þ

As a is dimensionless, V 0
d; the rate of growth of Vd, has the

same units as CL. Rewriting of the half-life harmonic sum

2 Ironically, the fat-tailed distribution of wealth inspired Karl Marx’s

[49], as well as Benito Mussolini’s economic policies as diametrically

opposite and extreme reactions to the same statistics [50].
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Eq. (10) and solving for the asymptote of t1=2;VdðtÞ yields
its negative half-life (growth)

�t1=2;VdðtÞ� lnð2Þ t ; t ! 1 : ð34Þ

Results

The gamma-Pareto convolution (GPC) distributions’

parameters for metformin in seven dogs appear in Table 1.

As a global search routine, the Nelder-Mead method does

not generate case-wise CV% results. For that information,

please refer to the ‘‘Parameter errors from model-based

bootstrap’’ Appendix section. Figure 1 shows GPC models

fit to the data over four orders of magnitude of serum

concentration of metformin and 72 h of data sampling for

seven subjects. Also shown as straight lines on the same

log-log plots are the GPC’s Pareto power-function

asymptotes, Eq. (24). A back extrapolated GPC concen-

tration model is shown in Fig. 2, with zero initial con-

centration that cannot be shown in the Fig. 1 log-log plots.

For semi-log plots please see the .pdf file labelled Sup-

plementary Materials 3. Goodness of fit was shown as

relative error plots of residuals of fitting in Fig. 3 for the

GPC models and Fig. 4 for biexponential (E2) models.

Recall (Appendix ‘‘Concentration data and fitting it’’) that

relative errors are identically 1=C2 weighted residuals, and

note that the sample-times were approximately equally

logarithm of time distributed. Regression in y does not see

the x-axis spacing, thus the equal spacing between grouped

sample-times on these plots.

From Table 1 the GPC models mimicked experimental

concentrations and achieved an early concentration peak

ranging from 0.66 to 6.17 min total elapsed time. GPC

shape parameters from the GD were a\1 for which there

were infinite concentrations at t ¼ 0. These GD curves are

washout or monotonic decreasing curves with a rate (1/

scale) parameter, b � 1 h�1. The GPC PD parameters are a
and b. The PD shape parameters, a, in the power functions’

exponents, were less than one, which obviates calculation

of MRT as per Appendix Subsection ‘‘Residence Time’’.

The GPC earliest, or start, time is b. The start times, b,
of the PD (and thus of GPC distributions), known as the PD

scale parameter could not be measured directly (no data at

that time) and the unconstrained parameter introduced

surfeit variability into the concentration and mass results.

By testing b every 5 s from 10 to 35 s and plotting the

errors of fit, a good compromise turned out to be an esti-

mated circulatory first arrival time of drug of 25 to 30 s.

The GPC harmonic mean residence time (H-MRT) was

calculated as in Appendix Subsection ‘‘Residence Time’’.

Then VH-MRT ¼ CLGPC H-MRT—see Table 1.

Equation (19) gave the statistical context of constant

multipliers of the exponential terms of SET functions. For

E2 models

Table 1 Shown are parameters from gamma densities (GD), Pareto densities (PD) and both from Gamma-Pareto convolution (GPC) fitting of

concentrations data for seven dogs

Functions GD PD GPC

Parameters Unitsa a b a b AUC Peak V 0
dð1Þ CL H-MRT VH-MRT

(none) (per h) (none) (s) mgh
L

	 

(min) ml

minkg

	 

ml

minkg

	 

(h) L

kg

	 


Dog 1 0.3493 0.7318 0.2644 25 31.16 0.66 36.9 9.8 0.118 0.069

Dog 2 0.8112 0.9993 0.1365 25 28.18 6.17 84.5 11.5 0.557 0.386

Dog 3 0.6689 0.9107 0.2010 25 12.15 2.21 133.0 26.7 0.322 0.516

Dog 4 0.6092 0.8062 0.1726 25 16.73 1.70 112.5 19.4 0.332 0.387

Dog 5 0.6435 1.1035 0.1199 25 26.21 2.21 103.4 12.4 0.413 0.307

Dog 6 0.5194 0.6137 0.1929 30 28.43 1.34 59.3 11.4 0.300 0.206

Dog 7 0.7629 1.0518 0.1571 30 22.10 4.85 93.6 14.7 0.477 0.421

Mean 0.6235 0.8882 0.1778 26 23.57 2.73 89.0 15.14 0.360 0.327

SDb 0.1546 0.1791 0.0479 — 6.94 2.01 32.5 6.01 0.141 0.149

CV% 24.8 20.2 27.0 — 29.4 73.4 36.5 39.7 39.3 45.5

a Units row: None means dimensionless. Peak time is at the maximum of the GPC model. V 0
dð1Þ is the GPC model, terminal rate of apparent

growth of Vd . H-MRT is harmonic mean residence time. VH-MRT is the constant volume of distribution from the H-MRT. SD is standard deviation.

CV is coefficient of variation.
b As b is constrained, its SD and CV are not meaningful

28 Journal of Pharmacokinetics and Pharmacodynamics (2020) 47:19–45

123



c1e
�k1t þ c2e

�k2t ¼ AUC

�

p1 k1e
�k1t

� �
þ p2 k2e

�k2t
� �

�

:

In this, any f ðtÞ ¼ ke�kt term is a pdf, where AUCpdf ¼ 1.

Then, p1 þ p2 ¼ 1, p1 ¼ c1 k2
c1 k2þc2 k1

and AUCCðtÞ ¼ c2
k2 p2

:

Biexponential fit parameters in this format appear in

Table 2.

Fitting for proportional error was performed as per the

‘‘Concentration data and fitting it’’ Appendix Subsec-

tion. The results of the selection of the GPC and E2 fit

functions and their parameters are next characterised by

goodness of fit. As per Table 3, the GPC mean relative root

mean square (rrms) error was 8.6%, where 10% or less was

taken to be good a priori as elsewhere [37, 51], and where

Fig. 1 Log-log profiles of

metformin concentrations

versus time in seven dogs. The

black circles are data. The red

circles are the five samples left

out following outlier testing.

The blue curves are the GPC

concentration models and the

green lines are the Pareto

(power function) asymptotes of

the GPC models. Note the

maximum distance between the

blue and green curves at 1–2 h.

That is the peak effect time of

GD convolution. At those times,

the convolution of GD

function’s slow mixing

increased the PD function

magnitude several fold

Fig. 2 This shows the early time pdf, i.e., each having an AUC of 1, of

the GPC model (blue) and the gamma density (GD, in red) for dog 5.

The GD is shown truncated at its top, and is the faster decaying of two

GPC constituent functions. Note that the GPC starts a small time (25 s

here) later than the GD, and the GD is less than the GPC for late time
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the residuals appear in Fig. 3. The GPC residuals were

narrow in range, and approximately normally distributed.

Biexponential model (E2) residual errors—see Fig. 4—

averaged 16.1% rrms or nearly twice that of the GPC fit

error, using the same fitting methods.3 The GPC intra-

venous bolus arrival time, b, was highly constrained, which
adds only a fraction of a degree of freedom, df, to the 4

other parameters. To put it another way, using a 25 to 30 s

window for b gives an 8.61% residual error of fitting

compared to 8.65% for a fixed 25 s time, which latter has

exactly 4 df comparable to the 4 df of an E2, but which had

a significantly smaller rrms than E2’s 16.1%. The E2

residuals are much more structured than the GPC residuals,

see the ‘‘Parameter errors from model-based bootstrap’’

Appendix Section for details. The E2 model residuals had

an overall ’M’ shape, which was also identified for each

individual E2 curve. The two ’M’ humps are one each from

the two local exponential density distributions of a biex-

ponential (a triexponential has three humps). E2 model

residuals were non-normally distributed (approximately a

three parameter Weibull distribution) and had much wider

95% confidence interval than GPC residuals with an early

and late time elongated tail in the underestimating direction

(down in the figure). AUC was thus systematically under-

estimated using E2 models. As implied by the structured

residuals, SET models do not systematically approximate

the derivatives of concentration. That is, biexponentials fit

to this data had slopes roughly analogous to how a broken

24 h clock shows the correct time three times within 72 h—

see Fig. 5. This is the effect of not having explicit shape

parameters in SET models; the shape of the data, i.e., the

derivatives, are only transiently approximated.

Unexplained fraction is 1� R2, a measure of goodness

of fit, herein from the multiple correlations of lnðmodelÞ
and lnðdataÞ—see Eq. (39). Table 3 shows these unex-

plained fractions from the E2 models (0.84% mean) to be

multiple times greater than from GPC models (0.22%

mean) for which the two-tailed Wilcoxon signed-rank of

p ¼ 0:0156 suggested significant difference.4

Clearance

In addition to the fit errors, Table 3 shows clearance (CL)

values for three models: the GPC, E2 and non-compart-

mental (NC) models, the latter as per the last paragraph of

the ‘‘Concentration data and fitting it’’ Appendix Subsec-

tion. The NC CL was significantly less than the biexpo-

nential CL, but still significantly greater than the GPC CL

from Eq. (27) (both p ¼ 0:0078, 1-tailed paired Wilcoxon

tests). The NC and GPC correlation was good,

r2 ¼ 0:9840, and the NC CL was 3:6 mlmin�1 kg�1

greater than GPC CL. Note that for the GPC model V 0
dðtÞ,

i.e., rate of apparent volume growth with the same units as

CL, achieved a limiting value of 6:0	 0:6 (mean	 SEM)

times the CL.

Fig. 3 GPC fit relative errors (± is over/under estimate) plotted for

sample-time groups in temporal sequence. Note the normal distribu-

tion of error, the narrow the 95% confidence intervals, and the

closeness to zero error of the connected black circles of mean values

for samples. The red connected circles are mean values of 5 left-out

samples

Fig. 4 E2 fit relative errors (± is over/under estimate) plotted for

sequential samples groups. Note the skewed distribution of error, the

wide 95% confidence intervals, and the M-shaped variation of the

connected black circles of mean values for samples. The mean values

of 5 noisy samples left out not shown

3 A display in sample groups may seem unusual, and the reader may

be more familiar with residuals plotted over time. However,

regression in y alone generally injects correlation with x when the

x-values are not exactly equidistant, and to be seen, this has to be

examined following display of residuals in the same way that

regression sees them; as a sequence or list of values (that are then

sum-squared and minimised).

4 Statistics: (1) A paired nonparametric test of a correlated sequence

of R2-values has greater power than comparing two r-values from

independent random variables. (2) Without maximum likelihood

fitting, and with different residual distributions an AIC (information

criterion) comparison of E2 and GPC is intractable.
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Drug mass

Table 4 shows GPC model relative AUC-values values at

various times where 21.1% occurred following the last

sample-time corresponding to 78:9% 	 8:2% elimination

of the dose by 72 h. Figure 6 plots drug mass remaining

from the GPC model Eq. (27) application of

MðtÞ ¼ D SðtÞ. Note, although dog 1 had the least CL

(9:8 mlmin�1 kg�1—Table 1) that dog had the greatest

drug mass eliminated at 72 h (91.3%). Dog 1 needs less CL

to clear mass as that dog’s volume of distribution from

harmonic residence time, VH-MRT , of 0.069 (L/kg)—

Table 1—was an extremely reduced volume outlier. GPC’s

VH-MRT classifies volumes similarly to biexponential VSS—

see the ‘‘Residence Time’’ section of the Appendix for

further information.

Table 3 Shown is clearance, CL

from biexponential, E2;

noncompartmental, NC; and

gamma-Pareto convolution,

GPC, models, where relative

root mean square (rrms) error of

fit and unexplained fraction are

shown as percentages for E2

and GPC

Dog CL (mlmin�1 kg�1) rrms error (%) Unexplained fraction (%)

E2 NC GPC E2 GPC E2 GPC

1 16.4 12.3 9.8 20.4 8.7 1.24 0.17

2 16.5 15.2 11.5 15.9 6.3 0.78 0.10

3 37.0 30.6 26.7 11.8 5.9 0.47 0.11

4 27.1 22.7 19.4 14.0 13.8 0.65 0.50

5 20.3 17.5 12.4 10.6 9.5 0.45 0.29

6 16.1 14.4 11.4 16.7 6.1 0.76 0.09

7 21.3 18.4 14.7 23.1 10.0 1.57 0.29

Mean 22.1 18.7 15.1 16.1 8.6 0.84 0.22

SD 7.1 5.7 5.6 4.1 2.6 0.38 0.14

Fig. 5 An example E2 fit to data (dog 6, blue curve). The black circles

are the time samples. The approximate times for correct E2 slopes are

shown at the point of tangency of the log-log tangent red line

segments. Note the M-shaped wandering of the E2 function above and

below the data locations, and especially the underestimation of

sample concentration as well as incorrect slopes below the earliest

and latest time samples

Table 2 Shown are biexponential (E2) statistical parameters from seven dogs

Parameter AUC
mgh
L

	 

p1 (%) p2 (%) k1 ðh�1Þ k2 ðh�1Þ

Dog 1 18.6 82.3 17.7 0.725 0.0458

Dog 2 19.7 78.5 21.5 0.690 0.0402

Dog 3 8.8 81.6 18.4 0.742 0.0598

Dog 4 12.0 79.8 20.2 0.686 0.0457

Dog 5 16.0 73.9 26.1 0.886 0.0627

Dog 6 20.2 80.1 19.9 0.605 0.0427

Dog 7 15.2 78.5 21.5 0.714 0.0459

Mean 15.8 79.3 20.7 0.721 0.0490

SD 4.2 2.7 2.7 0.085 0.0087

Note that most of the AUC, a mean of 79.3%, is from the first term, and a lesser AUC is from the second term, a mean of 20.7%
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Half-lives

Half-life defined at the instant in time it is measured was

presented as Eq. (6) and in [23]. The fat-tailed GPC dis-

tribution, unlike lighter-tailed functions, yielded half-lives

of mass and concentration that did not converge to the

same value. Instead, they converged to different constants

times the elapsed time—Eqs. (31) and (30)—where the

ratio of those half-lives converged to a constant as shown

in Fig. 7. The time following peak ratio for 95% of the

ratio of half-lives of M(t) and C(t) to equal terminal

occurred at a mean time of 9.8 h (range 7.4 to 13.1 h), well

within the 72 h data collection time. The mean terminal

ratio—obtained without urine collection—was 7.0 (range

4.8–9.3)—see Fig. 7 and Eq. (9). The mean terminal ratio

of mass to concentration half-lives is 1 for SET functions.

Figure 8 shows this effect for our E2 models for which by

21 h 8 min the average t1=2;MðtÞ to t1=2;CðtÞ ratio col-

lapsed to \1:001 and rate of apparent volume growth, i.e.,

V 0
dðtÞ, became vanishingly small as the models entered

dynamic equilibrium. From Eq. (34) as illustrated in

Fig. 7d, the GPC models �t1=2;VdðtÞ eventually converged

to lnð2Þ t. For an E2 model’s t1=2;VdðtÞ the equivalent

asymptotes are

�t1=2;VdðtÞ � lnð2Þ k2p2
ðk1 � k2Þ2p1

eðk1�k2Þt; t ! 1 ;

where p2 ¼ 1� p1 and where k1 [ k2, which functions

reached distinctly different asymptotes that grew much

faster (� 1019 by 72 h) than the single-valued-line GPC

asymptote. Thus, the result for the GPC model that

�t1=2;VdðtÞ� lnð2Þ t is simpler than the comparable results

for EDn � 2 models.

Table 4 AUC for CGPCðtÞ curves as the percent of dose eliminated is

shown for early time from 0 to 20 min, sample-times from 20 min to

72 h, late-time from 72 h to 1, and from 0 to 72 h

Dog 0� 1
3
h 1

3
� 72 h 72 h�1 0� 72 h

1 38.2 53.1 8.7 91.3

2 12.9 58.7 28.4 71.6

3 20.7 63.7 15.6 84.4

4 19.2 60.5 20.3 79.7

5 16.2 50.8 33.0 67.0

6 20.6 62.0 17.4 82.6

7 15.4 60.5 24.1 75.9

Mean 20.4 58.5 21.1 78.9

SD 8.3 4.8 8.2 8.2

Fig. 6 Linear-log plot of metformin (as base) mass retained in seven

dogs as calculated from D � SðtÞ of the GPCCðtÞ model. Note how the

dose (in mg per kg body weight) is retained in time. Note the constant

mass until the Pareto density scale, b; the vascular first transit times of

the models, occurred at 25 or 30 s. Dog 1 received a lesser dosage

than the other dogs, and also rapidly cleared mass

Fig. 7 GPC model t1=2 functions

of time. Panel a shows

t1=2;CðtÞ; tightly grouped

concentration t1=2 functions.

Panel b shows t1=2;MðtÞ; more

dispersed drug mass t1=2
functions. Panel c shows the

ratios of t1=2;MðtÞ to t1=2;CðtÞ
converged to a mean of 7:0� by

� 10 h. Panel d shows that the

(negative) half-life of VdðtÞ
became proportional to ln 2 t, by

� 20 h
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The Appendix ‘‘Noncompartmental time-sample group,

median half-life’’ subsection provides the statistical prop-

erties of the noncompartmental, distribution-free method

used to corroborate the trending of t1=2;CðtÞ values in time.

(One does not use mean half-life values for this as they are

unstable and do not measure centrality.) Figure 9 plots the

stable noncompartmental (NC) median values at the geo-

metric mean time for each pair of sample times of the each

of 7 dogs’ t1=2;CðtÞ for the earliest sample-time pair, then

the next earliest and so forth for all 21 pairs of sample-time

groups using Eq. (5). This plot is overlaid with the (stable)

median values of t1=2;CGPCðtÞ model curves evaluated at

those same geometric mean times. In that figure, the NC

model median exhibited a significant trend for increasing

values with elapsing time. There is independence between

NC half-lives that do not share common time samples, i.e.,

the odd sample groups, f1; 3; 5; 7; . . .21g, and the even

sample groups f2; 4; 6; 8; . . .22g are each independent for

trending. Thus, the overall trending of NC half-lives was

from the data and not from any assumption made. That is,

the NC model median t1=2;CðtÞ trending was due to met-

formin concentration kinetics. The GPC concentration half-

lives smoothly followed the trending of the NC median

t1=2;CðtÞ results, due to the two shape parameters in the

GPC models that allowed reduced-error, derivative

matching to serum concentration samples, which in turn

allowed for accurate half-life functions to be calculated

using Eq. (6). No convincing trend toward a terminal t1=2-

value was seen within the data. When expressed5 para-

metrically ln t1=2;CNCðtÞ
� �

¼ 1:014 ln t1=2;CGPCðtÞ
� �

with

95% CI of 0.966 to 1.062 for slope, and a discarded, not

significantly different from 0 intercept, had multiple cor-

relation R2 ¼ 0:9820 and Pearson r2 ¼ 0:9823. Lin’s con-

cordance correlation [52] was qc ¼ 0:9906, i.e., in the

almost perfect range of the McBride scale [53] of

qc [ 0:99, with most of the \ 2% error being NC noise.

From this, these two very different measurements are

almost perfectly measuring the same thing. To be clear,

each adjacent sample group pair contained up to 14 sam-

ples for extraction of the NC median t1=2. This has the same

meaning as a plot of the terminal exponentials of NC

models fit to data ending at the last time of that sample

group pair, and, the more temporal data was included, the

longer the t1=2 was and Fig. 9 shows that t1=2;CðtÞ was a

function of time for our data that was also almost perfectly

fit by the median GPC model. When this same NC data was

parametrically log-log plotted with the median E2

t1=2;CðtÞ, rather than median GPC models, the plot with

NC t1=2;CðtÞ was a highly nonlinear sigmoidal function

and the concordance dropped to qc ¼ 0:9463, or in the 0.90

to 0.95 moderate concordance range, and with no 95%

confidence interval (CI) overlap with the GPC 95% qc
CI’s. That is, E2 t1=2;CðtÞ did not measure the same thing

as t1=2;CðtÞ from GPC and/or sample group median NC

t1=2.

Fig. 9 This shows how the noncompartmental (NC) median half-lives

of seven dogs vary with predicted median GPC model half-lives. The

NC median t1=2;CðtÞ model values are shown as black circles. These

are discrete serum concentration half-lives from adjacent time sample

groups. Each pair of adjacent time sample-groups exhibited a

different half-life with a definite overall trend for increased half-life

for increasing time of measurement. More robust results were

obtained from the continuous median GPC concentration half-life

curve (blue) from all seven dogs

Fig. 8 Shown are E2 mass and concentration half-life ratios for

metformin in seven dogs. Note the convergence of these ratios to 1

after approximately 21 h. In effect, the two compartments function as

a single compartment after that time and volume growth collapsed to

trace amounts

5 Logarithms were taken to reduce bias by creating approximately

equal spacing of group-sample parametric values between those

groups.
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Continuous infusion simulations

Constant infusion curves with limiting concentration, CSS,

were calculated indirectly from their IV bolus models’

CDF as implied by Eq. (11). These are shown for the E2

and GPC models for dog 6 as Fig. 10. For dog 6, the GCP

infusion simulation of the right panel of Fig. 10 suggests

that metformin’s persistent volume of distribution

growth—see Eq. (4)—appeared to cause a major delay in

the time (t 
 72 h) it takes concentration to approach a

steady state, CSS, suggesting that measuring metformin CL

based on saturation during a constant infusion experiment

would be intractable. However, constant infusion is con-

sidered by many to be a reference standard for measuring

CL. To see why this might be the case, let us assume that

the GPC model is the more accurate measurement and that

we observe a curve height of CSS ¼
DR

CL
, Eq. (11). Thus, if

one drew a reduced CSS height thinking that the data is

from a quickly convergent E2 infusion function, a CL-

value that is 20% too large (0:991=0:826� 1) would be

produced. From Table 3 the NC and E2 CL-values were

respectively 25% and 41% greater than the GPC CL-values

for dog 6, such that a constant infusion measurement from

an underestimated CSS would have appeared to reflect a

better standard than other methods that also use exponen-

tial approximations to data. However, assigning an under-

estimated terminal asymptote can be more misleading in

another context, i.e., the completeness of collection of drug

mass in urine to establish the percent drug recovery. For

that problem, estimating percent recovery from the

administered dose is numerically much more reliable than

from asymptotic completeness based on curve shape.

Simulated dosing regimen for constant drug
mass in the body

To illustrate a constant mean body drug burden during any

dose interval, s, Eqs. (13) and (14) were applied to dog 6

data, which dog had moderate 72 h drug retention

(17.4%—Table 4). The intravenous dose loading needed to

maintain a constant average body drug mass in every s ¼
12 h dose interval is shown in Fig. 11. As the plot is semi-

log, a constant half-life would be a straight line, whereas in

each dose interval, the plot is predominantly log-convex

suggesting that the half-life increases for elapsed time

during each dosing interval. As time progressed, the peak

to trough ratios decreased and half-lives increased as per

Eq. (6). Overall, the drug mass peak to trough variation

varied less than one-tenth as much as it did for concen-

tration for the same dosing intervals. The serial dose factor

multipliers for constructing Fig. 11 were calculated to be

4.478, 1.931, 1.172, 0.844, 0.668, 0.558, 0.482, 0.427,

0.385, 0:351; . . .; 0:136 times the body drug mass retained,

where the latter number, 0.136, was the fractional dose

administered under equilibrium conditions to maintain an

average body burden of one dose during an eventual 12 h

dose interval. This corresponds to an eventual 1=0:136 ¼
7:37 times as much drug in the body as is being given in

each dose, with the caveat that it would take 6 weeks of

Fig. 10 Shown are constant infusion simulations from a biexponential

bolus model (left panel) a GPC bolus model (right panel) from dog 6

data. Each steady state concentration CSS is plotted as 100% (red

lines). As seen in the figure, at 72 h the biexponential model is already

at 99.1% of CSS, whereas the GPC model is only at 82.6% at that same

time

Fig. 11 Semi-log plot of dog 6 simulations of Q12 h IV metformin

multidosing for unit mean dose mass in the body. The amplitude of

peak-to-trough ratio decreased markedly with time from 7.1 during

the first dose interval to 1.5 during the 84–96 h dose interval. See text

for the constant mass loading dose regimen
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twice daily dog 6 dosing to drop to within 10% of terminal

maintenance dosing.

Discussion

This work gathers together treatments of models of drug

concentration as AUC scaled density functions, variable

apparent volumes of distribution equations with half-life

defined as a real number variable of time. Also, the density

function approach to convolution, a new definition for

sums of exponential terms coefficients, an alternative

expression for constant (inhomogeneous) volume of dis-

tribution from residence time that arises from a new density

function model for concentration for power function tailed

drugs; the gamma-Pareto type I convolution (GPC) were

presented. The gamma-Pareto convolution (GPC) model

chains a faster gamma distribution (GD) with a slower type

I Pareto distribution (PD), the latter a normalised left

truncated power function. As data during the first venous

drug arrival times were not available, the b-parameter-

values of the PD models were constrained to be 25–30 s

and mimic reasonable vascular-drug arrival times. As per

Table 1 both a & a\1, and both the GD and PD were log-

convex. However, their convolution; the GPC distributions,

like the concentration curves they mimic, only became log-

convex a short time after the model’s peak concentration

circa 2.7 min was achieved—see Table 1. The GD models

were lighter-tailed than the first compartment E2 k1 but

nonetheless augmented the GPC amplitudes out to rela-

tively late times, circa 20 h—see Fig. 1. GPC models are

asymptotic with elapsing time to their second constituent

distributions, the Pareto distribution (PD) power functions,

Eq. (24). As a\1 for both the PD, and the GPC function

asymptotic to it, their mean residence times (MRT) were

undefined, and different mean times were found using

harmonic MRT (H-MRT). Unlike VdðtÞ, which grew with

time, VH-MRT ¼ CLGPC H-MRT were constant with values

\1 (L/kg) that were significantly Spearman rank corre-

lated to E2 VSS values—see Table 1 and the Appendix

‘‘Residence Time’’ Subsection.

Neither non-equilibrated states nor variable volume

modelling prohibit multicompartmental analysis. For

example, a two-compartment GPC model would result

from assigning a central compartment and a peripheral

volume assigned that concentration as a function of time

that conserves systemic mass. One might think that without

classical multicompartmental modelling of cell membrane

transport that pharmacogenomic effects would be unde-

tectable. Dog 1 had the lowest CL and highest 72 h mass

eliminations while its terminal rate of volume growth,

V 0
dð1Þ, a parameter only meaningful for fat-tailed models,

also had the least value in this short series of seven dogs.

The reduced V 0
dð1Þ-value indicates a relatively reduced

rate of tissue absorption of the drug and may be due to a

genetically deficient transporter protein. In effect, the

requirement for conservation of mass in a single com-

partment variable volume model allowed physiological

parsing into mass loss only to renal clearance and redis-

tribution to be quantified as concentration dilution from

apparent volume growth. GPC distributions imply a single

fractal recirculatory structure that could be elaborated

mathematically. For an introduction to variable volume

models and fractals the reader is urged read reference [54].

Although compartments and fractals are of theoretical

interest, a model’s usefulness arises from the scope of

experimental results that it clarifies. Accordingly, this

discussion focuses next on what GPC imply models, and

how they might be used.

Implications

The usual definition of renal clearance for a non-metabo-

lised renal-only cleared marker is

CLurine ¼
UV

P
ð35Þ

where U is drug concentration in urine, V is urine volume,

and P is drug concentration in blood plasma. The

assumption is that such a system is in dynamic equilibrium.

U V=P for intravenous bolus conditions can be generalised

to nonequilibrium states by multiplying it by either side of

Eq. (9), i.e.,

CL ¼
t1=2;MðtÞ
t1=2;CðtÞ

U V

P
¼ CLþ Vd

0 tð Þ
CL

U V

P
: ð36Þ

To see this is so, one multiplies Eq. (10) by t1=2;CðtÞ to

obtain the fractions of concentration that term-wise parse to

mass elimination and volumetric dilution, as follows

1 ¼
t1=2;CðtÞ
t1=2;MðtÞ

zfflfflfflfflffl}|fflfflfflfflffl{
Mass

þ
t1=2;CðtÞ

�t1=2;VdðtÞ

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
Volume

ð37aÞ

1 ¼ CL

CLþ V 0
dðtÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Mass

þ V 0
dðtÞ

CLþ V 0
d tð Þ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Volume

:
ð37bÞ

Then, to correct plasma concentration, P, in the denomi-

nator of Eq. (35) to mass elimination conditions, we mul-

tiply its numerator by the reciprocals of the mass terms of

Eqs. (37a) and (37b), because these reciprocal mass terms

are both sides of Eq. (9), and are equal to each other. In

other words, for a non-metabolised, renal-excreted drug,

the molecules of drug that have shown up in urine, are only

those molecules within the plasma that are parsed at that
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instant of time into urine as opposed to being ’redis-

tributed’ by ongoing apparent-volumetric concentration

dilution.

How long the nonequilibrium state appears to persist

depends on the model used. Monoexponential models lack

nonequilibrium; they are instantly mixed. As all higher

EDn models have an instantly mixed volume, a premature

achievement of a terminal volume carries over to biexpo-

nential and higher models. In transient nonequilibrium

V 0
dðtÞ eventually disappears—see Fig. 8. To delay the time

to dynamic equilibrium one can use NC models or heavier-

tailed GD models. For example, a population biexponential

model of a GFR marker was observed to have a 7.5 times

shorter time to 95% of terminal mass half-life than GD

models with enforced log-convexity [23].6

For a fat-tailed model, the nonequilibrium state is per-

manent and the ratio of half-lives achieved converged to
aþ1
a ¼ 7:0	 1:5 (mean 	 standard deviation)—Eq. (32)

and Table 1. As a (dimensionless) is the shape parameter

of the Pareto distribution, and as the Pareto distribution is

the GPC terminal tail asymptote, only the plasma con-

centration tail information would need to be extracted from

data to quantify a late-time nonequilibrium U V
P experi-

ment. On average CL ¼ 7:0 U V
P to within 5% for

t[ 9:8 h—see Fig. 7c.

The other shape parameter from the gamma distribution

(GD) part of the GPC model, a, aids in shape fitting of the

early data. The two shape parameters of the GPC model

allow for good derivative fitting between the data and the

model; CobsðtÞ and GPC
a b

a b

�
�
� t

� �

. Even when GD

models were used as a stand-alone; without convolution,

provided that the 0\a\1 shape had been selected by

adaptive regularization, that shape parameter variation

allowed matching to the different shapes of the disposition

curves for fluid overloaded patients [55]. That E2 models

were inefficient for metformin curve fitting was suggested

by their poor goodness-of-fit—see Figs 3 and 4—and by

their derivatives being unrelated to the data shape—see

Fig. 5. From Table 3, the E2 models averaged 16.1% rrms

error with 0.84% unexplained fraction, the GPC models’

errors were significantly better at 8.6% rrms with 0.22%

unexplained fraction.

Thus far, there have been interesting implications from

GPC modelling, for example, an apparent volume of dis-

tribution growth within the body that was terminally 6.0

times the renal clearance, that UV=P needed correction,

that terminal half-life of mass appearance in urine was 7.0

times the serum drug concentration half-life value, that the

drug mass retained in the body was substantial and that Vd

and t1=2 increased with elapsed time during multidosing.

Although direct testing of these findings was not within the

scope of the current study, some of these results can be

contrasted with prior study results, as follows.

Clearance

If metformin is only cleared by renal plasma flow (RPF)

extraction, then its clearance should be �RPF. We esti-

mated RPF from p-aminohippurate (PAH) dog data as PAH

renal clearance divided by PAH arteriovenous extraction

ratio, RPF ¼ CLPAH
EPAH

. Thus, CLPAH ¼ 13:51 ðmlmin�1 kg�1Þ
(mean, 75 dogs) [56] was divided by the EPAH ¼ 0:7564

(metadata; weighted average 65 dogs) from three series

[57–59] to yield RPF � 17:86 ðmlmin�1 kg�1Þ. From

Table 3 the GPC model metformin CL was 15.1

(mlmin�1 kg�1) or 84.8% of estimated RPF,7 i.e., a result

less than the 90–100% metformin extraction fraction

expected for humans [4]. There are multiple confounders,

including possibly inaccurate CLPAH, and canine tubular

resorption of PAH. However, the metformin extraction for

the GPC model at 84.8% was greater than the nominal

canine EPAH of 75.6%, where the latter in humans is circa

90% and is called effective RPF. Less plausible and sig-

nificantly greater results were seen for noncompartmental

(NC) CL of 18:7 ðmlmin�1 kg�1Þ at 104.7% of expected

RPF with even worse results for E2 CL at 22.1

(mlmin�1 kg�1) or 123.7% of expected RPF. We attribute

the increased E2 CL-values to AUC underestimation from

under-extrapolation of concentration beyond the underes-

timated earliest and latest sample concentrations—see

Figs 4 and 5.

The above results suggested that NC curve methods

using exponential extrapolation largely prevented under-

estimation of slope magnitude under the time-samples

themselves, but did not prevent a significant underestima-

tion of AUC in the extrapolated tails. This supported the

proposition that heavier-tailed GPC models captured more

of the otherwise under-extrapolated AUC—see Fig. 3 and

Table 4. From a prior work with a GFR marker, back-

extrapolation using 120- to 240-min data validated with

withheld early time-samples was more accurate using a

A� B lnðtÞ fit function than using exponential back

extrapolation, where the exponential back-extrapolation led

to an underestimation of AUC [36]. This agrees with the

6 Adult human expected physical volume of drug distribution from

mean residence time; EðVÞ ¼ 15-litres, clearance; CL ¼ 100-ml=min,

using a glomerular filtration rate (GFR) marker; 169Yb-DTPA, from

Table 1 of [23].

7 Geometric mean (GM) is a rarely-reported, better estimator of CL-

values, and GM CL
E

� �
¼ GMðCLÞ

GMðEÞ . Using GM EPAH of 35 controls (of 65

above) yielded 84.7% (84.8% above) of RPF for GPC metformin.
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NC overestimation of CL-values seen elsewhere from

exponential under-extrapolation of early AUC [60] and of

terminal tail areas [5, 25, 27]. Thus for multiple reasons,

the CL-values from the GPC models seemed more plausi-

ble than the alternative models applied to the same data.

Metformin drug mass

The survival of drug mass in the dogs’ bodies at 72 h in

Table 4 of 21.1% remaining represents a 5 fold decrease

from the initial dose. By way of comparison, the serum

concentration decreased 1000-fold from estimated peak

concentration over 72 h—see Fig. 1. As metformin

extraction in the dog appeared to be less than estimated

RPF, Clearance above, we assumed that drug mass

decrease was from renal excretion. Thus, at 72 h on aver-

age 78.9% was GPC model renal excreted. Sheen and

Sirtori et al. list human urinary metformin recoveries at 60

to 72 h, i.e., 86% and 78.9%—see Table 1 of [19] and

Table II of [20]. A 99.9% 48 h urine recovery from IV

metformin was calculated by Pentikäinen et al. [21], but

may have been inflated from a graphic estimation of the

location of maximum cumulative urine mass, thus subject

to error as suggested in Fig. 10 and surrounding text.

Overall, the drug excretion implied here was similar to

published human values, such that we cannot reject the

hypothesis that the 72 h GPC model excreted metformin

estimates were accurate.

Metformin half-life

As summarised in Table 5 by collecting metformin in

human urine Tucker et al. found 4.2 times longer mass than

concentration half-life at 12 h [22] and Pentikäinen et al.

[21] found a ratio of 5.1 times at 10 h. Collecting urine at 8

h Sirtori et al. found a ratio of 11.1 times [20]. During once

a day multidosing of oral metformin in a PBPK model

Robert et al. found an 8.8 times longer metformin half-life

in erythrocytes, a mitochondrial depleted tissue marker,

than in plasma [13]. In Table 5, the tissue (or urine) drug

mass to plasma (or serum) ratios of half-lives averaged

7:3	 1:6 SEM. The GPC model ratios averaged 7:3	 0:1

SEM. The average E2 model half-life function ratios in this

series at the same times (8; 10; 12; 72 h) would be

3.2, 1.9, 1.3, 1.0, which ratios are not as large as any of the

published or GPC half-life ratios. Note that light-tailed

modelling does not accommodate mass to concentration

half-life ratios persistently greater than 1 until at least 168

h as RBC versus plasma t1=2 in rats [4].

The GPC model half-life of metformin serum concen-

tration, Eq. (28), is asymptotically proportional to elapsed

time, and predicts this trend with approximately twice the

half-life observed for the exponential models in this series

and in Table 5. This latter is not dissuasive as Fig. 4 clearly

shows biexponential underestimation of late time-samples,

which is consistent with underestimation of terminal half-

lives for E2. Examination of the plot of median t1=2 of

grouped time-samples of metformin concentration half-

lives in Fig. 9 provided strong evidence that longer data

collection times yielded longer half-lives. Table 5, Figs. 9

and 8 show that t1=2 of the mass and concentration, as first

documented here, increased enough with elapsed time to

provide a modelling agreement with experimentally

observed ratios like
t1=2;Mð1Þ
t1=2;Cð1Þ ¼ aþ1

a [ 1 from persistent

redistribution, V 0
dð1Þ ¼ CL

a , i.e., old observations only now

explained using new modelling concepts.

A dosing strategy for possible use for therapy

In human 850 mg three times daily metformin for 5 days,

in comparison to a single dose, Sambol et al. noted drug

effect versus no (or lesser) effect for a single dose [24].

Also noted were the effects with elapsed time noted above,

increased Cmax, higher Vd consistent with drug mass

accumulation, and a prolongation of t1=2 from 7.2 to 19.8 h.

Table 5 Metformin t1=2 in

plasma [P, C(t)] and urine [U,

M(t)] as t1=2;CðtÞ and ratios of

t1=2 of M(t) and C(t)

References Species Assay of Last t (h) t1=2;CðtÞ (h) t1=2;MðtÞ
t1=2;CðtÞ

Lit. GPCa Lit. GPC

Sirtori [20] Man P, U 8 1.52 3.70 11.1 7.6

Pentikäinen [21] Man P, U 10 1.74 5.08 5.1 7.3

Tucker [22] Man P, U 12 4.5 6.41 4.2 7.1

Robert [13] b Man P, RBC 72 — — 8.8 —

Johnston [1] c Dog Serum 72 20.4 42.0 — 7.0

a lit. Literature value. GCP from this study only
b Information extracted during once daily multidosing
c Same concentration data used here
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The tentative explanation for this was ’The Vd...is probably

larger after multiple doses...’ Moreover, the lethargic pace

adopted clinically of two weeks before changes are made to

metformin dosing, the several months allotted to measuring

outcomes in clinical trials [61], the relative sequestration of

metformin into erythrocyte tissue versus plasma with

elapsing time [13], the decreasing fasting plasma glucose

for at least 8 weeks of multidosing [39] are consistent with

the expanding apparent volume of drug distribution,

increasing half-lives in time, and increasing sequestration

of drug in tissue that form the basis for the ‘‘Simulated

dosing regimen for constant drug mass in the body’’.

Although diabetes, as present in Sambol et al.’s patients

may reduce glucose transport and retard the time course of

drug effects, another hypothesis would be that the majority

drug effect is retarded due to slow tissue accumulation in

all subjects, including our normal dogs. In any population,

a faster initiation of therapeutic cytosol drug content may

be available by using the dose loading method hypothe-

sised in this paper, which may find eventual relevance for

metformin dosing for cancer chemotherapy and/or other

indications.

Synopsis

Sum of exponential terms models have non-zero initial

volumes problematic for calculating t1=2;MðtÞ. For exam-

ple, a monoexponential model has the same concentration

half-life as its half-life of drug mass,
lnð2Þ
k , and as V 0

dðtÞ ¼ 0,

there is no volume growth (or redistribution). Using

monoexponentials in 1959, Walser et al. [62] found a

multiple day stubbornly persistent delay between plasma

disappearance of radiolabeled urea and its appearance in

urine of approximately one hour. This implicates ongoing

redistribution. It is only hindsight8 that resolved the para-

dox in assuming no redistribution and finding irreducible

redistribution. This adynamical constraint on apparent

volume growth is only transiently mitigated by the inclu-

sion of additional terms in a SET function, e.g., to 21 h for

our E2, see Fig. 8.

Herein, fat-tailed metformin models offered for the first

time, results consistent with the observed half-life of mass

appearance in urine as multiple times the serum drug

concentration half-life values with drug mass versus serum

drug concentration half-lives which agreed by their ratios

and amounts to otherwise irreconcilable results. There were

plausible drug masses at 72 h, a plausible explanation for

increased Vd and t1=2 with multidosing with a plausible

strategy for better multidosing for drug effects, and more

plausible clearance-values than from the other methods

tested. All of these things suggest potential usefulness for

this type of modelling for extracting information and pre-

diction that is problematic using current models for met-

formin kinetics.

We sought to determine why metformin half-lives did

not appear to agree between publications, to develop a

hypothesis concerning why metformin control of plasma

glucose levels had delayed onset, e.g., following 4-weeks

of oral dosing [16], and to speculate concerning the lack of

a direct correlation between drug effect and blood met-

formin concentrations [17]. A single explanation for these

phenomena may very well be that the mass half-life is

persistently longer than the serum half-life and that mito-

chondria and cytosol are absorbing much of this mass,

although reversibly. All these findings are consistent with

high affinity of the drug in or in proximity to the sites of

drug action.

Limitations

The Introduction Section listed a number of references to

drugs with heavy tails [5, 27–34, 63–66]. However, the

potential clinical penetrance for fat-tailed data-spanning

models is not known. For example, a power function tail

for metformin does not seem to have been previously

identified. There was no evidence for nonlinearity for the

intravenous route of administration at the drug levels in this

study. However, nonlinearity might occur at higher drug

levels. A PBPK-type study where blood, urine, and tissues

are all collected in an animal study may be appropriate for

further investigation. Only a prospective study that mea-

sures both drug mass and drug effect can be used to vali-

date how useful the drug mass with drug effect relationship

hypothesised for the GPC model is for metformin.

The assay used allowed for 72 h of serum data collection

[67]. Due to a technical error, the earliest time-samples

were at 20 min [1]. Approximately 20.4% of the AUC

occurred before 20-min—see Table 4. This was verified

indirectly by comparing the CL to renal plasma flow as

estimated from metadata, implying that a lot of this early

AUC would be missed using NC methods. Due to this early

time back-extrapolation some parameters may be some-

what imprecise but not others, e.g., AUC20�min
0 but not

t1=2;Cðt[ 20-min). The last two time-samples were erratic

especially for dogs 3, 4 and 5 but not for dogs 1, 2, 6 and 7

as seen in Fig. 1. The apparent increased magnitude and

variability of some of the last two time-samples had no

clear cause and was not prior identified [1].

The GPC model with simplex method global search

optimisation has a long run time, and further refinement of

the algorithm for speed would be useful. As a new PK

8 Walser et al.’s excellent work related the delay between plasma

disappearance of urea and its appearance in urine as being

unexplained.
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model convergent to a power function tail, the GPC model

has only been applied to metformin. How well the GPC

model would estimate the plasma/serum concentrations of

other intravenously injected substances is unknown at this

time. In common with other first applications of a fit

function for intravenous drug dosing, there was no mod-

elling of oral dose data, tissue drug concentrations, or

correlation with simultaneously measured drug excreted in

urine, the applicability is only for linear systems, popula-

tion kinetics were not explored in the usual sense, and the

fitting algorithm used does not allow for case-wise error

statistics of parameters, per se, necessitating calculation by

other means, for example, as appears in the ‘‘Parameter

errors from model-based bootstrap’’ Appendix Section.

Conclusion

Fat-tailed models of metformin concentration were fit to

data from 7 dogs. The fat tails altered the usual context of

some pharmacokinetic parameters. Metformin was cleared

at 84.8% of estimated total renal plasma flow. At 72 h there

was 21.1% unexcreted metformin. Half-lives eventually

became linear functions of the sample-times. The mean

ratio of mass to concentration t1=2 95% converged to 7.0 by

9.8 h. Multidosing for constant drug mass rather than

serum drug levels was simulated and may allow for an

earlier onset and better maintenance of drug effects but is

in need of validation.
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Appendix

Concentration data and fitting it

The samples ranged from 9.78 to 19; 100 ng=ml met-

formin. The 20 min sample for dog three was discarded due

to quality assurance failure in the original study. In the

current study, probable quality assurance failure was

additionally identified with squared rank testing in five of

14 of the last two sample-time groups (at 48 and 72 h)

leading to discard. Thus, a total of 148 samples of the

original 154 (96%) were used for analysis here. Serum

samples were analysed using a simple flow injection

analysis–tandem mass spectrometry (FIA–MS/MS) by

Michel et al. [67], also developed at the University of

Saskatchewan. This method has linear response from

lowest limit of quantification (LLOQ) of 5 ng=ml to a

maximum of 2340 ng=ml metformin base with a relative

root mean square of proportional error (rrms) of 5.2%

calibration proportional error. The dog doses were weighed

and diluted as metformin hydrochloride (165.625 DA

average molecular weight) and dose mass corrected to

metformin base (129.164 DA average molecular weight)

for the computations in this publication.

Noncompartmental analysis of AUC and CL was per-

formed with Prism 5.0 (GraphPad Prism, San Diego, CA,

USA) for Johnston et al. [1] and reused here. The AUC

values were from the log-trapezoidal rule, with 4–10 early

and late time-sample (a generous number) used for

extrapolation. This NC technique has the advantage that it

is commonly used, but should not be considered optimally

comparable to proportional modelling used with better

fitting and extrapolating functions than monoexponentials.

For GPC and E2 modelling, multiple regression

weightings were tested including ordinary least squares

(OLS), Poisson weighting—see [37], OLS fitting of the

logarithms of concentration and finally proportional

weighting that reduces the relative error and produced the

best fitted results. Thus, the GPC and E2 models were fitted

using the minimum L2 norm of relative error of residuals.

That is, for the vector CobsðtÞ, we sought Cð� � � ; tÞ ¼
j pdfðt; � � �Þ using

min
Cð� � � ; tÞ
CobsðtÞ

� 1

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
2

: ð38Þ

The L2 norm is a monotone transform (square root) of the

least squares norm, L2
2. Formula (38) finds the 1=C 2

obsðtÞ
weighted least squares solutions used elsewhere

[37, 44–47, 68]. The error metric for formula (38) was the

root mean square of proportional error (rrms),

rrms% ¼100min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

1

n

f xið Þ � yi
yi

� � 2

vu
u
t

¼ 100
ffiffiffi
n

p min
f xð Þ
y

� 1

�
�
�
�

�
�
�
�
2

;

where the right hand equation converts between the abso-

lute value form with y2i in the denominator (whence the
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1=C 2
obsðtÞ notation) to L2 vector notation format. Both the

metformin assay (5.2% rrms) [67], and the GPC residuals

(8.6% rrms)—see Table 3 and Fig. 3—exhibited propor-

tional error.9 The L2 proportional norm is related its log-

arithmic norm as follows. Let
f ðxÞ
y ¼ u. Expanding lnðuÞ

around u ¼ 1 for the ith term being odd yields

lnðuÞ ¼ðu� 1Þ � 1

2
ðu� 1Þ2 þ 1

3
ðu� 1Þ3 � . . .

þ 1

i
ðu� 1Þi � . . .; 0\u� 2 :

ð39Þ

This expansion ln
f ðxÞ
y � ðu� 1Þ ¼ f ðxÞ

y � 1, has as its first

term the target for the proportional norm minimisation of

relative error. Proportional error values closer to 0 are

asymptotically ln
f ðxÞ
y ¼ ln f ðxÞ � lnðyÞ. Thus, log transfor-

mations of f ðxÞ and y were used to calculate 1� R2 values

to make unexplained fractions of total variance indexed to

goodness-of-fit.

Relative tail heaviness

The limiting ratio as elapsed time increases of two com-

peting models’ survival functions is the statistic of choice

for testing relative tail heaviness applicable to density

functions, mass functions, functions with discontinuities,

functions without derivatives, piecewise defined distribu-

tions, and empirical distributions. The use of classification

schemes, i.e., indirect comparisons using derivatives and

relying upon hazard function theorems, is an unreliable

substitute for the use of smoother integral methods for

random variable data using survival functions [69]. For

continuous functions, pdf binary comparison through sur-

vival function ratios avoids false attribution, for example,

classifying the GD as having an ED terminal tail, whereas

in fact, the exponential has tail heaviness that is within the

GD tail heaviness spectrum.10 This is shown theoretically

as follows.

The relative terminal tail heaviness of the

SGD ¼ Qða; b tÞ, Eq. (16), and the monoexponential sur-

vival function, SED ¼ e�k t, is obtained from their ratio

SGDðtÞ
SEDðtÞ

¼ Qða; b tÞ
e�k t

; ð40Þ

which is a 0
0
type indeterminate form, for t ! 1. Applying

L’Hôpital’s rule yields

b

kCðaÞ
eðk�bÞ t

ðb tÞ1�a
: ð41Þ

For a; b; k[ 0, the limit as t ! 1 of the right hand frac-

tion of this is dominated by the exponential, which goes to

infinity for k[ b and to zero when k\b, which means that

the GD tail is only heavier than the ED tail when k[ b.

k � b does not occur following regression because as

b ! k, then a ! 1, and GD becomes statistically indis-

tinguishable from ED. Thus, ED has a GD spectrum tail

heaviness, not the obverse.

Experimental demonstration of this theoretical result

includes the following. k[ b always occurred only when

special methods were used for GD fitting. The slower E2

rate constant, k2 [ b, with b from adaptively regularised

GD fitting that minimised AUC error; mean k2 ¼
0:275[ b ¼ 0:216 h�1 [23]. Herein, the GD tails were

lighter even than the E2 fast decays, i.e., all k1\b.

Classifications of tail heaviness consist of broad cate-

gories of very different functions each having a different

spectrum of tail heaviness. Even so, the exponential dis-

tribution tail heaviness category did not overlap with the

category for Pareto distributions [70]. Even when two

functions are in the same category of tail heaviness their

range of heavinesses might not overlap, which may seem

counterintuitive, but implies once again that only binary

tail heaviness comparisons make sense. With regards to PD

tail relative tail heaviness, taking the logarithm of the ratio

of survival functions simplifies the analysis [69]. The rel-

ative terminal tail heaviness of PD versus ED follows from

ln
SPDðtÞ
SEDðtÞ

� �

¼ a ln
b
t

� �

þ kt ; ð42Þ

where

lim
t!1

a ln
b
t

� �

þ kt

� �

! 1 : ð43Þ

This result is unequivocal; the terminal tail of a PD is

always heavier than that of an ED.

Residence time

Geometric mean residence time, when robust, can be found

using Monte Carlo simulation of a pdf, a tedious process.

The median and geometric mean residence times are robust

for the GD, PD, exponential and GPC distributions. The

harmonic mean residence time (H-MRT) for PD and GPC

9 OLS regression failed Veng Pedersen’s sign run criterion for the

terminal tail [68] confirming Toutain and Bousquet-Mélou’s (Fig. 17)

[46] recommendation to fit data for relative error.

10 Some authors, for lim
t!1

f ðtÞ
SðtÞ, where f(t) is a density function and S(t)

is its survival function, mistakenly apply L’Hôpital’s rule to that limit

without having an indeterminate form. The confusion likely arises

from the ED’s unique property;
f ðtÞ
SðtÞ ¼

f 0ðtÞ
S0ðtÞ ¼ k, whereas in general

f ðtÞ
SðtÞ 6¼

f 0ðtÞ
S0ðtÞ.
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are robust, as are the mean residence times (MRT) for the

exponential and GD distributions. PD and GPC MRT are

not defined when a\1, and when a[ 1, are not very

robust. As a� 0:2644 , their MRT were undefined, but

H-MRTGPC were obtained from lim
z!bþ

R1
z

f ðtÞ
t
dt

h i�1

and

shown in Table 1. Median-RT occur when the survival

functions are one-half, i.e., from Median-RT ¼ x; SðxÞ ¼ 1
2
.

The coefficients of variation (CV) were 39.3% and 45.6%

respectively for H-MRTGPC and Median-RTGPC.

H-MRTGPC averaged 0.360 h. Finally, we defined

VH-MRT ¼ CLGPC H-MRT—see Table 6. Dog 1’s VH-MRT is

an extreme proportional outlier; its reciprocal being [ 3

IQR (interquartile range) larger than the third quartile

VH-MRT reciprocal. However, the VH-MRT -values sort best

with E2’s VSS (Spearman rank correlation coefficient,

rs ¼ 0:96). Indeed, this agreement is nominally better than

the agreement between the two E2 apparent volumes, VSS

and Vd-area (rs ¼ 0:89, apparent steady-state volume of

distribution and terminal apparent volume of distribution,

respectively). Although the significance of this is unknown,

it would appear that if E2 VSS is measuring something, then

GPC’s VH-MRT is as well.

Noncompartmental time-sample group, median
half-life

Given time-samples, ðti;CiÞ and ðtiþ1;Ciþ1Þ, the half-life of
an exponential connecting them occurs once or more dur-

ing that time interval, and as per Eq. (5) is

n ¼ lnð2Þ tiþ1 � ti

lnðCiÞ � lnðCiþ1Þ
;

For subjects having groups of samples drawn at the same

times, tiþ1 � ti ¼ Dti, the numerator of Eq. (5) is a con-

stant. The D lnðCÞ denominator as sampling noise goes to

zero is asymptotically a proportional data model—see

Eq. (39)—thus is approximately normally distributed. In

the limit as Dt ! 0, the signal reduces in the denominator

to an asymptotic mean of 0 leaving constant noise with

standard deviation, k. Thus, Eq. (5) is a constant times the

reciprocal of a normally distributed random variable, which

is not the same as the reciprocal of the normal distribution

pdf. Rather we substitute 1
x
¼ z in N zð0; kÞ to yield,

1

X
�N 1

x
ð0; kÞ ¼ e�

1

2k2x2

ffiffiffiffiffiffi
2p

p
kx2

: ð44Þ

which is a special case of the reciprocal normal distribu-

tion. For Eq. (5), an attempted mean calculation becomes

more erratic when more subjects are included because

Eq. (44)’s mean and variance do not exist. This is well

known and its tails using ‘‘Relative tail heaviness’’ meth-

ods are Cauchy distribution similar, i.e., 	x ! 1;

SN 1=xð0; kÞðxÞ=SCauchyð0;kÞðxÞ ! 1
k2

ffiffi
p
2

p
. Although the constant

multiplier, lnð2ÞDt, of Eq. (5) gets smaller as Dt ! 0, the

behaviour of Eq. (44) does not improve (its variance does

not exist).N 1=xð0; kÞ is a bimodal distribution with left and

right sided fat-tails for which the median measures cen-

trality as CDFN 1=xð0; kÞ x ¼ 0ð Þ ¼ 1
2
. Thus, one can use the

median values of the subjects’ t1=2 (include negative ones)

from Eq. (5) to plot t1=2 versus sample times. However, the

mean is pathologic, i.e., 1
n
Rn
i¼1Xi diverges as n ! 1, and

should never be used.

A final consideration is what mean time on the interval ti
to tiþ1 of Eq. (5) to assign a half-life as having occurred. As

there are 18 to 21 time intervals for the data here, there is

only a small numerical range of ½ti; tiþ1
 for assigning the

time of occurrence of a half-life. As the logarithm of time

approximately linearised the half-life functions examined,

the geometric mean time, GMðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ti � tiþ1

p
, was used as

the ith time of t1=2.

Parameter errors from model-based bootstrap

Nelder-Mead, also called the simplex method, is a fast

global optimisation search routine, and is a practical choice

for regression of the GPC function to data. The simplex

method is not easily fooled by multiple local minima and if

searching a space build like an ice cube tray, will find the

least error point in that space. However, the simplex

method does not calculate the gradients, Hessians or

Jacobians generated during Levenberg–Marquardt or other

local optimisation routines that rely on gradients to direct

the regression to a lesser, but not necessarily least-error, fit

location. Those matrices are frequently used for generating

and reporting estimated propagated error of case-wise

pharmacokinetic model parameters.

Table 6 Residence time volumes of distribution in (L/kg)

Dog GPC E2 E2

VH-MRT VSS Vd-area

1 0.0692 4.906 21.44

6 0.2059 5.782 22.66

5 0.3070 6.070 19.40

2 0.3857 6.408 24.58

4 0.3865 9.071 35.54

7 0.4209 7.396 27.84

3 0.5164 9.275 37.09

Median 0.3857 6.408 24.58

IQR 0.2150 3.289 14.09

Median/IQR 0.5574 0.5133 0.5733
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Another possibility for obtaining case-wise parameters

errors is to use model-based bootstrap of regression

residuals [71]. The model-based bootstrap procedure ran-

domly resamples residuals with replacement and adds

those randomised residuals to the model amplitudes at all

the original sample times to create synthetic data and that

procedure is then repeated multiple times for each case.

The synthetic data are then regressed to yield multiple

parameter values for each case from which errors and

distribution information not otherwise available are

extracted. Because of what is being done, we required

normality of residual magnitude. The GPC residual values

were approximately normally distributed (Results and

Fig. 3). The E2 residuals were non-normal (Results and

Fig. 4). The other requirement for model-based bootstrap is

that the residuals are relatively unstructured as a list sorted

by earliest time of acquisition. We measured the residuals’

structure from the data used for Figs. 3 and 4 using analysis

of variance (ANOVA).11 ANOVA of residuals with their

sample group average values as the test model yielded an

adjusted R2
adj ¼ 0:1407 for GPC models and R2

adj ¼ 0:5826

for E2 models. That is, the E2 models had 4.1 times more

explained fraction, i.e., structured variance, than GPC

models. Thus, model-based bootstrap E2 parameter errors

would likely be inaccurate and were not calculated, and for

that problem a method that conserves list-wise, i.e.,

sequence, dependent non-normal loss functions during

nonlinear regression would be more appropriate.

Thirty-five GPC simulations were performed and were

consistency checked. The bootstrap fit errors ranged from

4.35 to 15.8% rrms% and were not significantly differently

distributed from the fit errors from the original data

(p ¼ 0:51, Cramér–von Mises, two-sample test), and were

approximately log-normally distributed (p ¼ 0:81; n ¼ 35,

Cramér–von Mises, one-sample test) with a bootstrap

GM12 of 7.5% and original solution GM of 8.2%, implying

that the bootstrap distribution was not significantly inac-

curate. The largest value, 15.8%, was a solitary near out-

lier.13 This outlier was not implausible for its log-normal

distribution (binomial p ¼ 0:47 of at least one value

� 15:8%).

The trial with second largest fit error is illustrated in

Fig. 12. This photogenic simulation was selected to illus-

trate the results of the process of simulated data creation.

Visually, the original and simulated data appear to have

similarly large noise, and the large noise permits good

visual separation of the original data and simulated data.

The 35 model-based GPC simulations, i.e., only 5 per

case, were performed as currently limited by the long

runtime for each model solution. That is insufficient to

establish precise CV% for each case, but as the ratio

between gradient based error propagation results and

bootstrap is not unusually a factor of two larger or smaller

[72], our results were sufficiently precise to roughly gauge

CV% magnitude. At the best of times, individual parame-

ters errors do not represent enough information to fully

characterise those parameters and for constrained parame-

ters do not contribute useful information. Additional and

more precise quality assurance information arose from the

35 bootstrap parameter distribution statistics for all seven

cases, which is more relevant for the examination of out-

liers and robustness of parameters. Table 7 summarises the

GPC regression model parameter results from the simula-

tions with all 35 sets of parameter results from bootstrap as

well as screening parametric and nonparametric analysis

including 95% confidence intervals for mean and median

listed in worksheet bootstrap results .xlsx file labelled

Supplementary Materials 1.

In this table, the minimum and maximum values cor-

respond to the nonparametric 94.4% confidence intervals

for values with n ¼ 35 (Weibull method). The rrms% of

case-wise CV% values were used to calculate the global

case-wise processing errors of parameters, and the CV%

values of all 35 simulations were the population deviations

for parameters. Note that the rrms% of individual case

Fig. 12 This simulation (dog 4 simulation 17) had a GPC fit error of

14.0%, the second worst fit error in the series of 35 simulations. The

original data are shown as red circles, and the bootstrap resampling of

residuals are shown as black circles. The blue curve is the GPC

simulation model fit, and the green line is the limiting Pareto

distribution tail

11 ANOVA applied to sample groups provided a population summary

of residual variance, rather than case-wise variances as would be a

more typical ANOVA application.
12 The GM (geometric mean) of a lognormal distribution parame-

terised as N lnðxÞðl;rÞ is its location, which is also its median value

because logarithm is a monotone transform of quantiles.
13 Outliers are usually defined in terms of the first and third quartiles

(Q1, Q3) and the interquartile range (IQR ¼ Q3� Q1). A near outlier

is\Q1� 1:5 IQR or [Q3þ 1:5 IQR, but is not so extreme as to be

a far outlier. Outliers for a normal distribution occur for

erfc 4 erfc�1 1
2

� �� �
of the realisations. Far outliers are \Q1� 3 IQR

or [Q3þ 3IQR and occur for erfc 7 erfc�1 1
2

� �� �
, where erfc is the

complimentary error function.
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parameters CV% were only a fraction of the total CV% for

all simulations and all parameters, i.e., the population of

dogs had more variability of parameters than the expected

case-wise parameter errors. b was a constrained parameter.

Its values were located in a 16, 5, and 14 split between,

respectively, being at the lower constraint boundary of 25

s, between the 25 and 30 s boundaries, and at the 30 s upper

boundary. Even if that fairly even 16/14 split at the con-

straint boundaries were due to noise, it would be suspi-

ciously unbiased noise. For example, if all the values were

grouped at the lower constraint boundary of 25 s, one

would have reason to suspect that a better regression

answer would occur at some constraint value less than 25 s.

The fact that 5 of the 35 b-values occurred between 25 and

30 is not inconsistent with having set plausible constraints,

and that despite not having primary study b-values in that

time window. This is the physical equivalent of hitting a

one-inch wide, elongated strip of masking tape with 5 darts

of 35 thrown from 20 feet away. The most variable

parameter in the table is the (approximately lognormal

distributed) time of peak concentration, which varied from

0.56 to 9.1 min but had only a single (i.e., not implausible)

near outlier. That variability did not adversely affect AUC-

values as those latter were of narrow range with no outliers,

had low CV% values and insignificantly

(p ¼ 0:036; n ¼ 35) negative correlation with peak time.

Both times of peak concentration and b first peripheral

venous arrival times are unobserved events predicted by

the GPC model whose variability would be better assessed

using earliest observations available sooner than the 20 min

time-samples in the data set used.

As it goes to robustness, the examination of outliers is

important. For a normal distribution near outliers occur for

0.698% of the realisations, whereas far outliers occur for

only 0:000234%.13 Four of the seven (upper) near outliers

were from CL, which inherited a heavier than normal right

tail from reciprocation because CL ¼ D=AUC, and AUC as

well as 1=CL ¼ AUC=Dð Þ were more normally distributed

with no near outliers. The other three near outliers were

similarly insufficient to suggest any robustness problem,

and infrequent near outliers often suggest non-normality,

which do not require investigation as erratic values.

However, far outliers are so infrequent in the normal case

that consideration should be given to pathologic or extreme

non-normality of a parameter, to effects arising from some

inappropriate quality of the data itself, and/or to some

systemic methodological problem. The outliers listed in the

table were near outliers, were few in number and were all

upper range suggesting heaviness of right tails for some

parameters, and no far outliers to suggest a lack of

robustness of the methodology were seen.

Table 7 Mean case-wise CV%

of GPC parameters, near

outliers and parameter ranges

for 35 simulations

a b a b AUC CL Peak

Units % % % 5a % % %

Dog 1 8.09 4.84 5.13 4 # 1 " 6.22 6.42 8.98

Dog 2 10.5 6.89 4.90 3 # 2 " 1.09 1.09 46.9

Dog 3 8.67 5.95 3.81 3 # 2 " 3.77 3.72 44.2

Dog 4 22.3 15.9 9.80 2 # 2 $ 1 " 5.65 5.89 78.7

Dog 5 20.6 11.4 6.11 3 # 2 " 5.37 5.14 59.5

Dog 6 7.42 4.93 5.85 1 # 2 $ 2 " 2.15 2.10 8.90

Dog 7 17.7 20.3 5.82 1 $ 4 " 2.31 2.34 77.6

rrms 14.8 11.5 6.17 — 4.22 4.26 53.5

Allb 29.7 25.0 25.9 — 28.8 39.5 81.3

Unitsc None Per h None 35 mgh
L

L
h

min

Minimum 0.265 0.557 0.117 16/35 11.4 0.515 0.563

Mean 0.591 0.874 0.183 — 24.0 0.899 2.68

Median 0.607 0.902 0.183 27.0 s 26.1 0.747 2.02

Maximum 0.898 1.37 0.295 14/35 35.5 1.71 9.13

Outliersd 0 0 2 — 0 4 1

a b was constrained and the 5 values per case were either at the lower boundary of 25 s ð#Þ, within the 25—
30 s window ð$Þ, or at the 30 s upper boundary (").
b All 35 values have a CV%, which is larger than the combined CV% (¼ rrms%) of each case. (Average

CV% would be an underestimate.)
c CL is L/h in this table to emphasise CL ¼ D=AUC.
d Number of upper near outliers from n ¼ 35 simulations

Journal of Pharmacokinetics and Pharmacodynamics (2020) 47:19–45 43

123



References

1. Johnston CA, Dickinson VSM, Alcorn J, Gaunt MC (2017)

Pharmacokinetics and oral bioavailability of metformin

hydrochloride in healthy mixed-breed dogs. Am J Vet Res

78(10):1193–1199

2. Wypij JM (2017) Pilot study of oral metformin in cancer-bearing

cats. Vet Comp Oncol 15(2):345–354

3. Andrzejewski S, Gravel SP, Pollak M, St-Pierre J (2014) Met-

formin directly acts on mitochondria to alter cellular bioener-

getics. Cancer Metab 2(1):12

4. Xie F, Ke AB, Bowers GD, Zamek-Gliszczynski MJ (2015)

Metformin’s intrinsic blood-to-plasma partition ratio (B/P): rec-

onciling the perceived high in vivo B = P [ 10 with the in vitro

equilibrium value of unity. J Pharmacol Exp Ther

354(2):225–229

5. Kajbaf F, Bennis Y, Hurtel-Lemaire AS, Andréjak M, Lalau JD
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