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Abstract

Background: The present study involves diversity and biological activities of the endophytic fungal community
from Distylium chinense, a rare waterlogging tolerant plant endemic to the Three Gorges Reservoir. This study has
been conducted hypothesizing that the microbial communities in the TGR area would contribute to the host plant
tolerating a range of abiotic stress such as summer flooding, infertility, drought, salinity and soil erosion etc., and
they may produce new metabolites, which may possess plentiful bioactive property, especially antioxidant activity.
Therefore in the current study, the antioxidant, antimicrobial and anticancer activities of 154 endophytes recovered
from D. chinense have been investigated. Furthermore, the active metabolites of the most broad-spectrum
bioactive strain have also been studied.

Results: A total of 154 fungal endophytes were isolated from roots and stems. They were categorized into 30
morphotypes based on cultural characteristics and were affiliated with 27 different taxa. Among these, the most
abundant fungal orders included Diaporthales (34.4%) and Botryosphaeriales (30.5%), which were predominantly
represented by the species Phomopsis sp. (24.7%) and Neofusicoccum parvum (23.4%). Fermentation extracts were
evaluated, screening for antioxidant, antimicrobial and anticancer activities. Among the 154 isolates tested, 99
(64.3%) displayed significant antioxidant activity, 153 (99.4%) exhibited inclusive antimicrobial activity against at least
one tested microorganism and 27 (17.5%) showed exclusive anticancer activity against one or more cancer cell
lines. Specifically, the crude extract of Irpex lacteus DR10–1 exhibited note-worthy bioactivities. Further chemical
investigation on DR10–1 strain resulted in the isolation and identification of two known bioactive metabolites,
indole-3-carboxylic acid (1) and indole-3-carboxaldehyde (2), indicating their potential roles in plant growth
promotion and human medicinal value.

Conclusion: These results indicated that diverse endophytic fungal population inhabits D. chinense. One of the
fungal isolate DR10–1 (Irpex lacteus) exhibited significant antioxidant, antimicrobial and anticancer potential. Further,
its active secondary metabolites 1 and 2 also showed antioxidant, antimicrobial and anticancer potential.
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Background
Endophytic fungi in plants are microorganisms that
parasitize symbiotically in the internal tissues during the
whole or part of their life cycles of the hosts without
causing apparent pathogenic symptoms [1], but may
turn pathogenic during host senescence [2]. Accumu-
lated evidence has confirmed that plant endophytes from
special or extreme environment has many effects on host
ecological adaptability [3–5]. It is well known that the
concurrence of endophytes may accelerate plant growth
and increase the survival rate of biotic or abiotic stresses,
such as plant diseases, pests, drought, salinity and ex-
treme temperatures [6–9]. Specifically, some endophytes
are beneficial to plants by producing special substances,
such as secondary metabolites, which can prevent the
host from being attacked successfully by fungi and pests
[10]. So far, endophytes, especially those under complex
and extreme conditions, have been shown to produce a
variety of metabolites with complex structures, such as
alkaloids, terpenoids, polyketides, lipids, glycosides, iso-
prenoids, and hybrids of those metabolites, etc. [11–13].
More interestingly, these metabolites also showed a var-
iety of interesting bioactivities including antifungal [14],
antibacterial [15], anticancer [16], anti-HIV [17], antioxi-
dants [18], etc. Due to these, endophytes from an un-
tapped diverse habitat are a significant source of novel
and natural drugs [19].
After Three Gorges Dam is constructed, the Three

Gorges Reservoir (TGR) forms a new vast hydro-
fluctuation belt with an elevation of 145 m in summer to
175 m in winter, a length of more than 2000 km and an
area of 300 km2 [20, 21], which has provided unique
ecological habitats for those diverse species in the TGR
area [22]. Many field surveys have shown that most of
the pre-dam riparian vegetation is gradually dying out
due to the inability to adapt to the reversal of submer-
gence time, the prolongation of flood duration and the
new hydrological fluctuation zone (up to 30m in eleva-
tion) [23]. Generally, plants use limited oxygen and light
under flood conditions, resulting in production of exces-
sive reactive oxygen species (ROS) [24], which were the
key factors that hindered the growth and development
of submerged plants [25, 26]. They are forced to
undergo the oxidative pathway [27], and usually develop
an antioxidant defense system consisting of some anti-
oxidant enzymes and specific metabolites to convert
these excessive ROS into harmless products in order to
protect themselves [28, 29].
As symbionts, endophytic fungi can produce antioxi-

dants, block the chain reaction of ROS to help host
plants respond to various biotic and abiotic stresses [9,
30]. Some studies have also showed that endophytes can
increase the survival rate of host plants during flooding
stress by producing antioxidants independently [31, 32].

Severe oxidative damage of free radicals has been con-
firmed to be associated with various diseases, including
cancer, inflammation, aging and neurodegenerative dis-
eases [33]. It has been advised that antioxidants should
be warranted in the enhancement of human health [34,
35]. Currently, the demand for natural antioxidants from
endophytic fungi has been increasing along with the
finding that natural antioxidants have fewer side effects
on human health than artificially synthesized substances
[36, 37]. Additionally, the search for safer and novel
drugs based on the natural product from endophytes is
of utmost importance because of the increasing inci-
dence of cancer and the recently emerged, rapid evolu-
tion of superbugs due to antibiotic resistance [38, 39].
After Three Gorges Dam is constructed, many abiotic

stresses in the natural habitat strongly influence plant
growth and development, such as summer flooding, in-
fertility, drought, salinity and soil erosion etc. So far,
only a few highly tolerant plants have been reported to
survive, which include Salix variegate, Morus alba L.,
Myricaria laxiflora [22, 40]. Among them, Distylium chi-
nense (Fr.) Diels, a rare evergreen ornamental shrub of
Hamamelidaceae family known for the beautiful flowers
(Fig. 1a), is a native species to the riparian wetland in
the TGR area of the Yangtze River and its tributaries
[20, 41, 42]. Since 2005, D. chinense was considered as
an ideal choice for solid embankment after the construc-
tion of the Three Gorges Dam owing to its strong root
system, erosion tolerance, strong flooding tolerance and
resistance to sand burial soaks [43]. Several biological
studies have been made for D. chinense such as morpho-
logical characteristics, natural habitat, genetic diversity,
community structure, ecological adaptability, reproduct-
ive allocation and propagation methods [42, 44, 45]. It
should be noted that the roots of D. chinense has been
used in traditional Chinese medicine and folk medicine
as an analgesic, antirheumatic and diuretic [46]. How-
ever, there is no information on the diversity and bio-
active potential of endophytes community from D.
chinense. Thus, the aim of this study was to provide the
first evidence of endophytic fungi diversity within the D.
chinense, provide a working collection of endophytes
and investigate endophytes with antioxidant, antimicro-
bial and anticancer activities in order to explore the po-
tential sources of novel drugs.

Methods
Plant material
Three healthy and asymptomatic D. chinense plants were
randomly collected from different locations on an island
in the Banan district (N29º42'45.63", E106º60'69.43") of
Chongqing of China in the Three Gorges Reservoir area
in October 2014. All plant materials were immediately
sent to the laboratory and stored in a refrigerator at 4°C.
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Each sample tissues were used within 24 h after collec-
tion. The plant samples were identified as D. chinense by
Prof. Hongping Deng and were preserved in Chongqing
Key Laboratory of Plant Resource Conservation and
Germplasm Innovation, School of Life Science, South-
west University, Chongqing 400715, China.

Isolation and cultivation of endophytic fungi
The surface sterilization and isolation of fungal endo-
phytes were carried out, and some improvements were
made [47]. In the first instance, all stems and roots of
plant materials were thoroughly washed in running tap
water to remove debris and then air-dried naturally in
the clean bench. Clean tissue pieces were disinfected in
series of solutions: 75% ethanol; sterile distilled water;
0.1% mercuric chloride (HgCl) (v/v). Finally, they were
again rinsed with sterile distilled water three times. After
surface sterilization, the tissues were dried on blotting
sheets, cut into 0.5 cm lengths and transferred to potato
dextrose agar (PDA) medium supplemented with 60 mg/
mL of streptomycin and 100 mg/mL of ampicillin using
an aseptic technique to inhibit the bacterial growth. At
the same time, the final sterile water used for washing
the tissues (100 μL) was also plated on the PDA to

confirm the sterilization effect of the surface. The inocu-
lated plates were incubated at 28°C in darkness for 2-15
days to allow the growth of endophytic fungal hyphae
and checked regularly. Pure isolates were checked for
purity and transferred to another PDA plate by the hy-
phal tip method [48]. The obtained endophytic fungal
isolates were coded according to their source tissues
(DR1-1, DR1-2, DR2-1, etc. from roots and DS2-1, DS3-
1, DS1-2, etc. from the stems). These endophytes were
classified according to colony color, form, elevation and
margin characteristics on PDA. Based on the groupings,
strains with different morphology were screened for mo-
lecular identification.

Molecular identification and phylogenetic evaluation of
endophytic fungi
According to the above simple classification, each type
of fungi was chosen as the representative for molecular
biological identification using the fungal genomic deoxy-
ribonucleic acid (DNA) extraction. Fungal genomic
DNA extraction was previously described by Landum
et al. according to the manufacturer’s instructions using
the DNeasy Plant Minikit (Qiagen, Germany) [49]. The
nuclear ribosomal DNA internal transcribed spacer

Fig. 1 D. chinense plant and taxonomic distribution of endophytic fungi. (a) D. chinense plant. (b) Representative fungal morphotypes isolated
from D. chinense growing on potato dextrose agar (PDA) for one week at 26 °C. (c) Distribution of fungal isolates (n = 154) belonging to each
order (n = 9). (d) Distribution of fungal taxa (n = 27) belonging to each order (n = 9)
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(ITS) of the fungal isolates were amplified by forward
primer, ITS1-F (5′-TCCGTAGGTGAACCTGCGG-3′)
and reverse primer, ITS4 (5′-TCCTCCGCTTATTG
ATATGC-3′) [50]. The final reaction volume was 25 μL,
containing 12.5 μL of 2X PCRBIO Taq Mix Red (PCR
Biosystems, UK), 0.4 μM of forward and reverse primers
and 10 ng of genomic DNA template. For negative con-
trol, the DNA was replaced with distilled water to verify
absence of contamination. PCR was carried out using
MyCycler TM (Bio-Rad, USA), programmed for 5 min
94°C; 30 cycles for 30s at 94°C, 60s at 55°C, and 1min at
72°C; and a final 10 min extension at 72 °C. The PCR
products were separated using 1% agarose gel in 1X TAE
buffer (90mM Tris-acetate and 2 nM EDTA, pH 8.0), with
ethidium bromide (0.5μg/mL) staining and recorded with
FluorChemTM (Alpha Innotech, USA). The PCR prod-
ucts were sequenced by Invitrogen Co. Shanghai.
In phylogenetic evaluation, the ITS DNA sequences

and downloaded sequences of their nearest neighbors
were aligned in Alignment Explorer of MEGA 4 software
using ClustalW option [51, 52]. MUSCLE (UPGMA) al-
gorithm was used to prune and verify the sequence. The
evolutionary distances and history were calculated by
using the neighbor-Joining methods [53]. The robustness
of the trees were assessed by bootstrap analysis with
1000 replication [54].

Bioactivity evaluation
Fermentation and preparation of fungal extract
Fermentation and preparation of the fungi were deter-
mined according to the scheme proposed by Ya-Li et al.
with some modifications [55]. Briefly, all isolates were
cultured in potato dextrose broth (PDB, the medium
contained potato 200 g and glucose 20 g in 1 L of puri-
fied water) for 14 d at 28 °C on a shaker at 180 r/min.
Crude fermentation broth was filtered with eight layers
of gauze. Filtered liquid was extracted three times with
the same amount of ethyl acetate. The organic solvent
extract was then evaporated under reduced pressure to
yield an ethyl acetate extract. The ethyl acetate extracts
were dissolved in methanol and the final concentration
was 10 mg/mL for bioactivity screening.

Antioxidant activity
The radical scavenging ability was evaluated by using
adapted 2,2’-diphenyl-b-picrylhydrazyl (DPPH) method
described previously with some modification [56]. Thus,
an aliquot of extract (50 μL) was added to 150 μL of
methanol DPPH (50 μM). The reaction mixture was
transferred to a 96-well microtitre plate and incubated
at room temperature for 30 min in the dark and absorb-
ance was measured at 517 nm using a microtiter plate
reader (Bio-Rad 680, BIO-RAD, USA). Ascorbic acid
(Vc) and methanol were used as positive and negative

controls, respectively. Meanwhile, three experimental
replicates were taken for the assay.

Antimicrobial activity
The determination of antimicrobial activity was based
on the disk diffusion method with some modification
[57]. Each disc (Oxford cup, 6 mm diameter) contained
200 μg of endophytic fungi extraction (10 mg/mL). The
indicator organisms included gram-negative: Escherichia
coli (ATCC25922, EC), Pseudomonas aeruginosa
(CMCC(B)10104, PA); gram-positive: Staphylococcus
aureus (ATCC6538, SA), Bacillus subtilis (ATCC6633,
BS); three pathogenic fungi Penicillium (ATCC9080, P),
Aspergillus niger (CMCC(F)98003, AN) and Candida
albicans (CMCC(F)98001, CA). There were purchased
from Shanghai Luwei Technology Co., Ltd. Streptomycin
and amphotericin B were used as positive controls and
methanol as negative control. The antimicrobial
activities were determined according to diameters of in-
hibitory zones (ZI) and experiments were repeated three
times.

Anticancer activity
Human papillary thyroid carcinoma cell line IHH4 and
human pancreatic adenocarcinoma cell line CFPAC-1
were obtained from the Cell Line Bank of the Chinese
Academy of Science. The anticancer activity was deter-
mined according to CCK-8 assay [58]. Cisplatin was
used as the positive control and repeated for three times.

Isolation of bioactive metabolites
Based on the results of the above antioxidant, antimicro-
bial and anticancer activities, the strain Irpex lacteus
DR10-1 was selected for the chemical analysis because it
exhibited widest broad-spectrum bioactivities. Irpex lac-
teus DR10-1 culture filtrate 14L was fermented by the
same method as above mentioned. Crude ethyl acetate
(EtOAc) extracts from Irpex lacteus DR10-1 (6.7g) was
obtained and further purified by a silica gel column (200-
300 mesh, 4.0 × 70 cm, with 70 g of silica gel), and eluted
with gradient mixtures of petroleum ether (60-90 °C) and
EtOAc to yield 5 fractions (A1-A5). Fraction A2 (156 mg)
was further purified by a silica gel column chromatog-
raphy (300-400 mesh, 2.0 × 25 cm, with 15 g of silica gel)
and eluted with gradient mixtures of chloroform (CHCl3)
and EtOAc to yield compound 1 (30mg). Fraction A4 (98
mg) was further purified by a silica gel column chroma-
tography (300-400 mesh, 1.0 × 25 cm, with 35 g of silica
gel), and eluted with gradient mixtures of CHCl3 and
methanol (MeOH) to obtain compound 2 (25mg).
Nuclear magnetic resonance (NMR) spectra were re-

corded by Bruker Ascend 500 spectrometer. The spec-
trometer operated at 500 MHz for 1H nuclei and 125
MHz for 13C nuclei. Chemical shift was quoted in parts
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per million (ppm), referring to the appropriate residual
solvent peak.

Statistical Analysis
Using species as the statistical unit, the number of iso-
lates (N) and the isolation frequency (IF) for each endo-
phytic fungal species in different tissues or the total
plant (Additional file 1 Table S1) were calculated. Spe-
cies richness index (S) and Margalef index (D´) were
used to evaluate species richness, which were two im-
portant parameters for alpha diversity analysis [59].
Shannon-Wiener index (H´) and Simpson’s diversity
index (Ds) were used to the species diversity, respect-
ively [60, 61]. Additionally, the Jaccard Similarity Index
(JC) was used to compare the species composition of the
stem and root tissues [62]. Results were expressed as
mean ± standard deviation (SD) of triplicate of measure-
ments for the DPPH and CCK-8 assays. Data were con-
ducted with SPSS 18.0 for Windows (SPSS Inc., Chicago,
USA).

Results
Community composition and abundance
A total of 154 fungal endophytes were isolated from D.
chinense plants collected from the TGR area. Among
them, 30 different representative morphospecies were de-
termined according to cultural characteristics (Fig. 1b). Of
these detected, 30 isolates were categorized into 27 differ-
ent taxa (Ascomycota, 19; Basidiomycota, 8), and further
into nine distinct orders (Fig. 1c). The Fig. 2 showed the
phylogenetic tree of 30 fungal strains isolated from the
NCBI database and the accession numbers of the matched
rDNA-ITS sequences. The supplementary table data
(Additional file 1: Table S1) provided detailed information
on 30 representative strains, including their sources and
isolation frequencies.
At the order level, the Diaporthales possessed the most

taxa, six taxa, accounting for 22.2% of the total fungal
taxa and they had 48 isolates, around 31.2% of the total
fungal isolates (Fig. 1d). Conversely, the Botryospaeriales
had the most isolates, 52 isolates, accounting for 33.8%
of the total fungal isolates and they possessed four spe-
cies, around 14.8% of the total fungal species. The Poly-
porales and Agaricales were the second and third most
abundant orders with high species, and together consti-
tuted approximately 33.3% of all the species. Analo-
gously, the Xylariales and Polyporales were the second
and third most abundant isolates, and together consti-
tuted approximately 18.1% of all the isolates. The other
identified orders were the Hypocreales, Microascales,
Eurotiales and Discellaceae, which together constituted
approximately 22.2% and 10.4% of all species and iso-
lates, respectively (Fig. 1d). Interestingly, the most com-
mon fungal species between roots and stems were

Phomopsis sp. (24.7%), followed by Neofusicoccum par-
vum (23.4%). However, Phomopsis were not from order
with highest isolate rates.

Species diversity and richness abundance of fungi
The richness and species diversity of culturable endo-
phytic fungi were significantly higher in stems than in
roots (Table 1). Among the 27 total taxa, 16 (59.3% of
total) were obtained from the stems. A total of 3 fungal
taxa- Neofusicoccum parvum, Phomopsis sp. and Dia-
porthe sp. were distributed in both plant tissues, but ten
taxa-Fusarium sp., Fusarium equiseti, Xylaria venosula,
Lasiodiplodia theobromae, Penicillium ochrochloron,
Rhizoctonnia bataticola, Robillarda sessilis, Coprinellus
xanthothrix, Polyporus crassa and Irpex lacteus were
only found in the roots (Fig. 3). Similarly, of the nine or-
ders, two were found in both stems and roots, but the
Hypocreales, Xylariales, Eurotiales and Discellaceae were
unique to the roots (Fig. 4). Additionally, Shannon-
Wiener index (H') and Simpson diversity index (Ds)
could be used to analyze species diversity. Generally, the
higher the Shannon’s diversity index (usually between
1.5 and 4.5), the closer the Simpson’s diversity index is
to 1, the stronger the adaptability of the community to
the change of micro environment is, and the community
presents the trend of expanding the distribution range
and entering the new environment [63]. On the other
hand, the species richness (S) and Margalef index (D')
can reflect the richness of endophytic fungi species. The
larger the values of S and D' were, the richer the species
of endophytic fungi were [64]. As shown in Table 1, the
species richness and diversity of endophytic fungi in
stems were higher than those in roots, and the values of
S (16), D' (3.5802), H' (2.5323) and Ds (0.8659) were
higher. In addition, the similarity index (Jaccard's index)
was used to estimate the similarity between stem and
root. Although stem and root samples collected in TRG
field were adjacent to each other and lived in the same
place, the Jaccard's index only showed 0.11 between
stems and roots, showing low similarity. These indices
showed that endophytic fungi in different tissues had
significant diversity.

Bioactivity evaluation of fungal endophytes
As mentioned above, one of the main purposes of this
study was to identify endophytic fungi that could be cul-
tured and applied to develop their potentially beneficial
properties for plants and humans. All 154 fungal endo-
phytes isolated from D. chinense at TGR were evaluated
for their antioxidant, antimicrobial and anticancer activ-
ities (Additional file 1: Table S2-S4). Among the 154 iso-
lates, 99 (64.3%), 153 (99.4%) and 27 (17.5%) fungal
extracts showed antioxidant activity, antimicrobial activ-
ity against at least one indicator organisms and
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Fig. 2 Phylogeny analyses of endophytic fungi from D. chinense. The tree was derived by neighbor-joining methods analysis of ITS1–5.8S-ITS4
sequences [53] and 30 sequences retrieved from Gen Bank. The percentage of replicate trees in which associated taxa were clustered together in
the bootstrap test (1000 replicates, values below 50% are not shown) are shown next to the branches. Phylogeny analyses were conducted in
MEGA 4 software [51, 52]
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anticancer activity against one or two human cancer cell
lines, respectively. Among the isolates that displayed the
individual activities, Phomopsis sp. accounted for 20, 38
and 4 of isolates possessing antioxidant, antimicrobial
and anticancer activities, respectively (Fig. 5). Neofusicoc-
cum parvum and Xylaria venosula were also enriched in
isolates showing bioactivities. However, in our assay, the
isolates belonging to Mycorrhiza basidiomycete, did not
display antioxidant and anticancer activities (Fig. 5).
Thus, the distribution of active strains showed obvious
taxonomic specificity. Interestingly, the fungal extracts
of DS16-1 (Phomopsis sp.), DR10-1 (Irpex lacteus), DS9-
1 (Periconia sp.) and DS6 (Phomopsis sp.) showed higher
antioxidant activity than that of ascorbic acid, acted as a
scavenger of DPPH radical with IC50 values of 2.59 ±
0.03, 2.79 ± 0.04, 2.95 ± 0.03 and 2.97 ± 0.01 μg/mL, re-
spectively. For the antimicrobial activity, fungal extract
of DR28-1 (Phomopsis sp.) displayed the highest anti-
microbial activity against Pseudomonas aeruginosa with
a zone of inhibition (ZI) value of 40 mm, fungal extract
of DS35-1 (Ceriporia lacerta) showed the highest anti-
microbial activity against Staphylococcus aureus, with a
ZI value of 40 mm, the fungal extracts of DR41-2

(Ceriporia lacerta) had the highest activity against Asper-
gillus niger, and its ZI value was 30 mm. Particularly, the
extract DR10-1 (Irpex lacteus) was the only strain that
exhibited broad antimicrobial capability because it inhib-
ited the growth of all tested pathogens. As for anticancer
activity, fungal extract of DR46-1 (Phomopsis sp.)
showed the highest anticancer activity against IHH4 cell
line with IC50 values of 9.20 ± 0.02 μg/mL.

Characterization of metabolites of strain DR10-1
Among 154 strains recovered from D. chinense, the
EtOAc extract of the culture broth of Irpex lacteus DR10-
1 (Additional file 2: Figure S1-S2) exhibited higher antioxi-
dant activity than that of ascorbic acid, antimicrobial
capability by inhibiting the growth of seven tested patho-
gens and showed anticancer activity against both tested
cancer cell lines, and was subjected to column chromatog-
raphy over silica gel, Seqhadex LH-20 to afford two
known compounds. The structures of the two known
compounds were established as indole-3-carboxylic acid
(compound 1) [65] (Additional file 2: Figure S3-S4) and
indole-3-carboxaldehyde (compound 2) [66] (Additional
file 2: Figure S5-S6) by comparing their spectroscopic data
with those in the literature (Fig. 6)

Discussion
Considering the roles of endophytic fungi in plant devel-
opment, growth, adaptability and diversity, we needed to
fill this gap in order to exploit of endophytes for a better
understanding of D. chinense plant and their important
metabolites found in the TGR. Therefore, one of the
purposes of this study was to examine the community
composition of fungal endophytes from TGR. Here, we

Table 1 Diversity analyses of endophytic fungi from D. chinense

Diversity Index Different Tissues Total

Root Stem

Species richness (S) 14 16 27

Margalef index (D´) 2.9109 3.5802 5.1619

Shannon-Wiener index (H´) 2.1828 2.5323 2.4824

Simpson diversity index (Ds) 0.8366 0.8659 0.8646

Jaccard’s indice (JC) 0.11

Fig. 3 Distribution of the fungal isolates (n = 154) across different plant tissues
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took a culture-dependent approach, since our final goal
was to build a working collection of fungal endophytes
that could be explored for their potentially beneficial
properties in D. chinense plant. In this work, a total of
154 endophytic fungi were isolated from D. chinense in
the TGR and classified into 27 different taxa according

to their morphological characteristics and unique pheno-
typic characters. The identified fungi were mainly com-
posed of Phomopsis, N. parvum, Diaporthe, Fusarium
and Irpex with relative frequencies 24.7%, 23.4%, 3.2%,
5.2% and 4.5%, respectively. Among them, fungi that be-
long to Phomopsis, Diaporthe, Fusarium and Irpex have

Fig. 4 Distribution of the orders of the fungal isolates (n = 154) from different tissues

Fig. 5 Distribution of the activity fungal isolates
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been reported as the main endophytes of wetland shrub
Myricaria laxiflora in the TGR [67] and riparian plant
species [68]. Additionally, Fusarium, Phomopsis and
Irpex has also been reported to be not sensitive to flood-
ing stress [67]. By contrast, other several genera, includ-
ing Penicillium ochrochloron, Mycorrhizal
basidiomycete, Ceriporia lacerta, Diaporthe longicolla,
Diaporthe eres, Flavodon flavus, Irpex sp., Parphoma sp.
and Phoma medicaginis, were only isolated from D.
chienense with low relative abundance. Even so, the ex-
istence of these minor genera has been demonstrated to
play an important ecological role in their host plants as
reported [69].
According to the literatures, fungal endophytic com-

munity of land plant mainly belonged to Sordariomy-
cetes, Dothideomycetes and Pezizomycetes fungi while
plants from water or moist environments were more
often parasitized by Eurotiomycetes [70–72]. In the
current study, the most prevalent class was Sordariomy-
cetes with relative frequency of 50%, followed by Dothi-
deomycetes and Eurotiomycetes at 33.8% and 1.3%,
respectively. Obviously, both terrestrial and aquatic fungi
are present in the D. chinense plant. This was in accord-
ance with the report by Kandalepas et al., who discov-
ered high numbers of Sordariomycetes and low numbers
of Dothideomycetes and Eurotiomycetes in wetland
plants from Louisiana [71].
It has been reported that dark septate endophytes

(DSE) could be important as (latent) saprobes, playing a
role in host nutrition through complex substrate degrad-
ation, and might help to degrade organic matter in
nutrient-poor soils in a similar way as ericoid mycor-
rhizal fungi-mutualistic symbionts that benefit the host
plant by mobilizing complex substrates in nutrient poor
environments [73]. Here, 7 taxa out of 27 taxa detected
were found to be darkly pigmented with thickly walled
septate hyphae that can be classified into dark septate

fungi, which include Diaporthales, Phomopsis sp.,
Lasiodiplodia theobromae, Neofusicoccum parvum,
Irpex lacteus, Periconia sp., Botryosphaeria dothidea
[74]. According to our statistics, 20 (13.0%) from 154
isolates belong to this group. In our previous paper,
Salix variegata, another waterlogging tolerant plant in
the TGR area, has also been found to be colonized by
abundant DSEs [75]. This was in accordance with the
report on the occurrence of DSEs in wetland plant spe-
cies [76, 77].
Among these isolates found in D. chinense, many from

the genera Phomopsis, Fusarium, Diaporthe, Neofusicoc-
cum parvum, Xylaria venosula, Lasiodiplodia theobro-
mae and Botryosphaeria dothidea have been reported as
common pathogenic fungi in some wild and cultured
plants [75]. For examples, Diaporthe and Phomopsis
complex were the causes of seed decay and cause soy-
bean blight and canker diseases [78]; Neofusicoccum par-
vum was reported as one of the most aggressive causal
agents of the trunk disease Botryosphaeria dieback [79];
Botryosphaeria and its anamorph complex were particu-
larly important for symptoms such as fruit rot, shoot
blight, dieback and canker of numerous woody hosts
[80]. Although the symptoms of disease did not appear
in D. chinense plant collected, as reported, these fungi
might switch their lifestyles from a mutualistic to para-
sitic interaction which depended on genetic factors of
both partners [81], imbalance in nutrient exchange [82]
and environmental variations [83, 84]. Furthermore, the
interaction type between an endophyte and a host plant
also could be modulated if the plant was subjected to
physiological stress [85]. It has been shown that individ-
ual fungal species which could switch lifestyles might
represent an evolutionary transition, or simply fungi that
had achieved remarkable ecological plasticity, might en-
sure the optimal growth and reproduction in a variety of
hosts, which ultimately would lead to the expansion of

Fig. 6 The chemical structure of compounds 1–2
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their bio-geographic distribution [81]. As a whole, mu-
tualistic interactions between fungal invaders and host
plants are deciphered as a balance, which is considered
as a combination of environmental and physiological ef-
fects that benefit both sides [82]. Fitness benefits con-
ferred by mutualistic fungi contribute to or are
responsible for plant adaptation to biotic and abiotic
stress [86, 87].
Another objective of this study was to assess the

potentially beneficial properties of endophytic fungi to
humans. All the endophytes extracts were screened
for antioxidant, antimicrobial and anticancer activities
and they showed at least one biological activity.
Among the screened isolates, 99 (64.3%) isolates ex-
hibited remarkable antioxidant activity, of which 18
(11.7%) had very notable activity with IC50 value of ≤
3 μg/mL, suggesting that it may protect D. chinense
from oxidative stress in the flooding environment as
suggested by Zeng et al [88]. Because of the protect-
ive effect of antioxidants, they are essential for plant
survival and fitness and presumably selection have
leaded to both redundant and highly specific path-
ways that address ROS production and stress medi-
ation [89]. For example, Mirzahosseini et al. have
reported that endophytic fungi can alleviate the oxida-
tive damage produced by ROS accumulation in plant
cells such as F. arundinacea [90, 91]. Regarding anti-
microbial activity, 31.2%, 11.7%, 19.5%, 69.5% and
29.9% extracts of endophytes showed activity against
Penicillium, Candida albicans, Aspergillus niger,
Staphylococcus aureus and Escherichia coli respect-
ively, which was comparable and even exceeded some
results reported by other authors in similar studies
[92, 93]. For example, from the 39 endophytic fungal
extracts of Viguiera arenaria and Tithonia Diversifolia
plants, Guimaraes et al. found only 5.1% and 25.6%
extracts to be active against Staphylococcus aureus
and Escherichia coli respectively [94]. Unexpectedly,
Pseudomonas aeruginosa was most sensitive to the
fungal extracts among the tested bacterial though it
was reported to be drug resistant towards many anti-
biotics [95]. Usually, the fungal extracts also showed
higher activity against the Gram-negative than the
Gram-positive ones. This different sensitivity has been
suggested to be attributed to the high level of lipo-
polysaccharides that are contained in the Gram-
positive bacteria membrane, which could make the
cell wall impermeable to bioactive compounds [96].
As for anticancer activity, 27 out of 154 fungal exacts
(17.5%) showed activity against IHH4/CFPAC-1 cell
line, in which 11 fungal extracts were active against
both tested cell lines. Statistically, 18 out of 27 anti-
cancer isolates were exclusively isolated from the
roots, 9 were only recovered from stems. Generally,

for the same fungal species e.g. Neofusicoccum par-
vum, the isolates from roots showed stronger bio-
activity compared to those from the stems regardless
of antimicrobial, antioxidant or anticancer bioactiv-
ities. Such data well supported the traditional practice
of native people who often used the extracts from
roots to relieve analgesic, antirheumatic and diuretic
[43].
Of these isolates screened, a high proportion of bioac-

tivities were mostly detected from the fungal extracts be-
longing to Phomopsis sp. (24.7%), Neofusicoccum
parvum (23.4%) and Xylaria venosula (9.1%), which was
attributed to their high separation rate. As did here, Pho-
mopsis sp. have been reported as dominant member of
the endophytic community [97]. Phomopsis is a domin-
ant member of the endophytic community because it
grows rapidly, thus inhibiting slow growing endophytes,
which might be one of the reasons for the low number
of species detected in this study [98]. Additionally, Pho-
mopsis and related taxa contain important endophytic
and are known to produce a series of bioactive second-
ary metabolites in vitro with a variety of different chem-
ical structures [99]. However, few studies conducted on
the active metabolites of Neofusicoccum parvum, and its
antioxidant activity accounted for the highest proportion
in the current study, which has never been reported in
previous studies [100, 101]. Besides, Xylaria species are
widely distributed on the temperate to the tropical zones
in the terrestrial globe, and fungi of this genus have been
proved to be potential sources of novel secondary me-
tabolites, and many of them have biological activities re-
lated to drug discovery, including cytotoxic, antimalarial,
and antimicrobial activities [102]. In terms of bioactivity,
active extracts of DS16-1 (Phomopsis sp.), DR28-1 (Pho-
mopsis sp.), DS35-1 (Ceriporia lacerata), DR41-2 (Ceri-
poria lacerata) and R46-1 (Phomopsis sp.) were found
promising. In particular, the strain DR10-1(Irpex lacteus)
showed wide spectrum bioactivities, suggesting that pos-
sible use of one endophyte could be a valuable candidate
as new antioxidant, antimicrobial and anticancer agents.
Finally, we isolated two known compounds including

indole-3-carboxylic acid and indole-3-carboxylic acid de-
rivatives from the wide spectrum bioactive strain I. lac-
teus DR10-1. As far as we know, this was the first time
that indole-3-carboxylic acid (1) and indole-3-
carboxaldehyde (2) had been isolated from endophytic
fungus Irpex lacteus. It was previously demonstrated
that indole-3-carboxylic acid isolated from endophytic
fungal strain of Epicoccum nigrum associated with
Entada abyssinica had remarkable activity against Gram-
negative strains (Staphylococcus aureus) with MIC
values of 6.25 μg/mL [103]. This finding was consistent
with literature report on the antibacterial activity of
indole-3-carboxylic acid, from which a novel series of
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indole-3-carboxylic acid derivatives were previously re-
ported to possess potent antibacterial activity against En-
terococcus faecalis [104]. In addition, it has been
reported that indole-3-carboxylic acid had weak cyto-
toxic effects on both normal and tumor cells, and its
antioxidant activity is weak [103]. Recently, the indole-3-
carboxylic acid (IAA) and other auxins have been shown
to stimulate cell elongation, resulting in root growth ini-
tiation or an enhancement of nutritional elements ab-
sorption by the hosts [105, 106]. Besides, IAA was
supposed to improve the adaptability of plant microbe
interaction [107].

Conclusions
The study provided insight into the diversity of endo-
phytic fungal community isolated from D. chinense
growing in the TGR area. This was the first report where
studies on the diversity of endophytic fungus that inhab-
ited D. chinense plant growing in the TGR area had
been carried out. The data obtained showed that of the
154 endophytic fungal extracts screened for antioxidant,
antimicrobial and anticancer potential. Among the 154
isolates tested, most of the endophytic fungal extracts
showed abundant bioactivity. Specifically, the I. lacteus
DR10-1 extract exhibited significant antioxidant, anti-
microbial and anticancer potential. By expanding fer-
mentation I. lacteus DR10-1 strain, two active secondary
metabolites, indole-3-carboxylic acid (1) and indole-3-
carboxaldehyde (2), were obtained, and they showed
abundant biological activities. Therefore, we had for the
first time reported its extract for bioactivity such as anti-
oxidant, antimicrobial and anticancer potential. It was
demonstrated that it could harbor metabolites that could
serve as promising antioxidant, antimicrobial and anti-
cancer agents.
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