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Heterochirality results from reduction of @
maternal diaph expression in a terrestrial
pulmonate snail

Takeshi Noda'"®, Noriyuki Satoh? and Takahiro Asami'”

Abstract

Background: Spiral cleavage is a feature of non-ecdysozoan protostomes, in which left-right reversal frequently
evolved in gastropod molluscs. In pulmonate gastropods, maternal molecules are responsible for chirality
patterning, on which the polarities of visceral and coiling asymmetries depend. In the pond snail, Lymnaea stagnalis
(the clade Hygrophila), a frame-shift mutation of one of tandem-duplicated, diaphanous-related formin genes
(diaph) resulted in incomplete reversal from dextral to sinistral cleavage. Is this mechanism of chirality regulation
common to, or shared with other pulmonates? To answer this question, we examined genes involved in chirality
patterning in the land snail, Bradybaena similaris which belongs to the clade Stylommatophora.

Results: Both dextral and sinistral siblings develop from progeny of a racemic mutant of B. similaris. Differences in
maternal mMRNAs between the two strains were searched by transcriptome analyses. We found fifty maternal
transcripts that exhibited less expression in early embryos of the mutant strain. The most conspicuous was a
homolog of diaph. The diaph gene was duplicated in the stylommatophoran ancestor (diaph-a and diaph-b), as in
the case of the ancestor of Lymnaea (Lsdiaph! and Lsdiaph2). The quantity of maternal diaph-b mRNA was
drastically reduced in early embryos of the racemic mutant compared to wild-type, while diaph-a expression was at
nearly the same level in both strains. Unlike the case of Lsdiaph2, which is frame-shifted to produce truncated
peptides in the mutant of L. stagnalis, however, Bsdiaph-b mRNA in the mutant strain is not frame-shifted and most
probably produces normal Diaph-b protein. These results suggest the presence of regulatory mechanisms of gene
expression for chirality patterning in pulmonate gastropods, although genomic analyses are required for
confirmation.

Conclusions: Heterochirality resulting from the loss of polarity control in spiral cleavage does not require mutation
of the diaph gene in B. similaris. The determination of left-right polarity instead depends on the expression of this
diaph gene, which is duplicated in stylommatophoran Bradybaena, as well as in hygrophilan Lymnaea. Our results
provide an avenue to identifying a regulatory mechanism that controls the direction of spiral cleavage in
gastropods.
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Background

Metazoans exhibit different modes of cleavage, including
radial (starfish), spiral (snails), and bilateral (tunicates)
cleavage (e.g., [1] Gilbert and Raunio, 1997; [2] Nielsen,
2012). Spiral cleavage is a characteristic for several taxa
of non-ecdysozoan protostomes, represented by molluscs
and annelids, and is recognized as an embryological fea-
ture of these animal groups (lophotrochozoans or spira-
lians), although the “Spiralia” vs “Lophotrochozoa”
nomenclature has been debated (e.g., [3] Dunn et al., 2008
[4] Henry, 2014; [5] Laumer et al, 2015). In gastropod
molluscs, the left-right polarity of spiral cleavage makes
the blastomere asymmetric. The left-right geometry of
blastomeres by itself regulates the handedness of subse-
quent zygotic gene expression, so as to develop into a
clockwise-coiled (dextral) or counterclockwise-coiled (sin-
istral) snail ([6] Kuroda et al., 2009).

Maternal inheritance ([7] Toyama, 1913) of left-right
reversal by nuclear gene mutation in pulmonates, which
are hermaphrodites, was discovered through a breeding
experiment with the dextral pond snail Lymnaea peregra
([8] Boycott and Driver, 1923, [9] Sturtevant, 1923). Mu-
tant hatchlings exhibited reversal in bilateral visceral
asymmetry as well as coiling direction. Transplantation
experiments of egg cytoplasm between the wild-type
dextral and mutant sinistral strains of L. peregra demon-
strated the presence of maternally supplied information
that is involved in patterning of the spiral cleavage ([10]
Freeman and Lundelius, 1982). In L. stagnalis, progeny
of a wild-type mother (DD or Ds) exhibit dextral cleav-
age while those of a mutant (ss) display incomplete sinis-
tral cleavage ([11] Asami et al., 2008, [12] Utsuno et al.
2011). In efforts to discover the maternally expressed
genes responsible for patterning the chirality ([13]
Hierck et al, 2005, [14] Shibazaki et al., 2004, [15]
Harada et al., 2004), Davison et al. [16] and Kuroda et al.
[17]  independently  succeeded in  identifying
diaphanous-related formin (the homolog of human
diaphl, diaph2, and diaph3) as a candidate gene associ-
ated with the direction of left-right asymmetry in L. stag-
nalis. In this species, diaph is duplicated into two
copies, one of which became frame-shifted in mutants.
Viable progeny of the mutant homozygote (ss) develop
into the sinistral form, while most siblings fail to develop
([12] Utsuno et al. 2011). Thus, these maternally
expressed genes may be responsible for symmetry break-
ing in the Hygrophila, which is one of the two clades
dividing the Pulmonata.

Left-right reversed groups/species have frequently
evolved in gastropods, especially in pulmonates, among
the Lophotrochozoa/Spiralia ([18] Okumura et al., 2008,
[19] Gittenberger et al, 2012). In each phylogenetically
independent event, a breeding population must have
been fixed for a normally viable mutant allele for
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reversal. For example, in the Stylommatophora, the sis-
ter clade to the Hygrophila, populations repeatedly fixed
for reversal in Euhadra ([20] Uesima and Asami, 2003)
and Satsuma ([21] Hoso et al. 2010) of the mainly dex-
tral Camaenidae as well as in Albinaria of the mainly
sinistral Clausiliidae ([22] Kornilios et al., 2015). Within
the Hygrophila, diaph is duplicated in the dextral Lym-
naea, but not in the sinistral sister groups, Physella
acuta or Indoplanorbis exustuse ([16] Davison et al.,
2016, Noda et al., unpublished data). The commonality
and diversity of genic mechanisms responsible for these
recurrent evolutions of reversal remain unclear.

The racemic mutant of the dextral land snail Brady-
baena similaris produces both dextral and sinistral pro-
geny. This racemism provides a unique opportunity to
examine the genic mechanism for the regulation of
left-right polarity of spiral cleavage in the Camaenidae.
A reverse-coiled mutant can rarely reproduce because of
physical difficulty in mating with the wild type even if it
was found in the wild, especially in case of simultan-
eously reciprocally copulating stylommatophorans such
as camaenids ([20] Ueshima and Asami, 2003; [23]
Asami et al. 1998). We however discovered a wild indi-
vidual that was phenotypically dextral, but homozygous
for the racemic allele, which made it possible to establish
a racemic strain of B, similaris ([24] Utsuno and Asami,
2010). The mutant strains show maternal inheritance for
chirality with genetically recessive alleles, which relies on
maternal storage of a gene product that promotes dex-
tral cleavage in the wild type. The racemism suggests
that this phenotype may results from a loss-of-function
mutation for determination of left-right polarity in spiral
cleavage. By taking advantage of this chirality-mutant
strain, only available in the Stylommatophora, we carried
out RNA-seq analyses to test whether the racemic mu-
tant exhibits a transcriptional defect.

Here we show that the maternal expression of one of
the diaph-homologs is conspicuously reduced in the
progeny of the racemic mutant of B. similaris with no
mutation in the gene itself. Our results open a new
ground to explore a regulatory mechanism that controls
the left-right polarity of development in gastropods.

Materials and methods

Biological materials

The land snail Bradybaena similaris, was used in this
study. Snails of the dextral wild type and racemic mutant
were collected from Kashiwa, Chiba, Japan and have
been maintained in our laboratory ([24] Utsuno and
Asami, 2010). Wild-type snails exhibit the
clockwise-coiled (dextral) phenotype (Fig. 1A-a) whereas
the progeny of the racemic mutant includes both clock-
wise- and counterclockwise-coiled (sinistral) siblings
(Fig. 1A-b). Snails of the Pulmonata, including B.
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mutant ones

Fig. 1 (a) Adults of Bradybaena similaris. (a) Wild B. similaris (dextral). (b) Racemic mutants of B. similaris. Dextral (left) and sinistral (right) ones.
Wild-type strain that produces clockwise-coiled (dextral) snails and a mutant strain that produces either clockwise or counterclockwise-coiled
(sinistral) snails (right). (c) B. similaris lays several tens eggs during a period of several hours. (b) Embryos of B. similaris. (a)-(d) Embryos from a wild
individual. (e)-(g) Embryos from a racemic mutant individual. (a) egg, (b) 2-cell, (c) 4-cell, (d)-(g) 8-cell. Cleavage directions are shown by red lines.
Cells divide clockwise direction (d) in wild 4-cell embryos from animal pole view, while clockwise to counterclockwise direction (e)-(g) in racemic

similaris, are hermaphroditic. Their fertilization occurs
internally through simultaneous reciprocal copulation
with the other individual with the same chiral phenotype.

The direction of spiral cleavage is determined mater-
nally. Genetic studies showed that offspring of a ++ or +
r mother all become dextral individuals. On the other
hand, rr homozygosity has variable effects on embryo-
genesis, and usually result in 70% dextral and 30%
sinistral offspring ([24] Utsuno and Asami, 2010). Fe-
males usually lay several tens of eggs over a period of
several hours (Fig. 1A-c). This egg laying behavior
makes difficult to collect enough eggs before the initi-
ation of cleavage. We sampled early-embryos from
the 1-cell to 16-cell stages for analysis of maternal
genes. Although it is not known when maternal to
zygotic transition initiates in B. similaris, 16-cell stage
is the first stage for transcription in another
gastropod species, Lymnaea([25] Biggelaar, 1971). Two
sets of RNA-seq analyses were carried out using ap-
proximately 100 early embryos each from six to eight
clutches. In addition, juveniles and digestive glands of
adults were collected to examine their gene expres-
sion profiles.

RNA-seq, analyses of differential gene expression, mRNA
quantification and molecular phylogeny

Total RNA was extracted using a standard TRIzol proto-
col procedure (Thermo Fisher Scientific), and cDNA li-
braries were prepared using a TruSeq RNA Library Prep
Kit v2 (Illumina). RNA quality was checked with an Agi-
lent Technologies 2100 Bioanalyzer using an Agilent
RNA 6000 Nano Kit. Sequencing was performed using
an [llumina Hiseq4000 and MiSeq. De novo assembly of
whole RNA sequence reads was performed using a de
Bruijn graph-based program, Trinity-v2.3.2 ([26] Grab-
herr et al, 2011; [27] Haas et al, 2013). All Illumina
reads are available from NCBI database under accession
nos. SRR804510—-SRR804517.

Quantification of transcripts was carried out by soft-
ware tools for expression analysis, Tophat 2.1.1 and Cuf-
flinks 2.2.1([28] Trapnell et al., 2012) using RNA-seq
results and the gene models constructed by Trinity. Dif-
ferentially expressed gene analysis employed EdgeR
3.22.5 ([29] Robinson et al., 2010) with the mapping re-
sults from Tophat. Differentially expressed genes were
annotated using Blastx against reference protein se-
quences of Homo sapiens and genome sequences



Noda et al. Zoological Letters (2019) 5:2

decoded in the mollusc, Biomphalaria glabrata, in the
NCBI database. Quantification by qRT-PCR was also
carried out as previously described with slight modifica-
tions ([30] Noda, 2011). Total RNA from batches of
early embryos (egg to 16-cell stage) was extracted by
standard TRIzol protocol. Three each of samples were
prepared from siblings of wild, racemic and F1 strains.
cDNA reverse transcribed from 10ng total RNA was
used for each qRT-PCR reaction with step one plus real
time PCR system (step one software version 2.3) by the
standard curve methods. Sequences of primers are as
follows; Bsidiaph-b forword; TCAAAGACTGTGAT
TGGCTGA, Bsidiaph-b reverse; GCTCAGAGAATTCA
TGAGTACCG, Bsidiaph-a forword; CCATGAAGC
TTCCGTTTGAT, Bsidiaph-a reverse; TTCATGTCA
TCTGGCTCTGG. We quantified all splicing variants of
Bsdiaph-a together because of technical difficulty to dis-
tinguish Bsdiaph-a-x 1 and Bsdiaph-a-x 2 for quantifica-
tion, including the construction of specific primers to
each variant for qRT-PCR.

Molecular phylogenetic analysis was carried out with
MrBayes version 3.2.6, as previously described with
slight modifications ([30] Noda, 2011). Amino acid se-
quences of conserved FH2 domains were aligned by
ClustalW version 2.1.0 for constructing the molecular
phylogenetic tree. LG model was adopted as an
evolutionary model. List of sequence IDs are available in
Additional file 1: Table S2.

All informatic analyses were carried out using default
parameters.

Results
Identification of differentially-expressed maternal genes
in wild and mutant strains
Total RNA-seq reads obtained for wild-lembryos, wild-2
embryos, mutant-1 embryos, mutant-2 embryos, wild ju-
veniles, and mutant juveniles, wild digestive gland, and
mutant digestive gland were 24,192,382, 27,239,716,
30,957,316, 39,046,157, 29,971,051, 36,976,111, 30,075,674,
and 31,158,448, respectively (Additional file 2). After Trinity
treatment, reads were assembled to 590,901 contigs (Add-
itional file 2). The N50 of the assembled transcriptomes was
829 nucleotides (nts) (the longest being 31,291 nts). RNA-seq
reads were mapped to these contigs using Tophat for the dif-
ferentially expressed gene analysis and mRNA quantification.
Comparisons using the EdgeR method ([29] Robinson
et al, 2010; [31] McCarthy et al., 2012) of the maternal
transcriptomes between wild-type and mutant strains
(p-value <le-30) demonstrated 50 genes that were sig-
nificantly higher in the former than in the latter
(Table 1). BlastX search against the Homo sapiens gen-
ome and that of a gastropod, Biomphalaria glabrata,
was carried out to determine the similarity of transcripts
to known proteins listed in the NCBI database. Of those,
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34 transcripts showed similarity to proteins within the
database, while another 16 showed no sequence similar-
ity (Table 1). The transcript that was most reduced in
mutant strains encodes a homolog of human DIAPH2
(Table 1, TRINITY_DN171781_cl_g2, p-value from
EdgeR; 7.34E-158, LogFc; 6.26). So, we named the gene
as Bsdiaph (B. similaris gene for Diaph protein). The
reads of Bsdiaph transcript were abundant in early em-
bryos of the wild-type (3933 reads in Exp-1 and 4207 in
Exp-2) and very few in early embryos of mutants (49
reads in Exp-1 and 57 in Exp-2). This result suggests
that maternal expression of diaph is greatly suppressed
in the B. similaris mutant strain, in which embryogen-
esis produced racemic (dextral and sinistral) progeny.

The next four transcripts with sequence similarity to hu-
man proteins corresponded to RIMS2 (TRINI-
TY_DN179541_c2_g2), POL1 (TRINITY_DN15823
6_c0_gl), TDRD15 (TRINITY_DN174403_c0_gl) and
CYP17A1 (TRINITY_DN169314._c0_g5_i2) (Table 1).

TRINITY_DN158236_c0_g1 is an orthologue of human
POLI, which is an error-prone DNA polymerase involved
in DNA repair. Genomes of Homo sapiens, Biomophalalia
glablata and Aplysia californica and our transcriptome
data contain each one POLI orthologue. TRINI-
TY_DN184104_c10_g9 is a homologue of human
CYP17A1, which is a member of the cytochrome P450
superfamily of enzymes for metabolic reactions, however,
orthologous relationship with human genes was not clear
because of highly diversification of these genes. Genomes
of Biomophalalia glablata and Aplysia californica contain
each one orthologue of TRINITY_DN184104 c10_g9.
The homology between human RIMS2 and TDRD15 and
Bradybaena transcripts (TRINITY_DN179541_c2_g2 and
TRINITY_DN174403_c0_g1) was not clear, because their
similarity was limited to small protein motifs or domains.
These genes were highly diversified or independent in the
Pulmonata lineage. Further characterization of genes with
weak expression in racemic mutant embryos is the focus
of our next investigation.

Identification and characterization of diaph-a and diaph-b
transcripts in Bradybaena similaris

In L. stagnalis, diaph duplicated into Lsdiaphl and
Lsdiaph2, which are tandemly aligned in the genome.
Lsdiaphl and Lsdiaph2 encode diaphanous-related for-
min proteins composed of approximately 1100 amino
acids. Proteins LsDiaphl and LsDiaph2 have 89.4% iden-
tity at the amino acid sequence level ([16] Kuroda et al.
2016). Davidson et al. (2016) described the mutated gene
as ldia2 (Lsdia2), while Kuroda et al. (2016) called it
Lsdial. Based on an assumption that the original (ances-
tral) one is molecularly more conserved than the dupli-
cated counterpart, we here followed the naming of the
gene by Davidson et al. (2016).
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Two diaph genes in Lymnaea genome suggests that
the B. similaris diaph gene is also duplicated, with the
expression of one being downregulated. Therefore, we
carefully examined maternal transcripts of Bsdiaph
(diaph) in a wild strain and found two types of Bsdiaph
transcript, between which we disntinguich as Bsdiaph-a
(TRINITY_DN180102_c0_gl) and Bsdiaph-b (TRINI-
TY_DN171781_c1_g2). Although their nucleic acid se-
quences were 71.9% conserved in their protein coding
regions, expression of Bsdiaph-a didn’t significantly dif-
fer between wild and mutant embryos through the
EdgeR comparison (p-value; 0.47). Molecular phylogen-
etic analysis indicated independent duplications of diaph
genes in Lymnaea and Stylommatophora (Fig. 2).

Bsdiaph proteins have a Diaphanous GTPase binding
domain (GBD), a Formin homology (FH3) domain, an
FH2 domain, and a short Diaphanous auto-regulatory
domain (DAD) (N- to C-terminal). BsDiaph-a and
BsDiaph-b share 70.0% amino acid sequence similarity
(Fig. 3a).

In addition, we found splicing variants of Bsdiaph-a in
the maternal transcriptomes that encode two protein
isoforms, Bsdiaph-a-x 1 and Bsdiaph-a-x 2 (Fig. 3a-C).
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These two isoforms differ in their C-terminal amino acid
sequences after the conserved DAD domain,
Bsdiaph-a-x 2 being shorter in the C-terminus compared
with Bsdiaph-a-x 1 (Fig. 3a). Bsidiaph-a-x 2 contained
additional nucleotide sequences against Bsidiaph-a-x 1
as in the case of these variants in B. glabrata and A.
californica, and it caused frameshift and an earlier stop
codon (Fig. 3c). Other variants which were found in the
genome-sequenced gastropods, B. glabrata and A. cali-
fornica, e.g. diaph-x 3, were not found in our data sets.

Expression of Bsdiaph-a and Bsdiaph-b

We identified a gene with two noteworthy features; (a)
its maternal transcript level was greatly reduced in the
mutant strain compared with the wild strain and (b)
B. similaris expresses two different types of tran-
scripts, Bsdiaph-a and Bsdiaph-b, with the expression
of the latter likely being down-regulated in the mu-
tant. Therefore, we further examined expression pro-
files of the two genes by adding data obtained from
juveniles and from adult digestive glands in both wild
and mutant strains (Additional file 2).

diaph1_Ho.sapiens
1 diaph2_Ho.sapiens
0.583

diaph3_Ho.sapiens

dia_Dr.melanogaster

diaph_Oc.bimaculoides

0.948

Hygrophila

Fig. 2 Molecular phylogeny of diaph genes. Gene duplication was shown by red circles. Abbreviations are as follows. Homo sapiens; Ho.sapiens,
Drosophila melanogaster; Dr.melanogaster, Octopus bimaculoides; Oc.bimaculoides, Lottia gigantea; Lo.gigantea, Aplysia californica; Ap.californica,
Limacina antractica; Li. antractica, Limacina retroversa; Li.retroversa, Biomphalaria glabrata; Bi.glabrata, Indoplanorbis exustus; In.exustus, Physella
acuta; Ph. acuta, Lymnaea stagnalis; Ly.stagnalis, Arion vulgaris; Ar.vulgaris, Bradybaena similaris; Br.similaris
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Stylommatophora Pulmonata
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The TPM (tags per million) score of Bsdiaph-a mRNA
was comparable between wild and mutant strains, al-
though slightly lower in the mutant in early-stage em-
bryos (nearly 80% of wild strain) (Fig. 4a). Because
Bsdiaph-a mRNA is a maternal transcript, its TPM score
decreased in juveniles and in adult digestive gland. In
contrast, the TPM score of Bsdiaph-b differed consider-
ably between wild and mutant strains. The number of
Bsdiaph-b transcripts in early mutant embryos was less
than 1% that of the wild strain (Fig. 4b). The Bsdiaph-b
transcripts was few in number in juveniles and adult

digestive glands of both strains. These results indicate
that the expression of Bsdiaph-b is maternally sup-
pressed in mutants. On the other hand, maternal expres-
sion of Bsdiaph-a is normally regulated in both wild and
mutant strains. This result was also validated by quanti-
fication through qRT-PCR methods. Figure 4c shows ex-
pression level of Bsdiaph-a and Bsdiaph-b from early
embryos of wild, racemic and F1 strains with triplicate
biological samples through qRT-PCR. Relative expres-
sion level of Bsdiaph-a was comparable among three
strains as the result of quantification by RNA-Seq data.
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Fig. 4 (a), (b) Comparison of expression levels of Bsdiaph-a (left) and Bsdiaph-b (right) between wild-type and mutant strains. Levels are shown in
early embryos, juveniles, and digestive glands, based on mRNA quantity (TPM, tags per million). Blue bars indicate the TPM score of the wild-type
and red bars denote that of the mutant strain. (c) Quantification of Bsdiaph-a and Bsdiaph-b in the early embryos from wild, mutant and F1
strains by gqRT-PCR (n = 3). Standard error was shown by error bars

On hand expression of Bsdiaph-b from embryos of the
racemic mutant strain was highly reduced and those
from F1 strain was lower than those from the wild
strain.

Bsdiaph-b transcript is not frame-shifted
In sinistral mutant strain of Lymnaea stagnalis, Lsdiaph2
transcribes mRNA in which a single-base deletion occurs
at position 50 of the coding region, which causes a
frame-shift to produce truncated diaphanous protein con-
sisting of only the N-terminus (Fig. 3a). To determine
whether this is the case in Bsdiaph-b, we carefully exam-
ined maternal transcripts of Bsdiaph-b from mutant em-
bryos, juvenile, and adult digestive gland (Table 1).
Although the central region (55 nucleotides) of
Bsdiaph-b transcripts showed a few substitutions of nu-
cleotides (Fig. 5), no clear lesions were identified in
BsDiaph-b proteins. We found no non-sense mutations,
including frame-shifted transcripts that produce trun-
cated proteins. Instead, at least two alleles were found in

the reads from a mutant strain (Fig. 5). These alleles were
not from sequencing errors because the reads from four
independent samples (early-embryol, early-embryo2, di-
gestive gland and juvenile) contained two alleles. As the
racemic strain of B. similaris should be homozygotic for
the mutated locus ([24] Utsuno and Asami, 2010), we
concluded that Bsdiaph-b is not mutated.

Discussion

The present RNA-seq analysis of differential expression
of maternal transcripts in wild (dextral cleavage) and
mutant strains (dextral or sinistral cleavage) of Brady-
baena similaris showed that (1) Bsdiaph has two types
of transcripts, suggesting the presence of two copies of
the gene (Bsdiaph-a and Bsdiaph-b) in the genome; (2)
the amount of maternal mRNA of Bsdiaph-a was com-
parable between the two strains, but that of Bsdiaph-b
was highly reduced in mutant eggs, suggesting that sup-
pression of Bsdiaph-b expression is involved in the mu-
tation; (3) the Bsdiaph-b transcript is not frame-shifted
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in mutant eggs, suggesting that the gene itself is normal.
Our finding of no mutation at Bsdiaph-b, which is only
weakly expressed in the progeny of the racemic mutant,
suggests the presence of some regulatory mechanism
that is responsible for polarity determination for viable
spiral cleavage, other than duplicated diaph homologs.
The mutated gene may be an upstream trans-regulator
or a distantly located cis-element from the locus of
Bsdiaph-b because of heterogeneity of the sequence of
Bsdiph-b from mutant snails.

Lymnaea stagnalis duplicated diaph into tandem
-aligned Lsdiaphl and Lsdiaph2. Diaph protein may
have pivotal roles in coordinating functions that depend
upon actin filaments ([14] Shibazaki et al., 2004). Davi-
son et al. [16] showed that Lsdiaphl and Lsdiaph2
mRNA are distributed unevenly into one of the cells in
the 2-cell embryo (dextral), while Kuroda et al. [17]
found an even distribution. This apparent contradiction
probably results from the aberrant variability of chiral
patterning among mostly non-viable embryos in the
Lymnaea mutant strain ([12] Utsuno et al. 2011).
Lsdiaph2 mutated to form a functionless protein, so that
in the homozygotic ss mutant, a reduced amount of
Diaph protein is produced. If diaph were a single-copy
gene with a critical role in early embryonic cleavage, its
mutation might disturb the cleavage pattern, resulting in
abnormal embryos. Embryonic lethality of mutant ani-
mals with a single copy of diaph in Drosophila melano-
gaster and Caenorhabditis elegans, supports this idea
([32] Castrillon and Wasserman, 1994, [33] Swan et al,,
1998). On the other hand, when the gene becomes

duplicated and one of the two copies mutates, spiral
cleavage may proceed enabling viable embryogenesis.
However, only a small portion of siblings survive to
hatch as the sinistral in this case of the Lymnaea mutant
([24] Utsuno and Asami, 2010).

Diaph in Bradybaena similaris is also duplicated. Our
expression analysis indicated reduced expression of
Bsdiaph-b and normal expression of Bsdiaph-a in early
embryos of the mutant strain. This transcriptional
phenotype is similar to the Lymnaea mutant. Although
the differential expression of Bsdiaph-a and Bsdiaph-b
implies their diversification, products from Bsdiaph-a
could compensate for loss of crucial functions of Diaph
protein in early embryogenesis when Bsdiaph-b expres-
sion is reduced.

Despite their similarity in diaph homologs’ expression
patterns, the mutant phenotypes differ between L. stag-
nalis and B. similaris. The racemic mutant in B. simi-
laris generates both dextral and sinistral progeny, while
offspring of the Lymnaea mutant develop into the sinis-
tral only, although the majority of siblings fail in early
embryogenesis in both cases. One possible explanation
for these phenotypes is gleaned from the difference be-
tween null and leaky mutants. Lsdiaph2 of the Lymnaea
mutant strain is frame-shifted and is considered a null
mutation, while no clear lesions were found in the se-
quence of Bsdiaph-b. A slight amount of Bsdiaph-b was
detected in early embryos from the racemic mutant of B.
similaris, even though expression was highly reduced
(Fig. 4). Although our RNA-seq data doesn’t establish
absence or presence of proteins, it is possible that the
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reduced amount of the gene product from Bsdiaph-b is
produced in racemic mutant embryos, and it partly com-
pensates for their phenotypes. If the gene product of
Bsdiaph-b is crucial for the change of cleavage direction
from sinistral to dextral, and the racemic mutant of B.
similaris is a leaky mutant, their siblings become mix-
ture of both dextral and sinistral individuals.

Another hypothesis is that the default chiral direction-
ality without functional protein products of duplicated
diaph differs between the dextral Lymnaeidae clade that
relatively recently evolved by reversal from the sinistral
ancestor in the Hygrophila ([16] Davison et al. 2016) and
the other Baradybaena clade of the dextral family
Camaenidae that has long retained dextrality in the Sty-
lommatophora ([34] Kéhler and Criscione, 2015). In L.
stagnalis, spiral cleavage becomes somewhat reversed,
and a fraction of sinistrally developing siblings survive to
hatching. In B. similaris, on the other hand, no clear dir-
ection could be determined for spiral cleavage. Early em-
bryonic cells could perform sinistral cleavage by lacking
a determinant to be dextral in Lymnaea mutant, while
the defect of polarity regulation in embryonic cells re-
sults in directionally randomized cleavage in the Brady-
baena mutant (Fig. 1b).

Recent reports have highlighted the importance of cel-
lular chirality for determination of left-right handedness
of several organs during embryogenesis ([35] Taniguchi
et al.,, 2011, [36] Inaki et al., 2016). In Drosophila mela-
nogaster, embryonic gut, male genitalia and adult hind
gut are directionally rotated organs, and their proper
morphogenesis to right or left is controlled by the chiral-
ity of each cell. One of the functions of formin proteins
is control of cellular chirality through construction of ra-
dial fibers of actin filaments ([37] Tee et al.,, 2016). Actin
filaments are important for spiral cleavage ([13] Shiba-
zaki et al., 2004). Between dextral Lymnaea and sinistral
Physa, early blastomeres are reversed in cellular chirality.
The cortical layer of blastomere even at the first cell div-
ision moves clockwise in the dextral group but counter-
clockwise in the sinistral group ([38] Meshcheryakov
and Beloussov, 1974). Brun-Usan et al. [39] pointed out
the importance of directed cellular chirality for proper
spiral cleavage by computational simulation. The spiral
cleavage of progeny from the racemic mutant of B. simi-
laris resembles their direction-randomized spiral cleav-
age with no directed cortical rotation.

In gastropods that copulate for reproduction, left-right
reversal results in genital mismatch with the wild type
because the genital orifix is located in the body side in-
stead of the midline. Thus, population fixation for rever-
sal contributes to reproductive isolation, especially in
stylommatophoran pulmonates that copulate simultan-
eously reciprocally ([40] Gittenberger, 1988; [23] Asami
et al.,, 1998; [20] Ueshima and Asami, 2003).
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Left-right reversal also functions for surviving or
avoiding predation in some environments ([41] Hoso et
al., 2007, [21] Hoso et al.,, 2010, [42] Danaisawadi et al.,
2016). Southeast Asian snail-eating snakes specialize in
predation on the dextral majority in snails and avoid or
fail to capture sinistrals. The advantage of sinistrality for
avoidance of predation accelerated speciation through
left-right reversal from dextral ancestors in the range of
these snakes. In such cases, left-right reversal by a single
gene may have played a critical role for speciation. How-
ever, molecular genetic mechanisms for their develop-
mental reversal have not been identified. Left-right
reversal of spiral cleavage via mutation or transcriptional
reduction of one diaph might have been involved for the
evolution of reversed populations/species. If the pres-
ence of two diaph genes by duplication might have been
advantageous for evolution of the reversal in pulmonate
snails, this should be considered an exaptation.

The evolution of left-right reversal requires population
fixation for reversal that permits equivalent or superior
Darwinian fitness relative to the wild type ([18] Oku-
mura et al., 2008). However, in either cases of the mu-
tants of L. stagnalis ([11] Asami et al. 2008, [12] Utsuno
et al. 2011) or B. similaris ([24] Utsuno and Asami,
2010), most of sibling embryos exhibit aberrant reversals
and fail to hatch. Thus, these mutations are to be elimi-
nated by internal selection and cannot give rise to sinis-
tral populations or species. In contrast, for example, the
wild-type sinistral embryos of the hygrophilan pond
snails Physa and Biompharalia typically perform re-
versed mirror-image cleavage compared with the
wild-type dextral cleavage of Lymnaea ([43] Crampton,
1894, [44] Camey and Verdonk, 1970) unlike the “sinis-
tral” mutant of L. stagnalis. This means that we do not
yet know about mutations and genetic mechanisms that
could have generated reversed snail species from the
dextral or sinistral ancestral populations. Our study ac-
cordingly has important implications to explore how re-
versed populations/species have recurrently evolved if
mutation for the diaph function has been involved.

Conclusions

Maternal expression of one of the diaph homolog
(Bsdiaph-b) is most reduced in progeny of the racemic
mutant of the stylommatophoran pulmonate Brady-
baena similaris, which generates both dextral and sinis-
tral progeny. The other diaph homolog (Bsdiaph-a) is
equivalently expressed between the wild-type dextral
and mutant. These homologs originated by duplication
in the stylommatophoran ancestor. However, no clear le-
sion is present in the diaph gene itself, unlike the case of
frame-shift mutation which results in incomplete sinis-
tral development in the hygrophilan pulmonate Lymnaea
stagnalis. Our results suggest that a regulatory
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mechanism controls the left-right polarity of spiral cleav-
age. Our study provides a new molecular basis that pro-
motes further studies for understanding of the evolution
of spiral cleavage in gastropods which frequently evolved
left-right reversal.
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