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Abstract 

Background:  Pig and poultry breeding programs aim at improving crossbred (CB) performance. Selection response 
may be suboptimal if only purebred (PB) performance is used to compute genomic estimated breeding values 
(GEBV) because the genetic correlation between PB and CB performance ( rpc ) is often lower than 1. Thus, it may be 
beneficial to use information on both PB and CB performance. In addition, the accuracy of GEBV of PB animals for CB 
performance may improve when the breed-of-origin of alleles (BOA) is considered in the genomic relationship matrix 
(GRM). Thus, our aim was to compare scenarios where GEBV are computed and validated by using (1) either CB off-
spring averages or individual CB records for validation, (2) either a PB or CB reference population, and (3) a GRM that 
either accounts for or ignores BOA in the CB individuals. For this purpose, we used data on body weight measured 
at around 7 (BW7) or 35 (BW35) days in PB and CB broiler chickens and evaluated the accuracy of GEBV based on the 
correlation GEBV with phenotypes in the validation population (validation correlation).

Results:  With validation on CB offspring averages, the validation correlation of GEBV of PB animals for CB perfor-
mance was lower with a CB reference population than with a PB reference population for BW35 ( rpc = 0.96), and about 
equal for BW7 ( rpc = 0.80) when BOA was ignored. However, with validation on individual CB records, the validation 
correlation was higher with a CB reference population for both traits. The use of a GRM that took BOA into account 
increased the validation correlation for BW7 but reduced it for BW35.

Conclusions:  We argue that the benefit of using a CB reference population for genomic prediction of PB animals for 
CB performance should be assessed either by validation on CB offspring averages, or by validation on individual CB 
records while using a GRM that accounts for BOA in the CB individuals. With this recommendation in mind, our results 
show that the accuracy of GEBV of PB animals for CB performance was equal to or higher with a CB reference popula-
tion than with a PB reference population for a trait with an rpc of 0.8, but lower for a trait with an rpc of 0.96. In addition, 
taking BOA into account was beneficial for a trait with an rpc of 0.8 but not for a trait with an rpc of 0.96.
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(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In pig and poultry breeding programs, purebred (PB) ani-
mals from different lines or breeds are mated to produce 
crossbred (CB) production animals. Although the aim of 
such breeding programs is to improve CB performance, 
typically, breeding values of PB selection candidates are 

estimated using only information on PB performance. As a 
result, response to selection in CB performance may be sub-
optimal because the genetic correlation between PB and CB 
performance ( rpc ) is often lower than 1 [1–3]. A low rpc may 
be due to genotype-by-environment interactions [4, 5], gen-
otype-by-genotype interactions (i.e., dominance and epista-
sis) in combination with differences in allele frequencies 
between the purebred parental lines [6], and/or differences 
in the definition of PB and CB performance traits [7, 8].

When the rpc is lower than 1, it may be beneficial to use 
information on both PB and CB performance to estimate 
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breeding values of PB selection candidates. For this strat-
egy, breeders need to be able to connect observations 
on CB performance to the PB selection candidates. This 
connection can be established with a pedigree-based 
relationship matrix. However, in a CB breeding scheme, 
breeders do not always routinely record pedigree infor-
mation. In such cases, the pedigree-based relationship 
matrix can be replaced by a genomic relationship matrix 
(GRM) that is based on observed marker genotypes [9]. 
This GRM enables breeders to use a reference population 
that consists of animals with phenotypes and genotypes 
to estimate genomic estimated breeding values (GEBV) of 
selection candidates that only have records on genotypes 
[10]. When pedigree information is available, replacing 
the pedigree-based relationship matrix by a GRM may 
increase the accuracy of estimated breeding values [11]. 
As such, this method, called genomic prediction, allows 
breeders to use a CB reference population to compute 
GEBV for CB performance of PB selection candidates [4].

Simulation studies have suggested that a CB reference 
population may yield more accurate GEBV for CB per-
formance than a PB reference population when the rpc is 
lower than 0.8 [4, 12, 13]. This result was shown for situ-
ations for which the CB reference population had at least 
the same size as the alternative PB reference population 
and the selection candidates had similar relationships to 
the CB and the PB reference populations. In agreement 
with these simulation studies, Hidalgo et  al. [14], using 
real data in pigs, found that for a trait with a high rpc 
(~ 0.90), the accuracy of GEBV of PB animals for CB per-
formance was lower with a reference population of CB 
compared to PB pigs. These results were not only due to a 
high rpc , but also to the smaller number of CB pigs com-
pared to PB pigs in the reference population, and weaker 
relationships of the PB selection candidates with the CB 
reference population than with the PB reference popula-
tion [14]. In summary, the expected benefit of using a CB 
reference population instead of a PB reference population 
increases with (1) lower rpc , (2) stronger relationships of 
the CB reference population with PB selection candi-
dates, and (3) larger sizes of the CB reference population.

When a CB reference population is used to estimate 
GEBV of PB selection candidates, relationships in the 
GRM (i.e. G ) are often constructed while ignoring the 
breed-of-origin of alleles (BOA) of the CB animals. Thus, 
one assumes that the apparent effects of markers are the 
same for alleles that originate from the sire breed and the 
dam breed. Thus, apparent effects of markers are assumed 
to be equal across breeds, which may not be valid because 
of differences in linkage disequilibrium (LD), and/or in 
allele frequencies between the parental breeds [15–19]. In 
addition, actual effects at causal loci may differ between 
breeds due to genotype-by-environment interactions [4, 

5] and/or the presence of non-additive effects in combina-
tion with differences in allele frequencies [20, 21]. Thus, 
considering BOA when constructing the GRM may lead 
to more accurate GEBV.

Recently, a method has been developed that allows the 
BOA in CB animals to be determined based on phased 
genotypes, while taking advantage of the known cross-
breeding structure [22]. This allows the construction of 
a partial genomic relationship matrix ( GBOA ) [23, 24], in 
which relationships that involve CB animals are based 
only on alleles that originate from the line of selection 
candidates for which GEBV are estimated. Simulation 
studies suggested that genomic prediction models that 
take BOA into account may outperform models that 
ignore it [13, 23]. However, this benefit of considering 
BOA was only observed when the CB reference popula-
tion was large (4000), the number of markers was small 
(500), and the parental lines of CB animals were distantly 
related. Moreover, empirical studies on pigs suggested 
that taking BOA into account may increase the accuracy 
of GEBV only when rpc and heritability are low [25, 26].

In summary, the use of CB information instead of PB 
information and taking BOA into account may be ben-
eficial for genomic evaluation of PB animals for CB perfor-
mance. Such benefits are expected when rpc is low but, to 
date, this hypothesis has not been tested in broiler breeding 
programs. Furthermore, it is not yet clear how such ben-
efits should be evaluated, i.e. how GEBV from such models 
should be validated. Thus, the aim of our study was to com-
pare scenarios in which GEBV of PB animals for CB perfor-
mance are computed and validated by using (1) either CB 
offspring averages or individual CB records for validation, 
(2) either a PB or CB reference population, and (3) a GRM 
that either accounts for or ignores BOA in the CB individu-
als. Scenarios were compared based on the correlation of 
GEBV with validation records (hereafter called the valida-
tion correlation) and based on the regression coefficient of 
validation records on GEBV (i.e. bias). For this purpose, we 
used data on body weight measured at around 7 (BW7) or 
35 days (BW35) of age in PB and CB broilers.

Methods
Previously, in Duenk et  al. [27], we estimated genetic 
parameters for BW7 and BW35 with data from PB and 
CB animals that were housed in the same environment 
and that originated from a common group of sires. The 
estimated heritability of BW7 was 0.09 for PB perfor-
mance and 0.18 for CB performance, and that of BW35 
was 0.22 for PB performance and 0.23 for CB perfor-
mance. The estimates of rpc for BW7 and BW35 were 0.80 
and 0.96, respectively. Furthermore, for the CB animals in 
this dataset, BOA were derived by Calus et al. [28], which 
allowed us to consider BOA for genomic prediction. In 
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the current study, we will use the same data as from the 
previous study to estimate GEBV of PB animals for CB 
performance, with a reference population of either PB or 
CB animals, and validate those GEBV with either CB off-
spring averages or individual CB records.

We used phenotype data on body weight from male 
and female offspring from a PB sire line (A), and from a 
three-way crossbred population (A(BC)). The three-way 
crossbred offspring resulted from mating sires of line A 
with F1 dams that were a cross between dam lines B and 
C (BC). All PB and CB offspring came from the same 
generation and were generated using the same PB line 
A sires in order to create sufficient links between the PB 
and CB offspring to enable accurate estimation of rpc . The 
dam lines used (B and C) have been selected on egg pro-
duction traits, whereas the sire line A has been selected 
on male fertility traits, along with growth, yield, and feed 
efficiency. The three parent lines (A, B, C) were geneti-
cally distant, as shown by the principal component analy-
sis in Duenk et al. [27].

Our aim was to investigate the effect of the valida-
tion records used (CB offspring averages or CB indi-
vidual records) on the validation correlation and bias 
based on linear regression of validation records on 
GEBV. Our first strategy was to validate PB sire GEBV 
for CB performance with CB offspring averages (sce-
narios –A, Table  1). However, because the number of 
sires was small (161), we expected a relatively large 
standard error of the resulting validation correlation. 
Thus, our second strategy was to validate GEBV for 
CB performance with individual CB records (scenarios 
–I, Table 1), following Xiang et al. [29]. For both these 
validation methods, we compared the validation corre-
lation and bias for GEBV obtained using either a PB ref-
erence population (scenarios PB-A and PB-I, Table  1) 
or a CB reference population (scenarios CB-A and 
CB-I, Table 1). With a CB reference population, we also 

investigated the benefit of considering the BOA (CB-A-
BOA and CB-I-BOA, Table 1). Note that, in this study, 
we did not use own performance records of the pure-
bred selection candidates, because we wanted to com-
pare the predictive value of a CB reference population 
with that of PB reference population, both consisting 
of animals that are not closely related to the selection 
candidates.

Phenotype data
For recording phenotype data, a single generation 
of offspring were weighed at around 7 (BW7) and 
35 (BW35) days of age in five consecutive batches of 
similar size, with both PB and CB offspring in every 
batch. The five batches followed each other directly, 
and together spanned less than five months. Birds 
from the first batch hatched in June 2014, and those 
from the last batch hatched in November 2014. Ani-
mals that belonged to the offspring generation in one 
of the batches were not parents of birds in any of the 
other batches. Within each batch, the PB and CB off-
spring were housed in three to five pens. For 16 out of 
20 pen-batch combinations, at least 90% of the animals 
in the pen were from the same genetic group (i.e. PB 
or CB animals), while for the remaining pens, between 
53 and 77% of the animals in the pen were from the 
same genetic group. Each pen had a near equal num-
ber of males and females. Each sire had most of its 
offspring housed in the same pen, and each pen had 
offspring of multiple sires. Outlier analysis was done 
separately per day of recording, and separately for PB 
and CB animals. Observations that deviated more than 
3.5 standard deviations from the mean were removed. 
After removing the  outliers, 4687  PB and 10,585 CB 
records remained for BW7, and 4471 PB and 10,272 CB 
records remained for BW35. The number of animals 
with observations was smaller for BW35 than for BW7, 
because some animals did not survive until 35 days.

Genotype data
Genotypes were collected from all PB and CB offspring 
with phenotypes, as well as from their potential parents 
and from most of their potential grandparents. Marker 
positions were determined based on the Gallus gallus 4.0 
(galGal4) reference assembly. Genotype markers were 
removed if they were located on sex chromosomes or on 
the mitochondrial genome, had unknown locations, or 
a call rate lower than 90%. Animals were removed from 
the genotype data if they had a call rate lower than 90%. 
The remaining genotypes were used to reconstruct the 
pedigree, so that pedigree information was available up 
to the generation of the grandparents. Genotypes of the 

Table 1  Overview of  scenarios with  information 
on  the  types of  reference population, validation records, 
and genomic relationship matrix (GRM) that were used

a  In the abbreviation of the scenarios, the first element indicates the reference 
population (PB or CB), the second element the validation record (CB offspring 
averages indicated by A or individual offspring records indicated by I), and a 
third element “BOA” is added for scenarios that consider BOA

Scenarioa Reference 
population

Prediction Validation GRM

PB-A PB offspring Sire GEBV Offspring averages G

CB-A CB offspring Sire GEBV Offspring averages G

CB-A-BOA CB offspring Sire GEBV Offspring averages GBOA

PB-I PB offspring CB GEBV Individual records G

CB-I CB offspring CB GEBV Individual records G

CB-I-BOA CB offspring CB GEBV Individual records GBOA
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grandparents were only used to assign BOA for the ani-
mals with phenotypes. In total, there were 161 unique 
PB sires from line A, of which 135 sires had both PB and 
CB offspring, five sires had only PB offspring, and 21 sires 
had only CB offspring (Table 2). The PB offspring had 628 
unique dams, whereas the CB offspring had 1028 unique 
dams.

We used the reconstructed pedigree to check the geno-
types of each marker for Mendelian inheritance incon-
sistencies between all parent–offspring pairs. Markers 
with more than 1% inconsistent genotypes between par-
ent–offspring pairs were removed, and for the remaining 
identified inconsistencies, the genotypes of parent and 
offspring were set to missing. No animal had more than 
1% of inconsistencies across markers. All missing geno-
types were imputed with FImpute [30]. After assigning 
BOA, we removed markers if they had a minor allele fre-
quency lower than 0.005 in either the genotype file or the 
BOA file. After these edits, 50,960 markers remained for 
analysis.

Assigning breed‑of‑origin of alleles
For all markers, the BOA in the CB offspring were 
derived with the BOA approach [22, 31]. In short, the 
BOA approach consists of (1) simultaneously phasing 
genotypes of PB and CB animals with AlphaPhase 1.1 
using pedigree information [32], (2) collecting a library of 
haplotypes for each line using these phased haplotypes, 
and (3) assigning the BOA in the CB animals. Steps 2 and 
3 were performed using in-house software. This approach 
resulted in 49.5% of the alleles being assigned to sire line 
A, which is close to the expected 50%. The full procedure 
and results of assigning BOA in these data are described 
in Calus et al. [28].

Data selection
The available number of CB animals with phenotypes 
and genotypes was more than twice as large as the num-
ber of PB animals (Table  2). However, our aim was to 
compare the use of a PB reference population to that of 
a CB reference population of similar size. Thus, we ran-
domly selected a set of ~ 4500 CB animals to be used in 

the analyses, while aiming for a comparable family struc-
ture in the PB data and the selected set of CB animals. To 
this end, we counted the number of PB full-sib families 
of size s (ranging from 1 to 11) and we randomly selected 
the same number of CB full-sib families of size s . If the 
available number of CB families of size s was smaller than 
the number of PB families of size s , all CB families of this 
size were selected (Table  3). As a result, the number of 
CB offspring in the selected set was 4655 for BW7 and 
4445 for BW35. These numbers were only slightly smaller 
than the corresponding numbers of PB offspring (4687 
for BW7 and 4471 for BW35).

An initial analysis revealed that the validation correla-
tion from using a CB reference population differed sub-
stantially between randomly selected sets of CB animals. 
To reduce the impact of this variability on the outcome 
of the study, we independently sampled 100 different sets 
of CB animals using the procedure described above. The 
average fraction of CB animals that two sets had in com-
mon for each family size is in Table 3; the overall average 
fraction was 0.47.

Table 2  Summary statistics for body weight measured around 7 (BW7) and around 35 days of age (BW35)

a  Total number of sires for all purebred and crossbred animals

Number Number of sires Number of dams Mean (g) sd (g)

BW7 Purebreds 4687 142 628 176 25

Crossbreds 10,585 156 1028 179 23

Total 15,272 161a 1656

BW35 Purebreds 4471 140 623 2066 303

Crossbreds 10,272 156 1027 2090 302

Total 14,743 161a 1650

Table 3  Number of  full-sib families in  the  PB and  CB 
offspring by family size

a  The average fraction of CB animals that two randomly selected sets of CB 
animals (replicates) had in common, computed per family size

Family size Number of PB 
families

Number of CB 
families

Average 
fraction 
overlapa

Total Selected

1 1699 4406 1699 0.39

2 653 1610 653 0.40

3 276 607 276 0.46

4 117 177 117 0.66

5 46 60 46 0.77

6 13 14 13 0.93

7 6 3 3 1.00

8 2 2 2 1.00

9 1 1 1 1.00

10 0 0 0 –

11 1 0 0 –
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Genomic prediction and cross‑validation populations
We ran all scenarios for each of the 100 sets of ~ 4500 CB 
animals separately, resulting in 100 replicates for each sce-
nario. For every replicate, we used the selected set of CB 
animals or all PB animals with phenotypes to create the 
reference and validation population following the cross-
validation strategy explained in the next paragraph. For 
scenarios denoted by CB-A and CB-A-BOA, the selected 
CB set was used to create reference populations, and CB 
offspring averages of sires were used for validation; for sce-
narios CB-I and CB-I-BOA, the selected CB set was used 
to create both the reference and validation populations; for 
scenario PB-I, the selected CB set was used to create the 
validation populations, and all PB offspring were used to 
create the reference populations; for scenario PB-A, all PB 
offspring were used to create the reference populations and 
CB offspring averages of sires were used for validation.

For each replicate, our aim was to minimise relation-
ships between animals in the reference and animals in the 
validation population by creating five cross-validation (CV) 

groups. The CV groups were created so that animals in the 
validation population did not have offspring or paternal-half 
sibs in the reference population. Thus, we randomly assigned 
the 156 PB sires that had CB offspring to these CV groups, 
such that four groups had 32 sires and one group had 33 
sires. All offspring were then assigned to the same CV group 
as their sire. For each CV group, either the sires (for valida-
tion on CB offspring averages) or the CB animals (for valida-
tion on individual CB records) in this group were used as the 
validation population, while either the PB or CB offspring in 
the remaining CV groups were used as the reference popula-
tion (Table 1). The PB offspring of sires without CB offspring 
were always included in the PB reference population.

GEBV were predicted separately for BW7 and BW35 
with the following univariate model:

where y is a vector of phenotypes, b is a vector of fixed 
effects (batch × pen × sex × age at measurement) with 
design matrix X , m is a vector of permanent environ-
mental (maternal) effects with incidence matrix L , a is a 
vector of additive genetic effects with incidence matrix 
Z , and e is a vector of random residuals. The distribu-
tion of permanent environmental (maternal) effects was 
assumed m ∼ N

(

0, Imσ
2
m

)

 , where σ 2
m is the permanent 

environmental variance and Im is an identity matrix. 
The distribution of additive genetic effects was assumed 
a ∼ N

(

0,Gσ 2
a

)

 , where σ 2
a  is the additive genetic variance 

and G is a multi-breed genomic relationship matrix that 
either ignores or considers BOA ( GBOA ). The distribution 
of residuals was assumed e ∼ N

(

0, Irσ
2
e

)

 , where σ 2
e  is the 

residual variance and Ir is an identity matrix.
For scenarios CB-A and PB-I, matrix G was constructed 

following Wientjes et al. [33]:

where MCB and MPB are a centred marker genotype 
matrix of CB animals and PB animals, respectively, by 
subtracting 2pCBj  (for MCB ) or 2pPBj  (for MPB ) from all 
genotypes of marker j , where pCBj  and pPBj  are the allele 
frequency of marker j in the CB and PB animals, respec-
tively. For scenarios PB-A and CB-I, either PB or CB ani-
mals were involved, so the G matrix in Eq. (2) reduced to 
the genomic relationship matrix for a single breed: 
G = MM′

∑

2pj(1−pj)
 [9].

When BOA was considered and validation was based on 
offspring averages (CB-A-BOA), the genomic relationships 
in GBOA were constructed by using only the alleles that 
came from sire line A as:

(1)y = Xb+ Lm + Za + e,

(2)
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where TCB is the centred marker allele matrix for CB ani-
mals, with a value of 

(

1− pj
)

 if the counted allele was 
inherited from the PB sire line, and a value of 

(

0− pj
)

 if 
the other allele was inherited [26], where pj denotes the 
frequency of the counted allele at marker j . The latter was 
calculated as the total number of counted alleles in the 
PB sires and in the CB offspring that were inherited from 
these sires, divided by the total number of PB alleles in 
these animals. Note that the GBOA is similar to the 
marker-based partial relationship matrix from Chris-
tensen et al. [24], with a scaling factor of 

∑

2pj
(

1− pj
)

 . 
As a result, the expected value of the diagonal elements 
for CB animals in GBOA is 0.5. For scenario CB-I-BOA, 
only CB animals were involved, so GBOA from Eq.  (3) 
reduced to a genomic relationship matrix between CB 
animals where only alleles from sire line A were consid-
ered, i.e. GBOA =

TCBT
′

CB
∑

2pj(1−pj)
.

Validation records, validation correlation and bias
Phenotypic records corrected for systematic environ-
mental effects were used for validation and were obtained 
from the following model, separately for BW7 and BW35:

where y is a vector of all available CB phenotypes, s is a 
vector of random sire effects with incidence matrix T , 
and all other terms are the same as in Eq. (1). The distri-
bution of sire effects was assumed s ∼ N

(

0, Isσ
2
s

)

 , where 
σ 2
s  is the sire variance and Is is an identity matrix. From 

the solutions of this model, corrected phenotypes were 
computed as yc = Tŝ+ ê.

The validation correlation and bias were evaluated for 
each replicate separately, using the GEBV and validation 
records of validation animals from all CV groups. For val-
idation on individual CB records, the validation correla-
tion was calculated as the correlation between GEBV and 
corrected individual CB records ( yc ) and the bias was cal-
culated by regressing yc on GEBV. For validation on CB 

(4)y = Xb+ Lm + Ts+ e,

offspring averages, the validation correlation was calcu-
lated as the weighted correlation between the sire GEBV 
and the average of corrected phenotypes of their CB off-
spring ( yc ) and bias was calculated by weighted regres-
sion of yc on sire GEBV, with the weighted regression 
coefficient multiplied by two because the offspring aver-
age represents half the breeding value of the sire. The 
weights used in these analyses were the reliabilities of yc , 
which were computed as 

1
4
nh2CB

1+ 1
4
(n−1)h2CB

 [34], where h2CB is 

the estimated heritability of CB performance and n is the 
number of CB offspring. Note that the resulting valida-
tion correlations are not equal to but are proportional to 
the accuracies of the GEBV for a given validation popula-
tion, defined as the correlation between GEBV and true 
breeding values in validation. The validation correlations 
therefore allow for a comparison between scenarios, 
which was the aim of our study.

Results
PB versus CB reference population
For BW7 and with validation on offspring averages, the 
PB and CB reference populations yielded a similar mean 
validation correlation (both equal to 0.16; Table 4). With 
validation on individual CB records, however, the CB ref-
erence population yielded a higher mean validation cor-
relation than the PB reference population (0.13 vs. 0.05; 
Table 4). For BW35 and with validation on CB offspring 
averages, the CB reference population yielded a lower 
mean validation correlation than the PB reference pop-
ulation (0.26 vs. 0.36; Table 4). With validation on indi-
vidual CB records, the CB reference population yielded a 
higher mean validation correlation than the PB reference 
population (0.16 vs. 0.13; Table 4).

The differences between mean validation correlations 
were not always larger than their standard errors and, 
thus, we examined if these observed differences were 
consistent for individual validation correlations of rep-
licates. For BW7 and with validation on CB offspring 

Table 4  Mean validation correlations for BW7 and BW35

a  Reported values are means of 100 replicates. Highest mean validation correlations per validation record and per trait are in italics
b  Reported values are standard deviations of validation correlations of 100 replicates

Scenario Reference Validation BW7 BW35

Meana sdb Meana sdb

PB-A PB Offspring averages 0.16 0.032 0.36 0.032

CB-A CB Offspring averages 0.16 0.058 0.26 0.060

CB-A-BOA CB Offspring averages 0.20 0.058 0.22 0.059

PB-I PB Individual records 0.05 0.014 0.13 0.014

CB-I CB Individual records 0.13 0.020 0.16 0.020

CB-I-BOA CB Individual records 0.08 0.025 0.09 0.025
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averages, there was no clear difference between a PB 
and a CB reference population (Fig.  1, top-left); in 51% 
of the replicates, the validation correlation was higher for 
the CB reference population. However, with validation 
on individual CB records, the validation correlation was 
higher with a CB reference population for all replicates 
(Fig. 1, bottom-left). For BW35 and with validation on CB 
offspring averages, the PB reference population yielded a 
higher validation correlation than a CB reference popula-
tion for 93% of the replicates (Fig. 1, top-right). However, 
with validation on individual CB records the CB refer-
ence population mostly yielded a higher validation cor-
relation (86% of the replicates; Fig. 1, bottom-right).

There were no clear differences in bias of GEBV 
between using a PB or CB reference population, except 
for BW35 and with validation on individual offspring 
records. For that scenario, GEBV from the PB refer-
ence population were less biased in 87% of the replicates 
(Fig. 2, bottom-right), with a mean regression coefficient 
of 0.77 for the PB reference population and 0.67 for the 
CB reference population (Table 5).

Ignoring versus considering BOA
With validation on offspring averages, considering BOA 
increased the mean validation correlation for BW7 (0.20 

vs. 0.16; Table 4), but decreased the mean validation cor-
relation for BW35 (0.22 vs. 0.26; Table 4). With validation 
on individual CB records, considering BOA decreased 
the mean validation correlation for both BW7 (0.08 vs. 
0.13; Table 4) and BW35 (0.09 vs. 0.16; Table 4). Again, 
we examined whether the observed differences in mean 
validation correlations were consistent for individual rep-
licates. With validation on CB offspring averages, taking 
BOA into account almost always increased the valida-
tion correlation for BW7 (93% of the replicates; Fig.  3, 
top-left), whereas for BW35, it almost never increased 
it (3% of the replicates; Fig. 3, top-right). With validation 
on individual CB records, taking BOA into account never 
increased the validation correlation for either BW7 or 
BW35 (Fig. 3, bottom).

For BW35, there were no clear differences in bias 
of GEBV between models that considered or ignored 
BOA. For BW7 and with validation on offspring aver-
ages, GEBV from models that considered BOA were 
less biased (0.55; Table  5) than those from models that 
ignored BOA (0.36; Table  5) in 99% of the replicates 
(Fig. 4, top-left). For BW7 and with validation on individ-
ual CB records, GEBV from models that considered BOA 
were less biased (0.67; Table 5) than those from models 
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Fig. 1  Validation correlations when validation was on CB offspring 
averages or individual CB records, using a PB or a CB reference 
population. The x-axis represents the validation correlation using 
a PB reference population and the y-axis represents the validation 
correlation using a CB reference population. Panels refer to validation 
on CB offspring averages or individual CB records across rows, and to 
body weight measured at around 7 (BW7) or 35 (BW35) days across 
columns. Dots represent individual validation correlations of 100 
replicates and straight lines indicate x = y
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Fig. 2  Regression coefficients of validation records on GEBV when 
validation was on CB offspring averages or individual CB records, 
using a PB or a CB reference population. The x-axis represents the 
regression coefficient using a PB reference population and the y-axis 
represents the regression coefficient using a CB reference population. 
Panels refer to validation on CB offspring averages or individual 
CB records across rows, and to body weight measured at around 7 
(BW7) or 35 (BW35) days across columns. Dots represent individual 
regression coefficients of 100 replicates, and straight lines indicate 
x = y
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that ignored BOA (0.55; Table 5) in 77% of the replicates 
(Fig. 4, bottom-left).

Discussion
We compared the validation correlation and bias of 
GEBV of PB animals for CB performance using either CB 
offspring averages or individual CB records as validation 
records. Our aim was to investigate the effect of using 

either a PB or CB reference population, and the effect of 
either ignoring or considering BOA.

It should be noted that the PB and CB animals in this 
study were housed in the same environment, whereas 
in practice, PB animals are housed in a nucleus facility 
and CB animals are housed in a commercial environ-
ment. As such, the estimates of rpc obtained here pro-
vide an upper bound for rpc in practical situations, where 
genotype-by-environment interactions may be present 

Table 5  Mean regression coefficients of GEBV on validation records for BW7 and BW35

a  Reported values are means of 100 replicates. Mean regression coefficients that are closest to 1 per validation record and per trait are in italics
b  Reported values are standard deviations of regression coefficients of 100 replicates
c  Reported regression coefficients were multiplied by 2 because offspring averages represent half the breeding value of sires

Scenario Reference Validation BW7 BW35

Meana sdb Meana sdb

PB-A PB Offspring averagesc 0.51 0.105 0.73 0.069

CB-A CB Offspring averagesc 0.36 0.133 0.64 0.158

CB-A-BOA CB Offspring averagesc 0.55 0.171 0.59 0.167

PB-I PB Individual records 0.51 0.147 0.77 0.080

CB-I CB Individual records 0.55 0.070 0.67 0.073

CB-I-BOA CB Individual records 0.67 0.202 0.64 0.169
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Fig. 3  Validation correlations when validation was on CB offspring 
averages or individual CB records, the reference population consisted 
of CB animals, and BOA was ignored or considered. The x-axis 
represents the validation correlation when ignoring BOA and the 
y-axis represents the validation correlation when considering BOA. 
Panels refer to validation on CB offspring averages or individual 
CB records across rows, and to body weight measured at around 7 
(BW7) or 35 (BW35) days across columns. Dots represent individual 
validation correlations of 100 replicates, and straight lines indicate 
x = y
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Fig. 4  Regression coefficients of validation records on GEBV when 
validation was on CB offspring averages or individual CB records, the 
reference population consisted of CB animals, and BOA was ignored 
or considered. The x-axis represents the regression coefficient when 
ignoring BOA and the y-axis represents the regression coefficient 
when considering BOA. Panels refer to validation on CB offspring 
averages or individual CB records across rows, and to body weight 
measured at around 7 (BW7) or 35 (BW35) days across columns. Dots 
represent individual validation correlations of 100 replicates, and 
straight lines indicate x = y
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[27]. Consequently, the benefit of using CB information 
may be larger in practical situations than found here. 
Thus, our results on differences in validation correlations 
between scenarios should not be associated with the 
body weight traits per se, but with the value of the rpc.

We investigated bias of GEBV by computing weighted 
regression coefficients of validation records on GEBV. 
The average coefficients across replicates were substan-
tially lower than 1 for all scenarios, which indicates a 
strong bias (over-dispersion of GEBV). This bias may 
be due to family structure in the data and imprecision 
of GEBV, which may lead to a theoretical expectation of 
the true regression coefficient being smaller than 1 [35]. 
Regardless, our results show that for BW7, taking BOA 
into account reduced bias in almost all the replicates. 
For all other comparisons, differences in regression coef-
ficients were not statistically significant because of large 
standard deviations of estimates across replicates To date, 
no other studies have evaluated the impact of consider-
ing BOA on the bias of GEBV, and therefore, it remains 
unclear whether considering BOA generally reduces bias 
or not.

Purebred versus crossbred reference populations
As expected, our results suggest that with validation on 
CB offspring averages, the difference in validation corre-
lation between using a PB and a CB reference population 
partly depends on the rpc . With an rpc of 0.96 (BW35), 
the validation correlation was lower with a CB reference 
population than with a PB reference population, while 
validation correlations were similar for the CB and PB 
reference populations with an rpc of 0.80 (BW7). These 
results are in line with studies based on simulated [12, 
13] and real data [14], thus confirming that the benefit of 
a CB reference population is larger for smaller values of 
rpc . However, with validation on individual CB records, 
the validation correlation was higher with a CB refer-
ence population, regardless of the rpc (i.e., for both traits), 
which agrees with Lopes et  al. [25], who analysed traits 
with an rpc of about 0.9 and also validated on CB off-
spring records. In addition, two other studies have shown 
that genotyping CB animals improves the accuracy of CB 
offspring GEBV using single-step genomic best linear 
unbiased prediction (GBLUP) [29, 36]. In the following 
sections, we will discuss the two validation strategies and 
give reasons that explain why they can result in different 
conclusions about the benefit of using CB information 
for genomic prediction.

Validation on offspring averages
With validation on CB offspring averages, differences in 
validation correlations between using a PB (PB-A) versus 
a CB (CB-A) reference population can result from two 

mechanisms: (1) with an rpc less than 1, a CB reference 
population has an advantage over a PB reference popu-
lation; (2) in the CB reference population, only half of 
the alleles originate from the sire line [12, 37], whereas 
all alleles originate from the sire line in the PB refer-
ence population. When the sire and dam lines are unre-
lated, the maternal alleles in the CB reference population 
introduce noise in the estimation of the sire-line genetic 
component because the sire-line alleles in the CB refer-
ence population explain only half of the genetic variance, 
whereas sire-line alleles in the PB reference population 
explain the full genetic variance. This results in a disad-
vantage for a CB reference population compared to a PB 
reference population. However, when the sire and dam 
lines are somewhat related, the dam-line allelic effects in 
the CB reference population may have some predictive 
value for the sire-line allelic effects. This would increase 
the accuracy of sire-line GEBV, and thus reduce the dis-
advantage for the CB reference population compared to 
the PB reference population when using a model that 
ignores BOA.

Observed differences in validation correlations 
between PB-A and CB-A depend on the balance between 
the aforementioned two mechanisms. To quantify the 
predictive value of dam-line allelic effects for sire off-
spring averages, we estimated sire GEBV by using only 
the alleles in the CB reference population that originated 
from the dam line. For BW7, the mean validation correla-
tion from this model was equal to 0.03, with a standard 
deviation of 0.07 across replicates, whereas for BW35, 
the mean validation correlation was equal to 0.14 with 
a standard deviation of 0.07. These results indicate that 
the dam alleles in the CB animals may have some predic-
tive value for sire offspring averages, which is supported 
by the observation that considering BOA (i.e. remov-
ing the dam alleles) decreased the validation correlation 
for BW35 (as discussed in later sections). For BW7, the 
effects of the two mechanisms resulted in similar vali-
dation correlations for PB-A and CB-A. For BW35, for 
which rpc was closer to 1, the effects of the two mecha-
nisms resulted in a lower validation correlation with 
CB-A than with PB-A.

Validation on individual offspring records
With validation on individual offspring records, differ-
ences in validation correlations between a PB reference 
population (PB-I) and a CB reference population (CB-I) 
observed in this study may be due to the same two mech-
anisms described above. However, the predictive value 
of the dam alleles is higher with validation on individual 
crossbred records than with validation on crossbred off-
spring averages of sires, for two reasons: (1) the predic-
tion of individual CB records is partly (i.e., half ) based on 
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the dam-line alleles of those CB individuals, and (2) an 
individual record may have a residual genetic dam com-
ponent. Thus, the CB-I validation correlations are prone 
to overestimate GEBV accuracies due to the contribu-
tion of dam alleles to the prediction of individual records, 
which contain a residual genetic dam component. For 
both traits (BW7 and BW35), the effects of these two 
mechanisms resulted in higher validation correlations 
with CB-I than with PB-I, but this difference was smaller 
for BW35 than for BW7, which was probably due to the 
higher rpc of BW35.

Choice of validation records
As discussed in the previous sections, the difference in 
validation correlations of genomic predictions between 
using a CB and a PB reference population depend not 
only on the value of rpc but also on the choice of validation 
records (CB offspring averages or individual CB records). 
We even observed that the ranking of validation correla-
tions with a PB versus a CB reference population changed 
when a different validation record was used, which raises 
the question of which validation record is most relevant. 
In practice, breeders usually aim at identifying PB selec-
tion candidates that, on average, produce the best CB 
offspring. Thus, the relevant validation correlation is the 
correlation of the GEBV of sires and their CB offspring 
averages. Validation on offspring averages may not be pos-
sible when the number of genotyped PB sires with pheno-
typed CB offspring is too small. In those cases, validation 
of GEBV from CB animals on their individual records 
may provide an alternative. However, with validation on 
individual records, the apparent superiority of a CB over a 
PB reference population will likely be inflated because, as 
discussed above, validation correlations from models that 
use a CB reference population and ignore BOA are con-
taminated with the predictive value of dam alleles for the 
residual genetic dam component in the validation records. 
Indeed, this inflation was reflected in a higher validation 
correlation with validation on individual records (0.29 for 
BW7 and 0.33 for BW35, [see Additional file 1: Table S1]) 
instead of on offspring averages (0.18 for BW7 and 0.30 
for BW35, [see Additional file  1: Table  S1]), when the 
validation correlations were compared on the same scale 
(i.e. scaled by the square root of the heritability and of 
the mean reliability, respectively). This mechanism may 
explain why, for traits with similar rpc , Lopes et  al. [25] 
found that the validation correlation was higher with a CB 
reference population (with validation on individual CB 
records), but Hidalgo et al. [14] found that the validation 
correlation was higher with a PB reference population 
(with validation on CB offspring averages). Thus, when 
genomic predictions using a PB versus a CB reference 

population are compared, validation of sire GEBV on CB 
offspring averages is preferred.

In the previous paragraph, we argued that, with vali-
dation on individual offspring records and when BOA is 
ignored, validation correlations may be inflated due to 
the predictive value of dam alleles. However, when BOA 
is considered, the dam alleles of CB animals are removed 
from the explanatory variables of the model and the vali-
dation correlation is not expected to be inflated. So, when 
validating on individual records, the benefit of using a CB 
reference population is better evaluated by comparing a 
model that uses PB information with a model that uses 
CB information while considering BOA. This compari-
son for our data showed that the CB reference popula-
tion yielded a higher validation correlation than the PB 
reference population for BW7 (0.08 vs. 0.05) but not for 
BW35 (0.09 vs. 0.13). Furthermore, for this comparison, 
GEBV were less biased with a CB reference population 
than with a PB reference population for BW7 but not 
for BW35, although differences in regression coefficients 
were not statistically significant.

Considering versus ignoring BOA
We compared the validation correlation of models that 
ignored (CB-A and CB-I) or considered BOA (CB-A-BOA 
and CB-I-BOA). With validation on offspring averages, 
the difference in validation correlations between consid-
ering and ignoring BOA depended on the predictive value 
of dam alleles in the CB animals for sire offspring aver-
ages. As shown before, this predictive value was close to 
zero for BW7 but larger than zero for BW35. In other 
words, the dam alleles introduced noise in the estimation 
of the genetic sire component for BW7 but this noise was 
less for BW35, resulting in a higher validation correlation 
when BOA was considered for BW7 but lower for BW35. 
These results suggest that taking BOA into account was 
beneficial for a trait with an rpc of 0.8 but not for a trait 
with an rpc of 0.96, which agrees with results of Sevillano 
et al. [26] and Lopes et al. [25], who also found that the 
benefit of considering BOA decreased with increasing rpc 
and heritability. It has been argued that considering BOA 
may improve the validation correlation when the esti-
mated rpc from a model that takes BOA into account is 
different from a model that ignores it [38]. Our study nei-
ther confirmed nor contradicted this hypothesis because, 
although we observed a benefit of considering BOA for 
BW7, the estimate rpc from models that ignored or con-
sidered BOA were the same in this dataset [27].

Implementation of BOA in practice
To our knowledge, information on BOA is currently 
not used in commercial crossbred evaluations. One 
reason may be that the algorithm to derive BOA is 
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computationally demanding for large datasets. However, 
phasing algorithms are continuously being improved in 
terms of computational requirements [39] and compu-
tation power keeps increasing [40]. In the long term, we 
expect that implementation of BOA-models will depend 
mainly on their benefit for genomic prediction, because 
computing costs will be relatively small compared to other 
costs of a breeding program. The results of this study and 
those of others [25, 26] suggest that considering BOA can 
improve the accuracy of genomic predictions for traits 
with a low rpc and low heritability. Furthermore, as dis-
cussed above, the value of CB information for genomic 
prediction accuracy may be over-predicted when valida-
tion is on individual offspring records and BOA is ignored.

Practical relevance
In this study, we investigated whether GEBV of PB ani-
mals for CB performance should be computed based on 
PB or CB performance measured on animals that have 
comparable relationships with the selection candidates. 
Thus, own performance records of selection candidates 
were ignored. In practice, however, selection candidates 
may have an own performance record for PB perfor-
mance. For those cases, it may be more useful to compare 
scenarios that use only PB records with those that com-
bine PB and CB records in a single reference population. 
However, some traits cannot be measured on selection 
candidates (e.g. carcass traits) and, as a result, GEBV can 
only be computed based on information from relatives. 
For those cases, our results provide valuable insight into 
the benefit of CB over PB information.

Conclusions
Our findings show that the difference in validation cor-
relations between using a PB or CB reference population 
not only depends on the rpc of the trait evaluated but also 
on the choice of the validation record. With a CB refer-
ence population, the validation correlation from valida-
tion on individual CB records can be inflated because CB 
offspring records contain a substantial residual genetic 
dam component that can be predicted by the dam alleles 
of CB animals. Thus, we argue that, whenever possible, 
validation correlations for GEBV of PB animals for CB 
performance should be obtained from validation on CB 
offspring averages, because the interest usually lies in the 
identification of PB animals that, on average, produce the 
best CB offspring. When validation on offspring averages 
is not possible and validation is on individual CB records, 
the actual benefit of using a CB reference population 
should be assessed by comparing the use of a PB refer-
ence population with the use of a CB reference population 
with BOA considered. For this comparison, our results 
show that the validation correlation with a CB reference 

population was equal to or higher than with a PB refer-
ence population for a trait with an rpc of 0.8 but lower for 
a trait with an rpc of 0.96. In addition, in our population, 
taking BOA into account was beneficial for a trait with an 
rpc of 0.8 but not for a trait with an rpc of 0.96.

Additional file

Additional file 1: Table S1. Scaleda mean validation correlations for BW7 
and BW35.
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