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Appendix S1: Summary statistics and plot-specific acknowledgements for 
forest plots used 
 
Table S1 provides summary statistics for the 21 CTFS–ForestGEO plots considered in our 
study. Tree census data from these plots were used to quantify tree species richness and 
temporal population variability of tree species at each plot, which were then used in statistical 
analyses. For each plot, Table S1 shows the location (latitude and longitude), area, number of 
tree censuses and total time period of censuses, together with the mean number of species and 
mean number of individuals for the tree censuses. Here, an individual is defined as one tree, 
which may have one stem or more than one stem connected either above- or below-ground.  
 
In each plot, all freestanding woody plants with diameter-at-breast-height (DBH; 1.3 m from 
the ground) ≥ 1 cm were censused (Condit 1998). This threshold of 1 cm was sufficiently 
small to include many juvenile (non-reproductive) trees – for example, at the Barro Colorado 
plot, using the reproductive thresholds for tree species determined by Robin Foster (one of 
the Principal Investigators of the plot; unpublished data), we estimated that 62% of trees were 
juveniles. Thus, our analyses included both juvenile and adult trees, and hence captured 
temporal fluctuation-dependent mechanisms acting on both life-history stages. This is 
important because there is evidence that competition acts most strongly in the juvenile stage 
(Van Valen 1975; Harcombe 1987; Kitajima & Auspurger 1989), and this might translate 
into stronger temporal fluctuation-dependent mechanisms.   
 
We included palms in our analyses, but excluded any censused ferns (Smith et al. 2006) 
because their life-histories and growth patterns can be very different to other woody species. 
Only six plots had fern species, and for these six plots, ferns constituted a small percentage of 
total abundance in each census (mean of 1.4%). Taxonomic groups representing 
morphospecies (i.e. not assigned a species name but treated as separate groups at the genus 
level) were treated as distinct species in our analyses. In addition, unidentified taxonomic 
groups were treated as distinct species. However, because unidentified groups usually made 
up only a small percentage of total abundance and total number of taxonomic groups in each 
census (averages for the 21 plots of 0.08% and 0.9%, respectively), our results are robust to 
future taxonomic refinements. In addition, for each plot, the species names were checked for 
synonyms using The Plant List online database (accessed using the R package “Taxonstand” 
(Cayuela et al. 2012)), and abundances were summed for synonymous species identified. 
This step was necessary because botanists at different plots may have used different rules to 
determine whether two species names were to be treated as synonymous or not, and these 
rules needed to be standardized across plots. Synonymous species were identified in 15 of the 
21 plots, but usually made up only a small percentage of total abundance and total number of 
taxonomic groups in each census (means of 1.5% and 2.8% respectively for the 15 plots). 
 
Tree cover at each of the 21 plots was estimated to be 78–106% of the corresponding pristine 
value (see Table S5 in Anderson-Teixeira et al. (2015)), where the pristine value was defined 
using a global raster map of pre-human modification forest cover produced by UNEP-
WCMC (Anderson-Teixeira et al. 2015). Thus, there is little evidence of substantial 
anthropogenic disturbance in the recent past. Also, from Table S1, we see that tree species 
richness in the 21 plots showed a declining trend away from the tropics. This decreasing 
trend persisted after rarefaction to account for the different numbers of individuals in the 
plots (Appendix S4). 
 
Table S2 shows a list of acknowledgements specific to each plot. 
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Table S1. Summary statistics for the 21 CTFS–ForestGEO plots considered. For each plot, the table shows the location (latitude and longitude), 
plot area, number of censuses, overall census period, mean number of species in censuses and mean number of individuals in censuses. SCBI 
and SERC stand for Smithsonian Conservation Biology Institute and Smithsonian Environmental Research Center, respectively.  
 

Forest plot Latitude (o) Longitude (o) Plot area (ha) Number of 
censuses used 

in analyses 

Total time 
period of 

censuses used 

Mean number 
of species per 
census used 

Mean number of 
individuals per 

census used 

Barro Colorado Island 9.15 –79.85 50 7 1981–2010 301 226,000 
Changbaishan 42.48 128.08 25 2 2004–2009 52 35,800 

Edoro 1.56 28.52 20 3 1994–2007 353 154,000 
Fushan 24.76 121.56 25 2 2003–2009 104 112,000 

Gutianshan 29.25 118.12 24 2 2005–2011 158 130,000 
Huai Kha Khaeng 15.63 99.22 50 4 1992–2010 286 88,500 

Khao Chong 7.54 99.80 24 3 2000–2010 554 98,400 
Korup 5.07 8.85 50 2 1997–2009 483 321,000 
Lambir 4.19 114.02 52 4 1991–2008 1,330 364,000 

La Planada 1.16 –77.99 25 2 1997–2003 221 102,000 
Lenda 1.31 28.65 20 3 1994-2007 340 131,000 

Luquillo 18.33 –65.82 16 5 1990–2012 138 57,600 
Mo Singto 14.43 101.35 30.5 2 2003–2011 263 133,000 
Mudumalai 11.60 76.53 50 6 1988–2008 71 21,500 

Palanan 17.04 122.39 16 3 1998–2010 310 70,000 
Pasoh 2.98 102.31 50 5 1986–2006 794 312,000 
SCBI 38.894 –78.15 25.6 2 2008–2013 65 32,400 
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SERC 38.889 –76.56 16 2 2008-2014 71 23,600 
Sinharaja 6.40 80.40 25 3 1993–2008 215 193,000 
Wabikon 45.55 –88.79 25.2 2 2008–2013 36 47,500 
Yasuni -0.69 –76.40 25 2 1995–2003 1,070 144,000 
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Table S2. Plot-specific acknowledgements. Acknowledgements specific to the different 
CTFS–ForestGEO plots considered in our study.  
 

Forest plot Acknowledgement 

Barro Colorado 
Island (BCI) 

The BCI forest dynamics research project was founded by S.P. 
Hubbell and R.B. Foster and is now managed by R. Condit, S. Lao, 
and R. Perez under the Center for Tropical Forest Science and the 
Smithsonian Tropical Research in Panama. Numerous organizations 
have provided funding, principally the U.S. National Science 
Foundation, and hundreds of field workers have contributed. 

Fushan Fushan FDP is supported by the Taiwan Forestry Bureau, the 
Taiwan Forestry Research Institute and the Ministry of Science and 
Technology of Taiwan. We thank the staff at Fushan Research 
Center for providing logistic support.  

Huai Kha Khaeng Direct financial support for the Huai Kha Khaeng plot has been 
provided by the Royal Thai Forest Department and the National 
Parks Wildlife and Plant Conservation Department, the Arnold 
Arboretum of Harvard University (under NSF award #DEB-
0075334, and grants from USAID and the Rockefeller Foundation), 
the Smithsonian Tropical Research Institute, and the National 
Institute for Environmental Studies, Japan. The Huai Kha Khaeng 
Forest Dynamics Plot is part the Center for Tropical Forest Science, 
a global network of large-scale demographic tree plots. We 
acknowledge the Royal Thai Forest Department for supporting and 
maintaining the project in Huai Kha Khaeng Wildlife Sanctuary, 
Thailand. 

Lambir The 52-ha Long-Term Ecological Research Project is a collaborative 
project of the Forest Department of Sarawak, Malaysia, the Center 
for Tropical Forest Science of the Smithsonian Tropical Research 
Institute, the Arnold Arboretum of Harvard University, USA (under 
NSF awards DEB-9107247 and DEB-9629601), and Osaka City, 
Ehime & Kyoto Universities, Japan (under Monbusho grants 
06041094, 08NP0901 and 09NP0901). The Lambir Forest 
Dynamics Plot is part of the Center for Tropical Forest Science, a 
global network of large-scale demographic tree plots. We 
acknowledge the Sarawak Forest Department for supporting and 
maintaining the project in Lambir Hills National Park.  

Luquillo The 16-ha Luquillo Forest Dynamics Plot was supported by grants 
BSR-8811902, DEB 9411973, DEB 0080538, DEB 0218039, DEB 
0620910, DEB 0963447 AND DEB-129764 from NSF to the 
Department of Environmental Science, University of Puerto Rico, 
and to the International Institute of Tropical Forestry USDA Forest 
Service, as part of the Luquillo Long-Term Ecological Research 
Program. The Andrew Mellon Foundation and the University of 
Puerto Rico gave additional support. We especially thank the 
hundreds of field workers who contributed to the tree censuses. 
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Mo Singto The 30-ha plot is supported by National Science and Technology 
Development Agency (Thailand); The Department of National Park, 
Wildlife and Plant Conservation; and Thai Ministry of Natural 
Resources and Environment. 

Mudumalai The 50 hectare Mudumalai Forest Dynamics plot was set up by the 
Centre for Ecological Sciences, Indian Institute of Science, 
Bangalore. Most of the long-term funding for running the plot has 
come from the Ministry of Environment, Forest and Climate Change 
(Government of India). In recent years this has been supplemented 
with funding from the Department of Biotechnology (Government 
of India), the JC Bose National Fellowship (Department of Science 
and Technology), and the Divecha Centre for Climate Change, 
Indian Institute of Science. We acknowledge the support of Tamil 
Nadu Forest Department for this long-term monitoring. 

Palanan Research in the 16-ha Palanan Forest Dynamics Plot is 
collaboratively managed by the Institute of Biology, University of 
the Philippines Diliman and the Smithsonian Tropical Research 
Centre/Centre for Tropical Forest Science while additional grants 
were provided by the University of the Philippines Office of the 
Vice President For Academic Affairs, Commission on Higher 
Education, the Department of Science and Technology and the 
Energy Development Corporation. The assistance and continuing 
support of the Protected Areas Management Board of the Northern 
Sierra Madre Natural, the Department of Environment and Natural 
Resources and the local government unit of Palanan, Isabela as well 
as the local community are gratefully acknowledged. 

Pasoh Data from the Pasoh Forest Reserve was provided by the Forest 
Research Institute Malaysia – Smithsonian Tropical Research 
Centre/Centre for Tropical Forest Science collaborative research and 
support from the Negeri Sembilan State Forestry Department. 

Smithsonian 
Conservation 

Biology Institute 
(SCBI) 

Funding for the establishment of the SCBI ForestGEO Large Forest 
Dynamics Plot was provided by the Smithsonian Global Earth 
Observatory initiative, the Smithsonian Institution, National 
Zoological Park and the HSBC Climate Partnership. We especially 
thank the numerous technicians, interns and volunteers of the 
Conservation Ecology Center at the SCBI who were essential in 
assisting with plot establishment and data collection. Support for the 
original exclosure fence installation was provided by the Friends of 
the National Zoo and Earthwatch Foundation. 

Sinharaja The 25-ha Long-Term Ecological Research 
Project at Sinharaja World Heritage Site is a collaborative project of 
the University of Peradeniya, the Center for Tropical Forest Science 
of the Smithsonian Tropical Research Institute and the Arnold 
Arboretum of Harvard University, USA, with supplementary 
funding received from the John D. and Catherine T. Macarthur 
Foundation, the National Institute for Environmental Science, Japan, 
and the Helmholtz Centre for Environmental Research-UFZ, 
Germany, for past censuses. The PIs gratefully acknowledge the 
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Forest Department and the Post-Graduate Institute of Science at the 
University of Peradeniya, Sri Lanka for supporting this project, and 
the local field and lab staff who tirelessly contributed in the repeated 
censuses of this plot. 

Wabikon Major support for research at the Wabikon Forest Dynamics Plot has 
been provided by The 1923 Fund, the Smithsonian Tropical 
Research Institute, and the U.S. Forest Service. Gary Fewless, 
Kathryn Corio, and Juniper Sundance have been key contributors to 
research at the site, which has engaged more than 50 students from 
UW-Green Bay and other institutions.   

Yasuni The Yasuni plot establishment and censuses were supported by 
Pontifical Catholic University of Ecuador (Donaciones del Impuesto 
a la Renta from the government of Ecuador and PUCE grants 
L13251, M13373 in recent years) and the Center for Tropical Forest 
Science of the Smithsonian Tropical Research Institute. We are 
grateful to researchers, field-workers, students and volunteers who 
have helped with collecting and processing census data. The Yasuni 
Scientific Station offered logistic support. The continuous research 
in the Yasuni plot is endorsed by the Ministerio de Ambiente del 
Ecuador through several research permits (in particular permits: No. 
002-015-IC-FLO-PNY-DPAO; No. 025-2016-IC-FAU-FLO-
DPAO-PNY and No. 007-2018-IC-PNY-DPAO/AVS to Renato 
Valencia). 
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Appendix S2: Assessing bias in metrics of temporal population variability  
 
Assessing bias with respect to changing species richness 
 
In our study, the aim was to assess the degree of temporal population variability in different 
tree communities and how this variability affects coexistence of tree species in the 
communities. To avoid confounding effects of species richness on temporal population 
variability, we needed to use a metric of temporal population variability that was largely 
invariant to changes in species richness, given a particular environmental regime. In other 
words, we needed a metric with a low bias with respect to species richness, where the bias is 
defined as the change in the metric’s expected value with species richness. To assess the bias 
of candidate metrics, we applied these metrics to simulated data from model communities 
with varying species richness but in a fixed environment regime. Each model community was 
constructed using the dynamic, mechanistic model developed by Danino et al. (2016).  
 
Specifically, the mechanistic model (Danino et al., 2016) represented the abundance 
dynamics of a community of species competing for a fixed amount of limiting resources, 
given by a fixed carrying capacity of J individuals. At the beginning of a model simulation, 
the model community was initialized with J individuals distributed among !" species. The 
fitness of each species, which determined its recruitment rate, was chosen randomly from a 
lognormal distribution with mean 1 and variance A. The different fitness values among 
species represented different responses of the species to the prevailing environmental 
conditions. At the beginning of each subsequent time-step of the model, the environmental 
conditions changed with probability 1/%, and this change was represented indirectly by the 
fitness values of all species being redrawn randomly and independently from the lognormal 
distribution (Fig. S1). Thus, % measured the temporal correlation in environmental conditions. 
Together, A and % indirectly determined the temporal sequence of sets of environmental 
conditions that species in a model community experienced. Thus, a particular combination of 
A and % defined an environmental regime. After determining whether the environmental 
conditions had changed, an individual was chosen at random to die, and then another 
individual was chosen at random as a replacement. With probability & the replacement 
individual was of a new species. The introduction of new species prevented the model 
community from collapsing to a monoculture after a long period of time, such that the model 
was like Hubbell’s neutral model (Hubbell 1997, 2001) except with species that have 
different fitness values, which fluctuate in a temporally changing environment. With 
probability 1 − & the replacement individual was chosen randomly from the pool of potential 
recruits produced by existing species (Fig. S1). The contribution of each existing species to 
the pool of potential recruits was proportional to the product of the abundance of the species 
and its recruitment rate, which was assumed to be proportional to its fitness. Thus, existing 
species compete for the resources vacated by the dead individual according to lottery 
dynamics (as in the model of Chesson & Warner (1981), except that in the model we use, 
each time-step involved the death and replacement of only one individual).   
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Fig S1. Schematic diagram showing the processes operating in the dynamic, mechanistic model used to assess bias of metrics of temporal 
population variability. The diagram shows the processes operating over one model time-step.  
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For a given environmental regime (A and !, where ! is expressed in generations), we 
constructed a set of 20 model communities with different species richness by using 20 values 
of " from 10%& to 0.1 (equally spaced on a natural log-scale). For each value of ", we 
initialized a model community with '( = 1 species with * = 15,299 individuals, 
corresponding to the number of individuals in the 21 tree communities that we examined, 
after rarefaction to standardize the number of individuals. Model dynamics were then 
simulated for 1,000 generations (gen; each generation consists of J individuals dying and 
being replaced), which was sufficient time for the emergence of model communities spanning 
three orders of species richness S (Fig. S2), covering the empirical values for the 21 tree 
communities (Fig. S8). After 1,000 gen, model dynamics were simulated for a further 500 
gen and the changes in abundance used to calculate metrics of temporal population 
variability. We examined two candidate metrics: the first measures the mean absolute change 
in abundance in a species in a year (∆0; calculated using eq. (1) in main text), whereas the 
second is the same as the first but with correction of the simulated data for different sets of 
initial abundances among communities (∆01; calculated as described in Appendix S3 below 
– here, we drop the subscript “r” that refers to rarefaction). Time in the model was measured 
as the number of generations, so to calculate the metrics using data from the model, we 
specified an inter-census interval length of 2 = 2,500/*4gen = 0.1634gen, based on the 
average for the 21 forest tree communities (an empirical value of 2 for a pair of consecutive 
censuses at a plot was calculated as the number of deaths over the inter-census interval 
divided by community size). To convert the units of the metrics from gen to yr-1, we took the 
inter-census interval length to be equal to 5.14 yr, based on the average for the 21 forest tree 
communities. The simulation of 500 gen provided many pairs of consecutive intervals, which 
allowed the expected changes in absolute species abundances in a year to be estimated with 
high accuracy. We performed these simulations for 18 environmental regimes represented by 
all 18 combinations of ; ∈ 10%&, 0.01, 1, 100, 10&, 10=  and ! ∈ 0.014gen, 0.14gen, 14gen , 
encompassing nearly all of the values of A and ! that we examined when fitting the model 
(without introduction of new species) to the 21 tree communities (see main text).  
 
We found that for each of the 18 simulated environmental regimes, the first metric of 
population variability (∆0) showed a large bias with respect to species richness (S) (Fig. S2). 
The value of ∆0 almost always decreased with S by substantial amounts, sometimes by 
several orders of magnitude (Fig. S2). In contrast, the second metric of population variability 
(∆01) showed little bias with respect to S (Fig. S2). For each of the 18 environmental 
regimes, the coefficient of variation (CV) of ∆014was small, ranging from 0.00574–0.0321 
(Fig. S2). This meant that for each of the 18 environmental regimes, the ratio of ∆01 at the 
smallest value of S to ∆01 at the largest value of S was reasonably close to 1, ranging from 
0.932–1.07 (Fig. S2).  
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Fig. S2. Values of two metrics of temporal population variability (∆0 and ∆01) across model 
communities with the same community size (* = 15,299) but different species richness (S), 
for 18 environmental regimes. Panels (A) and (B) show results for ∆0 (metric 1) and ∆01 
(metric 2) respectively. Each environmental regime was defined by two parameters: the 
variance in fitness of species (A) and the temporal correlation of environmental conditions 
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(!). For an environmental regime, ∆0 and ∆01 were calculated using data from the last 500 
gen of model simulations lasting 1,500 gen. In addition, S was calculated as the mean number 
of species in the last 500 gen. 
 
 
To examine whether our results held for different spatial scales, we repeated the analyses 
above for model communities that were about half and twice the size, i.e. with * = 7,500 and 
* = 30,000 respectively. We found that with either * = 7,500 and * = 30,000, the trends of 
∆0 and ∆01 with S were essentially the same as with * = 15,299 (Figs. S3 and S4). From 
these results, we also found that the values of ∆01 among the 18 different environmental 
regimes retained largely the same ranking regardless of J (Figs. S2B, S3B and S4B). The 
rank of an environmental regime changed by an average of only 0.667 when J decreased 
from 15,299 to 7,500 and an average of only 1.44 when J increased from 15,299 to 30,000. 
This result indicated a similar ranking of mean extinction times among the different 
environmental regimes. Thus, we expect results from the main text to hold qualitatively at 
larger spatial scales.  
 
We conclude that the first metric of temporal population variability, ∆0, was inappropriate 
due to its large bias with respect to species richness S. This large bias in ∆0 was not 
surprising because, as explained in the main text, a community with higher S would 
necessarily have species with smaller population sizes on average, and species with smaller 
population sizes tend to have lower temporal population variability (Chisholm et al. 2014). 
This bias can be corrected for by considering only those species with initial population sizes 
common to all plots when calculating temporal population variability, as for the second 
metric of temporal population variability, ∆01. Our simulation results showed that the second 
metric had little bias, at least for the range of S and inter-census intervals pertaining to the 21 
forest tree communities. Thus, we conclude that ∆01 was an appropriate metric of temporal 
population variability for the empirical analyses in our study. We also note that ∆01 differed 
substantially among the 18 environmental regimes (Fig. S2B), which showed that the metric 
was able to differentiate among environmental regimes with respect to how they affect 
temporal population variability.  
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Fig. S3. Same as Fig. S2, except with * = 7,500 instead of * = 15,299. 
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Fig. S4. Same as Fig. S2, except with * = 30,000 instead of * = 15,299. 
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Assessing bias with respect to sample size 
 
In our study, we calculated temporal population variability using ∆01, for 21 forest tree 
communities. Before we calculated ∆01, we performed rarefaction to standardize the number 
of individuals for each community. This rarefaction consisted of random sampling down to a 
common number of individuals. Ideally, for a fixed environmental regime, the sampling 
procedure would give the same value of ∆01 when sampling from different community sizes. 
We refer to the change in the expected value in ∆01 with sampling from different community 
sizes as the metric’s bias with respect to sample size. To assess this bias, we considered three 
environmental regimes and for each one, we ran simulations of our model to construct 20 
model communities with the same community size J but a range of species richness S. We 
did this for * = 15,299, 30,000 and 60,000. For each J, we calculated ∆01 for the 20 
communities after sampling to a sample size of 15,299. In calculating ∆01, we used the inter-
census interval of 2 = 0.1634gen, as in our tests of bias in ∆01 with respect to S (described 
in the previous subsection). The three environmental regimes we examined were ; = 10%& 
and ! = 0.01 gen; ; = 1 and ! = 0.1 gen; and ; = 10= and ! = 1 gen, representing weak, 
moderate and strong (temporal) environmental variance.  
 
We found that for the moderate and strong environmental variance regimes, ∆01 for the 20 
communities remained largely invariant to sampling from different community sizes, with the 
mean ∆01 across the 20 communities changing by less than 5.73% when * increased four-
fold from 15,299 to 60,000 (Fig. S5). For the weak environmental regime, mean ∆01 showed 
a large percentage increase of 47.0% when * increased four-fold, but a small absolute 
increase of 0.269 yr-1 (Fig. S5). The small absolute change reflects ∆01 always being small,  
ranging from 0.565–1.12 yr-1 (Fig. S5; for comparison, the empirical values of ∆01 varied 
from 1.40 – 9.95 yr-1). We note that for the weak environmental regime, ∆01 showed an 
upward trend for the 20 communities at very high values of ' > 3,500, but this is far beyond 
the empirical upper limit of 881 (Fig. S5). 
 
From our simulation results, we conclude that the relative bias with respect to sample size 
was small when the environmental regime was moderate or strong. We also conclude that 
although the relative bias was large when the environmental regime was weak, the absolute 
bias was small. In addition, we note that the weak environmental regime was unlikely to be 
relevant to the forest tree communities that we examined, because it produced values of ∆01 
below our empirical values.  
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Fig. S5. Values of temporal population variability (∆01) in samples of model communities 
with the same community size (J) but different species richness (S), for three environmental 
regimes. Results are shown for * = 15,299, * = 30,000 and * = 60,000. Other details are as 
in caption for Fig. S2. 
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Appendix S3: Further details on calculation of metrics of temporal 
population variability  
 
Correcting for different sets of species abundances among plots 
 
In our study, as a metric of temporal population variability for the tree community in each of 
the 21 forest plots examined, we first considered the mean absolute change in abundance of a 
species in a year (eq. (1) in main text), calculated using tree census data rarefied to a chosen 
number of individuals (Δ0A4). However, as discussed in the main text, there remained an 
important potential source of bias: given a fixed total tree abundance, abundant species were 
over-represented in species-poor plots, while rare species were over-represented in species-
rich plots. Thus, for the different plots, there was a need to correct for the different sets of 
species abundances.  
 
To do this correction, for each plot, we considered all pairs of consecutive censuses in all of 
the sampled datasets (resulting from rarefaction), and extracted the set of all species 
abundances in the first censuses of these pairs (set of all “initial abundances”). Considering 
the sets of initial abundances for the 21 plots, we determined those initial abundances that 
were shared among all 21 plots. There were 222 of these initial abundances, ranging from 1 
to 394. The number of initial abundances here was greater than the number of species in 
some of the plots, which was possible because a species at a plot sometimes had more than 
one initial abundance across censuses and sampled datasets. For each plot and each of the 
222 initial abundances, we filtered the sampled datasets such that for each pair of consecutive 
censuses, only species with the initial abundance considered were retained, and then used the 
filtered datasets with eq. (1) to calculate the mean absolute change in abundance in a year. 
Then for each plot i, we calculated the average of the mean absolute change in abundance 
across the 222 initial abundances, which we then used as the metric of temporal population 
variability corrected for initial abundances, denoted by Δ0A,1,B. This method corrected for 
different sets of initial abundances across plots because it ensured that: (i) only the same 
initial abundances were considered across plots and (ii) for each of these initial abundances, 
only one (mean) value of change in abundance was used for each plot, which avoided 
confounding effects arising from different plots having differing numbers of data points for 
each initial abundance. 
 
Rarefaction procedure that standardized area and the number of individuals, in a way 
that conserved the temporal correlations of species abundances 
 
In the main text, we used a metric of temporal population variability (Δ0AC,1) that was 
calculated using data rarefied according to sample area and the number of individuals, in a 
way that conserved (pairwise) temporal correlations of species abundances. This rarefaction 
procedure consisted of two steps. In the first step, we standardized the area of each of the 21 
forest plots that we examined to 16 ha, which was the area of the three smallest plots 
(Luquillo, Palanan and SERC). To perform this standardization, for each of the 18 plots with 
area greater than 16 ha, we randomly sampled 1,000 16 ha areas. Specifically, 15 of these 18 
plots were square or rectangular, and for these 15 plots, we randomly sampled 1,000 16 ha 
rectangles. Each random sample was achieved by randomly sampling the x- and y-
coordinates of the bottom-left and bottom-right corners of the 16 ha rectangle (Fig. S6). 
These coordinates fixed the coordinates of the top-left and top-right corners of the rectangle 
(due to the constraint that the area was 16 ha). Two of the remaining three plots (Lenda and 
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Edoro) each consisted of two rectangular sub-plots of area 10 ha, separated in space. 
Therefore, for each of these two plots, each random sample of 16 ha was achieved by 
randomly sampling a 8 ha rectangle from each sub-plot. The remaining plot (Mo Singto) 
consisted of two rectangles joined together. For this plot, the randomly sampled 16 ha area 
was either a rectangle or two rectangles joined together. However, the sampling procedure 
was the same as when the plot was rectangular – each random sample was achieved by 
randomly sampling the x- and y-coordinates of the bottom-left and bottom-right corners of 
the 16 ha area, which fixed the other coordinates of the area. 
 
After standardizing according to area, the second step involved standardizing according to the 
number of individuals, in a way that conserved temporal correlations of species abundances 
in the 16 ha areas. This second step was based on the idea that if the abundances of species 
populations in a 16 ha area were all multiplied by the same scaling factor in all censuses, then 
the temporal correlations of the species abundances would remain the same. The scaling 
factor for each 16 ha area was chosen such that after scaling, the mean number of individuals 
across censuses was the same for all 16 ha areas. Specifically, we first calculated the 
minimum mean number of individuals across censuses for the 16 ha areas for all plots (i.e., 
the 1,000 randomly sampled 16 ha areas for each of the 18 plots with area greater than 16 ha, 
together with the three 16 ha plots). We found that this minimum mean number of individuals 
was 0DEF = 4,713. Afterwards, for each 16 ha area, we scaled the species abundances in 
each census by the factor 0DEF/0, where 0 was the mean number of individuals in the 16 ha 
area across all censuses, and rounded fractional abundances to the nearest integer (Fig. S6). 
This rarefaction step ensured that in each 16 ha area, the mean number of individuals was 
approximately 0DEF and the temporal correlations of species abundances were approximately 
the same as that before the rarefaction step. The temporal correlations were not exactly the 
same because of rounding the fractional abundances to integers. 
 
For the 50 ha Barro Colorado Island plot, rarefaction according to area in the first step 
produced 1,000 randomly sampled 16 ha areas. Within each sampled 16 ha area, the mean 
absolute difference in temporal correlation of species abundances before and after rarefaction 
in the second step was calculated. The average value of this mean absolute difference across 
all 1,000 sampled 16 ha areas was 0.151, which was quite small (Fig. S7). Similarly, for the 
other 20 plots, the average value of the mean absolute difference in temporal correlation was 
2.38×10%JK–0.228 (median for all 21 plots of 6.66×10%JL). In contrast, for our method of 
rarefaction that did not conserve temporal correlations (simple random sampling down to the 
smallest number of individuals found in a census in a plot), the average value of the mean 
absolute difference before and after rarefaction was 0.337–0.960 for the 21 plots (median of 
0.796), which was much larger (Fig. S7).  
 
After carrying out the two steps, we ended up with 1,000 random samples for the 18 forest 
plots with area greater than 16 ha, and one random sample for the remaining three 16 ha 
forest plots. These samples were used to calculate our metric of temporal population 
variability Δ0AC,1, which involved correcting for the different species abundances among the 
samples for the different plots (as described in the previous subsection). 
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Fig. S6. Schematic diagram showing the two-step rarefaction procedure used for standardizing area and the number of individuals, in a way that 
conserved temporal correlations of species abundances.  
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Fig. S7. Comparison of cumulative distribution functions (cdfs) of temporal correlations of 
species abundances at Barro Colorado Island (BCI) plot, before and after rarefaction 
according to the number of individuals. Rarefaction was performed with and without 
conserving temporal correlations of species abundances.  
 
 
When calculating!Δ#$%,', there were 16 initial abundances common to all 21 plots, ranging 
from 1 to 52. The upper limit of 52 was small, with the main reasons being the low number of 
individuals at Mudumalai plot, which reduced the common sample size for all plots, and the 
lack of random sampling over space for the three 16 ha plots (Luquillo, Palanan and SERC). 
Thus, we also calculated Δ#$%,'!using the 20 plots that excluded Mudumalai and using the 17 
plots that excluded Mudumalai, Luquillo, Palanan and SERC. Excluding Mudumalai resulted 
in 20 initial abundances common to the remaining 20 plots, ranging from 1 to 75. Excluding 
Mudumalai, Luquillo, Palanan and SERC resulted in 194 initial abundances common to the 
remaining 17 plots, ranging from 1 to 355. 
 
 
 



! 21 

Appendix S4: Further details on regression analyses 
 
Regression of tree species richness and absolute latitude for forest plots used 
 
A recent study by Ricklefs & He (2016) used tree census data from 47 CTFS–ForestGEO 
plots and found that tree species richness declined with absolute latitude, from the tropics to 
the poles (their Fig. S3). However, the study did not account for the different number of 
individuals in each plot. Therefore, in our study, we verified whether tree species richness 
declined with absolute latitude for the 21 CTFS–ForestGEO plots that we used. Specifically, 
the rarefied species richness for plot i, ($,), was calculated as the average rarefied number of 
species over all censuses apart from the last. The last census was not considered because 
species that appeared for the first time in the last census were not used to calculate temporal 
population variability, as this calculation required the abundances of a species over two 
consecutive censuses. The rarefied species richness for census j at plot i, ($,),*, was estimated 
as the average number of species for census j over the 1,000 resampled datasets for plot i 
(using the rarefaction method that does not conserve temporal correlations of species 
abundances; Hurlbert 1971). Rarefying by sample coverage (Chao & Jost 2012) instead of 
sample size produced species richness values for each plot that were highly correlated with 
($,) (R2 = 0.998, n = 21), and hence we only used ($,). We subsequently regressed ($,) against 
the absolute latitude for each plot. In this regression, a log-transformation was applied to both 
variables to reduce their skewness and help to meet the assumption of normality and 
homoscedasticity (see subsection Other details on regression analyses below). The 
subsequent regression showed a strong negative correlation between ($,) and absolute latitude 
(R2 = 0.533, slope = –0.537, P = 1.73!10–4, n = 21; Figs. S8, S11, S12).  
 
Regressions using climate data 
 
We performed multiple regressions to determine how much variation in temporal population 
variability in the 21 forest plots could be explained by temporal variability in two simple 
climate variables: mean monthly temperature, MT, and total monthly precipitation, MP. We 
examined variation in monthly instead of annual climate variables because the former 
captures climatic variation over both monthly and annual timescales. Specifically we 
estimated the coefficient of variation (CV) of MT (in units of K) and MP (in units of mm) for 
the census periods of each plot, using local measurements of MT and MP where possible and 
using measurements of MT and MP from the CRU dataset (CRU RS v.3.23, 
https://crudata.uea.ac.uk/cru/data/hrg/) otherwise. The CRU dataset is at a coarse spatial 
resolution of 0.5o by 0.5o (approximately 300,000 ha). Below we detail which plots had local 
data available for calculation of the CV of MT and MP during the census periods, and our 
rationale for using data from the CRU dataset for calculation of the CV of MT and MP for the 
remaining plots.  
 
Local measurements of MT were available for six of the 21 plots (Table S3) and local 
measurements of MP were available for eight plots (Table S3). To assess how well MT and 
MP values from the CRU dataset reflected local values, we compared values of MT and MP 
from the local data with those from the CRU dataset. The mean MT values calculated for the 
six plots using the local data exhibited a very high correlation (R2 = 0.94) with the 
corresponding mean MT values calculated using MT time-series extracted from the CRU 
dataset, covering the same time period. Similarly, the coefficient of variation (CV) of MT 
values calculated for the six plots using local data exhibited a very high correlation (R2 = 
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1.00) with the corresponding CV of MT values calculated using the CRU dataset. We also 
found that mean MP values calculated for the eight plots using the local data exhibited a high 
correlation (R2 = 0.56) with the corresponding mean MP values calculated using the CRU 
dataset. However, the CV of MP values calculated using the local data exhibited a low 
correlation (R2 = 0.27) with the corresponding CV of MP values calculated using the CRU 
dataset. The main reason was that the local variability in precipitation at the Fushan plot was 
much higher than the variability in precipitation in the 0.5o by 0.5o grid cell containing the 
Fushan plot, because of high local topographic heterogeneity combined with the presence of 
typhoons (standard deviation in MP was about three times greater, with the CV of MP being 
35% greater). Excluding the Fushan plot, the CV of MP values calculated using local data for 
the remaining seven plots exhibited a high correlation (R2 = 0.66) with the corresponding CV 
of MP values for the CRU dataset.   
 
We also assessed the correspondence between values of MT and MP from the WorldClim 
database (Hijmans et al. 2005) and those from the CRU dataset. Data from the WorldClim 
database (Hijmans et al. 2005) is at a resolution of 0.00833o by 0.00833o (approximately 100 
ha), which is smaller than the resolution of data from the CRU database. Specifically, we 
calculated the mean MT values for all 21 plots in our study using 1951–2000 time-series of 
MT values from the WorldClim database and the CRU dataset. The period of 1951–2000 was 
chosen because the WorldClim database only had data for this period. We found that the two 
sets of mean MT values were highly correlated (R2 = 0.99). Similarly, mean MP values for all 
21 plots calculated using the CRU dataset and the WorldClim database were highly 
correlated (R2 = 0.96). 
 
Thus, overall, there is evidence that MT and MP values from the CRU dataset are generally 
representative of those measured at smaller scales, including those obtained locally. 
Therefore, in our multiple regression analysis, we used MT and MP values from the CRU 
dataset when these were not available from local sources. The SERC plot was the exception: 
we used values from the CRU dataset even though local data was available. This was because 
the local data only covered 15.1% of the total tree census period (Table S3).  
 
The plot at Lenda is approximately 20 km away from the plot at Edoro in the same country 
(Democratic Republic of the Congo), and this distance is smaller than the spatial scale of the 
CRU climate data for these two plots. Thus, the Lenda plot was removed from the multiple 
regression analyses to ensure statistical independence of data points. Removal of the Edoro 
plot instead of the Lenda plot produced similar results. The time-series of climate for each of 
the 20 remaining plots were used to calculate the CV of MT (CV(./)) and of MP (CV(.1)) 
for each of the 20 plots. These were used as explanatory variables in a multiple regression, 
with the response variable being our measure of temporal population variability that involved 
rarefaction to standardize the number of individuals (Δ#$,'). All three variables (the two 
explanatory variables and the response variable) were log-transformed because this reduced 
the skewness of each variable, which helped to meet the assumptions of normality and 
homoscedasticity of residuals for a multiple regression. The two explanatory variables 
ln CV(./)  and ln CV(.1)  were only weakly correlated (R2 = 0.153) and therefore met 
the assumption of independence of explanatory variables. Results from this multiple 
regression are presented in Figs. S9, S11 and S12, and Table S4. We also did a multiple 
regression using our measure of temporal population variability that involved rarefaction to 
standardize area and the number of individuals, in a way that conserved temporal correlations 
of species abundances (Δ#$%,'; Figs. S10–S12, Table S5). In this regression, we excluded 
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Mudumalai, Luquillo, Palanan and SERC in order to increase the number of initial 
abundances used to calculate Δ#$%,'  (see Appendix S3 for details). 
 
Other details on regression analyses 
 
In our study, we performed a total of five bivariate linear regressions: (i) temporal population 
variability (Δ#$,') regressed against absolute latitude (Fig. 4A); (ii) temporal population 
variability (Δ#$%,') regressed against absolute latitude, using all 21 forest plots (Fig. 4B); (iii) 
Δ#$%,'!regressed against absolute latitude, using the 20 forest plots that excluded Mudumalai 
(Fig. 4C); (iv) Δ#$%,'!regressed against absolute latitude, using the 17 forest plots that 
excluded Mudumalai, Luquillo, Palanan and SERC (Fig. 4D); and (v) rarefied tree species 
richness (($) regressed against absolute latitude (Fig. S8). In each of these five regressions, a 
log-transformation was applied to all variables, to reduce their skewness and help to meet 
assumptions of normality and homoscedasticity. Normality of residuals was assessed 
graphically using quantile plots (Fig. S11) and using a Shapiro–Wilk test (P = 0.756, 
6.87!10–4, 0.428, 0.715 and 0.759 for the five regressions, respectively). The quantile plots 
and Shapiro–Wilk tests indicated normality of residuals except for the second regression. 
Homoscedasticity of residuals was confirmed graphically using residual plots for the five 
regressions (Fig. S12). In addition, independence of residuals was assessed for all regressions 
using a 2-sided Durbin–Watson test (P = 0.153, 0.718, 0.124, 0.111 and 0.0450, 
respectively).  This test indicated independence of residuals for all regressions apart from the 
fifth regression, for which there was a marginal indication of non-independent residuals.   
 
We also performed two multiple linear regressions, one that used Δ#$,' as the response 
variable and one that used Δ#$%,'!as the response variable (see subsection Regression using 
climate data above). For these multiple regressions, normality of residuals was confirmed 
graphically (Fig. S11) and using a Shapiro–Wilk test (P = 0.452 and 0.327, respectively), 
whereas homoscedasticity of residuals was confirmed graphically (Fig. S12). Independence 
of residuals was confirmed using a 2-sided Durbin–Watson test (P = 0.971 and 0.710, 
respectively). 
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Figure S8. Linear regression between rarefied tree species richness and absolute latitude for 
the 21 CTFS–ForestGEO forest plots considered in this study. The shaded region represents 
the 95% confidence interval. 
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Figure S9. Relationships between temporal population variability and (A) the coefficients of 
variation of mean monthly temperature (CV(./)) and (B) of total monthly precipitation 
(CV(.1)) for 20 CTFS–ForestGEO forest plots. Temporal population variability was 
measured as the mean absolute change in species abundance per year, with rarefaction to 
standardize the number of individuals (Δ#$,'). The solid lines represent values from a 
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multiple regression model of ln Δ#$,'  against ln CV(./)  and ln CV(.1) , fitted to the 
empirical values represented by the dots. In drawing the relationship between ln Δ#$,'  and 
one climate variable, the value of the other climate variable was fixed at the mean observed 
value. The shaded regions represent standard errors in the coefficient of the changing climate 
variable. 
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Figure S10. Relationships between temporal population variability and (A) the coefficients 
of variation of mean monthly temperature (CV(./)) and (B) of total monthly precipitation 
(CV(.1)) for 16 CTFS–ForestGEO forest plots. Temporal population variability was 
measured as the mean absolute change in species abundance per year, with rarefaction to 
standardize area and the number of individuals, in a way that conserved temporal correlations 
of species abundances (Δ#$%,'). Other details as in Fig. S9. 
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Figure S11. Quantile plots for the standardized residuals of the regressions in (A) Fig. 4A, 
(B) Fig. 4B, (C) Fig. 4C, (D) Fig. 4D, (E) Fig. S8, (F) Fig. S9 and (G) Fig. S10.  
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Figure S12. Residual plots for the regressions in (A) Fig. 4A, (B) Fig. 4B, (C) Fig. 4C, (D) 
Fig. 4D, (E) Fig. S8, (F) Fig. S9 and (G) Fig. S10. 
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Table S3. Details of local climate data for eight of the 21 CTFS–ForestGEO plots used in the 
study. MT and MP stand for “Mean monthly temperature” and “Total monthly precipitation”, 
respectively. SERC stands for Smithsonian Environmental Research Center. The coverage of 
the total census period was calculated as the percentage of census months for which local MT 
or MP measurements were available. Climate data for Barro Colorado Island was collected as 
part of the STRI Physical Monitoring Program and can be downloaded at 
http://biogeodb.stri.si.edu/physical_monitoring/research/barrocolorado; climate data for 
Luquillo can be downloaded at http://luq.lternet.edu/data/luqmetadata14; and climate data for 
Wabikon can be downloaded at https://www.ncei.noaa.gov/. 
 

Forest plot Type of climate 
data 

Location where climate data 
was collected 

Coverage of total 
tree census period 

Barro Colorado Island MT, MP Clearing adjacent to plot 92.7% for MT, 
98.2% for MP 

Fushan MT, MP Fushan Botanical Garden, 
approx. 3 km east of plot 

100% 

Gutianshan MT, MP Kaihua Meteorological Station, 
approx. 50 km from plot 

100% 

Luquillo MP El Verde field station, a few 
hundred m from plot 

100% 

Mo Singto MT, MP Khao Yai National Park, 
approx. 0.8 km east of plot 

57.1% for MT, 
100% for MP 

SERC MT, MP Clearing adjacent to plot 15.1% 
Sinharaja MP Sinharaja field research station, 

approx. 1 km northeast of plot 
98% 

Wabikon MT, MP Laona WI weather station, 
approx. 6 km from plot 

78.2% 
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Table S4. Multiple regression of temporal population variability against two measures of 
climatic variability, for 20 CTFS–ForestGEO forest plots (F2,17 = 2.64, P = 0.101, R2 = 
0.237). Temporal population variability was measured as the mean absolute change in species 
abundance per year, with rarefaction to standardize the number of individuals (Δ#$,'). Log-
transformations were applied to all three variables to meet normality and homoscedasticity 
assumptions. 
 

Response variable: Log of mean absolute change in species abundance  
per year (Δ#$,') 

 Coefficient s.e. P 
Intercept 2.67 0.546 1.43!10–4 

Log of CV of mean monthly temperature  0.262 0.115 0.0357 
Log of CV of total monthly precipitation –0.303 0.481 0.538 

 
 
 
Table S5. Multiple regression of temporal population variability against two measures of 
climatic variability, for 16 CTFS–ForestGEO forest plots (F2,13 = 3.19, P = 0.0748, R2 = 
0.329). Temporal population variability was measured as the mean absolute change in species 
abundance per year, with rarefaction to standardize area and the number of individuals, in a 
way that conserved temporal correlations of species abundances (Δ#$%,'). Log-
transformations were applied to all three variables to meet normality and homoscedasticity 
assumptions. 
 

Response variable: Log of mean absolute change in species abundance  
per year (Δ#$%,') 

 Coefficient s.e. P 
Intercept 2.31 0.709 0.00621 

Log of CV of mean monthly temperature  0.308 0.156 0.0694 
Log of CV of total monthly precipitation 0.202 0.654 0.762 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



! 34 

Appendix S5: Further details and results pertaining to simulations of our 
mechanistic model  
 
For each of the 21 CTFS–ForestGEO forest plots except Mudumalai, we fitted a dynamic 
mechanistic model (Danino et al. 2016) to the observed temporal variability in abundances of 
tree species populations (temporal population variability) and the observed cumulative 
distribution function (cdf) of pairwise temporal correlations of abundances of tree species 
populations. The model was fitted to the value of temporal population variability given by eq. 
(1), as applied to the data rarefied according to area and the number of individuals, in a way 
that conserved temporal correlations of species abundances (Appendix S3). We denote this 
metric by Δ#$% (as opposed to Δ#$, which is for the data rarefied according to number of 
individuals only). We did not fit the model to values of temporal population variability given 
by the metric that corrected for different sets of (initial) species abundances among plots 
(Δ#$%,'). This was because Δ#$%,' could only be calculated using simulated data from all 20 
plots simultaneously, and hence would necessitate searching 44820 = 1.06 !1053 parameter 
combinations to find the best-fit models, which would be computationally infeasible. The 
observed and model cdfs of temporal correlations were evaluated at 1,000 equally spaced 
values of temporal correlation ranging from –1 to 1. Time in the model was measured as the 
number of deaths, so when fitting the model to a rarefied dataset for a plot, the length of time 
in between a pair of consecutive censuses in the model was defined as the empirically 
observed number of deaths in between the pair of censuses in the original dataset for the plot 
(before rarefaction), scaled to the number of individuals in the first census of the pair in the 
rarefied dataset. 
 
In a simulation of the model for a tree community in a forest plot, the initial fitness values of 
model species were drawn randomly and independently from a lognormal distribution with 
mean 1 and variance A (or equivalently, the logarithm of the initial value was drawn 
randomly from a normal distribution with mean −0.5ln 1 + :  and variance ln 1 + : ). 
More technically, the “fitness value” of a species was proportional to the relative fecundity of 
the species and hence determined its recruitment rate (see below for further details). We note 
that as A increased, the quantile of the lognormal distribution at the mean increased from 0.5 
and approached 1, such that the expected proportion of species with fitness values above the 
mean decreased from 0.5 and approached 0, representing a smaller expected proportion of 
species benefitting from the prevailing environmental conditions at the expense of the 
remaining species. The fitness values of all species were assumed to vary over time, 
representing changes in environmental conditions. Specifically, at the beginning of each 
discrete model time-step, there was a probability 1/< that the environmental conditions 
changed, resulting in the fitness values of all species being randomly and independently 
redrawn from the lognormal distribution. Thus, < measured the temporal correlation in 
environmental conditions and we assumed that each species had the same distribution of 
possible fitness values – a parsimonious assumption that has often been used in community 
models with changing environmental conditions (e.g., Kalyuzhny et al. 2015; Danino et al. 
2016; Fung et al. 2016; Danino & Shnerb 2018).  
 
After determining whether the environment changed or not in a time-step, an individual was 
randomly chosen to die, with each individual having an equal probability of being chosen. 
This represented species having an equal mortality rate of =. Therefore, the expected length 
of each time-step was 1/>=, or equivalently 1/> generations, where J is the total number of 
individuals at the start of the time-step. The value of J was assumed to change according to 
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the rarefied dataset being fitted to – at the census times, J was set equal to the total number of 
individuals in the rarefied dataset at those times, with linear changes in J in between the 
censuses. After an individual was chosen to die, X replacement individuals were chosen, with 
X chosen to satisfy the changes in J in between censuses (X can be zero). A replacement 
individual was the offspring of an existing individual in the modeled community, 
representing local recruitment. The local recruit was chosen randomly from the pool of local 
recruits produced by all species in the modeled community. Specifically, if there were S 
species and species i had fitness ?) and @) individuals, then the probability of the recruit 
belonging to species i was ?)@)/ ?*@*A

*BC . If the fitness values of all species are fixed to the 
same value, then the model becomes a neutral model, a zero-sum version of which has often 
been used to model forest tree dynamics (Hubbell 2001; Volkov et al. 2003, 2007). 
Therefore, the model we use can be conceptualized as a neutral model parsimoniously 
extended to include temporal fluctuations in environmental conditions (with the resulting 
model being non-neutral).  
 
It can be seen that in the model, changes in environmental conditions acted on the 
recruitment rates of species rather than their mortality rates. This approximation is consistent 
with empirical evidence from two tropical tree communities at the Barro Colorado Island 
(BCI) plot in Panama and the Pasoh plot in peninsular Malaysia. For these communities, 
counting all trees with DBH ≥ 1 cm, the effect of changes in environmental conditions on 
recruitment was found to be about two to three times greater than on mortality, respectively 
(Appendix S1 of Fung et al. (2016)).  
 
For the tree community in each of the 20 forest plots, we performed simulations for all 448 
combinations of 32 values of : and 14 values of <. The values of : were 0, 0.001, 0.002, 
0.004, 0.006, 0.008, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8, 10, 20, 40, 
60, 80, 100, 200, 400, 600, 800 and 1000. The values of < were 1, 10, 25, 50, 75, 100, 250, 
500, 750, 1000, 2500, 5000, 7500, 10000. We note that although there were two fitting 
parameters (A and <), a priori the model was not guaranteed to give good fits. This was 
because the model was mechanistic and the dynamics that it could have produced were 
constrained by the mechanisms built into the model together with the parameter space 
explored. 
 
There were 17 plots with an area greater than 16 ha, and for each of these plots there were 
1,000 rarefied datasets resulting from 1,000 randomly sampled 16 ha sub-areas (Appendix 
S3). For each of the 17 plots, we performed 1,000 simulations for each combination of : 
and!<, corresponding to the 1,000 rarefied datasets. From these simulations, we calculated the 
mean temporal population variability and the mean cdf of pairwise temporal correlations of 
species abundances, and calculated the error as the average of (i) the percentage absolute 
difference between the model and observed temporal population variability and (ii) the 
percentage absolute difference between the model and observed cdf of temporal correlations 
(as described in subsection “Relating temporal population variability to mechanisms 
maintaining species richness” in the Materials and methods section of the main text). Let this 
error be denoted by DC,E,F, where the subscript “1” refers to the one set of 1,000 simulations 
used. In general, the error DE,F from a set of 1,000 simulations is a random variable because 
the simulations are stochastic. However, the variation in this error is small because the error 
is calculated using mean quantities over 1,000 simulations. As described below, we verified 
this small variation in error for 10 of the 17 plots with a good model fit, i.e. the 10 plots with 
at least one combination of : and!< giving DC,E,F < 10% (Table S6). Thus, DC,E,F can be used 
as an approximate measure of the typical error. We also found that one plot (Lenda) had a 
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combination of : and!< giving  DC,E,F very close to 10% (10.1%; Table S6), which we refer to 
as a “marginally good fit”.  
 
There were three plots with area 16 ha, and for each of these plots there was only one rarefied 
dataset, because there was no need to randomly sample 16 ha sub-areas (Appendix S3). For 
each of these three plots, it is possible to perform one simulation for each combination of : 
and!<, corresponding to the single rarefied dataset, and then calculate the error DC,E,F. 
However, the variation in DE,F is no longer small because it is calculated using only one 
simulation. Thus, DC,E,F cannot be used as an approximate measure of the typical error. So 
instead, for each of the three plots and each combination of : and!<, we ran 1,000 simulations 
for the rarefied dataset, to produce a distribution of realized errors (i.e., realized values of 
DE,F). We then used the median of these realized errors, D*IJ,E,F, as a measure of the typical 
error. Thus, for a particular combination of : and!<, if simulations for a plot have D*IJ,E,F <
10%, then this was considered to represent a good model fit. We found that one of the three 
plots (Palanan) had at least one combination of : and!< giving D*IJ,E,F < 10% (Table S6), and 
one plot (Luquillo) had a combination giving  D*IJ,E,F very close to 10% (10.5%; Table S6), 
i.e. a marginally good fit.  
 
Fig. S13 shows the temporal population variability from the model for all 20 plots, across all 
combinations of : and!<. For the 17 plots with area greater than 16 ha, the temporal 
population variability plotted is the mean value of Δ#$%,' across the 1,000 simulations using 
1,000 rarefied datasets. For the three plots with area 16 ha, the variability plotted is the 
median value of Δ#$%,' across the 1,000 simulations for one rarefied dataset. Fig. S14 shows 
the cdfs of temporal correlations from the model for two plots, for combinations of : and!< 
minimizing the typical error. 
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Table S6. For the dynamic mechanistic model that we fitted to tree census data from each of 20 CTFS–ForestGEO plots, this table shows the 
minimum value of the error metric across all combinations of model parameter values tested. This error metric is the average of the percentage 
absolute error in temporal population variability and the percentage absolute error in the cumulative distribution function (cdf) of temporal 
correlations of species abundances from the model (corresponding to !",$,% for the 17 plots with area greater than 16 ha and !&'(,$,% for the three 
plots with area 16 ha; see text in Appendix S5 for details). The modeled and observed temporal population variability corresponding to the 
minimum value of the error metric are also shown, together with the percentage error in the modeled temporal population variability and the 
percentage error in the cdf of temporal correlations of species abundances from the model. SCBI and SERC stand for Smithsonian Conservation 
Biology Institute and Smithsonian Environmental Research Center, respectively. 
 

Forest plot Average of % absolute 
errors in modeled 

temporal population 
variability and cdf 

Modeled temporal 
population variability 

(yr-1) 

Observed temporal 
population variability 

(yr-1) 

% error in modeled 
temporal population 

variability 

% error in modeled cdf 
of temporal 

correlations of species 
abundances 

Barro Colorado Island 3.125 % 0.891 0.898 –0.827 % 5.424 % 
Changbaishan 2.217 % 3.139 3.124 0.472 % 3.962 % 

Edoro 2.098 % 0.497 0.497 –0.079 % 4.117 % 
Fushan 1.798 % 2.422 2.429 –0.297 % 3.298 % 

Gutianshan 17.488 % 3.077 3.244 –5.146 % 29.830 % 
Huai Kha Khaeng 2.263 % 2.604 2.610 –0.235 % 4.291 % 

Khao Chong 2.654 % 0.376 0.376 –0.076 % 5.232 % 
Korup 0.824 % 0.291 0.286 1.640 % 0.009 % 

La Planada 0.611 % 1.404 1.407 –0.212 % 1.010 % 
Lambir 12.612 % 0.237 0.193 23.011 % 2.213 % 
Lenda 10.071 % 0.358 0.359 –0.394 % 19.748 % 

Luquillo 10.542 % 8.444 8.761 –3.616 % 17.469 % 
Mo Singto 1.561 % 0.976 0.969 0.753 % 2.369 % 
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Palanan 5.051 % 1.193 1.219 –2.160 % 7.942 % 
Pasoh 14.203 % 0.321 0.281 14.064 % 14.342 % 
SCBI 6.661 % 10.348 10.396 –0.465 % 12.858 % 
SERC 11.277 % 4.000 4.441 –9.932 % 12.622 % 

Sinharaja 121.098 % 0.574 0.419 37.075 % 205.121 % 
Wabikon 14.249% 12.445 12.454 –0.069 % 28.428 % 
Yasuni 17.667 % 0.196 0.148 32.389 % 2.943 % 
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Figure S13. Values of temporal population variability ( Δ"#$) produced by the mechanistic 
model for each plot, across different combinations of two parameter values. The two 
parameters are: the variance of the lognormal distribution of possible fitness values for each 
model species (A) and the correlation time determining how frequently the fitness values of 
all species were redrawn due to changes in environmental conditions (%, given in the figure as 
the absolute number of discrete model time-steps). The plots are ordered from left to right 
according to increasing absolute latitude.  
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Figure S14. Cumulative distribution functions (cdfs) of temporal correlations of species 
abundances from the models for two plots, using the parameter values minimizing the error 
(&',),*; see text in Appendix S5 for details). For each plot, the model cdf shown was 
calculated as the average of 1,000 model cdfs derived by simulating the model using data 
from 1,000 rarefied datasets. The empirical cdf shown was calculated as the average of the 
1,000 empirical cdfs from the 1,000 rarefied datasets.  
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We assessed the error in our model according to two observed quantities, which were the 
observed temporal population variability and the observed cdf of temporal correlations. 
These two quantities were captured in the error metric that we used (&',),* for the 17 plots 
with area greater than 16 ha and &+,-,),* for the three plots with area 16 ha), as described 
above. Values of this error metric across the different combinations of . and/% indicated that 
for each of the 11 plots with good model fits (as defined above), there was a combination of 
. and/% that minimized the error, but that there were often multiple combinations giving 
similar errors (Figs. S15 and S16). This was partly because the model produced similar 
values of the mean temporal population variability for multiple combinations of . and/% (Fig. 
S13). Therefore, when examining which parameter regime the fitted model for a plot lies 
within, it was instructive to examine not only the combination of . and/% minimizing the 
error for a plot, but also the combinations of . and/% that gave errors close to the minimum. 
We determined such combinations of . and/% for the 11 plots for which the model gave good 
fits. An issue here is how to quantify the similarity of errors produced by two combinations 
of . and/%. If we had the likelihood of the model producing the observed quantities with a 
given combination of . and/%, we would be able to use the likelihood ratio to assess the 
relative error from two combinations of . and/%. A likelihood ratio of 1/4 corresponds to an 
absolute AIC difference of 2.77, which can be used to indicate that two models are 
considerably different (Burnham and Anderson, 2002). In principle, our model was able to 
produce the observed quantities for any combination of . and/%, but in practice this was 
extremely unlikely. Thus, it was not feasible to estimate this likelihood numerically. So 
instead of using the likelihood, which is the probability of the model producing zero error for 
a combination of . and/%, we used the probability of the model producing an error below a 
small non-zero threshold for a combination of . and/%; we denote this threshold by 0. 
 
Specifically, 10 of the 11 plots for which the model gave good fits had an area greater than 16 
ha, and for each of these 10 plots, we first extracted the 20 combinations of . and/% with the 
smallest errors, as measured by &',),*. For each of these 20 combinations, we ran a further 99 
sets of 1,000 simulations, resulting in 100 sets of 1,000 simulations overall and a distribution 
of 100 realized errors (realized values of the random variable &),*). Out of the 20 
combinations, we determined the combination with the smallest median error, 0 =
min),* &+,-,),* /. By definition, this combination produced errors that were below 0 50% of 
the time (i.e., the probability of producing errors below 0 is 0.5). Then following the method 
described in the previous paragraph, any of the other 19 combinations that produced errors 
below 0 between 12.5% and 50% of the time (the lower limit of 12.5% produced a lower 
limit for the probability ratio of 1/4) was considered to produce errors that were “similar” to 
the combination with the smallest median error. We found that for each of the 10 plots, (1) at 
least one of the 20 combinations produced errors below 0 less than 12.5% of the time, that is, 
produced errors that were not similar to the combination with the smallest median error; and 
(2) there was small variation in the errors for each of the 20 parameter combinations – for the 
10 plots, the average standard deviation of the 100 realized errors across the 20 parameter 
combinations was only 0.078–1.70%. Together, (1) and (2) indicated that the remaining 428 
combinations of . and/% (which have larger &',),*) also produces errors that are not similar to 
the combination with the smallest median error. Thus, we regarded these 428 combinations as 
producing errors that are not similar to the combination with the smallest median error. The 
remaining plot for which the model gave good fits had an area of 16 ha. For this remaining 
plot, we considered all combinations of/. and/% and determined the combination with the 
smallest median error, 0. Afterwards, we again considered the combinations of . and/% that 
produced errors below 0 12.5–50% of the time as giving errors similar to the combination 
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with the smallest median error. For the two plots (Lenda and Luquillo) with marginally good 
model fits, we repeated the analyses described for the 11 plots with good model fits. 
 
For the 11 plots with good model fits, Fig. 5 in the main text and Fig. S17 in this Appendix 
show the mean number of extinctions predicted by the model, for all combinations of A and 
%. For the 10 plots with area greater than 16 ha, the mean number of extinctions for each 
parameter combination was calculated by performing 100 simulations (each lasting a time 
period corresponding to the full census period plus an additional 2×109 time-steps) using 
100 rarefied datasets, and then taking the mean number of extinctions over the 100 
simulations. For the single plot with an area of 16 ha, there was only one rarefied dataset, so 
the mean number of extinctions for each parameter combination was calculated by 
performing 100 simulations with the same rarefied dataset, and then taking the mean number 
of extinctions over the 100 simulations. In Fig. S17, we also show the mean number of 
extinctions for the two plots with marginally good model fits. On Figs. 5 and S17, we 
highlight the combinations of A and % that produced errors below 0 (smallest median error) 
12.5–50% of the time. We considered all these “best-fit combinations” when determining 
which parameter regime a plot occupies, in the sense of how the mean number of extinctions 
changes with the two parameters when starting from a parameter combination. More 
specifically, the parameter regime a plot occupies was determined by considering how the 
mean number of extinctions generally changes with the two parameters when starting from 
the best-fit combinations, with each combination weighted by its probability of producing an 
error below 0. So, for example, we determined the Palanan plot as occupying the parameter 
regime in the top-left quadrant of the parameter space explored, whereby the mean number of 
extinctions decreases with A but increases with %. We note that the best-fit combinations of A 
and % often lie near or at the boundary of the 2-D parameter space explored (Figs. 5 and S17). 
This suggests that if we extrapolate the parameter region of low model error (brightest 
regions in Fig. S15) to outside the parameter space explored, then we would find new 
parameter combinations that give similar or even lower errors than the combinations in the 
parameter space explored. However, such extrapolation would likely not change the 
parameter regime occupied by the best-fit combinations. For example, for the BCI plot, there 
was a line of low model error that extends to the top-left corner of the parameter space 
explored (Fig. 15), such that following the line outside of this parameter space would likely 
still give best-fit combinations occupying the parameter regime where increasing A would 
increase the mean number of extinctions and increasing % would decrease the mean number 
of extinctions (Fig. S17). Therefore, we expect that our interpretation of which parameter 
regime a plot occupies is robust to exploration of a larger parameter space. We had already 
explored a large parameter space whereby A (the variance of the lognormal distribution of 
fitnesses) varies over three orders of magnitude and % (the correlation time of environmental 
conditions) varies over four orders of magnitude. Therefore, parameter combinations outside 
of this space could be biologically infeasible. Future work is required to assess the biological 
feasibility of the parameter space for our model, which would help to constrain the best-fit 
combinations and further improve interpretation of model results.  
 
Fig. S18 is the same as Figs. 5 and S17, except for the mean proportion of extinctions 
(proportion of initial number of species that go extinct) predicted by the model instead of the 
mean number of extinctions. Trends in the mean proportion of extinctions are the same as 
those for the mean number of extinctions, but on a standardized scale of 0–1.  
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Figure S15. Error (with respect to temporal population variability and temporal correlations 
of species abundances) from simulations of a dynamic, mechanistic model for 13 of the 
CTFS–ForestGEO forest plots considered in this study. Each panel shows the logarithm of 
the error (&',),* for the 11 plots with area greater than 16 ha and &+,-,),* for the two plots with 
area 16 ha; see text in Appendix S5 for details) for different combinations of values of two 
key model parameters: the variance of the lognormal distribution of possible fitness values 
for each model species (A) and the correlation time determining how frequently the fitness 
values were redrawn due to changes in environmental conditions (%) (see Fig. 3). 11 of the 13 
plots have at least one parameter combination giving an error < 10% (plots with “good model 
fits”), whereas the remaining two plots (Lenda and Luquillo) have one parameter 
combination giving an error within 0.5% of 10% (plots with “marginally good model fits”). 
For each plot, the combination of parameter values giving the smallest median (typical) error, 
0, is marked with a yellow dot. Combinations of parameter values producing errors below 0 
25%–50% of the time are marked with orange dots, whereas combinations of parameter 
values producing errors below 0 12.5%–25% of the time are marked with brown dots. 
Together, these are the “best-fit combinations” (see text in Appendix S5 for details). The 
plots are ordered (from left to right) in order of ascending absolute latitude: La Planada 
(1.16°N), Lenda (1.31°N), Edoro (1.56°N), Korup (5.07°N), Khao Chong (7.54°N), BCI 
(9.15°N), Mo Singto (14.4°N), HKK (Huai Kha Khaeng; 15.6°N), Palanan (17.0°N), 
Luquillo (18.3°N), Fushan (24.8°N), SCBI (38.9°N) and Changbaishan (42.5°N).  
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Figure S16. Same as Fig. S15, except using 2-D graphs instead of a heat map. The 2-D 
graphs make it easier to see that the error for each plot reaches a minimum value across the 
parameter combinations examined.  
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Figure S17. Predicted mean number of extinctions (different colors) from simulations of a 
dynamic, mechanistic model for nine of the CTFS–ForestGEO forest plots considered in this 
study. Each panel shows the predicted mean number of extinctions for different combinations 
of values of two key model parameters: the variance of the lognormal distribution of possible 
fitness values for each model species (A) and the correlation time determining how frequently 
the fitness values were redrawn due to changes in environmental conditions (%) (see Fig. 3). 
For each plot, the combination of parameter values giving the smallest median (typical) error 
(with respect to the temporal population variability and temporal correlations of species 
abundances), 0, is marked with a yellow dot. Combinations of parameter values producing 
errors below 0 25%–50% of the time are marked with orange dots, whereas combinations of 
parameter values producing errors below 0 12.5%–25% of the time are marked with brown 
dots. Together, these are the “best-fit combinations” (see text in Appendix S5 for details). 
The plots are ordered (from left to right) in order of ascending absolute latitude: La Planada 
(1.16°N), Lenda (1.31°N), Korup (5.07°N), Khao Chong (7.54°N), Mo Singto (14.4°N), 
HKK (Huai Kha Khaeng; 15.6°N), Palanan (17.0°N), Luquillo (18.3°N) and Changbaishan 
(42.5°N). 
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Figure S18. Same as Figs. 5 and S17, except for the predicted mean proportion of extinctions 
instead of the predicted mean number of extinctions. 
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