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Abstract

1. Living in social groups could influence the evolution of senescence and longevity by affecting

key life history parameters such as extrinsic mortality and the cost of reproduction. For example,

a decrease in extrinsic mortality as a result of social life is predicted to lead to the evolution of

increased longevity. 

2. We argue that benefits of social life in terms of increased survival are common only in species

in which life in large groups is already the norm, most likely because these species have adapted

to depend on social groups. By contrast, species with smaller social groups tend to show no clear

association between survival and social group size. 

3. This lack of a consistent benefit of social life on survival casts doubt on the idea that extended

longevity  should  follow  the  evolution  of  sociality.  In  line  with  this,  most  rigorous  cross-

taxonomic studies failed to find an association between sociality and longevity, suggesting that a

social mode of life does not systematically lead to the evolution of extended longevity. 

4. The only effect of sociality on longevity that has been convincingly demonstrated is increased

longevity  in  high-ranking  individuals  from  co-operatively  breeding  vertebrates  and  social

insects, who benefit from the protection and support of their non-breeding helpers. In contrast,

helpers in these species usually do not show evidence of increased longevity, with the exception

of  naked  mole  rats  where  both  breeders  and  helpers  live  much  longer  than  related  solitary

species.  

5. Where long-lived phenotypes exist in highly social species, such as social insect queens and

naked mole rats, the scale of longevity increase is often striking. The means by which increased

longevity is achieved are still poorly understood, but both social and physiological mechanisms

are involved in reducing the burden of disease, including cancer, thus increasing the chances of
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surviving to old age. 
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Thoughts on sociality and longevity are pervasive in human consciousness because of our strong

social bonds and our fear of death. Furthermore, we understand that sociality and longevity are

linked, because we inherently recognise the risks that social isolation poses to a long and healthy

life. What is less widely appreciated is that sociality and longevity may not only affect each-

other  at  the  scale  of  an  individual's  life,  but  also  throughout  the  evolution  of  species.  For

example, because our species is both social and long-lived relative to most other mammals, it has

been proposed that our longevity may be due at least in part to our social mode of life (Carey &

Judge  2001,  Hill  &  Kaplan  1999).  This  realisation  has  led  to  a  wealth  of  theoretical  and

empirical research to better understand the co-evolution of longevity and social life. 

Sociality and longevity are key aspects of the life history of a species (Bourke 2007, Kirkwood

& Holliday 1979). Because of this, each can affect the evolution of the other either directly or

indirectly through the social environment, leading to the proposal of a wide range of interacting

and non-mutually exclusive selective forces causally linking the two.  The first section of this

review will give a brief overview of the three main ways in which sociality may extend longevity

and, in turn, how longevity may promote sociality. 

The large interspecific variation in social behaviour found in the animal kingdom, ranging from

simple  allo-parental  care  to  colonies  of  millions  of  cooperative  individuals,  provides  ample

opportunity to test the association between longevity and social life. Within-species studies can

be used to understand the costs and benefits of sociality, and thus how longevity is expected to

evolve in a social context, while inter-specific comparisons can address whether the predicted

evolutionary trends are indeed observed. In the second part of this review, we draw from both

intra- and inter-specific studies to explore the empirical evidence for the predicted associations

between sociality and longevity.

Because longevity can be extremely plastic, with increases greater than tenfold being associated

with  the  evolution  of  social  life  (Keller  &  Genoud  1997),  this  raises  the  question  of  the
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mechanisms regulating longevity and whether a better understanding of them could have medical

applications. For example, some social mammals have apparently developed effective ways of

evading cancer, attracting widespread attention (Edrey et al. 2011). The final part of this review

will therefore summarise what is known about these longevity-extending mechanisms in highly

social species. 

1 Why should longevity be associated with sociality?

Extrinsic mortality

The first reason why sociality could affect longevity is that social life may reduce the rate of

extrinsic mortality, that is, mortality due to external factors such as disease or predators. True

extrinsic  mortality  is  extremely  difficult  to  measure  because  it  cannot  be disentangled  from

internal  factors  such  as  frailty  that  increase  vulnerability  to  external  factors  like  predation.

Nevertheless, the fact that mortality never reaches zero, regardless of the amount of investment

into  body maintenance  and survival,  is  fundamental  to  the  evolution  of  senescence.  This  is

because  elevated  mortality  decreases  average  life  expectancy,  thus  providing lower selective

pressure to remain fit and healthy up to an age which very few individuals reach and where a

substantial amount of reproduction has already been achieved (Hamilton 1966, Medawar 1952,

Williams 1957). It broadly follows that low extrinsic mortality should favour the evolution of

decreased rates of senescence (although this has been debated, see Box 1), a prediction which

has  been  largely  supported  by  cross-species  studies  (Gaillard  &  Lemaître  2017).  The  age-

associated  decline  described  by  the  term  “senescence”  can  refer  to  different  functions  or

components  of  fitness,  such as  immunity,  fertility  and survival.  Thus,  all  other  things  being

equal,  lower  extrinsic  mortality  leading  to  slower  senescence  in  survival  will  also  result  in

greater longevity. Most arguments concerning ecological correlates of longevity therefore focus

on the consequences of those correlates on extrinsic mortality. For example, flight, fossoriality

and the possession of natural  protective  armour are  predicted  to  lead to  increased  longevity
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because  they  reduce  predation  risk  (Healy  et  al.  2014,  Williams  1957).  To  understand  how

sociality affects the evolution of longevity, it is therefore crucial to understand how it affects

extrinsic mortality. 

The predicted costs and benefits of sociality in terms of extrinsic mortality largely depend on the

nature of the social group. Groups that are little more than aggregations of individuals primarily

offer  protection  from predation  by  reducing  the  probability  of  being  targeted  by  a  predator

(Hamilton  1971).  More  cooperative  social  groups further  provide  benefits  through improved

foraging  efficiency  and  resource  defence  (Alexander  1974,  Wrangham  1980),  reducing  the

chances  of  starvation.  Dominant  breeders  will  particularly  benefit  from  cooperative  social

groups, as the help they receive in rearing their young can reduce their energetic burden and

extend  their  life  (Crick  1992).  Thus,  the  greatest  extensions  to  longevity  should  be  seen  in

breeders  of  species  with high  levels  of  cooperative  brood care  and reproductive  division of

labour (“eusocial” species), while workers in these species, which bear the burden of work and

colony defence, may have substantially shorter lives. However, group living also incurs costs

through competition among group members and exposure to infectious diseases by social contact

(Alexander  1974).  Thus,  the  balance  of  costs  and  benefits  provided  by  group  living  will

determine its effects on longevity and the expected direction of this relationship is not clear  a

priori.

Species pace of life and life-history trade-offs

The second reason why longevity might be associated with sociality is that social life may slow

the rate of development and delay the age of first reproduction. Because of the trade-off between

growth, reproduction and longevity (Lemaître et al. 2015), this slowing of the pace of life could

lead to increased longevity. Delayed reproduction is particularly likely to apply to cooperative

breeders,  where  young  adults  may  become  helpers  while  queuing  for  a  breeding  position

(Downing et al. 2015), but could also apply in dense colonies where breeding opportunities are
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limited  (Møller 2006). Importantly,  the slowing of the pace of life is intrinsically linked to a

reduction in extrinsic mortality, since delaying maturity is not a viable strategy if high mortality

rates prevent most individuals from reaching the age of reproduction. Another process affecting

the trade-off between reproduction and longevity may apply in breeders of cooperative breeding

species, where the energetic allocation needed for reproduction is reduced because of the work

provided by helpers  (Berger et al. 2015, Berger et al. 2018). Breeders are then able to allocate

more resources to survival and body maintenance, thereby promoting their longevity.  

Kin selection

The  third  reason  why  longevity  may  be  associated  with  sociality  is  that  sociality  is  often

associated with preferential  interactions  between kin  (Bourke 2007).  As a result,  life  history

evolution will be influenced by inclusive fitness effects, as the length of an individual's life may

positively or negatively affect the fitness of its relatives, creating additional selective pressures

on  longevity  (Bourke  2007).  For  example,  in  the  case  of  parental  care,  the  dependence  of

offspring on their parents may create pressures to extend parental life to ensure offspring survival

(Pavard et al. 2007), and will shape the age-dependent mortality pattern (Lee 2003). 

Kin  selection  pressures  may  also  lead  to  reduced  longevity  of  workers  in  eusocial  species

because workers obtain inclusive fitness by helping to raise the brood of relatives without having

to wait to reach reproductive maturity. This means that workers begin to accrue inclusive fitness

(through helping) at a younger age than queens or individuals in solitary species. Since the age at

which  individuals  begin  to  accrue  fitness  is  theoretically  linked  to  the  start  of  senescence

(Hamilton 1966), helping at a young age could lead to a reduction in longevity (Alexander et al.

1991, Bourke 2007). Effectively, the early accrual of inclusive fitness accelerates the workers'

pace of life. 
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Longevity may promote sociality

While sociality  is expected to influence the evolution of longevity for the reasons presented

above, it is also possible that variation in longevity can affect the evolution of sociality (Ross et

al. 2015). This is because cooperation is most likely to occur between kin, and kin are more

likely  to interact  in a context  of extended parental  care,  particularly  when overlapping adult

generations allow parents and their adult offspring to co-habit (Carey 2001). Extended parental

care and overlapping adult generations require long-lived parents, and longevity therefore creates

more  opportunities  for  cooperative  interactions  between  kin.  Furthermore,  in  habitats  where

breeding sites become available only after the death of existing breeders, extended longevity

may lead to higher population density and saturation of breeding opportunities, further selecting

for young adults to stay in their parental nest and care for their siblings (Arnold & Owens 1998). 

The evolutionary processes described in this section are likely to interact in complex ways (Fig.

1), and the reciprocal causality between longevity and sociality could create a self-reinforcing

cycle  whereby  longevity  promotes  sociality,  which  in  turn  promotes  further  increases  in

longevity  (Carey & Judge 2001). For example,  sociality could reduce extrinsic mortality and

extend life, leading to increased overlap of generations and higher levels of parental care, which

could then favour the evolution of delayed reproduction, a slower pace of life and further delay

of senescence.  These various causal relationships between longevity and sociality  complicate

analyses of the influence of sociality on longevity, requiring to either disentangle the direction of

causality or critically evaluate the most likely interpretation where a significant correlation is

found.  Since  it  is  rarely  possible  to  distinguish  between  the  different  possible  causal

relationships, in Section 2 we will focus on two main questions. Firstly, whether there is any

evidence within species that extrinsic mortality is reduced by social life, either in terms of group

size or social connectedness. Second, whether there is evidence at the inter-specific level that

sociality influences the evolution of longevity.
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Box 1:

The concept that increased extrinsic mortality should necessarily lead to faster senescence

has been the subject of valid criticisms (Abrams 1993, Moorad et al. 2019). The argument is

that increased extrinsic mortality will not only reduce survival, but also reduce population

growth, which has an opposite effect on the evolution of senescence and cancels out the

effect  of  reduced  survival.  As  shown  by Abrams  (1993),  one  way  in  which  increased

extrinsic mortality can occur without affecting population growth is if elevated death rate

is  accompanied by a higher rate of fertility  (or recruitment of adults into the breeding

population). Reduced extrinsic mortality in social species could therefore lead to a slowing

of senescence if the developmental period is extended, or if fertility is reduced compared to

solitary species. A special case applies to cooperative breeders where dominant breeders

but not subordinate helpers have reduced extrinsic  mortality.  In this case,  the effect of

mortality on the growth rate of the “population” of breeders should be balanced by the

rate of recruitment to the dominant position, rather than by the overall fertility rate. For

example,  in  a  system  where  breeders  are  replaced  after  their  death,  the  breeder

recruitment rate is  effectively  equal to the breeder death rate,  and thus a reduction in

extrinsic breeder mortality is compensated by reduced recruitment. This could allow the

evolution of a plastic system of reduced senescence for individuals attaining the breeding

position. In species such as ants and honeybees, where reproductive roles are determined

during development, the recruitment rate of queens is low compared to workers due to

fewer brood developing as  queens  and /  or a  high death  rate  of  queens  at  the  colony

founding stage. This means that the low extrinsic mortality of established queens does not

translate to a higher growth rate in the “population” of queens compared to workers. Thus,

the lower extrinsic mortality of queens could create selective pressure for their extended

longevity. 

2 Is longevity associated with sociality?

Intraspecific studies of sociality and survival

As we have seen, delayed senescence and extended longevity in social species could evolve if

social  life  leads to reduced extrinsic mortality.  An important  question to address is  therefore

whether individuals in larger groups or with more social partners do indeed live longer than more

solitary individuals. Several studies have investigated how intraspecific variation in longevity is

9

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186



associated with various measures of sociality, such as the size of the social group or the number

of  group  members  with  which  individuals  interact.  Overall,  these  studies  found  benefits  of

increased  group size on survival  in  species  living in  relatively  large  groups,  suggesting  that

sociality may be primarily important for longevity in species that have already adopted a social

mode of life. In our own species, there is a strong association between sociality and the rate of

survival  that  is  consistent  across  age  and  gender  (Holt-Lunstad  et  al.  2010),  and  social

integration has been shown to be associated with a wide range of health benefits such as reduced

obesity, hypertension and inflammation  (Yang et al. 2016), as well as improved mental well-

being (Kawachi & Berkman 2001). Much like the dependence on parental care that has evolved

in many species, we have evolved to become partly dependent on the social networks that are

typically part of our environment.

A similar  picture  emerges  from  studies  in  insects  and  vertebrates,  where  species  living  in

relatively large groups are typically characterized by a positive association between the size of

the social group and either longevity or adult mortality (Supplementary Table 1). In carpenter

ants and the termite Nasutitermes aquilinus, workers isolated from their colonies survive longer

when kept together in larger numbers (Koto et al. 2015, Miramontes & DeSouza 1996). In rhesus

macaques, which live in large groups of dozens or hundreds of individuals, young females with

larger family social networks have higher survival rates than those with smaller networks (Brent

et al. 2017). Similarly, in a group of chacma baboons with a mean group size of 27 over the study

period,  stronger  and more stable  relationships  were associated  with greater  female longevity

(Silk et al. 2010), and in yellow baboons (where the mean group size has been reported as 39

individuals,  Samuels  & Altmann 1991),  social  connectedness  was positively  associated  with

survival  (Archie et al. 2014). In a population of bighorn sheep, with mean group sizes of 21

females or 19 males, social network centrality (a measure of the number of social connections)

was positively correlated with survival  (Vander Wal et al. 2015). In killer whales, measures of

social  network  centrality  were  also  positively  correlated  with  survival  in  males,  but  not  in
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females  (Ellis et al. 2017). The study was in a socially inter-connected population of 71 - 98

individuals,  which formed temporary  and changing groups with a mean size of  2.5.  In  blue

monkeys,  where mean group size was around 14, female  survival  was higher  in  individuals

whose social  bonds were weak but consistent between years, emphasising the importance of

stability in an individual's social network  (Thompson & Cords 2018). Group size is positively

correlated with survival in meerkats, where the median group size was 7-11 individuals (Clutton-

Brock et al. 1999), and dwarf mongooses, where the mean group size was 9 individuals (Rood

1990). An experiment releasing prairie dogs in groups of 10 to 60 individuals found that survival

was higher in larger groups, although only in the first few months after release (Robinette et al.

1995). In birds, positive effects of group size on survival have been found in lesser kestrels,

where group size ranged from one to 43 breeding pairs  (Serrano et al. 2005), cliff swallows,

where the mean colony size was 363 (Brown & Brown 2004) and weaver birds, where colony

sizes range from 10 to 200 individuals (Brown et al. 2003). The positive effects of sociality on

longevity in species with large social groups may be a result of these species having adapted to

life in social groups and thus requiring social interactions as part of their optimal environment. 

In contrast,  studies that  have found little  association  between group size and longevity  have

tended to be in species with smaller groups than those described above, perhaps because these

species  are  less  dependent  on social  groups for  survival.  There was no association  between

mortality and group size in degus (Hayes et al. 2009), African wild dogs (Gusset & Macdonald

2010) and Pallas’s mastiff bats (Gager et al. 2016), three species with a mean group size of 6-8,

and there was a negative association with group size in Seychelles Warblers, where group sizes

ranged  from 1  to  6  (Brouwer  et  al.  2006).  In  a  study of  social  networks  in  yellow-bellied

marmots (mean group size of 6.4), five of the 11 studied measures of sociality were negatively

correlated with longevity, while none were positively correlated  (Blumstein et al. 2018). Rock

hyraxes provide a slight exception to the trend, with longevity being negatively correlated with

group size and uncorrelated with an individual's position in the social network  (Barocas et al.
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2011), yet the mean group size of 14 is in the range of those found in the species where sociality

and longevity are correlated. 

The 20 studies presented above do not provide a sufficiently large and uniform dataset (in terms

of dependent and independent variables) for rigorous statistical testing. However, a crude non-

parametric test does reveal that species in which a positive correlation between sociality and

survival  was  found  tend  to  live  in  larger  groups  than  species  where  this  was  not  the  case

(Wilcoxon rank sum test, W = 82, P = 0.001, see Supplementary Table S1 for details of test). 

There are also several examples of cooperative-breeding species where dominant breeders live

longer or senesce more slowly in the presence of helpers at the nest  (Berger et al. 2018, Crick

1992, Paquet et al. 2015). However, where only the length of the breeders' life is considered, it

may not be social life  per se that increases longevity, but rather the presence at the top of the

social hierarchy.  

Inter-specific studies of sociality and longevity

Testing  whether  sociality  affects  longevity  over  evolutionary  time is  possible  by conducting

interspecific  comparisons  (Supplementary  Table  2),  ideally  accounting  for  phylogenetic  non-

independence  of  species  and  controlling for  confounding  factors  that  are  known  to  affect

longevity  (e.g.,  body  size,  which  is  associated  with  longevity  following  an  allometric

relationship, Peters 1983). 

A difficulty of comparative studies is that there is no consensus on how the longevity and the

level of sociality of a species should be defined. To fully account for the age-dependence in

survival rates, the best metrics for longevity are those based on demographic data, such as the

rate or age of onset of senescence (Jones et al. 2008), but such data are often unavailable as they

require detailed records from a large number of individuals in a population. Many studies have

used adult mortality rates as a proxy, but this measure conflates intrinsic and extrinsic mortality,

meaning that sociality might be associated with reduced mortality because of direct protection
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from predators rather than through its effects on senescence. An alternative measure of longevity

to the rate of mortality is the maximum recorded lifespan, which intuitively should indicate how

long an individual can live in ideal conditions. The main drawback of this measure is that it is

correlated with sampling effort,  since a larger  dataset  is likely to contain a larger  maximum

recorded lifespan (Moorad et al. 2012), making it important for studies of maximum lifespan to

control for sampling effort. 

One possible measure of sociality is group size. While this is relatively crude, it is nevertheless

an informative measure because solitary species are less social than species forming breeding

pairs, which are less social than species living in groups. Also, within a given social mode of life,

the size of the social group is likely to indicate the level of dependence on sociality. For example,

an ant species with a colony size of several thousand workers is likely to be more reliant on these

helpers than a species with just a handful of helpers.  

In mammals and birds, there is little evidence that larger group size leads to the evolution of

longer life, with only one taxon, out of the seven for which we found information, showing a

positive association between group size and longevity. While a study of 100 bovid species found

a positive  correlation  between longevity  and group size  (Bro-Jørgensen 2012), there was no

significant correlation in bats  (Wilkinson & South 2002), primates or rodents  (Kamilar et  al.

2010).  Moreover,  there  was  a  negative  association  between  longevity  and  group  size  in

artiodactyls  (Kamilar  et  al.  2010). Overall,  an analysis combining 253 species from multiple

order of mammals, controlling for phylogeny and other factors such as body size, found that

there was overall no effect of group size on longevity (Kamilar et al. 2010). Similarly, in birds, a

study controlling for body size, phylogeny and sampling effort, found no effect of colony size on

maximum longevity (Møller 2006). 

Another measure of the level of sociality is to categorise species according to their social mode

of  life,  usually  comparing  cooperative  breeders,  where  some  individuals  temporarily  or
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permanently forgo reproduction to help raise the brood of others, with other species such as

colonial or solitary breeders. The most extreme levels of cooperative brood care and reproductive

division  of  labour,  including  permanently  sterile  helpers,  are  found among  eusocial  insects,

where the queens can be extremely long-lived (up to 30 years in some species,  Keller 1998).

Early work showed that the evolution of eusociality in insects was accompanied by a 100-fold

increase in lifespan  (Keller & Genoud 1997). This increase specifically relates to social insect

queens,  since workers have considerably shorter lives.  In honeybees,  for example,  while  the

queen can  live  several  years,  workers  live  only a  few weeks (or  a  few months  when over-

wintering),  a value much more in line with the longevity of solitary species.  This difference

between queens and workers makes it likely that eusociality promoted queen longevity rather

than the converse, since the social differentiation between queens and worker must first exist

before  longevity  differences  can appear  between them.  The effects  of  eusociality  on worker

longevity have never been formally studied, but a cross-species study of queen and worker ants

revealed no correlation between colony size and worker lifespan, while the lifespan of queens

increased  slightly  with  colony  size  (Kramer  &  Schaible  2013).  It  would  be  interesting  to

compare the longevity of social insect workers to solitary species while controlling statistically

for the fossorial mode of life in ants and termites, since fossoriality itself could be associated

with increased longevity due to increased protection from predators. In the meantime, it appears

that  the  longevity  benefits  of  eusociality  primarily  apply  to  queens,  rather  than  to  eusocial

species as a whole.  

In  wasps,  few  data  on  longevity  are  available,  making  rigorous  tests  difficult.  One  study

investigated  the  association  of  sociality  with  wasp  longevity  and  found  that,  as  in  ants,

honeybees and termites, queens live longer than workers (Toth et al. 2016). A limitation of this

study, however, is that many estimates of wasp longevity come from the field. Because workers

spend much more time  foraging than  queens,  they  are exposed to  higher  levels  of  extrinsic

mortality, which confounds measurements of longevity. Notwithstanding this limitation, worker
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lifespan was found to decrease with colony size (Toth et al. 2016), again suggesting that sociality

selectively  favours  increased  queen  longevity  rather  than  the  longevity  of  workers.  To  our

knowledge, there is not yet any study on the association between level of sociality and longevity

in bees, which would be an interesting group given their extensive variation in levels of sociality.

However, as with wasps, the difficulty of keeping most species in captivity makes it difficult to

obtain estimates of longevity unaffected by predation.

In birds, there have been conflicting results, but the most rigorous studies indicate a lack of

association between longevity and sociality. Two phylogenetically-controlled studies have found

a  negative  association  between  the  extent  of  cooperative  breeding  and  mortality,  initially

suggesting that sociality may promote longevity (Arnold & Owens 1998, Downing et al. 2015).

However, both studies looked at adult mortality / survival rates, rather than maximum longevity.

Furthermore,  both studies found evidence that it  was high survival that favoured cooperative

breeding, rather than cooperative breeding leading to increased survival. The study by Arnold &

Owens (1998) found that families with high proportions of cooperative species had low mortality

rates even in non-cooperative species, suggesting that low rates of mortality in a family increases

the chances that a species in that family adopts a social mode of life. Similarly, the study by

Downing et al. (2015) mapped cooperative breeding and survival onto a phylogeny and found

that cooperative breeding was more likely to evolve in ancestral species with high survival. A

study using a broader definition of sociality, including both co-operative breeding and colonial

nesting, and controlling for body size, found that social species had higher maximum longevity

than non-social species  (Wasser & Sherman 2010), but this study did not control for sampling

effort and only partly for phylogeny by performing an analysis at the family-level (which does

not  control  for  phylogenetic  relationships  between  families).  In  contrast,  a  study  in  North

American birds that controlled for phylogeny, body size and sampling effort found no effect of

cooperative  breeding  on  maximum  longevity  (Blumstein  &  Møller  2008).  Furthermore,

illustrating the importance of distinguishing between survival and maximum lifespan, a study of
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cooperative / non-cooperative species pairs, which controlled for body size, found that while

annual survival was higher in cooperative than non-cooperative breeders, there was no difference

in maximum lifespan (Beauchamp 2014). Taken together, the evidence therefore points to there

being no effect of sociality on longevity in birds.  

Interestingly, as with social insects, there does seem to be a positive association in mammals

between a eusocial / cooperative breeding mode of life and the maximum longevity that a species

can achieve.  An analysis  of  440 ground-dwelling  mammals,  of  which  17 were classified  as

eusocial  cooperative breeders, showed that eusocial  species have a higher maximum lifespan

than  non-eusocial  species  (Healy  2015,  Williams  &  Shattuck  2015).  The  highest  level  of

sociality in mammals occurs in the eusocial mole rats which, like social insects, exhibit large

differences in longevity between reproductives and non-reproductives  (Dammann et al.  2011,

Dammann & Burda 2006, Schmidt et al.  2013), and the same may be true of other eusocial

mammals. Records of maximum lifespan in eusocial mammals are therefore likely to reflect the

longevity  of  reproductives  rather  than  helpers  and,  as  with  insects,  it  remains  to  be  tested

whether non-reproductive helpers live longer than individuals from non-eusocial species.  

In  both  insects  and  mammals,  therefore,  it  may  not  be  sociality  itself  that  is  important  in

promoting  longevity,  but  rather  the  position  at  the  top  of  the  social  hierarchy,  because

reproductively  dominant  individuals  receive  care  from others  and  are  protected  from many

causes  of  extrinsic  mortality.  Cooperative  brood  care  and  reproductive  division  of  labour

together create a context in which the brunt of predation and disease is borne by a sub-group of

individuals, freeing the reproductive caste from the selective constraints on longevity imposed by

extrinsic mortality. Alternatively, a fundamental difference in helper longevity may exist between

taxa such as ants,  where helpers are obligately  sterile,  and cooperatively  breeding birds and

mammals, where helpers may attain a breeding position. In the former case, helping represents

the only form of fitness that workers can obtain, and they begin helping as soon as they emerge

as adults,  thus reproduction is in no way delayed  (Bourke 2007). In the latter  case,  delayed
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opportunity  for  reproduction  may  instead  select  for  increased  longevity.  In  order  to  better

understand these two effects, studies should consider the longevity of helpers and account for the

likelihood for helpers to become breeders.  

One salient exception to the longevity difference between workers and reproductives comes from

the naked mole rat, where the workers also have extremely high longevity in captivity, similar to

that  of  reproductives  (Buffenstein  2008).  Whether  extended  longevity  of  both  queens  and

workers in this species is due to eusociality is difficult to determine. The fossorial mode of life of

naked mole rats may also contribute to their long lives, although across mammals there is no

effect of fossoriality on longevity once sociality is accounted for  (Healy 2015). Whatever its

evolutionary  cause,  the striking longevity  of eusocial  reproductives,  and of naked mole rats,

provides valuable opportunities to study the physiological mechanisms of life extension (Edrey

et al. 2011, Lucas & Keller 2017). 

3 How is longevity extended in social species?

The difference in longevity between reproductives and workers in most eusocial species makes

them powerful study organisms for ageing research because they provide contrasting phenotypes

that  do  not  differ  genetically.  For  this  reason,  studies  in  eusocial  insects  typically  compare

queens and workers to identify key features of their physiology that could explain their different

longevities. Because naked mole rats do not show differences in longevity between queens and

workers, they are instead compared with mice, which are similar-sized rodents with markedly

shorter lives (whereas naked mole rats live up to 30 years  (Edrey et al. 2011), the maximum

recorded lifespan of mice is only around four years (Miller et al. 2002)). 

Senescence

In  species  where  reduced  extrinsic  mortality  selects  for  delayed  senescence,  this  could  be

achieved  by  greater  allocation  of  resources  into  physiological  processes  that  slow  the  age-
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associated  accumulation  of  physiological  damage.  The  mechanisms  by  which  senescence  is

delayed in long-lived social organisms have so far proven difficult to determine. A prominent

proximate  theory proposes that  ageing is  the result  of accumulation of unrepaired molecular

damage,  caused in  part  by oxidative  stress  (Finkel  & Holbrook 2000).  If  such damage is  a

primary cause of ageing, then mechanisms should be in place that slow its accumulation in long-

lived  organisms.  Surprisingly,  few  studies  have  investigated  whether  oxidative  damage

accumulation is lower in queens than workers. One study in the termite Reticulitermes speratus

found that  queens  have  less  oxidative  damage  than  workers  (Tasaki  et  al.  2018).  However,

damage was measured in whole bodies and therefore did not account for the drastically different

body plans of queens and workers. Most of the tissue in termite queens consists of the abdomen,

full of egg-laying organs, while workers have much smaller abdomens and are reproductively

inactive. If the germline contains less oxidative damage and higher expression of maintenance

genes than the soma (a likely possibility if eggs need to be free of oxidative damage), this would

confound  any  whole-body  comparison  between  queens  and  workers.  Similarly,  markers  of

oxidative  damage  were  lower  in  reproductive  Damaraland  mole  rats  compared  to  non-

reproductives  (Schmidt et al. 2014), but this study did not control for possible age differences

between reproductives and non-reproductives. 

A tissue-  and age-controlled  study in the  ant  Lasius  niger found that  while  double-stranded

breaks in DNA increased with age, this increase was similar in both queens and workers (Lucas

et al. 2017). Similarly, levels of oxidative damage seem higher in naked mole rats than mice

(Andziak & Buffenstein 2006, Andziak et al. 2006), showing that longer-lived phenotypes do not

have reduced levels of damage. However, interestingly, naked mole rats show slower increases in

oxidative protein damage with age compared to mice  (Pérez et al.  2009). Slower increase of

damage with age may be the result of delayed ageing, rather than its cause, but naked mole rats

also show much higher rates of fidelity during protein translation than do mice (Azpurua et al.

2013), suggesting that they may maintain consistently high levels of protein homeostasis and that
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this may partly explain their longer lives.

Several studies have also investigated the role of pathways preventing or repairing molecular

damage. Potentially important pathways include ones which can repair damage when it occurs,

such as those involved in DNA repair  (Lombard et al. 2005). DNA repair gene expression is

higher in queens than workers in L. niger (Lucas et al. 2016) and in naked mole rats compared to

mice  (MacRae  et  al.  2015),  indicating  an  association  between  DNA repair  and  longevity.

However, this up-regulation of DNA repair  pathways contrasts with the lack of difference in

DNA damage accumulation between queen and worker described above. One possibility is that

DNA damage does accumulate differently in queens and workers, but not in the form of double-

stranded  breaks.  Nucleotide  substitutions,  leading  to  protein  sequence  errors,  may  be  more

crucial,  and  avoidance  of  this  type  of  damage  would  provide  an  interesting  parallel  to  the

increased translation fidelity identified in naked mole rats (Azpurua et al. 2013).

Another  class  of damage prevention gene which has  been extensively  studied is  antioxidant

enzymes such as Superoxide Dismutase (SOD) and catalase (CAT), which can remove reactive

oxygen  species  and  prevent  molecular  damage.  It  is  however  difficult  to  say  whether  anti-

oxidants are involved in increased longevity in eusocial species, as results from various species

have been equivocal.  In  L. niger, an early study found no difference in expression of SOD1

between queens and workers  (Parker et al. 2004), but it has recently been shown that another

SOD enzyme,  SOD3, has  the  most  significantly  queen-biased  expression in  the entire  brain

transcriptome  (Lucas & Keller 2018). In the ant  Harpegnathos saltator, SOD and glutathione

peroxidase activity do not differ between queens and workers, while catalase activity is lower in

queens  (Schneider  et  al.  2011),  although  this  study  did  not  control  for  age.  In  honeybees,

antioxidant genes are up-regulated in queens compared to workers in 1-day-old individuals, but

the opposite is true in 1-month old individuals (Corona et al. 2005). Finally, in naked mole rats,

the difference in anti-oxidant activity relative to mice was highly dependent on the anti-oxidant

being studied, with SOD activity being higher in naked mole rats than in mice, but glutathione
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peroxidase activity being nearly 100-fold lower in naked mole rats (Andziak et al. 2005). 

Immunity

As part of extending their longevity, organisms need to reduce their burden of disease. This can

be achieved directly by up-regulating immune processes, or indirectly by delaying senescence to

avoid the deterioration of immune functions with age  (Doums et al. 2002, Simon et al. 2015).

Additionally, disease avoidance can be achieved either behaviourally by avoiding contact with

infectious agents, or physiologically by boosting the immune system to prevent the infection

from taking hold. Social insect queens employ both physiological and behavioural mechanisms

to protect themselves from disease.  

For queens living in enclosed nests, behavioural resistance is achieved by remaining in the nest,

where infectious  agents can only reach her via  her workers.  The social  structure of ant  and

honeybee colonies minimises  queen exposure to pathogens,  since queens are largely isolated

from direct contact with the workers that are most likely to be infectious (Stroeymeyt et al. 2014,

Stroeymeyt et al. 2018). Disease progression through the ant colony is also minimised through

sanitary behaviours such as grooming, cleaning, and the ejection of sick individuals, ensuring

that diseases rarely persist in the nest long enough to reach the queen (Cremer et al. 2018). 

Several studies also revealed that queens up-regulate genes involved in immunity pathways to

further protect themselves against disease. A crucial facet of insect immunity is the melanisation

response, activated by the enzyme phenoloxidase (PO)  (González-Santoyo & Córdoba-Aguilar

2012), the molecular pre-cursor of which is pro-phenoloxidase (PPO). Social insect queens up-

regulate the melanisation pathway compared to workers. Queen expression of PPO is higher than

workers in L. niger (Lucas & Keller 2018) and higher than in the very short-lived males in the

ant Formica exsecta (Stucki et al. 2017), while PO activity is higher in queens than workers in

honeybees (Schmid et al. 2008). More broadly, a transcriptome-wide study of queen and worker

gene expression in  L.  niger revealed  an enrichment  of immune genes  among genes that  are
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queen-biased in 1-day-old individuals (an age at which queens do not yet head a colony and thus

may not benefit from social immunity any more than workers do, Lucas & Keller 2018). 

Cancer 

One remarkable finding in ageing studies on naked mole rats is that they suffer almost negligible

rates of cancer  (Buffenstein 2008, Taylor et al. 2017). Cancer is particularly important in the

context of the evolution of extended longevity because it is an age-related pathology and is thus

directly  associated  with senescence  (Lemaître  et  al.,  this  issue).  Long life  therefore  requires

delay or reduction of cancer incidence alongside the avoidance of other symptoms of ageing. The

cellular  mechanisms underlying  resistance  of  naked mole  rats  to  one of  the  most  pervasive

causes of mortality in modern day humans has yet to be fully elucidated, but promising inroads

have  been  made  in  recent  years.  A key observation  has  been  that,  even  in  the  presence  of

oncogenic mutations, naked mole rat fibroblasts are less likely than those of mice to develop

tumours (Liang et al. 2010, Miyawaki et al. 2016), due at least in part to their tendency to arrest

duplication at lower densities than in mice (Seluanov et al. 2009). This inhibition of cell division

is caused by the production of extremely high-molecular-mass hyaluronan, inducing the cyclin-

dependent kinase inhibitor p16, which in turn arrests the cell cycle by acting on the p53 and pRb

tumour suppressor pathways  (Seluanov et al. 2009, Tian et al. 2013). The striking differences

between naked mole rats and mice in tumour formation may provide a good opportunity to better

understand the pathways regulating cancer. 

Direct association between accelerated development and longevity

The possibility that longevity may be extended in social species as a result of reduced pace of

life and a resulting slowing of development presents an intriguing parallel with another theory of

ageing. The hyperfunction theory suggests that senescence is a direct result of processes involved

in growth and development to reproductive maturity, which then continue unchecked in later life,

causing harm (Blagosklonny 2012, Gems & Partridge 2013). To our knowledge, this theory has
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not been explicitly tested in eusocial  species. Distinguishing between this possibility and, for

example, senescence caused by the accumulation of molecular damage, requires identifying the

changes that cause the deterioration of old individuals to establish whether these changes are

inherently deleterious (supporting the damage accumulation theory) or necessary in early life but

allowed to continue beyond healthy levels (supporting the hyperfunction theory). 

4 Conclusion

Overall,  there  is  currently  little  evidence  that  sociality  increases  survival  or  longevity  as  a

general rule. Intra-specific studies only reveal a correlation between survival and social group

size in species that have already adapted to life in large groups, and inter-specific studies to date

suggest that social life promotes the evolution of extended longevity only for the few individuals

that benefit from the protection and support of others. Further research should seek to establish

whether increased longevity is found also in helpers of eusocial species, and whether this differs

between species with facultative and obligate helpers. Given the confounding factor of possibly

heightened exposure to predation and disease that workers face compared to solitary species,

such studies will ideally use data obtained in laboratory conditions. Where this is not possible,

data on the maximum lifespan of helpers in the wild (i.e., excluding breeders from the data)

could be used instead. 

More research is also needed to understand whether living in groups provides survival benefits in

species that facultatively live in groups, or that live in small groups, to establish the contexts in

which social life increases survival. Such data would allow a more rigorous statistical analysis

that the one we were able to perform here, controlling for phylogeny and other confounding

factors, and could highlight the ecological and life-history factors that make living in groups

valuable in terms of greater survival. 

The physiological mechanisms that underlie the striking longevity of reproductive individuals in

eusocial  species  remain poorly understood,  despite  important  progress  in understanding how
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these  long-lived  phenotypes  modulate  physiological  deterioration  and  disease.  While  the

selective pressure to extend longevity is similar across taxa as distant as ants and naked mole

rats,  the  way  in  which  this  extension  is  achieved  is  likely  to  differ,  as  the  physiological

challenges to be overcome (such as cancer) will vary. Particularly in insects, very little is still

known  about  the  pathologies  that  cause  death  in  aged  individuals,  both  workers  and

reproductives, and this should be established before the physiological failures that cause these

pathologies  can  be  fully  understood.  Such  studies  will  provide  valuable  insights  into  the

mechanisms of ageing and the means by which they can be avoided. 
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Figure legends

Figure 1: Primary ways in which sociality influences the evolution of longevity and vice versa. +
indicates a promoting effect and – indicates a suppressing effect.
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