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ABSTRACT

Background: Formate is a one-carbon molecule at the crossroad between cellular and whole body metabolism, between host and microbiome
metabolism, and between nutrition and toxicology. This centrality confers formate with a key role in human physiology and disease that is
currently unappreciated.
Scope of review: Here we review the scientific literature on formate metabolism, highlighting cellular pathways, whole body metabolism, and
interactions with the diet and the gut microbiome. We will discuss the relevance of formate metabolism in the context of embryonic development,
cancer, obesity, immunometabolism, and neurodegeneration.
Major conclusions: We will conclude with an outlook of some open questions bringing formate metabolism into the spotlight.
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1. INTRODUCTION

Formic acid (HCOOH) was first isolated from distillation of ant bodies,
and it was subsequently named using the Latin word for ant, formica
[1]. Ants and other insects accumulate formic acid in secretory
glands and release their content as a mechanism of defense. In the
context of human physiology, formate, the anion of formic acid, is
better known as the agent mediating the adverse effects of methanol
intoxication [2]. More recently, we are starting to uncover that
formate plays a key role in the cellular and whole body metabolism of
mammals [3].
Formate is an intermediate metabolite in one-carbon (1C) metabolism
(Figure 1). 1C metabolism brings together the biochemical reactions
utilizing, transferring, or producing 1C-units either as free molecules or
bound to carrier compounds. This pathway can be divided in different
branches depending on co-factor utilization. The branch of 1C meta-
bolism using folates as co-factors is considered the core of 1C
metabolism [4e6]. There is also the folate independent branch
associated with formaldehyde metabolism [2].
Formate is a mediator of metabolic interactions between mammalian
organisms, the diet and the gut microbiome. Serine, glycine, methi-
onine, choline and methanol can be processed by the endogenous
metabolism of mammals to produce formate. Formate is also a by-
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product of anaerobic fermentation of some bacteria species popu-
lating the gut microbiome [7]. The formate generated by the gut
bacteria can enter the circulation, adding to the endogenous pool of
formate or being used as substrate for the growth of other bacteria
with aerobic metabolism [8].
Once in the circulation, formate or its precursors are used in most if not
all tissues to fulfill the 1C demand for the synthesis of nucleotides and
methyl groups (Figure 1). Given the essential role of nucleotide syn-
thesis during embryonic development, immune cell expansion, and
tumor growth, it is not surprising that alterations in formate meta-
bolism have been found in the context of human diseases. There are
also human disorders manifesting alterations in the products of
formate metabolism (e.g., uric acid), in which the role of formate
metabolism remains to be investigated.
Here we review the literature on formate metabolism. In Section 2, we
will cover the cellular metabolism of formate, its sources and sinks.
This will be followed by the whole body metabolism of formate in
Section 3. In Section 4, we will review the relevance of formate
metabolism in the context of normal physiology and human disease. In
Section 5, we discuss interventions modulating formate metabolism
and their potential utilization in the context of prevention and treatment
of human diseases. We will conclude with an outlook of open question
in the field of formate metabolism.
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Figure 1: Formate metabolism in mammals. Scheme of the central role of formate in
mammalian metabolism, showing key sources and sinks.
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2. CELLULAR METABOLISM OF FORMATE

Mammalian cells can produce formate from a variety of nutrients, and
formate can be fed into a number of biosynthetic pathways. In this
section, we will review the sources and sinks of formate in the context
of mammalian cell metabolism.

2.1. Folate dependent formate production
Serine is a major source for formate production in proliferating
mammalian cells [4]. Serine deprivation induces cell cycle arrest of
proliferating lymphocytes [9,10] and cancer cells [11]. Serine can be
catabolized to formate in a tetrahydrofolate (THF) dependent manner
by two complementary pathways located in the cytosol and the
mitochondria (Figure 2). Both pathways involve the same biochemical
steps: (i) serine hydroxymethyl transferase, (ii) 5,10-CH2-THF dehy-
drogenase, (iii) 5,10-CHaTHF cyclohydrolase and (iv) 10-CHO-THF
synthase. In the cytosol, these steps are catalyzed by cytosolic serine
hydroxymethyl transferase (SHMT1) and the trifunctional enzyme
methylene-THF dehydrogenase 1 (MTHFD1) comprising the remaining
enzymatic activities. In the mitochondria, these steps are catalyzed by
mitochondrial serine hydroxymethyl transferase (SHMT2), the bifunc-
tional enzyme methylene-THF dehydrogenase 2 (MTHFD2) or 2 like
(MTHFD2L) with 5,10-CH2-THF dehydrogenase and 5,10-CHaTHF
cyclohydrolase activities, and the mitochondrial 10-CHO-THF synthase
(methylene-THF dehydrogenase 1 like MTHFD1L).
These pathways are conserved from yeast to mammals [4], indicating
that the compartmentalization of 1C metabolism was an early event in
the evolution of eukaryote cells. In yeast and mammalian cells, the
mitochondrial pathway produces formate at high rates [12], and the
cytosolic pathway recaptures formate for its use in serine and nucle-
otide synthesis [13,14]. The inactivation of mitochondrial formate
production induces a rewiring of 1C metabolism. To compensate for
the lack of mitochondrial formate production, the cytosolic pathway
switches from serine production to serine catabolism [15]. This switch
does not compensate for the lack of mitochondrial glycine production,
and cells become dependent on the availability of extracellular glycine
[16,17]. It should be noted, however, that excess glycine supple-
mentation shifts the cytosolic pathway from serine catabolism to serine
24 MOLECULAR METABOLISM 33 (2020) 23e37 � 2019 The Authors. Published by Elsevier GmbH. T
synthesis, inhibiting the adaptation to inactive mitochondrial 1C
metabolism [18].
Glycine is another potential source of mitochondrial formate produc-
tion. The glycine cleavage system (GCS) catalyzes the catabolism of
glycine to CO2 and 5,10-CH2-THF using THF as a co-factor. The GCS is
coupled to 1C metabolism via the activity of MTHFD2/MTHFD2L and
MTHFD1L, which can contribute to mitochondrial formate production.
The GCS is composed of the four proteins T, P, L, and H that are
expressed in many tissues including liver, kidney, and brain [19].
Defective glycine cleavage can result in nonketotic hyperglycinemia in
human infants. This disorder demonstrates the requirement of the GCS
for glycine clearance and, by extrapolation, its contribution to the 1C
pool in humans. The requirement of GCS for glycine clearance has
been also demonstrated in glioma cell lines cultured in vitro [20].
However, most immortalized cell lines cultured in vitro lack a signifi-
cant contribution of GCS activity to the 1C pool [18,21].
Choline catabolism can generate two one-carbon units ([22], Figure 2).
Choline is catabolized by a series of enzymatic steps that alternate
between cytosolic and mitochondrial localization. The first 1C-unit is
generated in the catabolism of choline to sarcosine and the second 1C-
unit is generated in the subsequent catabolism of sarcosine. Sarcosine
can also be produced from the methylation of glycine, effectively
transferring 1C units from the methyl group of SAM to the folate
dependent 1C pool (Figure 2).
Demethylation may also contribute to the 1C pool in a THF
dependent manner. Histone demethylation by the nuclear amine
oxidase homolog LSD1 or the family of JmjC domain-containing
proteins generates formaldehyde [23e25]. LSD1 has a folate
binding site near its active site, suggesting that the formaldehyde
generated from histone demethylation is transfered to THF gener-
ating 5,10-CH2-THF [26]. The latter is confirmed by formation of
5,10-CH2-THF during the course of histone demethylation in the
presence of THF [26].

2.2. Formaldehyde dependent formate production
Formaldehyde is an endogenous product of cell metabolism (Figure 2).
Liver and other tissuesmetabolizemethanol to formaldehyde [27]. Also in
the liver, members of the cytochrome P450 (CYPs) catalyze the deme-
thylation of endogenousmetabolites and xenobiotics, releasing themethyl
group as formaldehyde or methanol [28,29]. In neutrophils, the myelo-
peroxidase (MPO) converts glycine to formaldehyde [30]. The oxidative
decomposition of THF, DHF, and 5,10-methenyl-THF releases formal-
dehyde [31e33]. The serum semicarbazide sensitive amine oxidase
(SSAO) metabolizes methylamine to formaldehyde, H2O2 and ammonia
[27,34]. Methylamine can therefore link the formation of formaldehyde to
the catabolism of endogenous amines as adrenaline [35].
Formaldehyde is metabolized to formate by at least two different
pathways ([27], Figure 2). The mitochondrial NADþ dependent alde-
hyde dehydrogenase 2 (ALDH2) oxidizes formaldehyde to formate,
providing a direct route of formaldehyde turnover. The other pathways
are associated with the detoxification of products from the sponta-
neous reaction between formaldehyde and soluble metabolites or
chemical groups of proteins and nucleotides. Formaldehyde reacts
with the sulfur group of the highly abundant reduced form of gluta-
thione (GSH) forming hydroxymethyl-GSH. Hydroxymethyl-GSH is then
converted to formyl-GSH by the cytosolic enzyme alcohol dehydroge-
nase 5 (ADH5) also known as class III dehydrogenase (ADH3) [36].
Finally, formyl-GSH is hydrolyzed to formate and GSH by the formyl-
GSH hydrolase activity of esterase D (ESD) [37]. Formaldehyde may
also react with the sulfur groups of cysteine and homocysteine, and
unpublished data from our laboratory indicate that reaction with
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 2: Cellular metabolism of formate. The intracellular formate molecule (H-COOH) is highlighted in red. The blue color highlights sources and sinks of formate. Dashed arrows
indicate multiple reaction steps.
cysteine and homocysteine can become the major route of formal-
dehyde turnover in cells lacking ALDH2 and ADH5 (Pietzke et al., in
preparation).
Recent investigations have raised the question of whether circulating
endogenous formaldehyde represents a significant source of formate
production [32,38]. Mammalian cells cultured in medium containing
physiological levels of formaldehyde (20e40 mM) generate between
10 and 50% of total formate from formaldehyde [32]. Cells with genetic
inactivation of the serine catabolism to formate can grow in media with
dialyzed serum lacking extracellular 1C sources, albeit at a slow
proliferation rate. In contrast, cells with the additional genetic inacti-
vation of ADH5 do not grow in media with dialyzed serum, indicating
that the ADH5 dependent generation of formate can compensate for
the absence of serine catabolism to formate.
MOLECULAR METABOLISM 33 (2020) 23e37 � 2019 The Authors. Published by Elsevier GmbH. This is an open ac
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2.3. Formate production linked to sterol synthesis
A formate molecule is released in the synthesis of cholesterol,
downstream of the lanosterol step (Figures 25e59 in Ref. [39]). A
formate molecule is also released in the demethylation of andro-
stenedione and testosterone by aromatase to form estrone and
estradiol, respectively. Tracing experiments in rats indicate that total
sterol synthesis is high in liver, adrenal gland, and ovaries [40]. The
total sterol synthesis in these tissues is of the order of 1000 nmol/h/g
of wet tissue. Assuming a tissue density of about 1 g/ml this translates
to a formate production rate of about 1 mM/h. The latter value is in the
range of the 1C demand of proliferating mammalian cells cultured
in vitro (0.2e3 mM/h [21]). These numbers suggest that sterol syn-
thesis is a significant source of formate in the liver, adrenal gland, and
ovaries.
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2.4. Formate production linked to polyamine synthesis
A formate molecule is produced in the methionine salvage pathway
linked to polyamine synthesis. S-adenosyl-methionine (SAM) donates
a propylamine group to polyamines and it is converted to methyl-
thioadenosine (MTA) [41]. MTA can either be released from cells or
salvaged to adenine, methionine, and formate. The first enzyme in
the salvage pathway, MTA phosphorylase (MTAP), is often absent in
human cancers, and cells lacking MTAP activity release MTA to the
extracellular media [41]. Based on estimates for a human fibrosar-
coma cell line [41], the methionine salvage pathway can produce
about 0.2 mM/h of formate. This value is in the lower range of the 1C
demand of proliferating mammalian cells cultured in vitro (0.2e
3 mM/h [21]).

2.5. Formate production linked to tryptophan catabolism
A formate molecule is produced in the pathway of tryptophan catab-
olism (Figures 26e24 in Ref. [39]). Indoleamine 2,3-dioxygenase
(IDO1 and 2 in humans) and tryptophan 2,3-dioxygenase (TDO2 in
humans) catalyze the conversion of tryptophan to N-formyl-kynur-
enine. Arylformidase (AFMID in humans) then removes the formyl
group producing formate and kynurenine. Kynurenine itself has been
implicated in several physiological functions that are beyond the scope
of this review [42]. However, the potential contribution of tryptophan to
the 1C pool has been less appreciated. In mice injected intraperito-
neally with radio-label [ring-2-14C]-L-tryptophan the measured radio-
activity in the soluble and nucleic acid pools of the liver, kidney and
intestine is similar to that obtained by injection of equimolar amount of
[3-14C]-L-serine [43]. These data indicate that tryptophan contributes
to the 1C pool of mammalian tissues.

2.6. Formate contribution to purine synthesis
Formate can have different fates depending on the cell type and
environmental conditions. In proliferating cells, formate contributes to
the 1C demand of purine and thymidylate synthesis [4,15] (Figure 2).
Given that purines are required for the synthesis of RNA, DNA and the
free ATP pool, purine synthesis represents the major biosynthetic
demand for 1C units in proliferating cells. Purine synthesis may be
relevant in non-proliferating cells as well. Non-proliferating differen-
tiated adipocytes release uric acid, a product of purine catabolism,
suggesting that these cells have active de novo purine synthesis. Using
measurements of uric acid secretion by 3T3-L1 mature adipocytes
[44], we have estimated the rate of uric acid secretion by adipocytes to
be about 0.17 mM/h. The latter value is of the same order of
magnitude than the purine synthesis rate of proliferating mammalian
cells cultured in vitro (0.1e1.5 mM/h [21]). To match that rate of uric
acid release, adipocytes need to catabolize and therefore synthesize
purines at a similar rate.

2.7. Formate contribution to thymidylate synthesis
Thymidylate synthesis represents a smaller demand of 1C units when
compared to purine synthesis. Thymilydate represents only one DNA
base (T), compared to the two purines A and G, needed in both DNA
and RNA. Further the nucleotide demand for RNA synthesis is about
two times that for DNA synthesis [45]. This results in a thymidylate/
purine demand ratio of about 1/6. There is also a difference between
purine and thymidylate synthesis with regard to localization. While
purine synthesis takes place in the cytosol, thymidylate synthesis takes
place in the nucleus [46] and the mitochondria [47]. This is consistent
with the requirement of thymidylate for the synthesis of nuclear and
mitochondrial DNA. In summary, thymidylate synthesis represents a
lower demand of 1C units when compared to purine synthesis.
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Nevertheless, thymidylate synthesis is an essential demand that needs
to be fulfilled for DNA synthesis to proceed.

2.8. Formate contribution to methylation
Formate can provide 1C units for the generation of methionine via the
activity of methionine synthase that can be used to facilitate methyl-
ation reactions (Figure 2). During embryonic development, mitochon-
drial formate production contributes with about 75% of the 1C units
used for methylation [48]. In contrast, cancer cells utilize extracellular
methionine to satisfy their demand of 1C-units for methylation [49].
The requirement of an ATP molecule for the synthesis of S-adenosyl
methionine (SAM), the canonical methyl donor in mammalian cells,
provides an additional contribution of formate to methylation meta-
bolism. The relevance of this observation has been demonstrated in
the context of serine deprivation. Serine deprivation causes a depletion
of purines in cancer cells, and as a consequence a depletion of SAM
and hypomethylation [50].

2.9. Formate oxidation to CO2
Mammalian cells have both a cytosolic and a mitochondrial 10-CHO-
THF dehydrogenase, catalyzing the oxidation of 10-CHO-THF to CO2
(Figure 2). In humans, these two enzymes are encoded by the genes
aldehyde dehydrogenase 1 family member L1 (ALDH1L1) and L2
(ALDH1L2), respectively [51,52]. 10-CHO-THF dehydrogenases effec-
tively burn 1C units and therefore contribute to the turnover of formate.
Consequently, the activity of 10-CHO-dehydrogenase can reduce the
availability of 1C units for nucleotide synthesis, leading to inhibited
growth and a tumor suppressing function. To avoid this ALDH1L1 and
ALDH1L2 are usually underexpressed in cancer [53].

2.10. Formate overflow
Computer simulations of mammalian cell metabolism suggested that
mammalian cells could benefit from excess formate production and its
release to the extracellular media [54,55]. Using metabolic flux anal-
ysis, it was later shown that the rate of 1C production exceeds the 1C
demand of cancer cells [49]. Excess formate production results in
formate release from cells and tissues [15,21,56,57]. This evidence
suggests that the production and demand of 1C units in proliferating
cells may not be balanced but biased towards an excess production
that is manifested as formate overflow from cells. Of note, the half-
saturation constant for formate efflux by human erythrocytes is
about 9 mM [58]. This indicates that cells showing formate overflow
should have an intracellular formate concentration in the millimolar
range.

2.11. What is the selective advantage of formate overflow?
The evidence reviewed above indicates that formate can have
different fates depending on the metabolic demands of cells. From
the point of view of anabolism, formate is required for the biosyn-
thesis of nucleotides, the free adenine pool, and SAM. However, the
benefit of the formate overflow is still an open question. The
catabolism of serine to formate also produces glycine, which is
required for the biosynthesis of proteins, purines, and glutathione.
Thus, one hypothesis is that the serine catabolism fulfills the
biosynthetic demand for glycine, which is larger than that of 1C units,
and excess formate is released from cells or burned to CO2 [59].
However, simultaneous secretion of both glycine and formate [21]
indicates serine catabolism in true excess.
The serine catabolism to formate can also contribute to the regener-
ation of NADPH, NADH, and ATP. The cytosolic catabolism of serine to
formate produces NADPH [60]. NADPH is in turn required for the
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1 e Reported values of circulating formate concentration, formate
half-life (t1/2), and whole body formate production for different mammalian
species.

Organism Circulating
formate (mM)

t1/2 (min) Formate production
(mmol/kg/h)

Source

Human 10e100 59 [78,81,146]
Swine 45e113 [85]
Micropig 74 [156]
Sheep 20e50 [89]
Rat 50e100 90 0.25e0.76 [88,157e159]
Mouse 10e30 10a [21,57]

a Estimated from a serine bolus injection and consequently may be an overestimate.
biosynthesis of fatty acids and sterols. The mitochondrial catabolism of
serine to formate produces NADH. NADH is then oxidized by complex I
coupled to the electron transport chain [12,21,56], thus contributing to
mitochondrial energy production. Since the mitochondrial de-
hydrogenases MTHFD2 and MTHFD2L can also use NADPþ as a co-
factor [61], the mitochondrial catabolism of serine can also produce
NADPH. Furthermore, the catabolism of serine to formate contributes
to ADP phosphorylation via the reverse activity of 10-CHO-THF syn-
thetase [21,54].
We are not aware of any physiological context in which any of these
glycine and co-factor balance activities plays an essential role. At the
present time, we cannot exclude that they are bystanders of an un-
identified function. The regulation of mitochondrial protein translation
is another possibility. Mitochondrial 5,10-CH2-THF is required for the
production of 5-taurinomethyluridine and mitochondrial 10-CHO-THF is
required for the formylation of the mitochondrial methyonyl-tRNA. The
formylation of methyonyl-tRNA is not an essential requirement for
initiation of protein synthesis in bacteria [62] or yeast mitochondria
[63]. In agreement with the latter observations, the genetic inactivation
of MTHFD2, which is required for the production of mitochondrial 10-
CHO-THF (Figure 2), has no effect on mitochondrial activity. In contrast,
genetic inactivation of SHMT2, which is required for the mitochondrial
production of 5,10-CH2-THF, can result in reduced levels of 5-
taurinomethyluridine in mitochondrial tRNA and impaired oxidative
phosphorylation [64,65]. However, in the HAP1 cell line derived from a
human leukemia, genetic inactivation of SHMT2 does not result in any
significant change in oxidative phosphorylation [57]. These observa-
tions indicate that there are other factors modulating the requirement
of mitochondrial 1C metabolism for the efficient translation of mito-
chondrial proteins.
Mitochondrial formate production may be also required to protect the
cytosolic pool of folates [66]. The cytosolic folate pool is depleted in
cells deficient in mitochondrial formate production, and this phenotype
can be rescued by exogenous formate supplementation. However, the
generality of these observations remains to be established.
We conclude that, while there are different hypotheses for the selective
advantage of excess mitochondrial formate production, we do not have
enough evidence to make a definitive conclusion.

3. WHOLE BODY METABOLISM OF FORMATE

In mammalian organisms, circulating (blood) formate levels are found
in the range between 10 and 100 mM, and the blood formate half-life is
in the range between 40 and 100 min (Table 1). Circulating formate is
subject to a whole body compartmentalization with a striking similarity
with the Cori cycle of glucose-lactate metabolism, whereby serine
plays the role of glucose and formate/glycine that of lactate (Figure 3).
Serine catabolism to formate contributes to the formate production in
peripheral tissues and the synthesis of serine in the liver and the
kidney closes the loop. The whole body 1C cycle can also gain 1C units
from other sources and lose 1C units to various biosynthetic sinks or
clearance via the urine. In this section, we review the whole body
metabolism of formate, its sources and sinks, and its metabolic
functions.

3.1. Formate sources
In mammals, formate can be derived from different dietary sources.
Based on a bolus intraperitoneal injection of [3-13C]-L-serine and
quantification of 13C fractions of plasma serine and formate, it is
estimated that serine catabolism contributes to about 50% of formate
production in mice [21]. The microbiome metabolism in the gut could
MOLECULAR METABOLISM 33 (2020) 23e37 � 2019 The Authors. Published by Elsevier GmbH. This is an open ac
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account for the remaining 50% as formate is a fermentation product of
anaerobic bacteria in the gut. Formate is found at millimolar concen-
trations in the intestinal lumen of mice, going down to micromolar
levels in germ-free mice [8]. The intestinal formate can enter the
circulation and contribute to the circulating formate pool.
Another by-product of the gut microbiome metabolism is methanol,
which can be metabolized in the liver to formaldehyde and then to
formate [27]. Pectin, a natural component of fruits, is degraded by the
gut microbiome to methanol. In humans, the ingestion of 1 kg of
apples/day or 10e15 g of pectin generates 0.4e1.4 g of methanol, in
the range of the total endogenous production of methanol (0.3e0.6 g/
day) [67]. Consumption of a serving of 200 g of Chinese cabbage
(Brassica rapa pekinensis) increases circulating plasma methanol from
168 to 225 mM [68]. Alcohol consumption could also represent an
important source of methanol. The endogenous production of methanol
can be matched by a daily consumption of 0.3 L of 40% brandy [67].
However, we should bear in mind that ethanol inhibits the metabolism
of methanol to formate (discussed below). Therefore, the methanol
consumed from alcoholic beverages with high ethanol content is most
likely cleared via the urine.
Glycine cleavage, choline catabolism, tryptophan catabolism, choles-
terol synthesis, and sterol synthesis are further potential sources of
formate production in mammals. However, we have a poor under-
standing about their net contribution to whole body formate production.
Some estimates can be obtained by bringing together different liter-
ature reports. In rats, the rate of cholesterol synthesis in the liver is
about 600 nmol/g of tissue/h [40]. Since one formate is released in the
synthesis of cholesterol and rat liver is about 2% of rat body weight,
the rate of formate production associated with cholesterol synthesis in
the liver is about 0.01 mmol/g of body weight/h. This value is 30 times
lower than the overall rate of formate production in rats (0.25e
0.36 mmol/g of body weight/h, Table 1), indicating that cholesterol
synthesis is only a minor source of whole body formate production in
rats. We note that this does not exclude that it can be a relevant source
of formate in the liver or that the liver has evolved to take advantage of
the formate generated from cholesterol synthesis.
There are other dietary sources of circulating formate that can become
relevant when consumed in excess. The sweetener aspartame is
metabolized to aspartate, phenylalanine, and methanol. The excess
consumption of beverages containing aspartame can therefore act as
an extra source of formate via methanol metabolism. Experiments with
aspartame supplementation have been conducted in humans [69]. A
single aspartame dose of 10 and 34 mg/kg, equivalent to the projected
average and 99th percentile if aspartame would replace all sucrose
sweeteners in the diet, increases the circulating methanol levels.
However, the increase in methanol levels is within the range of the
cess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 27
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Figure 3: Whole body metabolism of formate. Schematic representation of the tissue
compartmentalization of formate metabolism in mammals.
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natural variations of circulating methanol. Another study reported no
significant changes in circulating formate levels after administration of
an abuse aspartame dose of 200 mg/kg [70]. While these data indicate
that aspartame use as a sweetener is safe from the point of view of
methanol intoxication, it also tells us that aspartame can be a signif-
icant source of methanol and consequently of formate. Assuming the
production of 0.1 mol methanol per g of aspartame consumed (based
on the molar masses of methanol and aspartame), the 34 mg/kg
aspartame per day could add up to a formate consumption rate of
0.14 mmol/g/h. The latter value is comparable to the whole body rate of
formate production in rats (0.25e0.36 mmol/g of body weight/h,
Table 1). These estimates suggest that aspartame can be a significant
source of formate in humans consuming large amounts of aspartame-
Table 2 e The potential for formaldehyde and formate generation from the ing

Item Serving Aspartamea

(mg)

Coffee
Brewed coffee 8 oz 0
Espresso 1 oz 0

Soft drinks
Coke 12 oz 0
Diet coke 12 oz 197
Pepsi 12 oz 0
Diet Pepsi 12 oz 161
Caffeine free diet Pepsi 12 oz 170
Dr. Pepper 12 oz 0
Diet Mountain Dew 12 oz 162

Analgesics
Min 1 Tablet 0
Max 0

Decongestant
Dristan 2 Tablets 0

Stimulant
NoDoz 1 dose 0
Vivarin 1 dose 0

Weight loss
Dexatrim 1 dose 0

a Based on data reported in Refs. [160,161].
b Assuming mono-demethylation of caffeine and metabolism of aspartame to aspartate, p
c Assuming full conversion of formaldehyde to formate and a body weight of 70 kg. The t
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containing beverages. Whether this could contribute to weight gain or
other physiological changes remains to be investigated.
Creatine supplementation is another potential exogenous source of
formate. Creatine can be metabolized by the gut microbiome to
methylamine. Methylamine enters the circulation and it can be
metabolized by the serum enzyme semicarbazide sensitive amine
oxidase (SSAO) to formaldehyde, H2O2, and ammonia. Creatine mon-
ohydrate supplementation has been investigated for its positive effect
on physical performance and health [71]. In a creatine monohydrate
supplementation experiment where subjects ingested 21 g of creatine/
day for 14 days, levels of urine methylamine increased by 90% while
formate increased by 13% [72]. Therefore, creatine supplementation
can contribute to the whole body intake of formate.
Last but not least, methylated molecules in drinks, foods, and drugs
can be demethylated in the liver releasing formaldehyde, which is
subsequently converted to formate. A great example is caffeine, also
known as 1,3,7-trimethylxanthine. After ingestion of caffeine almost
100% is absorbed through the gut and only about 3% is excreted
unchanged [73]. In the liver, caffeine is demethylated at any of the
methyl group positions resulting in the formation of paraxanthine (1,7-
dimethylxanthine, 80%), theobromine (3,7-dimethylxantine, 12%) and
theophylline (1,3-dimethylxanthine, 4%), in each case releasing
formaldehyde. For example, an espresso cup contains about 60 mg of
caffeine and has the potential to release 0.31 mmol of formaldehyde
following absorption and demethylation in the liver. Assuming an
intake of 1 espresso cup per day and a typical body weight of 70 kg
that would lead to a caffeine dependent formate production rate of
0.18 mmol/h/kg. The latter value is about the rate of total formate
production estimate in rats (Table 1). Similar estimates can be derived
for soft-drinks containing caffeine (Table 2). In this case, we should
consider the use of aspartame as a sweetener, which can also
contribute to formaldehyde and formate production. For example,
putting together the caffeine and aspartame content, the consumption
of 1 can of diet coke per day has the potential for a formate production
estion of caffeine containing drinks and medications.

Caffeinea

(mg)
Formaldehydeb

(mmol)
Formatec

(mmol/h/kg)

130 0.67 0.4
60 0.31 0.18

34 0.18 0.1
50 0.93 0.55
31 0.16 0.1
34 0.72 0.43
0 0.58 0.34
45 0.23 0.14
51 0.81 0.48

30 0.15 0.09
100 0.51 0.31

32 0.16 0.1

200 1.03 0.61
200 1.03 0.61

200 1.03 0.61

henylalanine, and methanol and of methanol to formaldehyde.
ypical servings of 1 oz (28 ml), 8 oz. (227 ml), and 12 oz (340 ml) are used.
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rate of 0.55 mmol/h/kg. Caffeine is also present in some medications,
in some instances exceeding the caffeine content of coffee and soft
drinks (Table 2). It is difficult to draw conclusions from these data in
the absence of an estimate for the total rate of formate production in
humans or the total daily demand of 1C units. Yet, these data suggest
that the intake of caffeinated drinks is likely an important dietary
source of formate in humans.

3.2. Formate sinks
Circulating formate together with the in-tissue formate formation
contribute to the tissue specific demands of 1C units. Since methanol
is a source of formate in mammals and a large bolus of methanol (3 g/
kg) is slowly metabolized to formate in the liver, we can use 13C-
methanol to trace the fate of formate in whole organisms [57]
(Figure 4). The reverse activity of serine hydroxymethyl transferase
and the activity of methionine synthase result in a rapid equilibrium in
the 13C-enrichment of serine and methionine, that last from 1 to 20 h in
mice. By 20 h, we also observe a significant 13C-enrichment in ATP,
reflecting the tissue specific rate of purine synthesis. All tissues exhibit
some level of purine synthesis, with high values in the liver and lower
in the brain. We also observe 13C incorporation into urate, a product of
purine breakdown. Interestingly, the 13C incorporation into urate is
faster than that into ATP. This data suggest that, for a given tissue,
urate is produced in the tissue compartment where purine synthesis is
taking place.
The incorporation of 13C in methionine is followed by the 13C incor-
poration into methylated products. Creatine synthesis contains a
methylation step; therefore, creatine synthesis acts as a sink of 1C
units. By 20 h, there is incorporation of 13C in creatine in most tissues
Figure 4: Fates of methanol derived formate in mice. Incorporation of 13C in tissue metabo
13C-enrichment in the indicated metabolite at the indicated time point after injection.
Based on data reported in Ref. [57].
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except for the brain. Surprisingly, the 13C-enrichment in creatine is
highest in the pancreas, suggesting that the rate of creatine synthesis
is higher in the pancreas than the textbook knowledge reporting this
reactions to take place in the kidney and the liver [39].
Circulating formate is also excreted in the urine. The anion exchange
transporters Pedrin (encoded by the SLC26A4) and CFEX (encoded by
the SLC26A6 gene) can exchange Cl� and formate [74e76]. Based on
data from the Human Protein Atlas [77], CFEX has broad tissue
expression while Pedrin is mainly expressed in the gastrointestinal
track, liver, and male reproductive tissues. These data suggest that
CFEX contributes to formate exchange in most tissues and to formate
clearance in the kidneys, while Pedrin is responsible for formate ab-
sorption from the gut.

4. FORMATE METABOLISM IN HEALTH AND DISEASE

Alterations in formate metabolism has been documented in multiple
human disorders and pathophysiological conditions [3,78]. The in-
vestigations of environmental and genetic factors causing those al-
terations have led to major breakthroughs in our understanding of
formate metabolism in mammals [4]. Here we review the evidence
associated with those conditions, together with indirect evidence for
other diseases in which alterations in formate metabolism may play a
role as well.

4.1. Methanol intoxication
Faulty fermentation or distillation can lead to the production of alcoholic
beverages tainted with methanol [2]. Excessive consumption of
methanol-contaminated beverages can lead to different degrees of
lites following an intraperitoneal injection of 13C methanol (3 g/kg). The Y-axis shows the
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methanol intoxication. The metabolism of methanol in the liver results
in high levels of circulating formate in patients intoxicated with
methanol. The concentration of circulating formate is in fact a diag-
nostic measurement for methanol intoxication [79].
Methanol intoxication can cause visual dysfunction and, in severe
cases, death. These clinical symptoms are in part due to the inhibitory
effects of formate on cytochrome c oxidase, the complex IV of the
mitochondrial electron transport chain. Formate inhibits cytochrome c
oxidase with an inhibition constant in the range between 5 and 30 mM
[80]. In healthy humans, circulating formate is found below the mM
range [78,81]. Patients that manifest visual dysfunction due to
methanol intoxication had a median serum formate concentration of
16 mM at diagnosis [79]. In contrast, patients with serum formate
levels below 10 mM at diagnosis survive methanol intoxication without
any visual sequelae [79]. Together the clinical and in vitro data support
the hypothesis that the toxicity of methanol is in part due to the in-
hibition of cytochrome c oxidase by formate.
Methanol intoxication is treated with alcohol dehydrogenase inhibitors
to inhibit an essential metabolic step in the metabolism of methanol to
its toxic by-product formate. Inhibition of alcohol dehydrogenase
prevents the accumulation of formate and methanol can be cleared via
urine excretion. Since alcohol dehydrogenase catalyzes the conversion
of both methanol to formaldehyde and ethanol to acetaldehyde, ethanol
acts as a competitive inhibitor of methanol metabolism by alcohol
dehydrogenase. Based on this rationale ethanol administration has
been used to treat patients with methanol intoxication [82]. The syn-
thetic alcohol dehydrogenase inhibitor fomepizole is also used in the
context of methanol poisoning [83]. Yet, alcohol dehydrogenase in-
hibitors may not be as effective in patients that have already high
circulating formate levels at diagnosis. These cases would require
treatment strategies to accelerate formate turnover. There are
currently investigations of organometallic complexes that catalyze the
transfer hydrogenation between formate and NADþ, oxidizing formate
to CO2 [84]. These compounds are currently under investigation for
their use as cytotoxic agents to treat cancer. The possibility of using
these compounds to treat methanol intoxication should be explored.

4.2. Folate deficiency
Folate (in its active form THF) is a co-factor in the catabolism of serine
to formate and in the formate incorporation into purines, thymidylate,
and methionine. Therefore, folate deficiency should have an impact in
both the production and turnover of formate. Pigs subjected to a folate
deficiency diet exhibit lower rates of formate turnover than control
animals receiving a folate supplemented diet [85]. In contrast, basal
plasma formate levels are similar between the two groups [85], indi-
cating that the impairment of formate turnover caused by folate defi-
ciency equally reduces both formate production and incorporation.

4.3. Vitamin B-12 deficiency
Methionine synthase requires vitamin B-12 (cobalamin) as a co-factor,
and vitamin B12 deficiency could result in alterations of formate
metabolism. The impairment of methionine synthesis may cause an
accumulation of its precursors 5-methyl-THF and homocysteine and,
as a consequence, a depletion of other cellular folates (methyl-trap
hypothesis [86]). Thus, vitamin B-12 deficiency could mimic folate
deficiency despite a sufficient total folate pool. In particular, the THF
pool depletion causes a decrease in the synthesis of 10-CHO-THF from
formate and consequently an increase in the formate overflow from
cells. In agreement with this expectation, rats subjected to a vitamin B-
12 deficient diet exhibit higher rates of formate production and plasma
formate levels than control rats fed a vitamin B-12 replete diet [87,88].
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4.4. Developmental disorders
Both folate and vitamin B-12 deficiency are associated with birth
defects, and their supplementation is recommended during pregnancy.
Given that formate metabolism is folate- and vitamin B-12 dependent
we anticipate a role of formate metabolism in embryonic development.
The measurement of formate levels during pregnancy and their as-
sociation with developmental disorders provides support for this evi-
dence. Formate levels are 3 fold higher in fetal plasma of lambs than in
2e3 months old lambs (191 � 62 mM vs 62 � 11 mM [89]). Formate
levels are also significantly higher in maternal plasma than in non-
pregnant adult sheep (33 � 13 mM vs 6�7 mM [89]). In humans,
reduced maternal urine formate levels at the end of the first trimester
are associated with fetal growth restriction [90]. Taken together, these
evidences point to a requirement of formate during development.
The formate requirement during development could be obtained from
the maternal diet or via the endogenous metabolism of formate
sources. Genetic studies in mice have provided evidence for an
essential requirement of mitochondrial formate production. As
reviewed above, mitochondria can catabolize multiple sources to
formate (Figure 2). When serine is used, it requires the activity of the
gene products of Shmt2, Mthfd2, and Mthfd1l. Since the serine
catabolism to formate is folate dependent there is an additional
requirement for the mitochondrial folate transporter MFT, encoded by
Slc25a32. The homozygous deletion of Shmt2, Mthfd2, Mthfd1l, or
Slc25a32 is embryonic lethal in mice [91e93]. In fly, knockdown of
Shmt2 or Nmdmc, the fly homolog of human MTHFD2, causes mito-
chondrial dysfunction and developmental defects [94]. Therefore,
endogenous formate production from the mitochondrial serine catab-
olism to formate is an essential requirement during embryonic
development.
Interestingly, mitochondria isolated from Mthfd1l�/�mouse embryonic
fibroblasts release formate at about 1/3 the values observed in mito-
chondria isolated from Mthfd1lþ/þ mouse embryonic fibroblasts [95].
While the enzyme responsible for mitochondrial formate production in
the absence of Mthfd1l remains to be uncovered, these data indicate
that a 2/3 reduction in mitochondrial formate production is sufficient to
cause neural tube defects in mice.
There is also evidence indicating a role of mitochondrial formate
production from glycine via the glycine cleavage system. Mutations in
genes encoding the glycine cleavage system predispose to neural tube
defects in mice and humans, and it is rescued by formate supple-
mentation [96,97]. The neural tube defects caused by glycine cleavage
deficiency are less severe than of disruption of mitochondrial serine
catabolism to formate, resulting in partial penetrance. This evidence
suggests that serine is the major source of formate and glycine pro-
vides a secondary contribution.
The curly tail mouse provides another model of developmental defects
that is not driven by genetic alterations of formate metabolism en-
zymes. The curly tail (ct) mouse strain carries a hypomorphic allele of
Grhl3, encoding the grainyhead-like 3 transcription factor. Homozy-
gous ct/ct or Grhl3�/� embryos develop partially penetrant neural tube
defects that can be rescued by sodium formate supplementation in
drinking water [98,99]. At the cellular level, ct/ct or Grhl3�/� embryos
are characterized by reduced levels of Mthfd1l, the enzyme respon-
sible for mitochondrial formate production, which is consistent with the
rescue by formate supplementation [98,99].

4.5. Cancer
Cancer cells have metabolic programs supporting tumor growth, in-
vasion, and metastasis [100e102]. The requirement of purine and
thymidylate nucleotides for tumor growth carries as a consequence a
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demand for 1C unit production [5,6,100,103]. Serine is the major
supplier of 1C units for cancer cell proliferation and tumor growth
[11,15,21,56]. In contrast, the available experimental data indicate that
glycine is not a major source of 1C units in cancer cells [18].
Cancer cells uptake serine from the extracellular media or synthesize
serine from the glycolytic intermediate 3-phosphoglycerate (Figure 2).
The synthesis of serine takes place in three steps catalyzed by 3-
phosphoglycerate dehydrogenase (PHGDH), 3-phospho-hydroxypyr-
uvate transaminase (PSAT1), and phospho-serine phosphatase (PSPH).
PHGDH is amplified in a subset of human cancers and cancer cells with
PHGDH amplifications are less dependent on media serine for their
proliferation [104,105].
Serine can contribute to 1C metabolism via the cytosolic or mito-
chondrial folate dependent pathways (Figure 2). The identification of a
mitochondrial NADþ dependent CH2-THF dehydrogenase in cancer
cells in the 1980s suggested a role for mitochondrial 1C metabolism
[106,107]. More recent experiments corroborated that cancer cells
utilize mainly the mitochondrial pathway [14,15]. Yet, mitochondrial
formate production is not essential for cancer cells, because they can
compensate using the cytosolic pathway [15]. That said, there is a
distinctive difference between cancer cells with active or inactive
mitochondrial formate production. In cancer cells with active mito-
chondrial 1C metabolism, the mitochondrial formate production ex-
ceeds the biosynthetic demand of 1C units [49], and the excess 1C
units are released from cells as formate (formate overflow) [21]. In-
hibition of mitochondrial formate production by genetic or pharmaco-
logical interventions abrogates formate overflow [21,56] and, to a
variable extent, inhibits cancer cell proliferation [15]. These data
indicate that cancer cells with active mitochondrial formate production
are in a state of excess production of 1C units while cancer cells with
inactive mitochondrial 1C metabolism are in a state of 1C insufficiency.
Tumor growth is inhibited when mice are fed a serine and glycine
deprived diet compared to tumor bearing mice receiving a regular diet
[50]. Genetic disruption of mitochondrial 1C metabolism results in
partial tumor growth inhibition [15,108]. Some tumors in mice exhibit
higher rates of serine catabolism to formate than adjacent normal
tissues and mice bearing those tumors have significantly higher
circulating formate levels than matched healthy controls [57]. There is
one noted exception. A mouse model of pancreatic cancer revealed no
difference between the rate of serine catabolism to formate in tumors
relative to adjacent normal tissue, and no difference in the levels of
circulating formate between tumor bearing mice and matched controls
[57].
The expression of mitochondrial 1C metabolism genes is altered in
human cancers. The mitochondrial genes SHMT2 and MTHFD2 are
among the enzyme coding genes manifesting the highest increase in
expression in tumor tissues relative to normal tissue controls [109].
The expression of mitochondrial formate production genes is highly
correlated with gene signatures of increased cell proliferation [110], a
distinctive hallmark of cancer [111].
Circulating formate levels are reduced in breast and lung cancer pa-
tients relative to healthy controls [78]. The reduction of circulating
formate in human cancer patients could be both a tumor related effect
or an effect of the body reaction to the tumor. Human cancers could be
starved for 1C units. That hypothesis would explain both the reduction
of circulating formate levels and the selective advantage of increasing
the expression of mitochondrial serine catabolism enzymes. There are
also potential tumor independent explanations. Cancer patients may
have altered microbiomes, with a reduced capacity for formate and
methanol production. A reduced liver function with regard to the
metabolism of methanol to formate can also contribute to reduced
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formate levels. The tumors could also trigger an immunological
response, and the activated immune response could increase the
consumption of 1C units by immune cells.

4.6. Immunology
Serine is essential for T cells activation and supplemented formate can
partially rescue serine deprivation [10,112,113]. Upon activation, T
cells exhibit an increase in the expression of genes of the mitochondrial
formate metabolism and increased incorporation of the 3rd carbon of
serine into purines [10,113]. Genetic inactivation of SHMT2, the first
enzyme in the pathway of mitochondrial serine catabolism to formate,
impairs T cell proliferation [113]. During aging in mice, there is a
decline in naïve CD4þ T cells, and the remaining cells are impaired
upon activation [114]. The naïve CD4þ T cells of aged mice are
characterized by a decline in the mitochondrial respiratory capacity and
the expression of mitochondrial formate production enzymes, sug-
gesting a defect in mitochondrial formate production. This evidence
highlights the importance of formate metabolism during T cell acti-
vation. Further work is required to investigate the relationship between
circulating formate levels in humans and the strength of the immune
system, particularly in the context of aging.

4.7. Obesity
There is hardly any mention of 1C metabolism in the obesity literature,
and vice versa. In contrast, there is plenty of literature linking uric acid,
or its anion urate, to obesity. Urate is among the circulating metabolites
with the highest correlation with obesity and BMI [78,115e117].
Higher levels of urate are associated with weight gain [116]. Urate is
the end product of purine catabolism via the activity of xanthine
oxidoreductase (XOR, Figure 2). XOR is highly expressed in adipose
tissue and its activity is increased in the adipose tissue of obese
relative to lean mice [44]. The latter report indicates a mechanistic link
between increased fat tissue and increased urate levels.
An increase in circulating urate could be due to a number of factors,
including increased dietary intake of purines, increased endogenous
de novo synthesis of purines, and reduced urate clearance in the urine.
Some of these factors have been studied in the context of gout, a type
of arthritis caused by the accumulation of urate crystals in the joints
[118]. A low purine diet causes about a 25% reduction of serum urate
levels in humans [119]. In contrast, drinking beer increases mean
urate excretion by 15% in gout patients and by 20% in healthy controls
[120]. This evidence indicates that exogenous purines contribute to
about 1/4 of total purines catabolized to urate. Since diet is quite diverse
in the human population, we expect a significant environmental
contribution to circulating urate levels.
The endogenous de novo synthesis of purines should account for the
remaining 3/4 contribution to urate production. Evidence from the field
of rheumatoid arthritis links circulating urate levels and purine syn-
thesis. Rheumatoid arthritis is an inflammatory disease that causes
pain, swelling, and stiffness in the joints. The antifolate methotrexate is
commonly used to treat rheumatoid arthritis patients. Treatment of
rheumatoid arthritis with an oral dose of 7.5 mg methotrexate lowers
circulating urate levels within 24 h after administration [121]. The
methotrexate dependent reduction of circulating urate is associated
with a reduction in the number of swollen joints [122]. Additional
evidence comes from the study of adipocytes. In vitro cell cultures of
3T3-L1 mature adipocytes release urate at rates comparable to the
purine synthesis rates of cancer cells [44]. Since purine is not sup-
plemented in these in vitro cell cultures, we can assume that adipo-
cytes have a high rate of purine synthesis matching the measured
rates of urate release.
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Where there is an increase of purine synthesis, there is an increase in
the demand of 1C units, which could then impinge on circulating
formate levels. Formate is a precursor of purine synthesis, and its
circulating levels are determined by the whole body formate production
and demand. An increase of purine synthesis could shift the balance
towards formate consumption, depleting the circulating formate levels.
We have recently found that circulating formate levels are significantly
decreased in highly obese individuals relative to healthy controls [78].
Circulating formate levels are also significantly decreased in obese
colorectal cancer patients relative to leaner patients [123].
Further studies are required to quantify the contribution of purine
synthesis in fat tissue to the whole body urate production, in healthy
and obese individuals. There is also a need to investigate what is the
function of this apparently wasteful pathway of purine synthesis and
turnover in adipocytes. Xanthine oxidoreductase has been shown to
regulate adipogenesis, providing a context for these investigations
[124]. We should also consider that not all fats are equal. Visceral fat is
linked to overproduction of urate more than subcutaneous fat is [125].
Environmental and genetic factors can also affect circulating urate and
formate levels. For example, rats fed a high fat diet for 81 days have
higher fecal formate levels than the day before the intervention [126].
Common polymorphisms in the urate transporters may have functional
consequences leading to different capacities of urate clearance [127].

4.8. Neurological disorders
Loss of hypoxanthine-guanine phosphoribosyltransferase (HPRT), a
purine recycling enzyme, causes LescheNyhan disease, a neuro-
behavioral disorder characterized by increased de novo purine syn-
thesis, hyperuricemia, mental retardation, and compulsive aggressive
behavior [128,129]. The neurological symptoms of LescheNyhan
disease can be explained by the alterations in purine levels and
purinergic signaling associated with loss of HPRT [130]. Some
mechanistic insights have been obtained from in vitro biochemical
studies using rat PC6-3 cells, a pheochromocytoma cell line that un-
dergoes robust differentiation when treated with nerve growth factor
[131]. In contrast to parental PC6-3 cells, HPRT deficient cells are
unable to reduce purine synthesis after induction of differentiation, and
consequently have reduced levels of several neurotransmitters. This
explains the increase in purine synthesis and hyperuricemia in Lesche
Nyhan disease patients. Further work is required to investigate the
impact of increased purine on circulating formate levels in the context
of LescheNyhan disease.
In contrast to LescheNyhan disease, there is an inverse association
between circulating urate levels and Parkinson disease [132,133], a
neurological disease characterized by reduced brain dopamine and
motor disorders. From the mechanistic point of view, serum urate is
positively correlated with dopamine transporter availability in brain
tissue [134]. Biochemical studies in cells with reduced DJ-1 protein
levels provide a hypothesis for the reduction of circulating urate in
Parkinson disease patients. Loss of DJ-1, encoded by the PARK7 gene,
is associated with early onset Parkinson disease. Knockdown of DJ-1
expression induces a reduction in the mitochondrial formate meta-
bolism enzymes SHMT2 and MTHFD2 [135], suggesting that mito-
chondrial formate production is impaired in DJ-1 dependent Parkinson
disease. Since formate is a precursor of purine synthesis and urate is a
product of purine catabolism, these data provide a mechanistic hy-
pothesis linking reduced formate production from mitochondrial
metabolism and decreased circulating urate in the context of Parkin-
son’s disease associated with DJ-1 deficiency. Further work is
required to validate this hypothesis and to investigate its relevance in
other forms of Parkinson’s disease.
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Increased urate levels are also associated with decreased risk of
Alzheimer’s disease and with good prognosis in Parkinson’s disease,
amyotrophic lateral sclerosis, Huntington’s disease, and multisystem
atrophy [136]. These associations are attributed to the antioxidant
properties of urate. However, the latter hypothesis contradicts the
evidence in LescheNyhan disease, where the association is inverted.
This contradicting evidence suggests that both deficiency and excess
urate production leads to neurological disorder and, by extrapolation,
that purine synthesis in brain tissue should be fine-tuned for optimal
neural activity.
Although differentiated neurons do not proliferate, they require de novo
purine synthesis for axon regeneration and growth of new axons [137]. In
fly, loss of the genes encoding for GMP synthetase or inosine mono-
phosphate dehydrogenase causes severe defects in axon guidance in the
retina [138]. Since formate metabolism feeds purine synthesis we hy-
pothesize that local and whole body changes in formate metabolismmay
affect brain function. 13C-methanol tracing in mice shows 13C incorpo-
ration into brain purines, giving a rough estimate of the rate of purine
synthesis in the brain relative to other tissues (Figure 4, ATP).
These data indicate that formate supplementation should be explored
as a therapeutic option in neurological disorders characterized by low
levels of circulating urate. It has been shown that inosine, a purine
analog, stimulates axon sprouting and motor recovery after spinal cord
injure [139,140]. Further investigations should address whether
formate supplementation could achieve the same effect.

4.9. Cardiovascular diseases
Formate levels are altered in some patients with mitral valve insuffi-
ciency. The mitral valve is a heart structure that is required for proper
cardiac function. Mitral valve insufficiency is a cardiovascular disorder
that can cause heart failure and death [141]. The plasma of patients
with mitral valve insufficiency exhibits significantly lower levels of
formate and lactate [142]. Formate was indicated as the most
discriminatory metabolite between patients with mitral valve insuffi-
ciency and healthy controls.
There is currently no mechanistic hypothesis for the association be-
tween circulating formate levels and cardiac insufficiency. Yet, there
are reports of urate production by human hearts [143]. It has been
estimated that human hearts produce 300 nmol of urate/min/100 g of
tissue. Assuming a tissue density of 1 kg/l that is equivalent to a urate
production rate of 0.18 mM/h, which is again in the range of the purine
synthesis rate of immortalized cell lines [21]. Extrapolating from this,
one could hypothesize that decreased purine synthesis may be
causally related to mitral valve insufficiency. But again, we are con-
fronted with the question of why purine synthesis and catabolism to
urate is so active in the first place.
The association between formate levels and cardiac deficiency could
be a confounding factor to the reported observation of low formate
levels in cancer and obesity patients relative to healthy controls. Mitral
regurgitation results in left atrial dilation and left atrial size is positively
correlated with BMI [144]. This association suggests that the obser-
vation of low circulating formate levels in obese individuals could be
mediated by cardiac insufficiency. Whether this is the case should be
further investigated.

5. PHARMACOLOGICAL MODULATORS OF FORMATE
METABOLISM

5.1. Formate supplementation
The developmental disorders caused by Mthfd1l deficiency are asso-
ciated with reduced mitochondrial formate production and they can be
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rescued by formate supplementation [92]. Thus, as it is the case for
folic acid and vitamin B12, formate supplementation should be
investigated during pregnancy. A potential concern could be the re-
ported formate related toxicity in the context of methanol overdose.
Oral administration of a single dose of 3.9 g of calcium formate results
in maximum serum formate levels of 30e90 mM in humans [145].
These values are significantly below the 10 mM range associated with
sequelae following methanol intoxication [79]. Similar observations
have been made in longer term studies of calcium formate supple-
mentation in humans [146]. These studies indicate that calcium-
formate supplementation at doses below 3.9 g/day is safe for humans.
The safety of formate supplementation is well documented in animals.
Calcium formate is currently authorized by the European Union for its
use as a preservative in animal feed up to a maximum dose of 15 g of
formate/kg of complete fed (1.5%) [147]. There are, however, or-
ganism differences with regard to the nutritional benefits of formate
salts supplementation. A diet supplemented with calcium formate
(1.2%) significantly improves the growth of piglets [148]. In contrast, a
diet supplemented with calcium formate at a dose of 0.5 or 1% has no
significant effect on the weight gain of broiler chicks, while a dose of
1.5% even reduces the weight gain [149]. Beyond nutrition, formate
salts supplementation may have an effect on the gut microbiome and
gut function. The supplementation of calcium formate in piglets indi-
cated a significant increase in the hardness of faeces and a significant
reduction in diarrhea events and total Escherichia coli faecal excretion.
Another study in rats reported that the supplementation of 250 mM
sodium formate in the drinking water alters the gut microbiome [150],
resulting in an increase of Bacteroidetes.
Once in the circulation, supplemented formate contributes to the
nutritional requirements of 1C units. Interestingly, a study in mice
reported a decline of mitochondrial 1C metabolism in the population of
CD4þ naïve T cells [114]. This evidence suggests that formate sup-
plementation could rescue the decline of the adaptive immune system
during aging.

5.2. Inhibition of 1C metabolism
Inhibition of serine 1C metabolism is currently investigated as a
target for cancer therapy. Pharmacological dual inhibitors of SHMT1
and SHMT2 have been developed, showing tumor growth inhibitory
activity in mouse models of cancer [151,152]. Strategies to develop
MTHFD2 specific inhibitors have been discussed [153]. LY345899,
an antifolate based inhibitor of MTHFD1 with a 96 nM IC50, shows
inhibitory activity against MTHFD2 as well, albeit with a 7 times
higher IC50 of 663 nM [154]. Carolacton, a natural macrolide keto-
carboxylic acid produced by the Sorangium cellulosum bacteria is
another dual inhibitor of MTHFD1 and MTHFD2 with in vitro growth
inhibitory activity against cancer cells [155]. There are also ongoing
investigations of organometallic complexes that catalyze the transfer
hydrogenation between formate and NADþ [84]. These compounds
are cytotoxic against cancer cells in part due to their ability to deplete
intracellular NADþ, switching cancer cells to a more oxidized state.
Whether these compounds could manifest specific activity against
tumors with increasing rates of serine catabolism to formate remains
to be elucidated.

6. OUTLOOK

The findings reviewed above highlight the central role of formate in
mammalian metabolism. There remain a number of open key ques-
tions regarding the role of formate metabolism in normal physiology
and disease:
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� What is the selective advantage of mitochondrial 1C metabolism?
� What is the contribution of diet and the microbiome to the variable
intake of formate and methanol in humans?

� Should formate be supplemented during pregnancy to reduce the
risks of birth defects?

� What is the role of formate metabolism in diseases characterized by
abnormal levels of circulating urate (e.g., gout, obesity, diabetes,
neurodegeneration)?

� Does formate supplementation rescue the decline of adaptive im-
munity during aging?

� Are inhibitors of serine 1C metabolism more effective than estab-
lished antifolates in the treatment of cancer?

We hope that the answers to these questions will bring more attention
to the promising field of formate metabolism.
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