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We investigate the far-from-equilibrium behavior of the Boltzmann equation for a gas of massless scalar
field particles with quartic (tree level) self-interactions (λϕ4) in Friedmann-Lemaitre-Robertson-Walker
spacetime. Using a new covariant generating function for the moments of the Boltzmann distribution
function, we analytically determine a subset of the spectrum and the corresponding eigenfunctions of the
linearized Boltzmann collision operator. We show how the covariant generating function can be also used
to find the exact equations for the moments in the full nonlinear regime. Different than the case of a
ultrarelativistic gas of hard spheres (where the total cross section is constant), for λϕ4 the fact that the cross
section decreases with energy implies that moments of arbitrarily high order directly couple to low order
moments. Numerical solutions for the scalar field case are presented and compared to those found for a gas
of hard spheres.
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I. INTRODUCTION

The Boltzmann equation plays an important role in
our understanding of the properties of dilute gases [1]. In
the relativistic regime, the Boltzmann equation [2] has
been widely applied to describe phenomena in many
different fields, ranging from cosmology [3] to heavy-
ion collisions [4–10]. This nonlinear integro-differential
equation describes how the single-particle distribution func-
tion evolves in phase-space in the presence of collisions
among the constituents of the gas. From the single-particle
distribution function quantities associated with conservation
laws such as the energy-momentum tensor, or the particle
current, can be reconstructed, which provides a way to
determine the hydrodynamic evolution of the system.
The properties of the nonrelativistic Boltzmann equation

have been widely investigated [1]. In fact, besides extensive
numerical solutions, an exact solution for a nonrelativistic
gas of Maxwell molecules has been derived [11–13]. This
result, known as the Bobylev-Krook-Wu solution, was

found by deriving an exact set of coupled nonlinear
differential equations for the moments of the distribution
function, which then admit an analytical solution for a
given choice of initial conditions. Following along the work
by Bobylev, Krook, and Wu, in [14,15] the relativistic
Boltzmann equation for a gas of particles interacting with
constant cross section, in an expanding spacetime, was
rewritten in terms of an exact (infinite) set of coupled
differential equations for moments of the single-particle
distribution function. In that case, because the cross section
is independent of the energy, the equations for the moments
can be solved recursively, with the solution of moments of
order n only depending on moments of order k < n. This
property was crucial to find one analytical solution for the
moments, which in turn led to the first (and so far, only)
analytical solution of the full nonlinear Boltzmann equation
for a relativistically expanding gas [14]. This exact solution
was then compared to approximate solutions of the
Boltzmann equation obtained by employing the relaxation
time approximation [16,17] and the linearized collision
term, which was useful to determine the validity of such
approximations [15].
In this paper we go beyond [14,15] and consider the

Boltzmann equation for a gas of classical massless scalar
field particles with quartic (tree-level λϕ4) self-interactions
in a homogeneously expanding, isotropic spacetime. A new
covariant generating function method for the moments of
the Boltzmann distribution function is introduced in this
work to analytically determine the subset of scalar
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eigenfunctions of the linearized Boltzmann collision oper-
ator, and the corresponding eigenvalues. This covariant
generating function is then employed to find the exact
equations of motions for the scalar moments in the full
nonlinear regime. Unlike the case of hard spheres, for λϕ4

the cross section decreases with energy and, as shall be
demonstrated in this paper, this implies that moments of all
orders are coupled to each order. This coupling prevents
finding a full analytical solution, but numerical solutions of
these moment equations can be obtained using simple
numerical schemes. A comparison between such numerical
solutions, and the corresponding solutions found for a gas
of hard spheres with the same initial conditions, is
presented in this work.
This paper is organized as follows. InSec. IIwediscuss the

general properties of the Boltzmann equation in Friedmann-
Lemaitre-Robertson-Walker spacetime. In Sec. III we intro-
duce thegenerating functionmethod anduse it to analytically
derive the scalar subset of the spectrumand eigenfunctions of
the linearized Boltzmann operator for λϕ4 theory. The scalar
moment equations of the nonlinear Boltzmann equation for a
scalar field are derived in Sec. IV. Section V includes some
numerical results and comparisons between the scalar field
and constant cross section solutions. A summary of our
findings and the conclusions we have drawn are presented in
Sec. VI. Technical details concerning the properties of
associated Laguerre polynomials are given in
Appendix A. In Appendix B we show how the new
generating function method introduced in this paper can
be used to derive the exactmoment equations for the constant
cross section case, which were originally obtained in [14,15]
using different methods.
Notation: We use a mostly minus metric and natural units.

Four-vectors are defined as aμ ¼ ða0; aÞ and we use · for the
scalar product between spatial vectors, i.e., aibi ¼ a · b.

II. BOLTZMANN EQUATION IN EXPANDING
SPACETIME

We consider a homogeneous and isotropically expanding
system of massless scalar particles with quartic self-
interactions, embedded in a curved spacetime described
by the Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric [18] (with zero spatial curvature). In the conformal
gauge the line element is

ds2 ¼ a2ðτÞðdτ2 − dx2 − dy2 − dz2Þ: ð1Þ

We note that the FLRWmetric gμν written above is related to
the standardMinkowski metric viaWeyl rescaling [18]. This
fact will play an important role when solving the Boltzmann
equation in this curved spacetime, as we explain below.
Note that in these coordinates the fluid 4-velocity is
uμ ¼ ð1=aðτÞ; 0; 0; 0Þ, and the expanding FLRW geometry
induces a nonzero fluid expansion rate θðτÞ ¼ ∇μuμ ¼
∂μð ffiffiffiffiffiffi−gp

uμÞ= ffiffiffiffiffiffi−gp ¼ 3Da=a2, where uμ∇μ ¼ D and

ffiffiffiffiffiffi−gp ¼ a4ðτÞ, with g being the determinant of the metric
in (1). Furthermore, for the FLRW metric above there are
many nonzero Christoffel symbols, all of them equal to
DaðτÞ=aðτÞ.We take the probe limit in which the energy and
momentum of the kinetic particles are negligible in com-
parison to other sources that define the underlying cosmo-
logical scale factor aðτÞ of the metric. In this limit our results
are valid for any aðτÞ > 0 (for instance, for a radiation
dominated universe, aðτÞ ∼ τ).
The dynamics of the single-particle distribution function,

fðx; kÞ, is given by the relativistic Boltzmann equation in
curved space [19–23]

kμ∂μfðx; kÞ þ Γλ
μikλk

μ ∂fðx; kÞ
∂ki

¼ C½f�: ð2Þ

For massless particles with momentum kμ, the on-shell

condition kμkμ ¼ 0 implies that k0¼ jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþk2yþk2z

q
(we only use covariant momenta). Since the FLRW uni-
verse is spatially homogeneous and isotropic, the distribu-
tion function must be homogeneous in space and only
depend on the momentum via uμkμ. Thus, we write
fðx; kÞ ¼ fkðτÞ from here on.
The symmetries of the FLRW spacetime strongly con-

strain the form of the conserved currents of the matter. Due
to local momentum isotropy, the viscous shear-stress
tensor, energy diffusion, and particle diffusion current
vanish exactly. Therefore, for the massless gas one may
write the energy-momentum tensor, Tμν, as

Tμν ¼ ε

�
uμuν −

1

3
Δμν

�
ð3Þ

and the particle 4-current, Nμ, as

Nμ ¼ nuμ: ð4Þ

Above, we introduced the spatial projector orthogonal to
the 4-velocity,Δμν ≡ gμν − uμuν. In FLRW, the total energy
ε ¼ Tμνuμuν and particle n ¼ uμNμ densities in the local
rest frame are only functions of τ. The time evolution of
these quantities is fully determined by the conservation
laws

Dnþ 3n
Da
a

¼ 0; Dεþ 4ε
Da
a

¼ 0: ð5Þ

With initial condition aðτ0Þ ¼ 1, they are solved by nðτÞ ¼
n0=a3ðτÞ and εðτÞ ¼ ε0=a4ðτÞ, where n0 and ε0 are con-
stants. Furthermore, for a conformal gas, one may write
ε ∼ T4 and n ∼ T3 in terms of a suitably defined temper-
ature T, such that TðτÞ ¼ T0=aðτÞ and T0 is the initial
temperature scale.
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As discussed in detail in [22], for a conformal system the
Boltzmann equation transforms covariantly under a Weyl
transformation of the metric gμν → e−2Ωgμν. This is the case
for the massless (on-shell) λϕ4 theory considered in this
paper, where the corresponding interaction cross section
does not break conformal invariance. This property implies
that, if one conveniently writes the metric in conformal
gauge, the factors of aðτÞ will cancel and one can just solve
the Boltzmann equation on the flat piece of (1). We will use
this property to perform all of our calculations in
Minkowski spacetime, leading to a fluid 4-velocity that
is static, uμ ¼ ð1; 0; 0; 0Þ. To recover the time dependence
effect from the metric one can just use the well-known rules
based on Weyl rescaling to obtain the quantities at hand
(e.g., if ε0 is the energy density computed using the flat
dynamics, the energy density after recovering the Weyl
factor will be simply ε0=aðτÞ4) [21,22]. Another useful

consequence is that the left-hand side of (2) considerably
simplifies and the Boltzmann equation becomes

EkDfkðτÞ ¼ C½f�; ð6Þ

where we defined the scalar Ek ¼ uμkμ. Also, after the
Weyl rescaling of the metric, we rescale all the momenta
(kμ → kμ=T0) and time (τ → τT0) so both sides of the
Boltzmann equation written above are dimensionless. We
will work with those rescaled (dimensionless) quantities
throughout the paper, unless otherwise specified.
In this work we will only consider the classical limit

(Boltzmann statistics) where the Boltzmann equation for
on-shell massless scalar particles with a λϕ4 interaction
(i.e., a total cross section σðsÞ ¼ λ2=ð32πsÞ, where s is the
square of the center of mass energy) can be written as [2]

EkDfk ¼ C½f� ¼ g
2

Z
k0pp0

ð2πÞ5δð4Þðkμ þ k0μ − pμ − p0
μÞðfpfp0 − fkfk0 Þ; ð7Þ

where g ¼ λ2=ð32πÞ is a dimensionless constant that
denotes the strength of the interaction, and

Z
k
¼

Z
d3k

ð2πÞ3Ek
; ð8Þ

is the Lorentz invariant momentum space integral [2]. We
note that equilibrium distribution function is given by

feqk ¼ αe−Ek ; ð9Þ

where α > 0 is the fugacity, and this function is a zero of
the collision term, i.e., C½feqk � ¼ 0 [2].
In the next section we develop a covariant generating

function method and use it to determine the exact set of
eigenvalues and eigenfunctions of the scalar part of the
spectrum of the linearized collision operator associated
with (7). We then show in Sec. IV that the method can also

be used to determine the exact set of equations of motion
for suitably defined scalar moments of the distribution
function, which we solve to determine the corresponding
solution of the Boltzmann equation.

III. SCALAR SPECTRUM OF THE LINEARIZED
COLLISION OPERATOR

The linearized Boltzmann equation is framed in terms of
perturbations about the equilibrium distribution function,
truncated at first order in deviations. The distribution
function is written as

fk ¼ feqk þ δfk ≡ feqk ð1þ ϕkÞ; ð10Þ

where ϕk parameterizes the deviations from equilibrium.
After substituting this expression into the Boltzmann
equation (7), the result to linear order in ϕk is

Ek∂τðϕkf
eq
k Þ ¼ g

2

Z
k0pp0

ð2πÞ5δð4Þðkμ þ k0μ − pμ − p0
μÞfeqk feqk0 ðϕp0 þ ϕp − ϕk0 − ϕkÞ: ð11Þ

Defining the linearized Boltzmann collision operator as

L½ϕ�≡ g
2

Z
k0pp0

ð2πÞ5δð4Þðkμ þ k0μ − pμ − p0
μÞfeqk0 ðϕp0 þ ϕp − ϕk0 − ϕkÞ; ð12Þ

the linearized Boltzmann equation can then be written as

Ek∂τðϕkf
eq
k Þ ¼ feqk L½ϕk� ¼ feqk ðLgain½ϕk� − Lloss½ϕk�Þ; ð13Þ
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where we have decomposed the linearized collision operator into a gain term and a loss term which are respectively given by

Lgain½ϕk�≡ g
2

Z
k0
feqk0

Z
pp0

ð2πÞ5δð4Þðkμ þ k0μ − pμ − p0
μÞðϕp þ ϕp0 Þ; ð14Þ

Lloss½ϕk�≡ g
2

Z
k0
feqk0 ðϕk þ ϕk0 Þ

Z
pp0

ð2πÞ5δð4Þðkμ þ k0μ − pμ − p0
μÞ: ð15Þ

To determine the spectrum of the linearized Boltzmann
operator, we propose an Ansatz for the eigenfunctions in
terms of the associated Laguerre polynomial, Lð1Þ

n ðEkÞ [24].
We note that

Z
pp0

ð2πÞ5δð4Þðkμ þ k0μ − pμ − p0
μÞ ¼ 1 ð16Þ

as shown in [14], soLloss ¼ g
2

R
k0 f

eq
k0 ðϕk þ ϕ0

kÞ. Substituting
ϕk ¼ Lð1Þ

n , one finds

Lloss ¼
g
2
Lð1Þ
n ðEkÞ

Z
k0
feqk0 þ

g
2

Z
k0
feqk0 L

ð1Þ
n ðEk0 Þ: ð17Þ

The first integral can be evaluated explicitly to obtainR
k f

eq
k ¼ α

2π2
. The second integral must be zero because of

the orthogonality of the associated Laguerre polynomials.
Therefore, the loss term becomes

Lloss½Lð1Þ
n ðEkÞ� ¼

αg
4π2

ð1þ δn0ÞLð1Þ
n ðEkÞ: ð18Þ

This result indicates that, if Lð1Þ
n is an eigenfunction of L, it

will be an eigenfunction of both Lloss and Lgain, separately.
The gain term is considerably more difficult to inves-

tigate. For this purpose, it is convenient to use the
generating function for the associated Laguerre polyno-
mials [see (A3)]

1

ð1 − vÞ2 exp
�
−

xv
1 − v

�
¼

X∞
n¼0

vnLð1Þ
n ðxÞ; ð19Þ

with v ∈ ½0; 1Þ. Further properties of this generating
function and the associated Laguerre polynomials are
discussed in Appendix A. Motivated by seminal work of
Refs. [11–13], we define the following quantity

I ¼
X∞
n¼0

vnLgain½Lð1Þ
n �; ð20Þ

which can also be written as

I ¼ g
ð1 − vÞ2

Z
k0
feqk0 ð2πÞ5

Z
pp0

δð4ÞðPTμ − pμ − p0
μÞ exp

�
−Ep

v
1 − v

�
; ð21Þ

where we defined the total 4-momentum Pμ
T ¼ kμ þ k0μ.

Since the integral over pp0 is a Lorentz scalar that depends only on the timelike 4-vectors uμ and Pμ
T , the result of these

integrals can only depend on those 4-vectors via uμP
μ
T and s ¼ PTμP

μ
T , with s being the traditional Mandelstam variable [2].

This implies that this integral is invariant under the exchange of uμ and the normalized total 4-momentum, P̂μ
T ≡ Pμ

T=
ffiffiffi
s

p
.

This interchange leads to

I ¼ g
ð1 − vÞ2

Z
k0
feqk0 ð2πÞ5

Z
pp0

δð4Þð ffiffiffi
s

p
uμ − pμ − p0

μÞ exp
�
−P̂μ

Tpμ
v

1 − v

�
: ð22Þ

The integral I is a Lorentz scalar and, therefore, can be calculated in any Lorentz frame. For the sake of convenience,
we perform this task in the local rest frame of the system where uμ ¼ ð1; 0; 0; 0Þ. In this frame,
δð4Þð ffiffiffi

s
p

uμ − pμ − p0
μÞ ¼ δð ffiffiffi

s
p

− Ep − Ep0 Þδð3Þðpþ p0Þ. Then, the integral simplifies to

I ¼ g
ð1 − vÞ2

Z
k0
feqk0

Z
dpdp̂
2π

δð ffiffiffi
s

p
− 2pÞ exp

�
−

pv
1 − v

ðP̂0
T − P̂T · p̂Þ

�
ð23Þ

¼ g
ð1 − vÞ2

Z
k0
feqk0

Z
dp̂
4π

exp

�
−

v
2ð1 − vÞ ðP

0
T − PT · p̂Þ

�
; ð24Þ
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where p̂ ¼ p=Ep ¼ p=p is a unit vector in three dimensions. We further define cos θkp ¼ x and cos θk0p ¼ y, where θkp is
the angle between k and p, and θk0p is the angle between k0 and p, respectively. This allows I to be written as

I ¼ g
ð1 − vÞ2

Z
k0
feqk0

Z
1

−1

dx
2
exp

�
−

v
2ð1 − vÞEkð1 − xÞ

� Z
1

−1

dy
2
exp

�
−

v
2ð1 − vÞEk0 ð1 − yÞ

�
: ð25Þ

This integral can now be evaluated using standard techniques to find that

I ¼ αg
v

1

2π2Ek

�
1 − exp

�
−

Ekv
1 − v

��
: ð26Þ

Expanding term by term in powers of v, the gain term is
then given by

Lgain½Lð1Þ
n ðEkÞ� ¼

αg
2π2ðnþ 1ÞL

ð1Þ
n ðEkÞ: ð27Þ

The gain term and the loss term are then combined to obtain

L½Lð1Þ
n ðEkÞ� ¼ χnL

ð1Þ
n ðEkÞ; ð28Þ

where the eigenvalues are given by

χn ¼ −
αg
4π2

�
n − 1

nþ 1
þ δn0

�
: ð29Þ

Therefore, we see that Lð1Þ
n ðEkÞ and χn are, respectively, the

exact eigenfunctions and eigenvalues of the scalar part of
the spectrum of the collision operator for a massless gas of
particles with quartic self-interactions. As n → ∞, the
eigenvalues approach − αg

4π2
, which indicates that the

lifetime of the higher-order modes approaches 4π2

αg .
Finally, we note that going back to standard units where

the momenta are not scaled by T0, one finds Lð1Þ
n ðEk=T0Þ

and that the eigenvalue χn has dimensions of T2
0.

IV. EXACT EQUATIONS OF MOTION
FOR THE MOMENTS

The goal of this section is to rewrite the full Boltzmann
equation in (7) in terms of ordinary differential equations
for suitably defined Lorentz scalar moments of fk, which
can be solved using standard numerical routines. Having in
mind the results from the previous section, it is natural to
expand the distribution function in terms of an associated

Laguerre basis LðβÞ
n ðEkÞ. However, while Lð1Þ

n ðEkÞ are the
eigenfunctions of the linearized collision operator, it turns
out that in order to find the exact equations of motion for
the nonlinear case, it is best to consider a basis in terms of

Lð2Þ
n ðEkÞ. This can be understood as follows.
Consider the Boltzmann equation (7) and multiply it on

both sides by LðβÞ
n ðEkÞ (with arbitrary β) and then integrate

it over k, which gives

D
Z
k
EkL

ðβÞ
n ðEkÞfk ¼

g
2

Z
kk0pp0

LðβÞ
n ðEkÞð2πÞ5δð4Þðkμ þ k0μ − pμ − p0

μÞðfpfp0 − fkfk0 Þ: ð30Þ

While the right-hand side can be simplified using the
techniques discussed in the previous section for any integer
value of β, a bad choice for the coefficient β above can
make the left-hand side unnecessarily complex. Indeed, if
β ¼ 1, after performing the angular integrals the left-hand
side becomes (apart from constant multiplicative factors)

D
Z

∞

0

dkk2LðβÞ
n ðkÞfk: ð31Þ

One could then decompose the distribution function in
terms of generic associated Laguerre polynomials as
follows

fkðτÞ ¼ e−k
X∞
m¼0

cðγÞm ðτÞLðγÞ
m ðEkÞ; ð32Þ

which can be used back in (31) to find that the left-hand
side becomes

X∞
m¼0

DcðγÞm

Z
∞

0

dkk2e−kLðβÞ
n ðkÞLðγÞ

m ðkÞ: ð33Þ

To avoid having a sum of terms already on the left-hand
side of the equations for the moments, it is clear that one
should set β ¼ γ ¼ 2. Any other choice would severely
complicate our analysis. In fact, in this case the orthogon-
ality condition for the associated Laguerre polynomials
(A2) can be used and the moment equations become simply
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Dcn ¼
g
n0

1

ðnþ 1Þðnþ 2Þ
Z
kk0pp0

Lð2Þ
n ðEkÞð2πÞ5δð4Þðkμ þ k0μ − pμ − p0

μÞðfpfp0 − fkfk0 Þ; ð34Þ

where we defined cn ≡ cð2Þn to ease the notation. In this way, the moments are finally defined as in [15]

cnðτÞ ¼
2

ðnþ 1Þðnþ 2Þn0

Z
k
EkL

ð2Þ
n ðEkÞfkðτÞ ð35Þ

and, once (34) is solved and the cn moments are found, one can always recover back the distribution function as follows:

fkðτÞ ¼ feqk
X∞
n¼0

cnðτÞLð2Þ
n ðEkÞ: ð36Þ

We note that, due to the conservation laws, c0 ¼ 1 and c1 ¼ 0 at all times. We will now proceed to express the right-hand
side of (34) directly in terms of the cn moments. The result of the integral

J n ¼
Z
kk0pp0

Lð2Þ
n ðEkÞð2πÞ5δð4Þðkμ þ k0μ − pμ − p0

μÞðfpfp0 − fkfk0 Þ ð37Þ

can be found using the generating function of the associated Laguerre polynomials as follows. We define

J ¼ J gain − J loss; ð38Þ

where we introduced generating function related to the gain and loss terms of the collision term,

J gain ¼
1

ð1 − vÞ3
Z
kk0

fkfk0 ð2πÞ5
Z
pp0

δð4Þðkμ þ k0μ − pμ − p0
μÞ exp

�
−

vEp

1 − v

�
; ð39Þ

J loss ¼
1

ð1 − vÞ3
Z
kk0

fkfk0 exp

�
−

vEk

1 − v

�
; ð40Þ

in such a way that

J ¼
X∞
n¼0

vnJ n: ð41Þ

This provides a way to determine the integral in (37).
The loss term is simpler and, thus, is evaluated first. Using the trivial identity

1

Ek
¼

Z
∞

0

dae−aEk ; ð42Þ

the loss term can be rewritten as

J loss ¼
1

ð1 − vÞ3
Z

∞

0

da
Z

∞

0

db
Z
k
fkEk exp

�
−Ek

�
v

1 − v
þ a

��Z
k0
fk0Ek0 exp

�
−Ek0

�
v

1 − v
þ b

��
: ð43Þ

These exponentials can be written in terms of associated Laguerre polynomials using (for a ≥ 0)

e−aEk ¼
X∞
n¼0

an

ð1þ aÞnþ3
Lð2Þ
n ðEkÞ; ð44Þ

so the loss term becomes
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J loss ¼
X∞
n;m¼0

Z
k
fkEk

Z
k0
fk0Ek0

Z
∞

0

da
Z

∞

0

db

�
v

1−v þ a

�
n

�
1þ v

1−v þ a

�
nþ3

�
v

1−v þ b

�
m

�
1þ v

1−v þ b

�
mþ3

Lð2Þ
n ðEkÞLð2Þ

m ðEk0 Þ: ð45Þ

We then evaluate the integrals over a, b and use (35) to write the loss term as

J loss ¼
n20

4ð1 − vÞ3
X∞
n;m¼0

cncm½ðnv − nþ v − 2Þvnþ1 þ 1�: ð46Þ

To compute the gain term, we first evaluate the integral

P ¼
Z
pp0

δð4Þðkμ þ k0μ − pμ − p0
μÞ exp

�
−

vEp

1 − v

�

¼ exp

�
−

PTv
2ð1 − vÞ

� Z
pp0

exp

�
1

2
ðEp − Ep0 Þ v

1 − v

�
δð4ÞðPT − p − p0Þ

¼ exp

�
−

PTv
2ð1 − vÞ

� Z
pp0

exp

�
1

2
P̂T · ðp − p0Þ v

1 − v

�
δð4Þð ffiffiffi

s
p

u − p − p0Þ; ð47Þ

where we have once again used the symmetries of the integral to switch uμ ↔ P̂μ
T , as was done when deriving the

eigenfunctions of the linearized collision operator. We thus arrive at

P ¼ 1

ð2πÞ5 exp
�
−
ðEk þ Ek0 Þv
2ð1 − vÞ

� Z
∞

0

dp
Z

dp̂
4π

δ

� ffiffiffi
s

p
2

− Ep

�
exp

�
−

vEp

1 − v
P̂T · p̂

�

¼ 1

ð2πÞ5 exp
�
−
ðEk þ Ek0 Þv
2ð1 − vÞ

� Z
dp̂
4π

exp

�
−

v
2ð1 − vÞPT · p̂

�
: ð48Þ

The gain term is then given by

J gain ¼
1

ð1 − vÞ3
Z
kk0

fkfk0 exp

�
−
ðEk þ Ek0 Þv
2ð1 − vÞ

� Z
dp̂
4π

Z
dk̂
4π

Z
dk̂0

4π
exp

�
−

v
2ð1 − vÞPT · p̂

�
: ð49Þ

As in the linearized case, we define x ¼ cos θkp and y ¼ cos θk0p so that the gain term becomes

J gain ¼
1

4ð1 − vÞ3
Z
kk0

fkfk0 exp

�
−
ðEk þ Ek0 Þv
2ð1 − vÞ

� Z
1

−1
dx

Z
1

−1
dy exp

�
−
1

2

v
1 − v

ðEkxþ Ek0yÞ
�
: ð50Þ

By defining X ¼ 1
2

v
1−v ð1þ xÞ and Y ¼ 1

2
v

1−v ð1þ yÞ, and using (42), we obtain

J gain ¼
1

v2ð1 − vÞ
Z

v=ð1−vÞ

0

dX
Z

v=ð1−vÞ

0

dY
Z

∞

0

da
Z

∞

0

db
Z
k
fke−EkðXþaÞ

Z
k0
e−Ek0 ðYþbÞ: ð51Þ

Once again using (44), this can be expressed as

J gain ¼
1

v2ð1 − vÞ
X∞
n;m¼0

Z
k
fkEkL

ð2Þ
n ðEkÞ

Z
k0
fk0Ek0L

ð2Þ
m ðEk0 Þ

×
Z

v=ð1−vÞ

0

dX
Z

∞

0

da
ðX þ aÞn

ð1þ X þ aÞnþ3

Z
v=ð1−vÞ

0

dY
Z

∞

0

db
ðY þ bÞm

ð1þ Y þ bÞmþ3
: ð52Þ

Evaluating the integrals over a, b, X, Y using standard techniques and combining this with (35), we find that the gain term is
given by
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J gain ¼
n20

4ð1 − vÞ3
X∞
n;m¼0

cncmðvnþ1 − 1Þðvmþ1 − 1Þ: ð53Þ

All that remains is to combine the gain and loss terms. Once that is done, one finds

J gain − J loss ¼
n20

4ð1 − vÞ3
X∞
n;m¼0

cncm½vnþmþ2 þ nvnþ1 − ðnþ 1Þvnþ2�: ð54Þ

After performing several redefinitions of summation indices and using the expansion

1

ð1 − vÞ3 ¼
1

2

X∞
l¼0

ðlþ 2Þ!
l!

vl; ð55Þ

valid for jvj < 1, we obtain

J gain − J loss ¼
n20
8

X∞
N¼2

vN
XN−2

n¼0

�
N − n

2

��Xn
m¼0

cn−mcm þ ðnþ 1Þðcnþ1 − cnÞ
�X∞

l¼0

cl

��
: ð56Þ

This has the same form as (41) except it is missing the first two terms, N ¼ 0, 1, which are fixed by the conservation laws.
So, we use the generating function to determine that

g
n0

ðJ gain − J lossÞ ¼
X∞
N¼0

ðN þ 1ÞðN þ 2ÞvNDcN; ð57Þ

where the first two terms will not contribute becauseDc0 ¼ Dc1 ¼ 0. Comparing this to (56) we arrive at a set of equations
for the evolution of the moments,

DcN ¼ dcN
dτ

¼ gn0
8

N!

ðN þ 2Þ!
XN−2

n¼0

�
N − n

2

��Xn
m¼0

cn−mcm þ ðnþ 1Þðcnþ1 − cnÞ
�X∞

l¼0

cl

��
; ð58Þ

for N ≥ 2. This defines a set of equations that determines
the exact time evolution of the moments cN , with which a
full solution for the distribution function of the Boltzmann
equation can be reconstructed using Eq. (36). As such, the
equations above can be used to determine how an arbitrarily
far from equilibrium state of the gas of massless scalar
particles evolves in time in an expanding FLRW universe.
To the best of our knowledge, this is the first time the exact
set of equations of motion for the (scalar) moments of the
full nonlinear Boltzmann equation describing massless
scalar particles has been derived.
It is instructive to compare our result in (58) to the

corresponding set of equations derived in [14,15] that
describes a massless gas with constant cross section in
FLRW. In the latter, because of the drastic assumption
about the particle interactions, the solution of the nth
moment only depended on the dynamics of the previous
moments. Therefore, for the system considered in [14,15]
an iterative procedure could be easily employed to obtain
the moments for arbitrary initial conditions. Furthermore,

the equations simplified so much in that case that even an
analytical solution for the moments (and, consequently, to
fk) could be found [14]. In contrast, in the case of λϕ4

interactions where the cross section varies with the energy,
the results of this section show that one is still able to find
the exact set of equations (58) that describes the evolution
of the moments, but now we see that the derivative of the
nth moment does not depend only on the previous
moments. Rather, it depends on the sum over all the
moments via

P∞
l¼0 cl. This means that analytical solutions

will be even harder to find than before. Furthermore, (58)
cannot be solved using a simple iterative scheme. However,
(58) can still be solved numerically, as we show in Sec. V.

A. Uniqueness of equilibrium

In this section we show that the asymptotic equilibrium
state solution of (58) is unique, as expected. The argument
works as follows. First assume that all the moments have
reached their asymptotic state such that dcN=dτ ¼ 0 for
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all N. Then prove using the equations of motion (58) that
this implies that all moments cN for N ≥ 2 are equal to zero
—which indicates that the standard equilibrium state,
described by the distribution feqk , has been reached.
The condition dcN=dτ ¼ 0 implies that

0¼
XN−2

n¼0

�
N−n

2

��Xn
m¼0

cn−mcmþðnþ1Þðcnþ1−cnÞð1þMÞ
�

ð59Þ

for all N. Above, we introduced the quantity

M ¼
X∞
N¼2

cN: ð60Þ

The binomial in the summation above is zero whenever
2 > N − n, so we start by considering the case where
N ¼ 2. Then, the only term that will contribute to the sum
is that of n ¼ 0, which gives the condition

M ¼ 0: ð61Þ

The next case to consider is that of N ¼ 3. Now, two terms
will contribute to the sum, those of n ¼ 0, 1. This will then
give the condition

c2 ¼ 0: ð62Þ

Using that the values of the two first moments are already
known, c0 ¼ 1 and c1 ¼ 0, this condition provides an
initialization for a proof by induction.
Proceeding with standard induction, it is assumed that

c2;…; ck ¼ 0 for some k ≥ 2. Then, N ¼ 1þ k is consid-
ered. In this case, we have

0 ¼
Xk−1
n¼0

�
k− nþ 1

2

�

×

�Xn
m¼0

cn−mcm þ ðnþ 1Þðcnþ1 − cnÞð1þMÞ
�
: ð63Þ

Since we have assumed that the only nonzero cn for n < k
is c0 ¼ 1, it follows that the term cn−mcm is only non-zero
when n −m, m are some combination of 0; kþ 1. We also
know that the binomial is zero whenever 1 > k − nþ 1,
which is equivalent to n > k. So, it follows that n can never
reach kþ 1 and the only nonzero terms will occur when
n ¼ m ¼ 0. But, as before this will always cancel with the
case of cn in the next term. So, all that remains in the
summation is

0 ¼
Xk−1
n¼1

�
k − nþ 1

2

�
ðnþ 1Þðcnþ1 − cnÞ: ð64Þ

However, the binomial is equal to zero for n > k, so we can
really truncate this series at

0 ¼
Xk
n¼1

�
k − nþ 1

2

�
ðnþ 1Þðcnþ1 − cnÞ: ð65Þ

This leaves only one term,

0 ¼ ðkþ 1Þckþ1 → ckþ1 ¼ 0: ð66Þ

By induction, it follows that all cn are equal to zero except
for c0 ¼ 1. This means that the only steady-state solution is
the standard equilibrium state, as expected. This provides
an alternative way to show that the equilibrium state is
unique, starting from the exact moment equations.

B. A comment on the thermalization time

In the following, we will show that the equilibration time
for M is the same as the equilibration time for the system
as a whole. To do so, we prove thatM can only equilibrate
when all the moments have equilibrated; the converse
follows from the definition of M. First, we assume that
M is equal to zero for all τ ≥ τ0, where τ0 is then the
equilibration forM. Using this assumption, the equation of
motion for the second moment obtained from (58), evalu-
ated at τ ≥ τ0, implies that dc2=dτ ¼ 0 and, consequently,
that c2 is a constant. If we then analyze the equation of
motion for the third moment, we see that dc3=dτ only
depends on c2 and, therefore, this derivative is a constant.
This would imply that c3 is a linear function of time.
Similarly, if one analyzes the equation of motion for the
fourth moment, it will depend only on c2 and c3 and, thus,
c4 will be a quadratic function of time. The same argument
can be applied to the remaining moments and one will
conclude that the moments will all display a polynomial
behavior with time, with the highest possible power of time
being τn−2 for cn. Therefore, this type of solution diverges
as τ → ∞, which is incompatible with the existence of the
equilibrium state and the fact that moments of fk must be
finite. The only solution that does not display this divergent
behavior corresponds to the case where cn≥2 ¼ 0—the
equilibrium solution. Therefore, one can see that the
thermalization time of the system is well estimated by
τ0, which marks the condition Mðτ ≥ τ0Þ ¼ 0. Since we
have proven that the equilibrium state exists and is unique,
τ0 indeed defines the thermalization time of the system.

V. NUMERICAL RESULTS AND COMPARISON

Since an exact analytical solution has not been obtained,
simple numerical procedures are required to solve the
moment equations and compare their solutions to those
found in the constant cross section case previously con-
sidered in [14,15]. The evolution equation for the moments
in the scalar field case contains an infinite summation,
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which makes it harder to solve in comparison to the
constant cross section case. Here solutions are obtained
by considering some maximum moment defined by Nmax
and numerically solving the evolution equations up to that
highest moment. To choose this maximum moment, it is
examined at which point the evolution of the moments and
the distribution function reach a steady state and do not
appreciably change anymore. For each of the figures
presented in this work, the maximum moment Nmax ¼
90 is used, and the time is scaled by gn0. To solve the

differential equation after this cutoff is applied, a fourth-
order Runge-Kutta algorithm is applied.
Our results are compared to the constant cross section

case so a brief summary of the results found in the latter is
included here. In [14,15] an exact differential equation for
the moments was derived for the case of massless particles
interacting with a constant cross section. However, the
differential equation for the nth moment only depends on
moments with order less than or equal to n. This allows for
a simple iterative approach to be employed to obtain an

FIG. 1. Comparison of the evolution of the first four nonconstant moments between the scalar field case (left), and the constant cross
section case (right).

FIG. 2. Comparison of the evolution of the distribution function between the scalar field case (left), and the constant cross section case
(right).
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exact analytical solution for each of the moments and,
therefore, for the full distribution function. In particular, for
the initial condition

cnð0Þ ¼
1 − n
4n

; ð67Þ

it is found that the corresponding (Laguerre-based)
moments for hard spheres evolve as [15]

cnðτÞ ¼
1 − n
4n

e−nτ=6: ð68Þ

This solution is then used as the basis for numerical
simulations of the scalar field solution. In fact, we use
(67) as the initial conditions for the moments satisfying the
equations of motion (58), derived for the scalar field case.

The evolution of the moments and the corresponding
distribution function for the scalar field system are then
compared to the analytical solution in (68).
Figure 1 shows the evolution of the Laguerre moments as

a function of time for the scalar field and constant cross
section cases. To facilitate the comparison between the two
systems, we have set the total cross section in the constant
cross section case to beσ ¼ g=T2

0, seeAppendixB.Thisway,
their time evolution is compared within the same units.
In the constant cross section case, each moment directly
approaches the equilibrium value at an exponential rate
according to the analytical solution. However, in the scalar
field case there is some oscillation in many of the moments.
In Fig. 2, the effects of these differences on the distribution
function can be seen. In the constant cross section case, the
system equilibrates considerably faster, and also more

FIG. 3. Early time evolution of the scalar field distribution function.

FIG. 4. Comparison of the evolution of the sum of the moments M for the constant cross section and scalar field cases.
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uniformly in time. On the other hand, in the scalar field case,
the system initially equilibrates faster for low values of k,
before smoothing out as the system approaches equilibrium
over time. Figure 3 shows how the scalar field distribution
function evolves for early times. It can be seen clearly that the
initial equilibration process is much more rapid near zero
momentum. It would be interesting to see how this is
modified when quantum statistics effects are taken into
account.
In Fig. 4 the evolution of 1þM ¼ P∞

n¼0 cn is exam-
ined for both interactions. We remind the reader that it was
argued earlier in Sec. IV B that this quantity provides an
estimate of the thermalization time (and rate). In the
constant cross section case, it appears that the rate at
which the system approaches equilibrium increases rapidly
after early times, until the system almost reaches equilib-
rium. On the other hand, the rate at which the scalar field
system approaches equilibrium initially is much slower,
steadily increasing over time before slowing down again as
equilibrium is approached. This discrepancy may be
explained by the oscillatory behavior of moments seen in
Fig. 5. Initially some of themoments actually rapidly diverge
from the equilibrium value, before more slowly oscillating
back toward the equilibrium value. In other words, the scalar
field moments do not monotonically approach equilibrium,
unlike the constant cross section where all of the moments
exponentially decay to equilibrium.

VI. CONCLUSIONS

In this paper we investigated the dynamics of a gas of
massless scalar particles with quartic (tree level) self-
interactions in Friedmann-Lemaitre-Robertson-Walker
spacetime, described by the Boltzmann equation. We
demonstrated that the nontrivial far-from-equilibrium
dynamics of this system can be determined by solving

an infinite set of ordinary differential equations for suitably
defined moments of the distribution function. Unlike the
case of a gas with constant cross section considered in
Refs. [14,15], the fact that in λϕ4 the cross section σðsÞ ∼
1=s makes deriving the exact set of equations of motion for
the moments a much more complex task.
We have overcome this challenge by using a new

covariant generating function for the scalar moments of
the Boltzmann distribution function (see Secs. III and IV).
This method, which is a relativistic generalization of the
generating function techniques used in [11–13], was used
here to analytically determine for the first time the
eigenfunctions and eigenvalues of the scalar part of the
spectrum of the linearized collision operator. The spectrum
of the collision operator has never been determined in the
relativistic regime and even results in a given subspace
(such as the scalar sector) are extremely rare—the only
other known result can be found in Ref. [14,15], also in the
scalar sector. Furthermore, this covariant generating func-
tion was also employed to find, for the first time, the exact
nonlinear set of equations of motion for the scalar moments
in the full nonlinear regime. We showed that the depend-
ence of the cross section with the center of mass energy
implies that moments of arbitrarily high order directly
couple to low order moments. This should be compared to
the constant cross case studied in [14,15] where the n-order
moment only coupled to moments of order m < n.
Numerical solutions for the scalar field case were

presented and compared to those found for a gas of hard
spheres, for the same set of far-from-equilibrium initial
conditions. Overall, we found that the dependence of the
cross section with the energy introduces more structure in
the time evolution of the system, with the moments in the
scalar field case displaying oscillations in their approach to
equilibrium, while for the constant cross section example
the same moments just quickly exponentially decay toward

FIG. 5. Evolution of some higher order moments for the scalar field case.
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their equilibrium values. This different behavior has con-
sequences to the distribution function as well, which is
reconstructed using the moments. In the gas with constant
cross section, the system equilibrates much more quickly
and also more uniformly in time. On the other hand, for the
scalar field case, the system initially equilibrates much
faster for low values of k, before smoothing out as it
approaches equilibrium over time. We remark that we only
considered classical (Boltzmann) statistics in this work. It
would be very interesting (and challenging) to generalize
our approach to the case where the bosonic nature of the
particles is taken into account, as done in Ref. [25]. In that
context, one could investigate if our approach would be
useful in the investigation of the far-from-equilibrium
dynamics of a system that can Bose condense [26–29].
Concerning the results of this paper, a clear next step

would be to see if our generating function method could be
used to derive not only the scalar part of the spectrum, but
rather the full set of eigenvalues and eigenfunctions of the
linearized collision operator considered here. The breaking
of isotropy makes this task much more complex, given that
now the generating function would have to produce all the
scalar, vector, and tensor sectors of the spectrum.
One may also check if the generating function method

introduced here is useful when investigating the dynamics
of systems of more relevance to heavy-ion collisions, such
as QCD effective kinetic theory [30–35] and models where
the particles in the gas have a temperature-dependent mass
[36–42]. Furthermore, a better understanding of how the
vector and tensor parts of the spectrum behave in our
system would be relevant when studying the emergence of
hydrodynamic attractors [43–45] and the characterization
of the far-from-equilibrium properties of kinetic theory
systems [21,22,25,46–63]. We hope to report on our
progress in some of the topics mentioned above in the near
future.
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APPENDIX A: SOME PROPERTIES OF THE
ASSOCIATED LAGUERRE POLYNOMIALS

The associated Laguerre polynomials are the solutions of
the ordinary differential equation [24]

x
d2gðxÞ
dx2

þ ðβ þ 1 − xÞ dgðxÞ
dx

þmgðxÞ ¼ 0; ðA1Þ

where β ≠ 0 and m is a non-negative integer, and they are

denoted as LðβÞ
m ðxÞ. These polynomials obey the orthogon-

ality condition

Z
∞

0

dxx2e−xLðβÞ
n ðxÞLðβÞ

m ðxÞ ¼ ðnþ βÞ!
n!

δmn: ðA2Þ

The generating function for the Laguerre polynomials is
given by

1

ð1 − vÞβþ1
exp

�
−

xv
1 − v

�
¼

X∞
n¼0

vnLðβÞ
n ðxÞ: ðA3Þ

APPENDIX B: GENERATING FUNCTION FOR
CONSTANT CROSS SECTION CASE

While the relativistic Boltzmann equation has already
been solved for constant cross section interactions in
[14,15], here the moment equations are found using the
new techniques presented in the main text. For this case, the
only change is that the collision operator is now given by

C½f� ¼ σ

2

Z
k0pp0

ð2πÞ5sδð4Þðkμþk0μ−pμ−p0
μÞðfpfp0 −fkfk0 Þ:

ðB1Þ

This differs from the scalar field case only by the presence
of the Mandelstam variable s in the integrand of the right-
hand side of (B1) to account for the fact that the cross
section is constant (here, σ ¼ g=T2

0 is the total cross
section). We can once again use the generating function
to decompose

J gain ¼
σ

2

Z
kk0

fkfk0s
Z
pp0

ð2πÞ5δð4Þðkμ þ k0μ − pμ − p0
μÞ

1

ð1 − vÞ3 exp
�
−

Epv

1 − v

�
; ðB2Þ

and

J loss ¼
σ

2

Z
kk0

fkfk0
s

ð1 − vÞ3 exp
�
−

Ekv
1 − v

�
: ðB3Þ
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This contains the integral

Z
pp0

ð2πÞ5δð4Þðkμ þ k0μ − pμ − p0
μÞ

1

ð1 − vÞ3 exp
�
−

Epv

1 − v

�
;

ðB4Þ

which is exactly the same as (47), apart from an overall
factor of 1=ð1 − vÞ3. It can thus be solved using the exact
same trick of switching uμ ↔ P̂μ

T , as was explained in the
main text.
Using this result, the gain term can now be expressed as

J gain ¼
σ

4

Z
1

−1
dx

Z
1

−1
dy

1 − xy
ð1 − vÞ3

Z
k
fkEk exp

�
−
Ek

2

v
1 − v

ð1þ xÞ
� Z

k0
fk0Ek0 exp

�
−
Ek0

2

v
1 − v

ð1þ yÞ
�
: ðB5Þ

Above, x and y have been defined as cos θkp ¼ x and
cos θk0p ¼ y, just as in the case of a scalar field. From
here, the integral can be simplified using the change of
variables X ¼ 1

2
v

1−v ð1þ xÞ and Y ¼ 1
2

v
1−v ð1þ yÞ and by

substituting an expansion of the exponential in terms of
the associated Laguerre polynomials from (44). The
integrals can then be evaluated either using standard

techniques to express the gain term as a sum over the
moments

J gain ¼
σn20
2

X∞
n¼0

vnðnþ 2Þ
Xn
m¼0

cn−mcm: ðB6Þ

Next, we consider the loss term, which is given by

J loss ¼ σ

Z
kk0

fkfk0EkEk0
1

4ð1 − vÞ3 exp
�
−

Ekv
1 − v

�Z
1

−1
dx

Z
1

−1
dyð1 − xyÞ; ðB7Þ

where the same definition for x and y are used as in the gain
term. These integrals can be evaluated explicitly, except for
the integral over k. This gives

J loss ¼
σn0

ð1 − vÞ3
Z
k
Ekfk exp

�
−

Ekv
1 − v

�
: ðB8Þ

This integral is evaluated by expanding the exponential as
in (44), which gives

J loss ¼
σn20
2

X∞
n¼0

vnðnþ 1Þðnþ 2Þcn: ðB9Þ

The gain and loss terms can then be combined and
compared term-by-term to obtain a differential equation for
the cn moments [defined in (35)]

dcn
dτ

þ cn ¼
1

nþ 1

Xn
m¼0

cn−mcm; ðB10Þ

where the time τ has been scaled by the mean free path
l0 ¼ 1=ðn0σÞ. Note that this equation implies that the

derivative of the nth moment depends only on the moments
ci for i < n, so the system of equations can be easily solved
iteratively.
As was shown in [14,15], for the initial condition

cnð0Þ ¼
1 − n
4n

ðB11Þ

there exists an analytical solution for the moments given by

cnðτÞ ¼ cnð0Þe−nτ=6: ðB12Þ

In this case each of the moments (with n > 1) directly
approaches the equilibrium value of zero rather than
exhibiting some oscillatory behavior, as found in the scalar
field case. This solution is the simplest avenue to compare
the constant cross section results to the corresponding
results for the scalar field case using the same initial
conditions (67), as done in the main text.
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