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Abstract
This paper addresses a multi-objective energy-efficient scheduling problem of the distributed permutation flowshop with
sequence-dependent setup time and no-wait constraints (EEDNWFSP), which have important practical applications. Two
objectives minimization of both makespan and total energy consumption (TEC) are considered simultaneously. To address
this problem, a new mixed-integer linear programming (MILP) model is formulated. Considering the issues faced in solving
large-scale instances, an improved non-dominated sorting genetic algorithm (INSGA-II) is further proposed that uses two
variants of the Nawaz-Enscore-Ham heuristic (NEH) to generate high-quality initial population. Moreover, two problem-
specific speed adjustment heuristics are presented, which can enhance the qualities of the obtained non-dominated solutions.
In addition, four local and two global search operators are designed to improve the exploration and exploitation abilities
of the proposed algorithm. The effectiveness of the proposed algorithm was verified using extensive computational tests
and comparisons. The experimental results show that the proposed INSGA-II is more effective compared to other efficient
multi-objective algorithms.
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Introduction

With rapid economic globalization, transnational cooper-
ation among enterprises has become common practice.
Distributedmanufacturing improves product quality, reduces
production costs, and minimizes management risk [1]. Inci-
dentally, development of the manufacturing industry causes
environmental problems, and green manufacturing has been
gaining attention. Production scheduling is vital in realizing
intelligent green manufacturing [2]. Therefore, it is impor-
tant to pay more attention to energy consumption in actual
production, especially to combine energy-saving with tradi-
tional criterions.

The no-wait flow-shop scheduling problem (NWFSP)
is a typical production shop scheduling problem, and is
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widely used in the plastic, chemical, and pharmaceuti-
cal industries [3]. When the number of machines exceeds
three, the problem is proved to be NP-hard [4]. Specifi-
cally, in a no-wait flow-shop, each job needs to be processed
continuously to complete a set of processes without interrup-
tion. Consequently, the concept of distributed scheduling is
added to make the problem more complex. The distributed
permutation flowshop scheduling problem (DPFSP) [5] is
decomposed into two sub-problems: assign jobs to factories
and get the sequence of each job in each factory. In the actual
production process, the machine needs to perform additional
operations between the processing of consecutive jobs, such
as machine cleaning, tool replacement, and operation trans-
portation [6]. Therefore, a sequence-dependent setup time
(SDST) is also considered. A literature review of the above-
mentioned problems is provided below.

Recently, the distributed flow shop scheduling problem
has interested industry and academia. An increasing num-
ber of studies have focused on the distributed scheduling of
permutation flow shop [6–11], hybrid flow shop [12–15],
assembly flow shop [16–18] and so on. Lin et al. [19]
developed an iterated cocktail greedy (ICG) algorithm to
solve the distributed no-wait flow-shop scheduling problem
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(DNWFSP). Shao et al. [20] investigated the multiobjective
DNWFSP with sequence-dependent setup time and solved
it through a Pareto-based estimation of distribution algo-
rithm (PEDA). Komaki and Malakooti [21] addressed the
DNWFSP using a General Variable Neighborhood Search
(GVNS). Shao et al. [22] proposed iterated greedy (IG)
algorithms. Li et al. [23] solved the distributed hetero-
geneous DNWFSP using a discrete artificial bee colony
algorithm (DABC).Other literature considered the sequence-
dependent setup time in different actual production system
[24–26].

To solve the multi-objective optimization problem of
green shop scheduling, Wang et al. [7] proposed a
knowledge-based cooperative algorithm (KCA) to solve an
energy-efficient scheduling of the distributed permutation
flow-shop (EEDPFSP).Wang et al. [8] used amulti-objective
whale swarm algorithm (MOWSA) to solve EEDPFSP. Wu
et al. [27] proposed a green scheduling algorithm NSGA-
II that considered the energy consumption of equipment
on–off and different rotating speeds to solve the flexi-
ble job shop scheduling problem (FJSP). Du et al. [28]
investigated an FJSP with the time-of-use electricity price
constraint via a hybrid multi-objective optimization algo-
rithm of estimation of distribution algorithm (EDA) and
deep Q-network (DQN) to minimize the makespan and total
electricity price simultaneously. Li et al. [29] addressed an
FJSP with crane transportation processes using a hybrid of
the iterated greedy and simulated annealing algorithms to
optimize both the makespan and energy consumption dur-
ing machine processing as well as crane transportation. Qi
et al. [30] researched a multi-objective time-dependent green
vehicle routing problems and proposed a Q-learning-based
multiobjective evolutionary algorithm to solve it. Jiang et al.
[31] developed an effective modified multi-objective evo-
lutionary algorithm with decomposition (MMOEA/D) to
solve the energy-efficient distributed job shop scheduling
problem. Li et al. [32] designed an energy-aware multi-
objective optimization algorithm (EA-MOA) to solve the
hybrid flow shop (HFS) scheduling problem with setup
energy consumptions. Li et al. [33] introduced a distributed
HFS with variable speed constraints using a knowledge-
based adaptive reference points multi-objective algorithm.
A collaborative optimization algorithm (COA) based on spe-
cific properties of the problem was proposed by Chen et al.
[34] to solve an energy-efficient distributed no-idle permuta-
tion flow-shop scheduling problem. In addition, the indicator
based multi-objective evolutionary algorithm with reference
point adaptation (AR-MOEA)andhyperplane assisted evolu-
tionary algorithm (hpaEA) are the latest algorithms to solve
multi-objective problems. AR-MOEA is versatile in solv-
ing problems with various types of Pareto fronts, and is
superior to several existing evolutionary algorithms formulti-
objective optimization [35]. While solving multi-objective

optimization problems, the proportion of non-dominated
solutions in the population increases sharply with an increase
in the number of objectives. It becomes more challenging to
strengthen the selection pressure of population toward the
Pareto-optimal front. To address these issues, Chen et al.
[36] proposed the hpaEA.

In this study, we investigate a distributed no-wait permuta-
tion flow shop scheduling problemwith sequence-dependent
setup time to minimize the total energy consumption and
makespan simultaneously. The contributions of this research
work can be summarized as follows: (1) The energy-efficient
distributed permutation flow shop scheduling problem with
no-wait and setup time constraints in the presence of dynamic
speed-scaling technique is formulated and solved for the first
time. (2) Two problem-specific effective speed adjustment
heuristics are proposed, which perform local enhancement
together with four mutation operators. (3) Two types of
crossover operators are designed to improve the algorithm’s
global search abilities.

The remainder of this paper is organized as follows.
In “Problem description and formulation”, the problem is
formally described and the MILP is established. The subse-
quent section presents the problem-specific properties. and
“Improved NSGA-II algorithm” introduces all the compo-
nents of INSGA-II. In “Experiments and results”, numerical
experiments and comparative analysis are carried out. “Con-
clusion” concludes this paper, and points out several research
directions.

Problem description and formulation

Definition of multi-objective optimization problem

To explain the proposed EEDNWFSP that considers the opti-
mization of two conflicting objectives, the basic concepts of
multi-objective optimization problems are briefly introduced
here:

min f (x) � min{ f1(x), f2(x), ..., fm(x)}, x ∈ �, (1)

where f1(x), f2(x), ..., fm(x) denotem conflicting objective
functions, and � is the search space of a solution x .

(1) Pareto Dominance: For two feasible solutions x and x ′,
if ∀l ∈ {1, 2, ..., m}, fl (x) ≤ fl (x ′) and ∃l

′ ∈ {1,
2, ...m}, fl ′ (x) < fl ′ (x ′), then x is said to dominate x ′
(denoted as x � x ′). If the solution x is not dominated by
any other feasible solutions, it is called a non-dominated
solution.

(2) Pareto front: All the non-dominated solutions constitute
the Pareto-optimal set and their projection in objective
space forms the optimal Pareto front.
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Description of EEDNWFSP

This paper considers an energy-efficient no-wait permutation
flow shop scheduling problem to optimize both makespan
and total energy consumption in the presence of dynamic
speed-scaling technique. Specifically, there are g parallel fac-
tories, each one contains m machines. A set of jobs n can be
assigned to any factory f ∈ {1, 2, ..., g} and should be
processed according to the same processing order, i.e., from
machine j � 1 to j � m in the assigned factory. The job pro-
cessing sequence is the same for all machines in a factory.
Formally, for each factory, it is a regular PFSP [5]. More-
over, each job i ∈ {1, 2, ..., n} should be processed between
consecutive operations without interruptions; that is, as soon
as a job finishes its processing on one machine, it must be
processed by the next one immediately. Each machine has a
set of variable processing speeds s, which can be selected for
each operation. After assigning a processing speed v ∈ {1, 2,
..., s}, the operation should be processed at speed v until its
completion. Each job needs a basic processing time to be pro-
cessed at the slowest speed. The basic processing time of jobs
is fixed, and the actual processing time is obtained through
dividing the basic processing time by the processing speed.
Setup time and energy consumption are also considered. As
show in Fig. 1, the EEDNWFSP is to assign jobs to factories,
determine the job processing sequence of the assigned fac-
tory, and select the appropriate processing speed to optimize
certain scheduling objectives. In this study, the objective is
to minimize the maximum completion time (makespan) and
the total energy consumption (TEC) simultaneously.

The assumptions and constraints for this study are as fol-
lows:

• All factories have the same processing capacities, i.e., the
number of machines and processing ability are the same.

• All machines are available at time zero, and all jobs can
be scheduled at this time.

• Each job can be processed on exactly one machine at a
time in the same factory.

• Each machine can process only one job at a time.
• Preemption is not permitted, that is, one job should be
completed on the assigned machine without any interrup-
tion.

• The processing speed of each machine can be adjusted;
therefore, the actual processing time and machine energy
consumption should be varied with the speed.

• During the processing of a job, the speed of each machine
cannot be changed.

• For two successive operations on the same machine, the
start processing time of the subsequent operation should be
greater than or equal to the completion time of the previous
one.

• No-wait constraint should be guaranteed, that is, after com-
pleting the previous stage, the job should start its next stage
immediately.

• The sequence dependent setup times cannot be ignored.

Notations and parameters

Indexes

i : Index for jobs, i � 1, 2, ..., n

k: Index for job positions in a
sequence, i � 1, 2, ..., n

j : Index for machines, j � 1, 2, ...,
m

f : Index for factories, f � 1, 2, ..., g

v: Index for speeds, v � 1, 2, ..., s

Parameters

n: The number of jobs

m: The number of machines in each
factory

g: The number of factories

s: The number of processing speeds

pi , j : The standard processing time of
job i at machine j

Vv : The processing speed at v th

st j , i , i ′ : The setup-time of job i’ on
machine j if job i is the
immediately preceding job

P E j , v : The unit time energy consumption
of machine j running at v th speed

S P E j : The unit time energy consumption
of machine j in stand-by state

SE j , i , i ′ : The unit setup-time energy
consumption of job i ′ on
machine j if job i is the
immediately preceding job

M : A very large positive value
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Fig. 1 Example of EEDNWFSP
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Variables

xi , f , k : Binary variable, if job i occupies
position k in factory f , then the
value is 1, and 0 otherwise

yi , j , v : Binary variable, if job i is
processed with speed v on
machine j, then the value is 1,
and 0 otherwise

ti , j : The actual processing time of job i
at machine j

peci , j : The processing energy
consumption of job i at machine j

Si , j , f : The time that job i in factory f
starts processing on machine j

Ci , j , f : The completion time of job i on
machine j in factory f

C f : The completion time of factory f

Cmax: The total completion time, that is,
the maximum completion time in
g factories

P EC : The energy consumption of the
machine in the processing state

S P EC : The energy consumption of the
machine in stand-by state

SEC : The energy consumption of the
machine in the state of setup

T EC The total energy consumption

Formulation of EEDNWFSP

With the above notations, the following mathematical model
of the problem is presented:

Objective functions:

minCmax � maxC f , f ∈ {1, 2, ..., g}, (2)

min T EC � P EC + S P EC + SEC , (3)

P EC �
n∑

i�1

m∑

j�1

peci , j , (4)

S P EC �
F∑

f �1

m∑

j�1

(
C f −

n∑

i�1

n∑

k�1

ti , j · xi , f , k

−
n∑

i�1

n∑

i ′�1

n−1∑

k�1

st j , i , i ′ · xi , f , k · xi ′, f , k+1

−
n∑

i�1

st j , i , i · xi , f , 1

)
· S P E j , (5)

SEC �
F∑

f �1

m∑

j�1

(
n∑

i�1

n∑

i ′�1

n−1∑

k�1

xi , f , k · xi ′, f , k+1 · st j , i , i ′ ·

SE j , i , i ′ +
n∑

i�1

xi , f , 1 · st j , i , i · SE j , i , i

)
. (6)

Objective (2) is to minimize the maximum completion
time, where C f represents the completion time of factory
f . Objective (3) is to minimize the total energy consump-
tion, where PEC represents the energy consumption when
the machines stay at the processing state. SPEC represents
the energy consumption when themachines stay at the stand-
by state. SEC represents the energy consumption when the
machines stay at the setup state.
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Constraints:

F∑

f �1

n∑

k�1

xi , f , k � 1, i ∈ {1, 2, ..., n}, (7)

n∑

i�1

xi , f , k ≤ 1, k ∈ {1, 2, ..., n}, f ∈ {1, 2, ..., g}, (8)

(9)

n∑

i �1

xi , f , k ≥
n∑

i�1

xi , f , k+1, k

∈ {1, 2, ..., n − 1} , f ∈ {1, 2, ..., g} ,
s∑

v�1

yi , j , v � 1, i ∈ {1, 2, ...n}, j ∈ {1, 2, ..., m}, (10)

(11)

ti , j � pi , j ·
s∑

v�1

yi , j , v

V v
, i

∈ {1, 2, ...n} , j ∈ {1, 2, ..., m} ,

(12)

Si , j , f ≥ st j , i , i − M · (1 − xi , f , 1), i ∈ {1, 2, ...n} ,
j ∈ {1, 2, ..., m} , f ∈ {1, 2, ..., g} ,

Si ′, j , f ≥ Ci , j , f + st j , i , i ′ − M · (2− xi , f , k − xi ′, f , k+1), i

∈ {1, 2, ...n} , i ′ ∈ {1, 2, ...n} ,
k ∈ {1, ...n − 1} , j ∈ {1, 2, ..., m} , f

∈ {1, 2, ..., g} ,
(13)

(14)

Si , j , f � Ci , j−1, f , i ∈ {1, 2, ...n} , j

∈ {2, ..., m} , f ∈ {1, 2, ..., g} ,

(15)

Ci , j , f � Si , j , f + ti , j , i � {1, 2, ..., n} , j

∈ {1, ..., m} , f ∈ {1, 2, ..., g} ,
C f ≥ Ci ,m, f , i ∈ {1, 2, ..., n}, f ∈ {1, 2, ..., g}, (16)

C f ≥ 0, i ∈ {1, 2, ..., n}, f ∈ {1, 2, ..., g}, (17)

(18)

peci , j ≥ ti , j · P E j , v − M · (2 − xi , f , k − yi , j , v), i

∈ {1, 2, ...n} , k ∈ {1, 2, ..., n} ,
j ∈ {1, 2, ..., m} , f ∈ {1, 2, ..., F} , v

∈ {1, 2, ..., s} ,

peci , j ≥ 0, i ∈ {1, 2, ...n}, j ∈ {1, 2, ..., m}, (19)

(20)

xi , f , k ∈ {0, 1} , i ∈ {1, 2, ..., n} , k

∈ {1, 2, ..., n} , f ∈ {1, 2, ..., g} ,

(21)

yi , j , v ∈ {0, 1} , i ∈ {1, 2, ..., n} , j

∈ {1, 2, ..., m} , v ∈ {1, 2, ..., s} .

Constraint (7) ensures that each job is assigned to only
one factory and to one position in the assigned factory. Con-
straint (8) requires that a position in a factory is assigned to
at most one job. Constraint (9) ensures that the jobs must be
assigned at the preceding positions of a factory. Constraint
(10) guarantees that each operation Oi , j has one and only
one speed processing. Equation (11) calculates the actual
processing time. Constraint (12) ensures that the first job
assigned to a factory can begin only after the setup is finished,
while Constraint (13) restricts that a job (except the job in
the first position) can only start after the job at the preceding
position as well as the setup have been finished. Constraint
(14) ensures that the subsequent operation of each job is
started immediately after the completion of the precursor.
Constraint (15) specifies that the operation cannot be inter-
rupted. Constraints (16) and (17) are defined to calculate the
completion time of the factory f . Constraints (18) and (19)
define the intermediate variable peci , j for calculating the
processing energy consumption. All the binary variables are
defined in Constraints (20) and (21), where xi , f , k gives the
factory assignment of each job and the processing sequence
in the assigned factory and yi , j , v gives the speed of each
operation.

In the problem, different machines can be set to different
units of energy consumption at a given speed. Moreover, it
is assumed that machines cannot be turned off until all jobs
assigned to the factory are completed. It is obvious that the
higher the processing speed, the shorter the processing time
and the higher the energy consumption of the machine. Thus,
the two optimization objectives are conflicting.

Problem-specific properties

In this section, two lemmas are proposed based on the
problem-specific properties. Then, according to these prop-
erties and lemmas, two efficient heuristics are designed and
utilized in the local search discussed in “DST-based speed
adjustment heuristics”.

Before the study of problem properties, an assumption is
made: when a job i ∈ n is processed at a higher speed on
a machine j ∈ m, the processing time decreases, but the
processing energy consumption is increased. This implies
that

(22)

∀v < v′(v, v′ ∈ s), ti , j (v) > ti , j (v
′),

P E j , v · ti , j (v) < P E j , v′ · ti , j (v
′),

with this assumption, the following property is observed.
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Property 1 Consider two solutions a � (�, V ) and b � (�,
V ′), that is, the scheduling � of both are fixed. The solution
b is dominated by the solution a if the previous solution
has a faster processing speed. Namely, we have a ≺ b, if the
following conditions are satisfied, then T EC(a) < T EC(b):

(1) C max(a) ≤ C max(b);
(2) ∀i ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., m}, vi , j (a) ≤ vi , j (b);
(3) ∃i ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., m}, vi , j (a) < vi , j (b).

This property can be proved by a method similar to Prop-
erty 2 of Ding et al. [37]. To describe the lemmas in detail,
the following definitions are given. For the sake of simplicity,
the following Si , j , f represents the starting time of job i on
machine j in factory f , that is, it is calculated from the time
of preparation.

Definition 1 (Right side idle time): right side idle time Ri , j

of an operation Oi , j is calculated as follows:

Ri , j � Si+1, j , f − Ci , j , f . (23)

Definition 2 (Left side idle time): left side idle time Li , j of
an operation Oi , j is defined by

Li , j � Si , j , f − Ci−1, j , f . (24)

Definition 3 (Critical machine): machine j
π (i)

or jπ (i) is
called a critical machine for job i if Ci , j , f � Si + 1, j ,
f (for right side idle time) or Si , j , f � Ci − 1, j , f (for
left side idle time). Note that there is only one j

π (i)
and one

jπ (i) for job i, that is, once found, the search will stop.

In particular, for the first processing job in the scheduling,
there is only the right idle time. And for the last processing
job, there is only the left idle time. A detailed explanation is
provided in Fig. 2. It is obvious that Ri , j of job i refers to the
same area as Li , j of job i + 1.

Lemma 1 For each job i, find its j
π (i)

from Mm to M1. If the

critical machine is not used for the last operation of the job,
there is Ri , j of each subsequent operation. Slowing down
the processing speed under the premise that the �PTi , j will
not exceed the minimum Ri , j can reduce both the PEC and
SPEC.

Proof To prove this lemma, we first show that slowing down
any operation that satisfies �PTi , j ≤ min Ri , j does not
worsen the makespan. For each Oi , j , this condition guaran-
tees that the starting time of job i + 1 is not be delayed. Both
the start and completion times of all operations after the Oi , j

for job i are changed, as shown in Eqs. (26) and (27).

�PTi , j � pi , j

v′ − pi , j

v
, (25)

Ci , j , f � Ci , j , f + �PTi , j , (26)

Si , j+1, f � Si , j+1, f + �PTi , j . (27)

In particular, for job i, all operations can be processed in
advance if there is no Si , j , f � Ci−1, j , f due to the start
time that is delayed. In this case, the completion time is be
reduced, as shown in Fig. 2b and d.

Lemma 2 For each job i, find its critical machine from M1to
Mm. If the jπ (i)is not M1, there is Li , j of each preceding oper-
ation. Slowing down the processing speed under the premise
that the �PTi , j will not exceed the minimum Li , j can reduce
both the PEC and SPEC.

Proof Similar to the proof of Lemma 1, for each Oi , j , con-
dition �PTi , j ≤ min Li , j ensures that the completion time
of all jobs will not be delayed. Besides, the time of all oper-
ations before the Oi , j for job i are changed, as shown in
Eqs. (28) and (29).

Si , j , f � Si , j , f − �PTi , j , (28)

Ci , j−1, f � Ci , j−1, f − �PTi , j . (29)

Similarly, for job i + 1, all operations can be processed in
advance if there is no Si+1, j , f � Ci , j , f . As shown in Fig. 2b
and f, the completion time will also reduce.

In sum, by slowing down the operations that satisfy
�PTi , j ≤ min Ri , j or �PTi , j ≤ min Li , j , there is always
Cmax(a) ≤ Cmax(b). And combined with vi , j (a) < vi , j (b),
it follows from Property 1 that T EC(a) < T EC(b).

Improved NSGA-II algorithm

Framework of INSGA-II

The nondominated sorting genetic algorithm II (NSGA-II)
presented by Deb et al. [38] is a classical algorithm tailored
to solve multi-objective problems. It has three outstanding
contributions to address the shortcomings of the NSGA: fast
nondominated sorting, crowded-comparison approach, and a
novel elite selection strategy. Although the existingNSGA-II
has made creative improvements in the above three aspects
and showed the superiority to generate good individuals, two
classical genetic operators of crossover and mutation have
not been further researched. The traditional crossover and
mutation operators are random and aimless, which cannot
guarantee the generation of high-quality offspring and affects
the efficacy of the algorithm. Therefore, an improved non-
dominated sorting genetic algorithm (INSGA-II) is proposed
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Fig. 2 Illustration of deceleration and left shift

here for arriving at the multi-objective solutions of the prob-
lem.

The proposed improved NSGA-II algorithm is presented,
which includes the main framework, an encoding and
decoding method, two efficient initialization heuristics, two
problem-specific speed adjustment heuristics combined with
four mutation operators to form a local search strategy,
and two crossover operators to conduct global search. The
framework of the INSGA-II for solving the EEDNWFSP is
described in Fig. 3.

Encoding and illustration

For the EEDNWFSP, a solution is represented by two vec-
tors, that is, the scheduling vector, which contains the factory
assignment, and the speed vector for each job processed on
each machine. The scheduling vector contains n + g − 1 ele-
ments [39], i.e., � � (π1, π2, ..., πi , ..., πn+g−1), where
πi ∈ {0, 1, 2, ..., n}. There are n indexes of jobs and

g − 1 indexes with value ‘0’ as the separators. The sepa-
rators divide Π into g sections, each of which contains a
scheduling sequence of partial jobs. The speed of each oper-
ation is listed in m ∗ n elements. Thus, a solution is encoded
as (�, V ) � (π1, π2, ..., πi , ..., πn+g−1; v1, 1, ..., v1,m , ...,
vn, 1, ...vn,m). As show in Fig. 4.

A simple example is provided to understand the encod-
ing and decoding method. There are two parallel factories,
each of which has three machines. Each machine has two
different speeds for processing. And there are six jobs to be
processed. That is, g � 2, m � 3, and n � 6. The standard
processing times, the energy consumption of each machine
run at each speed and in stand-by mode are listed in Table
1. The sequence-dependent setup time and the setup energy
consumption are given in Table 2.

123



832 Complex & Intelligent Systems (2023) 9:825–849

Implement fast non-dominated 

sorting and calculation 

crowding distance functions

Randomly generate PS
individuals

Perform the environmental 

selection to construct a parent 

population

Is the number of 

iterations satisfied ?

Generate the offspring 

population with GA (cf. 

subsection 4.4-4.5)

N

Output the best Pareto 

solutions and stop the 

algorithm

Y

Set parameters

Apply variants of NEH

(cf. subsection 4.3)

i=1

i=i+1

Fig. 3 Framework of the INSGA-II

Table 1 The standard processing time and the unit energy consumption

M1 M2 M3

Speed/PEC 1/2 1/4 1/2

2/6 2/12 2/6

SPEC 1 2 1

J1 32 21 24

J2 21 20 31

J3 11 29 18

J4 29 12 10

J5 28 18 24

J6 14 13 33

Table 2 The SDST and the setup energy consumption

J1 J2 J3 J4 J5 J6

M1 J1 3/1 2/1 1/2 3/1 4/1 2/2

J2 3/2 2/2 8/2 6/2 3/1 6/2

J3 2/1 4/2 6/1 2/1 8/2 5/1

J4 3/1 5/1 5/1 4/2 6/1 9/2

J5 9/2 8/2 3/2 5/1 10/2 3/2

J6 3/1 9/2 5/2 2/2 3/2 1/1

M2 J1 5/1 3/1 5/2 10/2 9/2 6/1

J2 8/2 9/2 4/1 9/2 9/2 3/1

J3 2/2 4/2 8/1 5/1 10/1 6/2

J4 3/1 5/1 5/2 8/2 6/1 4/2

J5 3/1 4/2 6/2 5/1 10/1 7/2

J6 6/2 9/1 5/1 7/2 8/1 10/1

M3 J1 3/1 6/1 2/1 9/1 5/2 8/2

J2 3/2 10/2 8/2 6/2 5/1 6/2

J3 2/2 4/1 6/1 5/1 8/1 3/1

J4 4/2 5/2 5/2 10/2 8/2 3/2

J5 9/1 8/1 5/1 5/1 10/1 6/2

J6 3/2 9/1 5/2 2/2 3/2 6/1

For ease of presentation, V is presented as the following
matrix:

V �
⎡

⎢⎣
2, 2, 1, 2, 2, 2

2, 2, 2, 1, 1, 2

2, 2, 2, 1, 1, 2

⎤

⎥⎦

T

.

Considering a solution� � {2, 5, 4, 0, 6, 3, 1}, a detailed
description is given as follows: job 2 is processed first, then
jobs 5 and 4 are processed in turns in factory 1. The real
processing time of job 2 on machine 1 is t2, 1 � p2, 1/V2, 1 �
21 ÷ 2 � 10.5. The operation times related to the sequence
are st1, 2, 2 � 2, st2, 2, 2 � 9, st3, 2, 2 � 10. Consequently, the
completion timeof factory1 is the completion timeof job4on
machine 3, which isC(1) � 88.5 after calculation. Similarly,
the completion time of factory 2 can be obtained C(2) �
66.5. Thus, Cmax is 88.5. Next, the calculation of energy
consumption is explained. For instance, in factory 1,machine
1–3 run at the speed of 2, 2, and 2 when processing job 2,
respectively. Thus, the energy consumption of job 2 in the

П : scheduling vector 3 0

1 2 3 4 5position

6 1 2 5 4

6 7 Virtual jobs 0

Jobs

V: speed assignment 1 2 22 2 2 1 2 1 1

operations O1,1 O1,2 O1,3 O2,1 O2,2 O2,3 O3,1 O3,2 O3,3 O4,1

2

O4,2

1 1 2 2 2 2 1

O4,3 O5,1 O5,3O5,2 O6,1 O6,3O6,2

V: speed assignment 2 2 1

operations O1,1 O1,2 O1,3 O2,1 O2,2 O2,3 O3,1 O3,2 O3,3 O4,1

2

O4,2

1 1 2 2 1

O4,3 O5,1 O5,3O5,2 O6,1 O6,3O6,2

Fig. 4 Encoding of EEDNWFSP
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processing and setup states is calculated as follows:P EC2 �
t2, 1 · P E1, 2 + t2, 2 · P E2, 2 + t2, 3 · P E3, 2 � 10.5× 6 + 10 ×
12 + 15.5 × 6 � 276;SEC2 � st1, 2, 2 · SE1, 2, 2 + st2, 2, 2 ·
SE2, 2, 2 + st3, 2, 2 · SE3, 2, 2 � 2 × 2 + 9 × 2 + 10 × 2 � 42.
Therefore, the TEC can be calculated by accumulating the
PEC, SPEC, and SEC of each factory.

Initialization procedure

In multi-objective evolutionary algorithms, the quality of the
initial population has an important impact on the algorithm
performance. As we know, the two objectives considered in
this paper conflict with each other, and finding the extreme
value of each objective can effectively guide optimization.
The NEH [40] heuristic has been identified as one of the
most efficient constructive heuristics for the PFSP with the
makespan criterion [41]. Combined with distributed charac-
teristics, Ruiz et al. [5] proposed two factory assigned rules
that extended the basic NEH. In addition,Wang et al. [7] pro-
posed the extended NEHFF (NEHFF2) that considers energy
efficiency. Inspired by these previous studies and based on the
two current objectives, we propose two extended distributed
NEH heuristics, named ENEH and ENEH2, respectively. In
this paper, random initialization is performed, and then two
individuals are replaced by two solutions generated byENEH
and ENEH2. The procedure of ENEH is shown in Algorithm
1. The difference between ENEH2 and ENEH is that the TEC
is compared first in Step 14. Then, themakespan is compared
so as to construct another solution that is more optimal in
terms of energy consumption.

Local search

DST-based speed adjustment heuristics

Based on Lemmas 1 and 2 discussed in “Problem-specific
properties”, two effective speed adjustment heuristics are
proposed. For either of the two algorithms, a new neighbor-
hood solution is constructed by appropriately slowing down
the speed matrix V . Therefore, a better solution is obtained,
which can reduce the TEC without increasing the makespan
values. The two heuristics, named dynamic speed-scaling
technique 1 (DST1) and 2 (DST2), are described in Algo-
rithm 2 and Algorithm 3 respectively.

Mutation operators

For the optimization of completion time, several search oper-
ators are designed. Specifically, this section proposes four
local search methods to improve the solution using insert
and swap operators between or within factories.

Definition 4 (Critical factory): critical factory f c is the one
with the maximum completion time.

(1) Operators to adjust factory assignment:

F Ai : a job is randomly removed from f c and inserted into a
random position in another factory. The factory to be inserted
is selected from small to large according to completion times.

F As : a job i is randomly selected from a factory and job i’
from another factory is randomly selected, and then the two
jobs are swapped.

First, the factories are arranged in the descending order
of completion times. Then while swapping, the first factory
swaps with the last factory, the second factory swaps with
the penultimate factory, and so on.

(2) Operators to adjust the scheduling of jobs in the same
factory:

Ji : randomly select two jobs from the same factory and
then insert the successor into the position before the previous
one.

Js: randomly select two jobs from the same factory and
then swap them.

In order to find a better solution, based on the above four
search operators and the two speed adjustment heuristics
in “DST-based speed adjustment heuristics”, a novel local
search strategy is proposed which is described in Algorithm
4. To be specific, it combines fourmutation operators and two
speed adjustment heuristics and implements them accord-
ing to probability. First, the completion time of each factory
is normalized by Formula (28), where the Fmin is 0. Then,
find the factory (Cmin) with the smallest completion time,
and select the corresponding mutation operator according to
the completion time. For factories with Cmin < 0.8, F Ai

is executed because it means that the completion times of
this factory and critical factory f c are quite different. The
insertion operator between the factories is used to balance
the completion time. The remaining three mutation opera-
tors are executed with almost an equal probability. Finally,
one of DST1 and DST2 is arbitrarily selected in accordance
with the equal probability to adjust the speed.

Ct � (Ct − Fmin)/(Fmax − Fmin). (30)

Global search

Considerable research on intelligent scheduling exists, which
focus on designing crossover operators for specific problems
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to improve the performance of evolutionary algorithms. Spe-
cially, Han et al. [42] proposed two enhanced crossover oper-
ators based on similar block order crossover (SBOX) [43]
and artificial chromosome (ACJOX) [44], which are named
improved SBOX (ISBOX) and improved SJOX (ISJOX),
respectively. Inspired by the idea of using the information of
non-dominated solutions to preserve good gene blocks, the
corresponding ISBOXII and ISJOXII are conceived accord-
ing to the specific encoding.

The steps of ISBOXII are presented as follows:

Step 1: for each job, count the number of subsequent jobs in
the current non-dominated solution set to find the one with
the most occurrences. A temporary set is consisted of these
gene pairs.
Step 2: two individuals were randomly selected as parents
from the parent population.
Step 3: in a parent, for a job in each position, a gene pair is
formed with its subsequent job, and the gene pair is searched
in the temporary set.

Step 4: if the parent and the temporary set have the common
gene pairs, the identical gene pairs are put into offspring at
the same position.
Step 5: otherwise, compare two parent genes in the same
position, and put the common gene into the same position of
the corresponding offspring respectively.
Step 6: the genes of the offspring in the rest positions are
filled using the one-point order crossover (OP) [45] based on
the two parents.

An example is provided below to illustrate how ISBOXII
works. Suppose that there are five non-dominated solutions in
the current set, expressed asΠ i, i �1,2,3,4,5, each containing
seven jobs and two factories. The crossover operator only
considers the operation of the scheduling part and ignores the
speed part temporarily. That is, the speed part uses random
crossover. Their expressions are given in Fig. 5. For all the
non-dominated solutions, count the times job j (j � 1,2,…,7)
appears immediately after job i (i � 1,2,…,7). Moreover,
according to the occurrence of the highest number of gene
pairs, a temporary set {(1, 4), (2, 1), (3, 5), (4, 5), (5, 2), (6,
3), (7,6)} I s obtained, as shown in Fig. 6.
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Fig. 5 Non-dominated solution set

Then, two parents from the population are randomly
selected, e.g., parent1 � (1, 6, 7, 4, 0, 3, 5, 2) and parent2 �
(5, 2, 7, 0, 1, 4, 3, 6), the common gene pairs between parent
1 and the temporary set, i.e., (3, 5) and (5, 2), are sought and
put into offspring 1 at positions 6–8. The same gene 7 was

0 0 0 2 0 0

1 0 0 0 0 1 1

0 1 0 0 2 0 1

0 0 1 0 2 0 1

1 2 0 1 0 0 1

0job1

job2

job3

job4

job5

0 0 2 1 0 0 0job6

1 0 0 0 0 3 0job7

1 32 4 5 6 7

follower

Fig. 6 Temporary set

also located in the same position in two parents, which was
put into position 3 of offspring 1 and 2, respectively.

To obtain the genes for the unfilled position of offspring
1, a crossover point is randomly generated between positions
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1 and 2, and the OP operator is performed on parents 1 and
2, leading offspring1 to (1, 0, 7, 4, 6, 3, 5, 2). Similarly,
offspring2 � (5, 2, 7, 6, 1, 4, 0, 3) is generated. The whole
process of generating offspring 1 and 2 is illustrated in Fig. 7.

The second new crossover operator, ISOJXII, can be
described as follows. First, a temporary individual is gener-
ated based on the current non-dominated solution set. Then,
two parents are randomly selected from the population, and
the genes of each parent are compared with those of the tem-
porary individual at the same position. Similarly, genes at
the same position are compared between the two parents. If
they are the same, the gene is put in the same position of its
offspring. Furthermore, similar to ISBOXII, the genes in the
rest positions of the offspring are generated by performing
the OP operator between the two parents.

In the following, the same example as above is used to
illustrate the main work of ISOJXII. Count the number of

times job i appears in all the non-dominated solutions at
positionk (k � 1,2,…,8). Then place the jobs with the most
occurrences at each location, and obtain the temporary indi-
vidual (2, 6, 2, 4, 1, 3, 5, 1). The generation process is shown
in Fig. 8.

Then, randomly select two parents using the above-
mentioned same example. To obtain the genes for the unfilled
position of offspring 1, a crossover point is randomly gen-
erated between positions 2 and 3. Then the OP operator is
performed on parents 1 and 2, leading offspring1 to (1, 6, 7,
4, 2, 3, 5, 0). Similarly, offspring2 � (5, 2, 7, 6, 1, 4, 0, 3) is
generated. The whole process of generating offspring 1 and
offspring 2 is illustrated in Fig. 9.

The framework of the proposed INSGAII is shown in
Algorithm 5.
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Fig. 7 Process of ISBOXII

Experiments and results

Experimental setup

This section discusses computational experiments used to
evaluate the performance of the proposed algorithm. All the
algorithms are implemented in the PlatEMO v3.0 on a DELL
with Intel Core i7-10,700 CPU operating at 2.90 GHz and
8 GB RAM, and the same library functions are employed
to make peer comparisons. Furthermore, all the compared

algorithms are recoded to adapt them to solve the consid-
ered problem, including the encoding and decoding method.
The parameters are set in accordance with the literature. In
this paper, the population size is 100. For each instance,
the stopping criterion is set to 200 iterations. To verify the
effectiveness and efficiency of the proposed algorithm, after
30 independent runs, the resulted non-dominated solutions
found by all the compared algorithms were collected for
performance comparisons. The relative percentage increase
(RPI) is used for the ANOVA comparison, which is calcu-
lated as follows:
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Fig. 8 Process of generating a temporary individual

The relative percentage increase (RPI) is used as a perfor-
mance measure and is calculated as follows:

R P I (C) � Cc − Cb

Cb
× 100, (31)

where Cb is the best fitness value of all the compared
algorithms, and Cc denotes the fitness value of the current
algorithm. The fitness values used in this paper are the perfor-
mance indicators HV and IGD mentioned in “Performance
indicators”.

In order to test the performance of INSGA-II, we generate
test instances based on the literature [46, 47]. To be specific, a
set of instances includes several combinations of the number
of jobs, machines, and factories, i.e., the combinations of
n � {20, 40, 60, 80, 100}, m � {4, 8, 16}, g � {2, 3, 4,
5}. The processing time Pi,j is uniformly distributed within
the range of [5 h, 50 h] and the processing speed v is set
as {1, 2, 3}. The EC is set as P E j , v � 4 × vkW , S P E j �
1kW and the SE j , i , i ′ is generated uniformlywithin the range
[1 kW, 2 kW]. The setup times are 50% of the processing
times, that is, the setup times are generated by a uniform [2 h,
25 h] distribution. The instances and experimental results can
be obtained from the website: http://ischedulings.com/data/
CAIS_EEDNWFSP.rar.
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Performance indicators

Since the exact Pareto front of the investigated problem is
unknown, we use a so-called reference set to approximate it.
The reference set is generated using a method similar to that
ofWu et al. [3]. Specifically, all the non-dominated solutions
obtained by the comparison algorithms are combined into
a set, from which the dominated solutions are removed to
obtain the reference set. In this study, each instance is solved
by all the comparison algorithms iterating 30,000 times inde-
pendently, and the non-dominated solutions obtained are
considered the final reference set.

To assess the quality of the obtained solutions, the fol-
lowing two representative indicators are used in terms of
convergence and diversity: the hypervolume (HV) [48] and
the inverted generational distance (IGD) [49]. The detailed
calculation process of the two indicators is as follows.

(1) hypervolume HV

H V � δ

(⋃|S|
i�1

vi

)
. (32)

The Lebesgue measure is a metric used to measure the
volume, denoted by δ. Where |S| is the number of non-
dominated solutions and vi is the hypervolume of the ith
solution in the reference solution set. The larger the volume
of the region in the target space surrounded by the non-
dominated solution set and reference points, the better the
comprehensive performance of the algorithm. In this work,
we select (1, 1) as the reference point.

(2) inverted generational distance IGD

I G D
(
P , P∗) �

∑
x∈P∗ miny∈P dis(x , y)

|P∗| . (33)

IGD is used to compute the average distance fromeach ref-
erence solution to the nearest solution. Here P is the solution
set obtained by the algorithm, and P* represents a group of

Table 3 Parameter values

Parameter Factor level

1 2 3 4 5

pc 0.2 0.4 0.6 0.8 1.0

pm 0.2 0.4 0.6 0.8 1.0

uniformly distributed reference solutions sampled from the
reference solution set. The dis(x , y) represents the Euclidian
distance between the solution x in the reference solution set
P* and the solution y in the solution set P.

Parameter setting

In the proposed algorithm, two parameters crossover prob-
ability (pc), and mutation probability (pm) have the main
effects for the performance. In this section, we conduct a
design of experiments (DOE) test for selecting the levels of
the two parameters. More precisely, we apply a full factorial
design using the two parameters as factors. Five levels are
considered for each parameter, as listed in Table 3. Based on
the results of detailed experiments, parameters of pc and pm
are set to 0.8 and 0.4, respectively.

Efficiency of the proposed components

Effect of initialization

To investigate the effectiveness of the ENEH heuris-
tics discussed in “Initialization procedure”, we compare
the INSGAII to the INSGAII with random initializa-
tion (denoted as G1). A multi-factor analysis of variance
(ANOVA) is performed to test whether the performance
differences between the algorithms are significant, and the
two compared algorithms are considered as factors. Tables 4
and 5 report the comparison results of HV and IGD values
for the given 60 different scale instances (each instance runs
10 times independently). Moreover, the 60 instances are
further classified according to the number of factories. In
the tables, the first column gives the instance number. Then,
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Table 4 Comparisons of the HV values between INSGAII and G1

n × m HV(g � 2) HV(g � 3) HV(g � 4) HV(g � 5)

INSGAII G1 INSGAII G1 INSGAII G1 INSGAII G1

20 × 4 0.6958 0.6877 0.6692 0.6594 0.6706 0.6603 0.7495 0.7474

20 × 8 0.6612 0.6560 0.7135 0.7100 0.7305 0.7239 0.6907 0.6872

20 × 16 0.6194 0.6167 0.6984 0.7008 0.7199 0.7135 0.7324 0.7192

40 × 4 0.6851 0.6639 0.7157 0.6860 0.6695 0.6434 0.6794 0.6533

40 × 8 0.6483 0.6183 0.6476 0.6252 0.6331 0.6098 0.7386 0.7274

40 × 16 0.6115 0.5900 0.6092 0.5789 0.6750 0.6641 0.6964 0.6923

60 × 4 0.6549 0.6282 0.6905 0.6712 0.6732 0.6396 0.7021 0.6750

60 × 8 0.6333 0.5981 0.6360 0.6096 0.6978 0.6797 0.7028 0.6940

60 × 16 0.5986 0.5740 0.6021 0.5748 0.6085 0.5755 0.6790 0.6691

80 × 4 0.6499 0.6136 0.6692 0.6293 0.6472 0.6171 0.6490 0.6171

80 × 8 0.6386 0.6090 0.6556 0.6202 0.6366 0.5970 0.6342 0.5945

80 × 16 0.5989 0.5708 0.5959 0.5671 0.6051 0.5703 0.5936 0.5504

100 × 4 0.6586 0.6168 0.6460 0.6022 0.6975 0.6659 0.6528 0.6027

100 × 8 0.6264 0.5920 0.6229 0.5807 0.6251 0.5826 0.6343 0.5824

100 × 16 0.6253 0.5883 0.6037 0.5810 0.6083 0.5836 0.6732 0.6561

Avg 0.6404 0.6149 0.6517 0.6264 0.6599 0.6351 0.6805 0.6579

Values in bold mean the best ones

Table 5 Comparisons of the IGD values between INSGAII and G1

n × m IGD(g � 2) IGD(g � 3) IGD(g � 4) IGD(g � 5)

INSGAII G1 INSGAII G1 INSGAII G1 INSGAII G1

20 × 4 5.8176 28.1926 5.1728 18.5917 0.8602 10.7065 10.7807 21.6783

20 × 8 11.6968 11.5433 40.5108 31.2564 5.5459 16.3955 12.1780 11.1968

20 × 16 4.6023 35.3588 11.6726 64.3980 24.6725 26.9317 10.2060 44.2591

40 × 4 5.7964 60.1374 0.0000 54.7883 0.2925 33.6016 0.0000 41.7198

40 × 8 0.7945 64.4567 4.5307 74.2285 0.9089 37.0931 11.9167 65.8171

40 × 16 2.3528 76.8651 0.7798 113.3179 18.9093 54.3116 42.9864 44.8782

60 × 4 0.8241 96.7012 7.4167 63.6580 1.5060 68.8097 5.4764 59.7686

60 × 8 0.0000 118.5663 5.6344 94.1960 23.8459 115.1965 14.0692 82.6480

60 × 16 2.3617 124.9135 5.3598 135.3208 1.1165 139.8077 9.6808 63.2765

80 × 4 0.0000 141.6163 0.0000 155.6765 3.8399 69.7350 8.5067 68.3357

80 × 8 2.2220 183.5328 2.3344 184.9940 3.4195 263.4318 0.0000 186.2944

80 × 16 8.8220 254.4020 16.3215 194.3021 7.3209 238.1768 0.0000 232.2292

100 × 4 0.0000 211.4340 1.4399 153.5090 9.6292 176.1901 0.0000 114.2430

100 × 8 0.0000 289.5759 0.7433 241.9929 0.0000 206.9498 0.3443 195.0756

100 × 16 1.1567 322.1684 191.4744 170.0620 39.3091 251.1446 38.9450 434.0927

Avg 3.0965 134.6309 19.5594 116.6861 9.4118 113.8988 11.0060 111.0342

Values in bold mean the best ones

the results collected by INSGAII and G1 are shown in the
following eight columns.

From the comparison results, the following can be
observed: (1) considering the HV values, compared with G1,

INSGAII obtains 59 better results, and the slightly worse
results for only one instance; (2) for the IGD values, INS-
GAII obtains 56 better results, the rest one is slightly inferior
in small-scale cases; and (3) from the average performance
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(a) Comparison results of the initialization heuristics ENEH

(b) Comparison results of the local search strategy

(c) Comparison results of the crossover operators

Fig. 10 ANOVA comparison results

in HV and IGD given in the last line and the ANOVA results
from Fig. 10a, it can be seen that INSGAII is significantly
better than G1, which verify the efficiency of the proposed
ENEH heuristics.

Effect of search strategies

To show the effectiveness of the local search strategy and
crossover operators discussed in “Local Search” and “Global
search”, we conduct detailed comparisons of the algorithms

with and without the proposed strategies. The algorithm
without the local search strategy is represented by G2, the
algorithm without the crossover operators is denoted as G3,
and the INSGAII with all the components.

As illustrated by Tables 6 and 7, (1) IGD andHV values of
INSGAII are significantly better than G2 in all instances; (2)
the ANOVA results from Fig. 10b shows that the local search
strategy is very effective in solving the EEDNWFSP; and (3)
the results indicate that the proposed local search contributes
to improve the diversity and convergence of solutions. This
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Table 6 Comparisons of the HV values between INSGAII and G2

n × m HV(g � 2) HV(g � 3) HV(g � 4) HV(g � 5)

INSGAII G2 INSGAII G2 INSGAII G2 INSGAII G2

20 × 4 0.6777 0.6451 0.6637 0.6311 0.6713 0.6458 0.7699 0.7281

20 × 8 0.6451 0.5966 0.7213 0.6757 0.7023 0.6667 0.7271 0.6894

20 × 16 0.6079 0.5677 0.6686 0.6257 0.6831 0.6471 0.7245 0.6855

40 × 4 0.6635 0.6104 0.6688 0.6183 0.6510 0.6055 0.7205 0.6637

40 × 8 0.6343 0.5641 0.6392 0.5743 0.6539 0.5997 0.6510 0.5846

40 × 16 0.6016 0.5221 0.6095 0.5377 0.5904 0.5342 0.6936 0.6383

60 × 4 0.6808 0.6278 0.6527 0.6043 0.6617 0.6040 0.6690 0.6132

60 × 8 0.6308 0.5540 0.6463 0.5808 0.6258 0.5522 0.6353 0.5712

60 × 16 0.5865 0.5097 0.5924 0.5131 0.5975 0.5215 0.6683 0.5964

80 × 4 0.6529 0.5889 0.6645 0.6013 0.6674 0.6184 0.6590 0.5998

80 × 8 0.6177 0.5427 0.6336 0.5613 0.6416 0.5674 0.6405 0.5747

80 × 16 0.5873 0.5073 0.6140 0.5270 0.5969 0.5153 0.5878 0.5158

100 × 4 0.6475 0.5991 0.6497 0.5904 0.6619 0.6087 0.6651 0.6061

100 × 8 0.6314 0.5524 0.6491 0.5651 0.6332 0.5523 0.6308 0.5535

100 × 16 0.5848 0.4975 0.5825 0.5008 0.5793 0.4972 0.6653 0.5730

Avg 0.6300 0.5657 0.6437 0.5805 0.6411 0.5824 0.6738 0.6129

Values in bold mean the best ones

Table 7 Comparisons of the IGD values between INSGAII and G2

n × m IGD(g � 2) IGD(g � 3) IGD(g � 4) IGD(g � 5)

INSGAII G2 INSGAII G2 INSGAII G2 INSGAII G2

20 × 4 13.9173 562.0828 5.9056 679.5463 3.8929 48.6234 7.2012 692.0580

20 × 8 1.8034 171.5275 3.0435 994.7606 1.3680 155.1355 2.9209 171.1599

20 × 16 1.1953 579.4234 0.0715 426.1558 0.4948 286.2467 4.2273 368.9697

40 × 4 4.8949 173.7518 1.8528 164.6672 0.6844 217.5063 3.3446 265.9727

40 × 8 0.0000 748.2804 0.0000 625.5124 0.6971 474.5985 0.0000 735.3733

40 × 16 0.0000 2357.4690 0.5243 2063.0820 0.0000 1552.1410 0.0000 1289.8630

60 × 4 2.0679 284.6895 0.1819 235.5487 1.0481 284.0066 0.1752 406.9018

60 × 8 0.0000 1221.7430 36.6981 1253.6310 0.1144 1057.4070 0.0000 1164.8740

60 × 16 0.0000 3055.8730 14.0706 3275.6730 0.0000 3435.2940 0.0000 3025.9910

80 × 4 0.0000 489.2292 0.8371 426.4559 2.8838 292.5117 0.0000 572.1952

80 × 8 0.0000 1533.9490 4.7919 1502.6310 0.0000 1481.4350 0.6971 1868.7260

80 × 16 0.0000 4416.9660 0.0000 5125.1920 0.0000 4676.1170 0.0000 4396.7220

100 × 4 3.8736 457.7837 0.0000 455.5416 14.9347 664.3326 6.7696 542.6256

100 × 8 0.0000 1844.6790 0.0000 2471.5640 0.0000 2591.4540 0.0000 2001.6710

100 × 16 0.9614 6517.1050 2.5021 6442.5340 0.0000 5906.0340 0.2764 6523.7930

Avg 1.9142 1627.6368 4.6986 1742.8330 1.7412 1541.5229 1.7075 1601.7931

Values in bold mean the best ones
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proves the effectiveness of the proposed local search, which
helps in improving the performance of the algorithm. In the
INSGAII, we take advantage of the knowledge specific to
the problem, and then combine this knowledge with classical
mutation operators to form a local search strategy. This local
search based on knowledge can effectively guide the solution
to Pareto optimal solution.

Tables 8 and 9 separately list the comparison results with
G3 as follows: (1) considering the HV and IGD values, G3
also achieved several superior values, but the overall effect of
INSGAII performs better; and (2) the ANOVA results from
Fig. 10c shows that INSGAII obtained significantly better
results, where p values of HV and IGD are both less than
0.05. This shows that the two crossover operators designed
based on the knowledge of Pareto set are effective.

Comparisons of the efficient algorithms

To further verify the performance of the proposed algorithm
compared with other efficient algorithms, the following three
algorithms are selected, namely, NSGAII [31], ARMOEA
[32], and hpaEA [33]. Each algorithm run 30 times indepen-
dently on the same computer, and 15× 4 instances are tested.
According to the number of factories, the detailed results of
the experimental comparison are shown in Tables 10, 11, 12
and 13.

Specifics of the table are as follows: the scales of the exam-
ples are presented in the first column, the second column
presents the information of HV for all algorithms, and the
last column is IGD value. It can be observed that: (1) for the
given 60 instances, the proposed INSGAII algorithm obtains
all the better indicators, which is significantly better than
the other compared algorithms; and (2) the average values
of the last line further verify the efficiency of the INSGAII,
which prove that the solutions obtained by INSGAII have
good convergence and distribution.

Figure 11 reports the Pareto results for a given scale
instance (i.e., M � 8, J � 20) belonging to four factories.
PF in the figure represents the near Pareto front obtained as
described in “Performance indicators”.Moreover, all the four
compared algorithms are drawn with different marks. From
the four sub-figures, the following can be concluded: (1) the
results obtained by the proposed INSGAII algorithm have
better dominance performance compared with other com-
pared algorithms; (2) the population diversity of INSGAII is
significantly better than the three compared algorithms; and
(3) considering different scale instances, the proposed INS-
GAII is the best one to balance the abilities of diversity and
convergence.

Comparative analysis

Through experimental comparison and analysis of the results,
the following conclusions about the proposed algorithm are
obtained:

(1) The use of ENEH heuristics in the initialization phase
can produce high-quality individuals, thus effectively
guiding the population to approach the optimal solu-
tions.

(2) According to the distributed nature of the problem, the
corresponding mutation operators are designed. Com-
bined with the analysis of the characteristics of EED-
NWFSP, the DST1 and DST2 heuristics are designed to
greatly improve the local search ability of the algorithm.

(3) The Pareto-based crossover operators enhance the pop-
ulation diversity as well as quality.

(4) As the number of factories increases, the superiority of
the INSGA-II becomes more prominent. Therefore, the
proposed algorithm is efficient for solvingEEDNWFSP.

Conclusion

This study is the first one to consider the multi-objective
energy-efficient scheduling of the distributed permutation
flow-shop with sequence-dependent setup time and no-wait
constraints. Two objectives, including minimizing of both
makespan and the TEC, are adopted simultaneously. In order
to solve the problem, based on the canonical multi-objective
algorithm NSGA-II, some effective search strategies are
designed according to the characteristics of the problem.
First, the initial population is generated randomly, and then
two individuals are replaced with the solutions generated by
ENEH and ENEH2. Then, the characteristics of the prob-
lem are analyzed, two lemmas are proposed, and two speed
adjustment heuristics are further developed. Combined with
four mutation operators, a local enhancement process is
designed, which effectively enhances the convergence of the
algorithm and improves the quality of solutions. Finally,
using the knowledge of non-dominated solution set, two
effective crossover operators are designed to improve the
diversity of solutions.

INSGA-II is tested withmultiple scale instances and com-
pared with two state-of-the-art multi-objective evolutionary
algorithms. The experimental results demonstrate the supe-
riority of the proposed algorithm.

As future work, it is worth investigating other types
of distributed scheduling problems, such as resource con-
straints, heterogeneous factories, and high dimensional
multi-objective. We will focus on the extraction and utiliza-
tion of problem-specific knowledge as well as the design
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Table 8 Comparisons of the HV values between INSGAII and G3

n × m HV(g � 2) HV(g � 3) HV(g � 4) HV(g � 5)

INSGAII G3 INSGAII G3 INSGAII G3 INSGAII G3

20 × 4 0.6620 0.6607 0.6660 0.6690 0.7501 0.7476 0.6609 0.6525

20 × 8 0.6607 0.6509 0.6728 0.6615 0.6988 0.6931 0.7064 0.6896

20 × 16 0.5955 0.5921 0.6630 0.6454 0.6394 0.6147 0.7367 0.7005

40 × 4 0.6664 0.6583 0.6797 0.6638 0.6577 0.6442 0.6804 0.6611

40 × 8 0.6525 0.6384 0.6236 0.6170 0.7167 0.7128 0.6217 0.6131

40 × 16 0.6082 0.6063 0.6672 0.6616 0.6065 0.5995 0.6840 0.6773

60 × 4 0.6734 0.6496 0.6398 0.6169 0.6503 0.6300 0.6630 0.6411

60 × 8 0.6205 0.6093 0.6490 0.6300 0.6905 0.6778 0.6349 0.6233

60 × 16 0.5945 0.5964 0.5975 0.5910 0.6034 0.5932 0.6844 0.6804

80 × 4 0.6633 0.6365 0.6637 0.6329 0.6478 0.6263 0.6593 0.6394

80 × 8 0.6403 0.6239 0.6327 0.6138 0.6186 0.6043 0.6124 0.5934

80 × 16 0.5866 0.5800 0.6030 0.5861 0.5967 0.5949 0.5928 0.5853

100 × 4 0.6377 0.6168 0.6535 0.6277 0.6549 0.6327 0.6426 0.6154

100 × 8 0.6433 0.6217 0.6270 0.6044 0.6365 0.6182 0.6245 0.6074

100 × 16 0.6136 0.6047 0.6122 0.5982 0.5895 0.5843 0.5924 0.5824

Avg 0.6346 0.6230 0.6434 0.6280 0.6505 0.6382 0.6531 0.6375

Values in bold mean the best ones

Table 9 Comparisons of the IGD values between INSGAII and G3

n × m IGD(g � 2) IGD(g � 3) IGD(g � 4) IGD(g � 5)

INSGAII G3 INSGAII G3 INSGAII G3 INSGAII G3

20 × 4 6.4253 28.1913 17.3912 36.3181 2.6949 20.9009 5.1159 87.1628

20 × 8 6.6052 27.3634 6.5460 108.4567 5.3313 14.3616 4.5036 45.4794

20 × 16 10.5063 12.9577 3.7925 79.7895 11.3341 57.7334 6.9817 240.6732

40 × 4 6.1780 32.6651 1.9207 43.3112 2.7813 43.2867 2.2286 43.7553

40 × 8 5.1923 36.9973 4.7158 33.0645 2.4525 31.9487 5.6525 47.2015

40 × 16 6.6654 32.6637 7.3149 34.1539 4.1873 32.8176 29.4323 158.7961

60 × 4 0.7880 93.7319 2.2722 55.3519 2.3249 64.4927 1.6483 99.5842

60 × 8 7.7062 56.7305 6.1223 148.4391 9.2609 63.0451 6.6078 65.3631

60 × 16 14.8379 28.2828 16.5978 83.9112 6.8725 69.4887 9.2879 60.2524

80 × 4 5.5407 135.7429 3.0102 170.8620 4.9320 103.9318 3.1661 88.8715

80 × 8 7.2935 154.8194 45.2692 220.5064 12.6506 96.5460 4.0060 140.0035

80 × 16 9.0627 71.4499 4.8200 263.2319 10.6508 23.1394 18.0773 149.5012

100 × 4 5.0054 157.6446 3.0357 213.9454 7.2274 127.1013 2.6644 233.0220

100 × 8 3.7206 173.4658 16.5590 246.1586 12.7700 175.4973 0.3867 208.5464

100 × 16 9.6454 159.3736 10.1612 293.1734 50.3596 96.7395 24.6897 231.9344

Avg 7.0115 80.1387 9.9686 135.3782 9.7220 68.0687 8.2966 126.6765

Values in bold mean the best ones
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Table 10 Results of the algorithms (g � 2)

n × m HV IGD

ARMOEA INSGAII NSGAII hpaEA ARMOEA INSGAII NSGAII hpaEA

20 × 4 0.6350 0.6689 0.6363 0.6391 862.9526 5.8334 933.7459 961.2891

20 × 8 0.6152 0.6592 0.6222 0.6135 253.9407 15.2828 203.3305 240.2489

20 × 16 0.5488 0.5976 0.5518 0.5486 682.7621 0.0000 653.4532 711.6409

40 × 4 0.6015 0.6433 0.6007 0.5963 237.9978 2.9417 194.6513 200.4242

40 × 8 0.5552 0.6238 0.5566 0.5537 774.0414 0.0000 718.1670 767.6475

40 × 16 0.4859 0.5699 0.4901 0.4831 2505.5410 0.0000 2315.0910 2436.4890

60 × 4 0.6172 0.6556 0.6208 0.6091 473.9908 10.8207 406.4291 484.0508

60 × 8 0.5570 0.6208 0.5626 0.5571 1268.4460 21.2009 1226.8120 1303.0030

60 × 16 0.4762 0.5687 0.4755 0.4691 3524.6920 0.0000 3707.8340 3711.8760

80 × 4 0.5811 0.6349 0.5792 0.5767 616.9777 6.3949 607.9967 635.6730

80 × 8 0.4936 0.5700 0.4935 0.4879 2162.4690 0.0000 2115.2650 2118.2260

80 × 16 0.4562 0.5594 0.4647 0.4536 5984.4640 0.0000 5662.2860 5976.3330

100 × 4 0.5875 0.6421 0.5888 0.5817 961.6876 57.5231 878.0886 949.1375

100 × 8 0.5017 0.5772 0.5041 0.5014 3107.6710 0.0000 2905.0270 2912.3990

100 × 16 0.4301 0.5488 0.4323 0.4312 8563.7730 0.0000 8385.6190 8366.9910

Avg 0.5428 0.6093 0.5453 0.5401 2132.0938 7.9998 2060.9198 2118.3619

Values in bold mean the best ones

Table 11 Results of the algorithms (g � 3)

n × m HV IGD

ARMOEA INSGAII NSGAII hpaEA ARMOEA INSGAII NSGAII hpaEA

20 × 4 0.6349 0.6753 0.6350 0.6336 491.6849 0.3865 581.3584 580.5010

20 × 8 0.6482 0.6984 0.6547 0.6433 1379.3790 0.0000 1208.8590 1638.3280

20 × 16 0.6419 0.7071 0.6438 0.6387 692.1126 0.0000 636.8500 672.9804

40 × 4 0.6216 0.6710 0.6279 0.6193 334.1531 5.0042 273.1995 321.7073

40 × 8 0.5474 0.6225 0.5548 0.5448 935.7414 0.0000 776.2829 929.9833

40 × 16 0.5505 0.6314 0.5581 0.5503 2364.7160 0.0000 2121.2880 2402.1510

60 × 4 0.5979 0.6471 0.6037 0.5959 368.6063 35.9517 316.0852 365.4021

60 × 8 0.5290 0.6078 0.5302 0.5296 1569.6950 0.0000 1423.7610 1492.2550

60 × 16 0.4623 0.5480 0.4594 0.4583 4366.1770 0.0000 4169.7940 4292.8760

80 × 4 0.5863 0.6365 0.5849 0.5817 649.3023 23.5702 586.5835 606.5393

80 × 8 0.5241 0.6088 0.5230 0.5207 2309.5610 0.0000 2339.2460 2378.0090

80 × 16 0.4583 0.5576 0.4688 0.4535 6518.8710 0.0000 5962.8210 6432.5830

100 × 4 0.5666 0.6119 0.5629 0.5588 742.3209 33.9751 742.6668 716.7839

100 × 8 0.4860 0.5749 0.4872 0.4817 2988.5700 0.0000 2922.4550 2999.4420

100 × 16 0.4334 0.5337 0.4336 0.4308 7699.0730 0.0000 7717.3670 7835.0550

Avg 0.5525 0.6221 0.5552 0.5494 2227.3309 6.5925 2118.5745 2244.3064

Values in bold mean the best ones
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Table 12 Results of the algorithms (g � 4)

n × m HV IGD

ARMOEA INSGAII NSGAII hpaEA ARMOEA INSGAII NSGAII hpaEA

20 × 4 0.6213 0.6698 0.6303 0.6263 90.9816 0.4818 76.3124 86.5997

20 × 8 0.6753 0.7178 0.6812 0.6762 250.4894 5.2796 245.4039 215.3780

20 × 16 0.6643 0.7001 0.6634 0.6701 337.8108 0.8978 383.6756 321.1888

40 × 4 0.6171 0.6624 0.6251 0.6181 284.9572 8.9542 237.7833 253.4150

40 × 8 0.5050 0.5778 0.5111 0.5099 673.1945 0.0000 603.5707 713.5393

40 × 16 0.5576 0.6253 0.5648 0.5546 1982.4460 0.0000 1746.0310 2065.0820

60 × 4 0.6027 0.6559 0.6051 0.5992 384.5750 7.7861 353.4561 369.1107

60 × 8 0.5216 0.6039 0.5221 0.5196 1407.2100 0.0000 1385.7210 1431.3560

60 × 16 0.4875 0.5772 0.4894 0.4853 3828.7470 0.0000 3692.5760 3699.8410

80 × 4 0.5558 0.6169 0.5608 0.5557 627.7588 0.0000 590.8560 608.5870

80 × 8 0.5493 0.6412 0.5539 0.5451 2124.3480 0.0000 1900.1150 2127.7020

80 × 16 0.4634 0.5620 0.4699 0.4714 5865.7030 0.0000 5516.3790 5682.8610

100 × 4 0.5728 0.6238 0.5824 0.5714 793.5963 56.5530 615.9821 752.8644

100 × 8 0.4828 0.5722 0.4888 0.4815 3419.9320 0.0000 2894.0410 3130.0580

100 × 16 0.5399 0.6453 0.5436 0.5409 7578.3830 0.0000 7284.7820 7543.3520

Avg 0.5611 0.6301 0.5661 0.5617 1976.6755 5.3302 1835.1123 1933.3957

Values in bold mean the best ones

Table 13 Results of the algorithms (g � 5)

n × m HV IGD

ARMOEA INSGAII NSGAII hpaEA ARMOEA INSGAII NSGAII hpaEA

20 × 4 0.6164 0.6491 0.6084 0.5989 355.3706 0.0000 358.3120 548.0381

20 × 8 0.6574 0.7129 0.6645 0.6567 243.9721 0.0000 238.8503 281.5824

20 × 16 0.6683 0.7296 0.6732 0.6669 539.7077 0.0000 477.0620 550.6626

40 × 4 0.5941 0.6512 0.6011 0.5907 231.5507 0.0000 221.3578 233.3693

40 × 8 0.5350 0.6109 0.5385 0.5341 804.0522 0.0000 780.4658 729.1339

40 × 16 0.6112 0.6704 0.6154 0.6056 1798.5440 0.0000 1641.4210 1831.1760

60 × 4 0.6754 0.7408 0.6807 0.6798 617.5125 10.5511 548.1857 586.7113

60 × 8 0.6127 0.6983 0.6215 0.6140 1573.8320 0.0000 1321.1470 1593.4640

60 × 16 0.4920 0.5676 0.4939 0.4878 3084.0470 0.0000 3097.6250 3118.9630

80 × 4 0.6184 0.6920 0.6173 0.6113 692.2176 0.0000 755.0597 811.5215

80 × 8 0.5232 0.6097 0.5277 0.5237 2187.8330 0.0000 1889.8940 2120.5530

80 × 16 0.5511 0.6568 0.5570 0.5552 6236.6680 0.0000 5908.1990 5857.7450

100 × 4 0.5359 0.6126 0.5394 0.5388 955.2761 0.0000 814.5295 894.9756

100 × 8 0.4851 0.5730 0.4946 0.4841 2835.1090 0.0000 2469.9140 2599.6000

100 × 16 0.5475 0.6521 0.5537 0.5442 8317.0510 0.0000 7840.9230 8467.2710

Avg 0.5816 0.6551 0.5858 0.5794 2031.5162 0.7034 1890.8631 2014.9844

Values in bold mean the best ones
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(a) Results when the number of factories is 2 (b) Results when the number of factories is 3
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(c) Results when the number of factories is 4 (d) Results when the number of factories is 5
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Fig. 11 Pareto front of the compared algorithms

of effective search operators. More and more realistic con-
straints will be considered, such as fuzzy processing times
[50]. In addition, it is extremely important to apply these
algorithms to real industrial problems.
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