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Stochastic gradient line Bayesian optimization for efficient
noise-robust optimization of parameterized quantum circuits
Shiro Tamiya 1✉ and Hayata Yamasaki2,3✉

Optimizing parameterized quantum circuits is a key routine in using near-term quantum devices. However, the existing algorithms
for such optimization require an excessive number of quantum-measurement shots for estimating expectation values of
observables and repeating many iterations, whose cost has been a critical obstacle for practical use. We develop an efficient
alternative optimization algorithm, stochastic gradient line Bayesian optimization (SGLBO), to address this problem. SGLBO reduces
the measurement-shot cost by estimating an appropriate direction of updating circuit parameters based on stochastic gradient
descent (SGD) and further utilizing Bayesian optimization (BO) to estimate the optimal step size for each iteration in SGD. In
addition, we formulate an adaptive measurement-shot strategy and introduce a technique of suffix averaging to reduce the effect
of statistical and hardware noise. Our numerical simulation demonstrates that the SGLBO augmented with these techniques can
drastically reduce the measurement-shot cost, improve the accuracy, and make the optimization noise-robust.
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INTRODUCTION
Advances in technologies of quantum hardware lead to intensive
research on finding practical applications on noisy intermediate-scale
quantum (NISQ) devices1. Variational quantum algorithms (VQAs)2–4

are a class of promising candidates of quantum algorithms that are
implementable on the NISQ devices. The VQAs can be used for a
variety of computational tasks including quantum chemistry calcula-
tions5–8, combinatorial optimization9–11, and training of machine-
learning models12–15. These tasks are achieved by minimizing task-
specific cost functions usually defined as a sum of expectation values
of observables. The optimization of minimizing the cost function is
performed through updating parameters of a parameterized
quantum circuit using a classical optimizer in a feedback loop. In
particular, VQAs employ a quantum device to prepare quantum
states that the parameterized quantum-circuit outputs. We perform a
shot of quantum measurement on each output state to extract
classical information, which is useful for estimating the expectation
values of the cost function. The measurement outcomes are fed to
the classical optimizer, with which we improve the circuit parameters
so as to minimize the cost function iteratively.
But problematically, if we try to estimate the expectation values

with high precision in the VQAs, we usually need an excessive
number of measurement shots until minimizing the cost
function16,17. In practice, a user of a quantum computer often
needs to access a distant server of a quantum computer to query
measurement shots, while the classical optimizer can be
performed locally by the user at a negligible cost compared to
the cost of using the quantum computer in terms of time and
money18; in this setting, the number of measurement shots
crucially dominates the cost of VQAs, which we aim to minimize
here. In previous research, problems of reducing computational
resources in VQAs have often been tackled by estimating an
expectation-value efficiently19–22 and reducing the number of
iterations until convergence23–30. By contrast, to overcome a
dominant obstacle in the above setting of VQAs, we here study

the problem of reducing the overall cost of measurement shots in
the optimization, that is, how we can optimize the circuit
parameters at as little cost of the total number of measurement
shots as possible. A difficulty of this problem stems from the
nature of quantum mechanics: it is costly to extract expectation
values as classical information from quantum states, yet the
optimization would be hard without the assistance of classical
information obtained from measurements on the quantum states.
We stress that the problem here is not the estimation of the
expectation values themselves; rather, a fundamental question
that we ask is how efficiently we can use classical information of
the measurement outcomes to optimize the circuit parameters
without extracting the expectation values with high precision.
In this work, we address this problem by establishing a framework

for the classical optimizer that combines two different optimization
approaches, namely, stochastic gradient descent (SGD) and Bayesian
optimization (BO). SGD is a standard algorithm in machine learning
for training models, using an estimator of gradient at each
optimization step rather than the exact value of the gradient31,32.
Among a variety of existing optimizers proposed for VQAs23–30,33–36,
gradient-based optimizers have been studied intensively, motivated
by the fact that the use of gradient information improves
convergence37. Recently, SGD for VQAs has been investigated as a
class of gradient-based optimizers33. The SGD for VQAs often uses a
fixed small number of measurement shots to estimate the gradient,
which may successfully avoid measuring expectation values with
high precision. However, SGD has major shortcomings that may
make the algorithm inefficient. First, instead of the low cost of each
iteration, SGD may need a larger number of iteration until
convergence than optimization algorithms using the exact gradient;
second, SGD requires careful control of the step size of updating the
parameters in each iteration, which may crucially affect the
efficiency of the algorithm, but an appropriate choice of the step
size is often difficult. On the other hand, BO is another common
algorithm for optimization of a black-box function without
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necessarily using its gradient, which is especially suitable for
optimizing imprecise and expensive-to-evaluate functions38,39. The
BO has many successful applications such as computer vision,
robotics, and experimental designs40–43. Owing to its robustness
against noise in the imprecise evaluation of the functions38,39, BO
may also be useful for the optimization in VQAs44,45. However, it is
known that BO becomes intractable in high-dimensional settings
(typically≧ 10)46, and the number of parameters to be optimized in
VQAs is usually too large to apply the BO directly.
To retain advantages of SGD and BO in VQAs while compensating

for their shortcomings, we here construct the alternative framework
for the optimization of parameterized circuits, stochastic gradient
line Bayesian optimization (SGLBO), as illustrated in Fig. 1. The key
idea of SGLBO is that we estimate an appropriate direction of
updating the circuit parameters based on SGD, and also utilize BO to
estimate the optimal step size in a 1D direction of the estimated
gradient in each iteration. This idea aims at simultaneously resolving
the problems of the step size in the SGD and of the infeasibility of
high-dimensional optimization with the BO. To enhance the
performance further, we combine the SGLBO with two noise-
reducing techniques: adaptive shot strategy and suffix averaging.
The adaptive shot strategy is a technique for dynamically
determining the number of measurement shots to be used for
the estimation of the gradient34,47–53. We here develop an adaptive
shot strategy suitable for SGLBO, based on a technique of the norm
test48,49,51. The norm test combined with SGD is known to provide
faster convergence49,51, and in the case of SGLBO, the norm test
reduces not only the number of iterations but also the overall
number of measurement shots. On the other hand, suffix averaging
is a technique for achieving noise reduction. Instead of directly using
the point of the final iteration in the optimization as an estimate of
the minimizer of the cost function, the suffix averaging technique
uses the average over a latter part of the sequence of points
obtained from the iterations54–56. We utilize this technique to reduce
the statistical noise in estimating the gradient and the optimal step
size in SGLBO, and also reduce the effect of the hardware noise of
the quantum device.

To show the significance of the SGLBO, we numerically
demonstrate that the SGLBO can find an estimate of the minimizer
of the cost function with a significantly small number of overall
measurement shots compared to other state-of-art optimi-
zers23,34,57, in representative tasks for the VQAs, i.e., variational
quantum eigensolver5 and variational quantum compiling58. Thus,
the reduction of the number of iterations achieved by finding the
optimal step size by BO indeed contributes to the overall
reduction of the number of measurement shots. We also discover
that the SGLBO turns out to outperform the state-of-art optimizers
not only in terms of the number of measurement shots but also
the accuracy in estimating the minimum of the cost functions
used in the simulation. Remarkably, we discover that even under a
moderate amount of hardware noise, the SGLBO can estimate the
minimum in a task with almost the same accuracy as noiseless
cases, whereas the other state-of-the-art optimizers cannot in the
same task. These results indicate that the SGLBO is a promising
approach to reduce the number of measurement shots in the
VQAs, and also to make the VQAs more feasible under
unavoidable hardware noise in near-term quantum devices. Note
that combination of SGD and BO has been previously studied only
in a specific machine-learning setting59, but its applicability and
advantage for other tasks such as VQAs have been unknown; by
contrast, our crucial contribution is to formulate SGLBO as the
efficient and noise-robust framework for the task of optimizing
parameterized quantum circuits and further develop the techni-
ques of adaptive shot strategy and suffix averaging to demon-
strate its advantage in this optimization task.
Consequently, the SGLBO establishes an alternative approach

for efficient quantum-circuit optimizers, progressing beyond the
existing state-of-the-art optimizers23,34,57; in particular, the novelty
of SGLBO is to integrate two different optimization approaches,
SGD and BO, to eliminate their shortcomings and take their
advantages. Augmented with the further techniques of adaptive
shot strategy and suffix averaging, the SGLBO is shown to have a
significant advantage in the reduction of the cost of the number
of measurement shots and also in the robustness against

Fig. 1 An illustration of two iterations in SGLBO for minimizing a 2D cost function. a The figure represents the updating procedure of
SGLBO on the landscape of the cost function. In particular, in the first iteration, at an initial point 1, we estimate a direction of the gradient of
the cost function based on SGD and perform BO on the 1D subspace in this direction to estimate the optimal step size. b Then, we reach point
2 from the point 1 by moving in the estimated direction by the estimated optimal step size. c Next, at point 2, we perform the same procedure
of estimating the gradient based on the SGD and estimating the optimal step size by the BO on the line of the 1D subspace, to move from
point 2 to point 3. We iterate these procedures until SGLBO converges or consumes a preset number of measurement shots. After all these
iterations, SGLBO returns a suffix average over the points visited in the iterations as an output.
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hardware noise, compared to the state-of-the-art optimizers for
VQAs. These results open a way to practical algorithm designs for
more efficient quantum-circuit optimization in terms of the overall
cost of measurement shots, by avoiding both the precise
estimation of expectation values and the many iterations of
updating circuit parameters; at the same time, the approach
developed for the SGLBO provides a fundamental insight into how
VQAs can use classical information extracted from quantum states
beyond estimating expectation values.
In the rest of this section, we describe the problem setting of

optimization tasks in VQAs and review SGD and BO.
VQAs2–4 are a class of algorithms that use a parameterized

quantum circuit U(θ) to minimize a task-specific cost function f(θ).
The vector θ ¼ ½θ1; � � � ; θD�> 2 RD of D arguments of f is used as
the circuit parameters of U(θ). The cost function f(θ) in VQAs is
conventionally defined as an expectation-value of an observable O
on n qubits, with respect to a quantum state output by the
parameterized circuit, i.e.,

f ðθÞ ¼ Tr½OUðθÞð 0j i 0h jÞ�nUyðθÞ�; (1)

where 0j i is a standard-basis state used for initialization of each
qubit, UðθÞ 0j i�n is the output state of the n-qubit parameterized
circuit, and U†(θ) is the complex conjugate of U(θ). The observable O
is expanded as a sum of n-qubit tensor products of Pauli operators

O ¼
X
k

ckPk ; (2)

where ck for each k is a real coefficient of the kth term, and Pk is a
tensor product of n single-qubit Pauli operators Pk¼

Nn
l¼1Pk;l with

Pk,l∈ {I, X, Y, Z} being a Pauli (or identity) operator acting on the lth
qubit. Here, the identity operator is denoted by I :¼ 0j i 0h j þ 1j i 1h j,
and Pauli operators acting on a single qubit are X :¼ 0j i 1h j þ 0j i 1h j,
Y :¼ �i 0j i 1h j þ i 1j i 0h j, and Z :¼ 0j i 0h j � 1j i 1h j. In a usual setting
of VQAs, U(θ) is composed of non-parametric gates such as CNOT
gates, and parametric gates in the form of

UðθiÞ ¼ expð�iPiθiÞ; (3)

where Pi is also a tensor product of n single-qubit Pauli
operators in the same way as Pk in Eq. (2). For example, Fig. 2
shows a representative choice of parameterized circuits used
for VQAs4. Note that the parameter space of the circuit in Fig. 2
is a D-dimensional hypercube θ ∈ [−π, π]D, i.e., a bounded
subspace of RD, on which a uniform probability distribution is
well defined.
The task in the VQAs is to obtain an estimate of the minimum of

the cost function

min
θ2RD

f ðθÞ: (4)

The minimizer is denoted by

θ� ¼ argmin
θ2RD

f ðθÞ: (5)

Note that the cost function f(θ), in general, can be non-convex,
and it can be computationally hard in general to obtain the exact
solution of the optimization problem in VQAs60. By contrast, this
paper aims to provide a heuristic optimizer that approximately
solves this optimization problem with a small number of
measurement shots. In experiments using a quantum device, we
can evaluate the cost function from the sum of the expectation
values Tr½PkUðθÞð 0j i 0h jÞ�nUyðθÞ� for all k, each of which can be
estimated by independently repeating the preparation of
UðθÞ 0j i�n by the parameterized circuit and the measurement of
this state in the eigenbasis of the Pauli operator Pk. For each k, let
Pk 2 R be a sample mean obtained from these measurements for
Pk, and due to Eq. (2), we estimate f(θ) by

f ðθÞ �
X
k

ckPk : (6)

Each of these measurements is called a measurement shot. In
this way, we evaluate f using a finite number of measurement
shots; in this setting, we are only allowed imprecise queries to the
cost function due to statistical errors with the finite number of
measurement shots. Based on the central limit theorem61, we may
model each imprecise query to f(θ) as

y ¼ f ðθÞ þ ϵ; (7)

where y is an observed value, and ϵ � Nð0; σ2Þ is independent
and identically distributed (IID) Gaussian noise. From Hoeffding’s
inequality62, to estimate f(θ) within an error ϵ with high
probability, as large as O(1/ϵ2) measurement shots may be
required. In practice, it is prohibitively costly (i.e., an excessive
number of measurement shots are needed) to evaluate a well-
approximated value of the cost function (as well as its gradient),
which leads to significant overhead in performing VQAs16,17.
SGD aims to optimize a function f(θ) using an unbiased estimate

of the gradient of f to update the parameters θ iteratively toward
the optimal point with high probability.
In the optimization of circuit parameters for VQAs, we may need to

evaluate the gradient of the cost function f(θ). For f(θ) defined with
parametric gates in the form of (3), we can utilize a parameter-shift
rule63,64 to calculate partial derivatives of the cost function from cost-
function values at shifted circuit parameters, i.e.,

∂f ðθÞ
∂θi

¼ f ðθþ π
2 eiÞ � f ðθ� π

2 eiÞ
2

: (8)

Here θi is a circuit parameter allocated to the rotation angle of the
ith Pauli rotation gate UðθiÞ ¼ expð�iPiθiÞ, and ei represents a unit
vector along the coordinate of θi. Note that to obtain all the
elements of the gradient of f(θ), we may need to evaluate each
partial derivative independently.
However, as discussed above, we cannot exactly calculate the

cost function and its gradient with a finite number of measure-
ment shots, and the precise estimation of the gradient is costly in
VQAs. In this setting, a standard method for solving Eq. (4) is
stochastic gradient descent (SGD)31,33, which updates the current
point θ̂

ðtÞ
at iteration t according to

θ̂
ðtþ1Þ ¼ θ̂

ðtÞ � ηðtÞĝðtÞðθ̂ðtÞÞ; (9)

where η(t) is the step size, and ĝðtÞðθ̂ðtÞÞ :¼ ðĝðtÞ1 ðθ̂
ðtÞÞ; ¼ ; ĝðtÞD ðθ̂

ðtÞÞÞ
>

is an unbiased estimator of the gradient ∇f ðθ̂ðtÞÞ, i.e., E½ĝðtÞðθ̂ðtÞÞ� ¼
∇f ðθ̂ðtÞÞ. Here ĝðtÞ is estimated with a finite number of measurement

Fig. 2 An example of a parameterized quantum circuit used as an
ansatz in VQAs. The circuit parameters θ ¼ ½θ1; � � � ; θD�> 2 RD with
D= 2n(r+ 1) elements are individually allocated as each rotation
angle of Pauli rotation gates RXðθiÞ :¼ e�iθi X and RZðθjÞ :¼ e�iθj Z . The
part of the circuit surrounded by the braces is repeated r times,
where the repeated parts may have different parameters.
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shots, i.e., with a shot size

sðtÞgrad ¼ ðsðtÞ1 ; ¼ ; sðtÞD Þ
>
: (10)

The estimate of each partial derivative is individually computed as

ĝðtÞi ðθÞ ¼
1

sðtÞi

XsðtÞi
m¼1

gmi ðθÞ; (11)

gmi ðθÞ ¼ ðOm
þ � Om

�Þ=2; (12)

where Om
± is a single-shot estimator of f ðθ± π

2 eiÞ. Each single-shot
estimator of f ðθ± π

2 eiÞ is constructed according to Eq. (6) by
substituting θ with θ± π

2 ei , and the number of measurement
shots used for estimating the kth term ckPk in Eq. (6) is denoted by
sðtÞi;k , which satisfies

P
ks
ðtÞ
i;k ¼ sðtÞi . Given the shot size sðtÞgrad, each sðtÞi;k

is probabilistically determined using a multinomial distribution in
such a way that the probability pk of measuring the kth term
should be proportional to the weight ∣ck∣, i.e., pk∝ ∣ck∣ and
∑kpk= 122; that is, it should hold that E½sðtÞi;k � ¼ pks

ðtÞ
i for each k and

i. Since the gradient is estimated from two values f ðθ± π
2 eiÞ of the

cost function, the number of measurement shots used for
obtaining ĝðtÞ is

XD
i¼1

2sðtÞi ¼ 2sðtÞgrad; (13)

where we write sðtÞgrad :¼ jjsðtÞgradjj1.
The estimator ĝðtÞðθÞ in VQAs is unbiased for all θ 2 RD,

which is a preferable property to achieve convergence of
SGD33. In addition, to guarantee convergence of SGD, we may
require the step size to vanish as the estimated points
approach a minimizer. In this case, the SGD achieves the
optimization to accuracy ϵ within O(1/ϵ4) iterations in general
for non-convex functions32, such as typical cost functions in
VQAs. However, in practice, a user needs to designate a specific
decay rate of step size to achieve good performance, whose
optimization can be difficult.
BO is a gradient-free framework for optimization of an unknown

function f(θ)38,39. BO can be employed to optimize an expensive-
to-evaluate cost function in settings where only noisy observa-
tions of the function are possible, and we try to seek a minimizer
of f(θ) with as small a number of noisy observations as possible.
One of the features of BO is to utilize an easy-to-compute
surrogate model that approximates the unknown cost function
based on observed data65–67. A popular surrogate model for BO is
Gaussian process (GP)68. GP is a collection of random variables
such that every finite subset of random variables obeys a
multivariate normal distribution. In the BO, we put a GP prior
over the true function f(θ) as f ðθÞ � GPðμðθÞ; kðθ; θ0ÞÞ, where
μðθÞ ¼ Eðf ðθÞÞ is a mean function, kðθ; θ0Þ is a covariance kernel
function. In practice, if one has no prior knowledge about the
mean of the function μ(θ) that one tries to fit, μ(θ) can be set to 0.
A major choice of the kernel function is a Gaussian kernel

kðθ; θ0Þ ¼ τ2exp
�kθ� θ0k2

2l2

 !
; (14)

where τ2 is called the signal variance that determines the average
of the differences from the mean of the function, and l is called
the length-scale that determines the length required for the
values of the function to be uncorrelated68. For other conventional
kernel functions, e.g., a Matérn kernel, see ref. 68.
Here we consider a situation where we have a set of N noisy

observations of the cost function D1:N ¼ fðθðiÞ; yðiÞÞgNi¼1 at points
θ(1),…, θ(N), where each y(i)= f(θ(i))+ ϵ suffers from the IID
Gaussian noise ϵ � Nð0; σ2Þ. Assuming that these observations
are given according to GP, we calculate a GP posterior conditioned

on these estimations, which is governed by hyperparameters,
namely, the signal variance τ2, the length-scale l, and the variance
of Gaussian noise σ2. These hyperparameters can be estimated by
means of maximizing a log marginal likelihood68. Then, if we
observe the cost function f at a new point θ*, the value to be
observed will obey a GP posterior expressed as

f �jθ�;D1:N � Nðk>� ½K þ σ2I��1y; k�� � k>½K þ σ2I��1kÞ; (15)

where f*= f(θ*), k� ¼ ½kðθ�; θð1ÞÞ; � � � ; kðθ�; θðNÞÞ�
>
, k**= k(θ*, θ*),

and K is the covariance matrix ½kðθðiÞ; θðjÞÞ�Ni;j¼168.
In BO, we construct an acquisition function φ(θ) from the

posterior in Eq. (15) and determine the next query point according
to

θðNþ1Þ ¼ argmin
θ2RD

φðθÞ: (16)

Several ways of constructing the acquisition function have
been proposed, such as Thompson sampling69, upper con-
fidence bound70, and expected improvement71. In particular,
Thompson sampling estimates values of f at a given set of points
by sampling according to the multivariate normal distributions
obtained from Eq. (15), and use these sampled values as the
values of the acquisition function at these points. Then, we take
the minimum among the values of the acquisition function for
the set of points and perform the next query to f at the
minimum point in the set as shown in Eq. (16). The minimization
of φ(θ) is performed by using efficient optimization heuris-
tics72,73. BO proceeds with querying the cost function at the
minimizer of φ(θ) and iteratively update the GP posterior
according to Eq. (15) until a fixed number of queries to the cost
function are performed38.
This framework of BO has been shown to reduce the required

number of queries to the cost function in achieving the
minimization compared to other global optimization algorithms38.
The performance of BO itself is governed by the ability to find the
minimizer of φ(θ), which is also non-convex as well as the cost
function. Thus, it is important to design the acquisition function
suitably so that the computational cost is relatively low and
optimization heuristics are tractable46,74–76. However, if the acquisi-
tion function is defined in a high-dimensional parameter space that
typically appears in VQAs, it is excessively costly to use the BO.

RESULTS
In the following, we present the description of SGLBO and
introduce the adaptive shot strategy and suffix averaging.
Moreover, numerical experiments are provided to demonstrate
the advantage of SGLBO compared to other state-of-the-art
optimizers for VQAs.

Algorithm 1 Stochastic gradient line Bayesian optimization
(SGLBO).
Require: Cost function f(θ) with D parameters in Eq. (1), the

initial shot size sð0Þgrad for evaluating the gradient in Eq. (10), a
kernel kðθ; θ0Þ and an acquisition function φ(θ) used for GP in
Eqs. (15) and (16), the initial point θ̂

ð0Þ
to be updated

according to Eq. (17), the bound ηmax of the 1D subspace LðtÞ
to perform the BO in Eq. (19), the initial number sð0Þcost of
measurement shots for evaluating the cost function in BO in
Eq. (20), the number N= Ninit + Neval of queries used for the
BO in Eq. (21), the total number stot of measurement shots for
the stopping condition (23), the precision κ in estimating the
gradient according to Eq. (30), the description of the lower
bound GðtÞgrad of the shot size in Eq. (30), the description of the
lower bound GðtÞcost of the number of measurement shots in
estimating the cost function in Eq. (31), a parameter α for
suffix averaging in Eq. (32).
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1: initialize:
2: t  0; sðtÞtemp  0
3: while sðtÞtemp < stot ⊳ Iterate until the stopping condition (23) is

satisfied.
4: ĝðtÞ; SðtÞ  Estimate the gradient E½ĝðtÞ� ¼ ∇f ðθ̂ðtÞÞ using

2 ´ sðtÞgrad measurement shots according to Eq. (11), and
calculate its empirical variance S(t) in Eq. (30).

5: LðtÞ  Take the 1D subspace LðtÞ depending on

θ̂
ðtÞ
; ĝðtÞ; ηmax according to Eq. (19).

6: θ̂
ðtþ1Þ  Determine θ̂

ðtþ1Þ
by the BO on LðtÞ with

kðθ; θ0Þ;φðθÞ;Ninit;Neval as described in the main text below
Eq. (21).

7: sðtþ1Þgrad  Determine the shot size for estimating the gradient,
from κ; ĝðtÞ; SðtÞ;D;GðtÞgrad according to Eq. (30).

8: sðtþ1Þcost  Determine the number of measurement shots for
estimating the cost function in the BO, from sðtþ1Þgrad ;GðtÞcost
according to Eq. (31).

9: sðtþ1Þtemp  sðtÞtemp þ 2sðtÞgrad þ NsðtÞcost due to Eq. (22).
10: t← t+ 1
11: end while
12: T← t
13: return θα;T  Take the suffix average according to Eq. (32).

Description of algorithm
We present a framework for the optimizer of parameterized
quantum circuits in the VQAs, stochastic gradient descent line
Bayesian optimization (SGLBO). The idea behind SGLBO is to
estimate the direction of the gradient based on SGD and further
to utilize BO to estimate the optimal step size within the one-
dimensional subspace of parameters in this direction. This
allows us to avoid the difficulty of choosing an appropriate step
size in SGD, and also to achieve a feasible use of BO by limiting
the domain to apply the BO to the one-dimensional space. In
addition, we introduce two noise-reduction techniques, adap-
tive shot strategy and suffix averaging, to improve the speed
and the accuracy of minimizing the cost function. Adaptive shot
strategy and suffix averaging are crucial and characteristic
components for the feasibility of SGLBO and will be explained in
“Adaptive shot strategy” section and “Suffix averaging for
SGLBO” section. Below, we will present the procedure of SGLBO
(see also Algorithm 1).
The SGLBO achieves the minimization of the cost function by

iteratively updating the points to estimate the minimizer of the
cost function. Let T denote the total number of iterations in

the SGLBO. For each iteration t= 0, 1,…, T− 1, let θ̂
ðtÞ

denote
the point obtained in the (t+ 1)th iteration of the SGLBO, which
is an estimator of the circuit parameters that minimize the cost

function, and the initial point θ̂
ð0Þ

represents an initial guess of

the minimizer. Note that we here take θ̂
ð0Þ

uniformly at random,
but in case a better initial guess of the minimizer than the

uniformly random point is available, θ̂
ð0Þ

could be chosen as the
better guess77,78. Similarly to the SGD, the SGLBO computes an
unbiased estimator ĝðtÞ of the gradient of the cost function at

the point θ̂
ðtÞ
, using 2sðtÞgrad measurement shots due to Eq. (13).

The shot size sðtÞgrad is determined in each iteration t based on
adaptive shot strategy, which will be explained in the following

section. Using ĝðtÞ, the SGLBO updates the point θ̂
ðtÞ

to the next
point according to an update rule described by

θ̂
ðtþ1Þ ¼ θ̂

ðtÞ � η̂�ðtÞĝðtÞ; (17)

where η̂�ðtÞ is an estimator of the optimal step size. The optimal
step size η*(t) is defined as

θ�ðtÞ :¼ argmin
θ2LðtÞ

f ðθÞ ¼ θ̂
ðtÞ � η�ðtÞĝðtÞ; (18)

where LðtÞ is the one-dimensional subspace for applying the
BO, i.e.,

LðtÞ :¼ fθ̂ðtÞ � ηðtÞĝðtÞjηðtÞ 2 ½�ηmax; ηmax�g; (19)

and ηmax > 0 is a constant hyperparameter to bound the one-
dimensional subspace that will be specified in “Example of choice
of hyperparameters and implementation” section. We remark that
we choose ηmax as a constant independent of D so that the BO
should be feasible even in the case of large D. A parameter region
of D parameters of a circuit can be a D-dimensional hypercube,
e.g., θ∈ [−π, π]D for the circuit in Fig. 2, and thus, to cross the
whole parameter region by LðtÞ, one may be tempted to choose
ηmax as the length of the diagonal of this D-dimensional
hypercube, i.e., ηmax �

ffiffiffiffi
D
p

; however, for the feasibility of the BO,
it is indeed essential to keep ηmax constant. Our approach can be
considered an improvement over the SGD with a constant step size
ηmax, where we use the BO to estimate the optimal step size η̂�ðtÞ

instead of using the fixed step size ηmax.
To obtain an estimate of the optimal step size η̂�ðtÞ in Eq. (17),

we perform the procedure of BO on LðtÞ by using a fixed number
of measurement shots

sðtÞcost (20)

per query to the cost function, and querying these noisy
observations of the cost function N times in total with

N ¼ Ninit þ Neval: (21)

where Ninit is the number of points used for initial evaluation for
BO, and Neval is the number of points evaluated during the BO in
each step in addition to Ninit. This procedure determines η̂�ðtÞ in

such a way that θ̂
ðtþ1Þ

in Eq. (17) should be given by θ(N+1) in Eq.
(16). We will specify Ninit and Neval in “Example of choice of
hyperparameters and implementation” section. In the BO, we use
Ninit points for the initial queries, which we take at equal intervals
in the 1D subspace LðtÞ . Using the observed points, the BO iterates
a cycle according to Eqs. (15) and (16) to decide an additional
point to evaluate per cycle. Repeating Neval cycles, we have Neval

points in addition to the Ninit initial points, where the nth cycle for
n∈ {1,…, Neval} uses (Ninit+ n− 1) points to decide the (Ninit+ n)
th point. These N points are used for the update according to
Eq. (17), i.e., the calculation of η̂�ðtÞ .
In this way, the SGLBO updates the point θ̂

ðtÞ
according to Eq. (17)

until we consume a preset total number of measurement shots stot,
which we initially designate. In particular, in the (t+ 1)th iteration for
each t= 0,…, T− 1, we use 2sðtÞgrad measurement shots for estimat-
ing the gradient according to Eq. (13), and also use sðtÞcost
measurement shots for each of the N queries to the cost function
in the BO; that is, the number of measurement shots that we use in
the (t+ 1)th iteration is

2sðtÞgrad þ NsðtÞcost: (22)

In the SGLBO, if the total number of measurement shots used in
the iterations exceeds the preset bound stot, i.e.,

XT�1
t¼0

2sðtÞgrad þ NsðtÞcost
h i

≧ stot; (23)

then we stop the iterations. Note that T is given by the minimum
number of iterations satisfying Eq. (23), determined during
running the SGBLO depending on stot. We could also stop the
iterations if we achieve the convergence of the cost function,
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while we here use the stopping condition based on stot for
simplicity of presentation. We remark that it would be too costly in
VQAs to check the convergence of the values of the cost function

f ðθ̂ðtÞÞ itself, which we avoid here; instead, it would be possible,
e.g., to use another stopping condition by checking the

convergence of the sequence of parameters ðθ̂ðtÞÞt¼0;¼ ;T�1.
Finally, after the last iteration, the optimizer calculates a suffix

average55 of the points ðθ̂ðtÞÞt¼0;¼ ;T�1, i.e., an average of a subset
of the points in a latter part of the iterations, which we will explain
in “Suffix averaging for SGLBO” section. This suffix average is
output as the estimate of the minimizer of the cost function.
The procedure of the SGLBO may require an additional cost of

measurement shots for the BO compared to the SGD without using
the BO, but this cost is negligible as explained in the following. To
estimate the optimal step size by the BO, we may use an extra
number of measurement shots to query the cost function, in
addition to the gradient estimation based on the SGD. For simplicity,
suppose that the shot size (10) and the number of measurement
shots to evaluate the cost function in the BO are given by a constant
s, i.e., sðtÞi ¼ s (i∈ {1,…,D}) and sðtÞcost ¼ s. Then, due to Eq. (22), the
number of measurement shots to be used in each iteration of the
SGLBO is (2D+N)s. In this case, the cost of estimating the optimal
step size is the same as the cost of the gradient estimation for a
parameterized quantum circuit with N/2 additional parameters. This
cost can be negligibly low as the number of circuit parameters D
gets large, and hence, we can indeed gain the benefit of estimating
the optimal step size by the BO.
The foundation for why SGLBO can efficiently find a candidate of

the minimum point, i.e., a stationary point, can be explained as
follows. The constant step-size SGD with averaging converges to a
stationary point even in a non-convex setting79. The SGLBO is
designed to converge faster than this constant step-size SGD with
averaging since we use the BO to find a step size that further
reduces the value of the cost function compared to taking the
deterministic constant step size. In particular, in each step
t∈ {0,…, T− 1}, BO aims to find the minimum point along a 1D

subspace; that is, the cost function f ðθ̂ðtÞÞ is reduced to f ðθ̂ðtþ1ÞÞ
satisfying f ðθ̂ðtþ1ÞÞ ≦ f ðθ̂ðtÞÞ with high probability, in the case where
BO is performed with sufficiently good precision. In this case, as the
iterations proceed, SGLBO improves the cost function according to

f ðθ̂ð0ÞÞ ≧ f ðθ̂ð1ÞÞ ≧ � � � ≧ f ðθ̂ðT�1ÞÞ, which does not necessarily hold
in SGD but should hold in the SGLBO with high probability, leading
to an improvement compared to the mere use of the SGD. We
remark that the optimization problems in VQAs are non-convex, and
hence, a tight analysis of the convergence speed would be
challenging in general. Some previous research such as refs. 33,37

performs convergence analyses of optimizers for VQAs with
assumptions on convexity or strong convexity, but the performance
for non-convex problems that typically appear in VQAs are unknown.
In contrast, the above explanation of convergence does not require
the convexity assumptions. However, to bound the speed of
convergence of SGLBO, further assumptions may be needed since
non-convex optimization problems are hard to solve by nature. We
leave the tight analysis of the convergence speed of the SGLBO
under an appropriate assumption for the setting of VQAs for further
research; instead, we will use numerical simulation to show the fast
convergence speed of the SGLBO in our numerical experiments.

Adaptive shot strategy
The number of measurement shots used for estimating values
and gradients of the cost function is one of the crucial
parameters in stochastic optimization algorithms. In such
algorithms, we may have a trade-off between efficiency and
accuracy. In particular, at the beginning of optimization, we can

use an imprecise gradient estimated with few measurement
shots to roughly move to points around the minimizer. On the
other hand, at the end of optimization, the gradients with less
noise are needed to further decrease the value of the cost
function. This observation motivates us to establish a strategy
to gradually increase the shot size (10) used for estimating the
gradient in the SGLBO as the optimization proceeds.
Such adaptive shot strategies have been well studied in the

field of machine learning47–53, and one of them has been applied
also in the context of VQAs34,35. However, the formula for
estimating the next number of measurement shots given in
refs. 34,35 depends on the step size and becomes invalid when
the step size exceeds a certain range. Problematically, the step
size in the SGLBO often exceeds the range. Thus, our algorithm
utilizes a different approach, the norm test48,49,51, which
determines the number of measurement shots to maintain a
constant signal-to-noise ratio of the estimate of the gradient.
In the norm test, we want to decide the shot size based on a

condition that the estimated vector �ĝðtÞ should be appropriately
in a descent direction51, which ideally would be

δðtÞ :¼ jjĝðtÞ � ∇f ðθ̂ðtÞÞjj ≦ κjjĝðtÞjj; (24)

with a parameter κ satisfying 0≦ κ < 1. Intuitively, as the
optimization proceeds, the norm jjĝðtÞjj of the gradient becomes
small, and the condition (24) requires that the estimate ĝðtÞ of the
gradient should become precise as jjĝðtÞjj gets small. However, the
exact evaluation of δ(t) would be prohibitively costly in VQAs. Thus,
we square both sides of the above inequality and then replace the

left hand side with its expectation, i.e., E½ðδðtÞÞ2� ¼ Var½ĝðtÞ�, where
Var½ĝðtÞ� is the variance of ĝðtÞ. The exact value of this variance is
still difficult to calculate, and hence, we make the approximation
using a sample variance80, i.e.,

Var½ĝðtÞ� ’ TrðΣðtÞÞ
sðtÞgrad

(25)

where Σ
ðtÞ
ij :¼ E½ðgðtÞi � ∇f ðtÞi ÞðgðtÞj � ∇f ðtÞj Þ�. Instead of Eq. (24), the

norm test could check

TrðΣðtÞÞ
sðtÞgrad

≦ κ2jjĝðtÞjj2: (26)

To adapt the condition (26) to the setting of VQAs, we consider
the freedom of choosing the number of measurement shots for
estimating each partial derivative of the cost function in Eq. (8).
Since each partial derivative is estimated independently, Eq. (26)
can be written as,

X
i

σ
ðtÞ
i

� �2
sðtÞi

≦ κ2jjĝðtÞjj2; (27)

where σ
ðtÞ
i :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½gðtÞi �

q
. Now we impose a constraint on the

number of measurement shots so that each estimate of the partial

derivative should have an equal variance, i.e., ðσðtÞi Þ
2
=sðtÞi ¼

ðσðtÞj Þ
2
=sðtÞj for i ≠ j. Then, we obtain a lower bound of sðtÞi for each

i, i.e.,

sðtÞi ≧
1
κ2

σ
ðtÞ
i

� �2
D

jjĝðtÞjj2
: (28)

In practice, the true variance ðσðtÞi Þ
2
is still too costly to evaluate,

and thus, we replace it with the empirical variance ðSðtÞÞ2, which is
accessible. Consequently, we forecast the number of measurement
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shots so that it should satisfy

sðtþ1Þi ≧
1
κ2

SðtÞi
� �2

D

jjĝðtÞjj2
; (29)

which we use to estimate the gradient in the next iteration. Since
the SGLBO is intended to be applied to highly noisy cases, to
avoid the cases where sðtþ1Þi is too small to estimate the gradient
appropriately, we here set a lower bound GðtÞgrad on the shot size
and decide the next shot size according to

sðtþ1Þi ¼ max
1
κ2

SðtÞi
� �2

D

jjĝðtÞjj2

2
6666

3
7777;G

ðtÞ
grad

8><
>:

9>=
>;; (30)

where ⌈⋯ ⌉ is the ceiling funciton. The choice of GðtÞgrad will be
specified in “Example of choice of hyperparameters and imple-
mentation” section.
Using the shot size specified by Eq. (30), we also decide the

number of measurement shots used for observing values of the
cost function in the BO according to

sðtþ1Þcost ¼ max
1
D

XD
i¼1

sðtÞi ;GðtÞcost

( )
; (31)

where GðtÞcost > 0 is a constant for avoiding the cases where sðtþ1Þcost
becomes too small to estimate the optimal step size appropriately.
The choice of GðtÞcost will also be specified in “Example of choice of
hyperparameters and implementation” section.

Suffix averaging for SGLBO
In VQAs, one could use a point obtained from the final iteration
as the result of the optimization. However, in SGLBO, we use BO
to estimate the optimal step size in Eq. (18), and due to
statistical error in the estimation, we suffer from the influence
of the error between the estimate of the optimal step size
obtained from the BO and the true optimal step size. Moreover,
hardware noise also prevents steady update of the points,
especially when we use near-term noisy quantum devices. Such
errors or noises may lead to an oscillation of the points in the
final part of the iterations around the minimizer. To suppress
such oscillation, we take a suffix average of these points in the
final part of the iterations, rather than using the single point of
the final iteration itself.
Given the sequence of points obtained from T iterations

θ̂
ð0Þ
; ¼ ; θ̂

ðT�1Þ
, the α-suffix average is defined as the average of

the last αT points55

θα;T ¼ 1
αT

XT�1
t¼ð1�αÞT�1

θ̂
ðtÞ
; (32)

where α ∈ (0, 1] is some constant, and α and T are taken here in
such a way that αT should be an integer. During the optimization,

we store the sequence of the points ðθ̂ðtÞÞt in memory. At the end
of optimization, we calculate the suffix average of these points
according to the above formula and output the suffix average as
the result of the SGLBO.
Importantly, to achieve the goal of suppressing the effect of

noise at the points in the final part of the iterations, the suffix
averaging here uses an equal weight in averaging out the noise
in this part. To achieve this suppression with small overhead,
the parameter α should be chosen appropriately, in such a way
that the last αT points should be kept in a reasonably small
fraction among all T points yet still large enough to suppress
the noise effectively. We note that, instead of using the equal
weight, averaging with a decaying sequence of weights would
also work56, which may have a merit in a case where one does

not have enough memory to store all points and wants to
average the points on the fly. Detailed comparison of suffix-
averaging techniques using different sequences of weights in
VQAs is left for future work.
The suffix averaging can accelerate the convergence of SGD

in some cases; for example, for optimization of a strongly
convex function, i.e., a function that is (roughly speaking) more
convex than a quadratic function, the error of the point in the
Tth iteration decreases at the speed of OðlogðTÞ=TÞ with high
probability, but the error of the suffix average of the points in
the latter half of the T iterations reduces to O(1/T), achieving the
optimal speed55. In the case of VQAs, f may not be strongly
convex. However, even in the SGLBO, we can suppress the
oscillation around the minimizer in practice by taking the suffix
average, which contributes to improving the results of the
optimization.

Example of choice of hyperparameters and implementation
We show an example of the choice of hyperparameters in
Algorithm 1. These hyperparameters will be used in numerical
experiments. In the numerical experiments, we also consider
the cases with and without hardware noise, referring to them as
the noisy case and the noiseless case, respectively.
For estimating the gradient in the SGLBO, we take the initial

shot size as

sð0Þi ¼ 2 for all i; (33)

and initialize θ̂
ð0Þ

by sampling from the uniform probability
distribution. We set the lower bound GðtÞgrad on the shot size by an
average shot size in the last 10 iterations; i.e., for t+ 1≧ 10,
according to Eq. (30), we take

GðtÞgrad ¼ 1
10D

PD
i0¼1

P10
t0¼1

sðt�10þt
0 Þ

i0 ;

i:e:; sðtþ1Þi ¼ max 1
κ2

SðtÞið Þ2D
jjĝðtÞjj2

� �
; 1
10D

PD
i0¼1

P10
t0¼1

sðt�10þt
0Þ

i0

� �
;

(34)

and GðtÞgrad ¼ 1 for t≦ 10. We set κ= 0.99 in Eq. (30).
In the BO that is used as a subroutine in the SGLBO, we use

the Gaussian kernel in Eq. (14) with τ2= 0.2, l= 0.7 as initial
values. Before performing the GP regression to estimate values
of a cost function, we optimize the hyperparameters, i.e., τ2, l,
and the variance of Gaussian noise σ2, by maximizing the
marginal likelihood of the hyperparameters. To avoid overfitting,
we restrict the parameter region of these hyperparameters; in
our numerical experiments, we set the parameter region as
10−3 ≦ τ2 ≦ 5, 10−3 ≦ l ≦ 1, and 10−5 ≦ σ2 ≦ 5. In addition, we
perform this hyperparameter optimization 10 times from
uniformly random starting points and take the best parameters
to ensure that the hyperparameters are not a poor local
optimum. As the acquisition function used in the BO, we
choose Thompson sampling68,69. After performing the BO, we
set the estimated optimal step size as the minimum point of
the predictive mean of a GP posterior conditioned on N
observed data points.
For the BO, we set Ninit= 5 and Neval= 5. The Ninit points of the

initial evaluation is randomly chosen according to the uniform
probability distribution over the 1D subspace LðtÞ in Eq. (19) with

ηðtÞ 2 ½�ηmax; ηmax�; ηmax ¼ min
β

jjHjj ; π
� �

; (35)

where ∣∣H∣∣ is the operator norm, and β > 0 is a constant that we
set depending on the problem later in “Advantage of SGLBO for
various system sizes” section and “Robustness against hardware
noise in SGLBO” section. Note that one of the initial evaluation

points must be taken as η(t)= 0, i.e., the current point θ̂
ðtÞ
, for the

stability of the BO. The number of measurement shots used for
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evaluating each point in the BO is given by Eq. (31) with

GðtÞcost ¼ kHk
2

ϵ2 for all t;

i:e:; sðtÞcost ¼ max 1
D

PD
i¼1

sðtÞi ; kHk
2

ϵ2

� �
;

(36)

where ϵ= 0.1. Given the outcomes of these measurements, we
perform GP regression using GPy81.
For the suffix averaging, we set α= 0.1 in Eq. (32).

Numerical experiments
In the following, we numerically demonstrate the advantages of
the SGLBO in comparison with state-of-the-art optimizers for
VQAs. The optimizers to be compared with the SGLBO are
summarized in “Optimizers for VQAs and their implementations”
section. In particular, we investigate two situations: (1) when the
size of a system scales up in “Advantage of SGLBO for various
system sizes” section, and (2) when hardware noise and
connectivity between qubits on hardware are taken into account
in “Robustness against hardware noise in SGLBO” section. To this
end, we simulate the performance of the optimizers in tasks of
variational quantum eigensolver (VQE)5 for (1) and variational
quantum compilation (VQC)58 for (2). Furthermore, we demon-
strate in “Merits of noise-reducing techniques for general
optimizers” section that the techniques of suffix averaging and
adaptive shot strategy used in the SGLBO can also improve
performance and noise robustness of a general class of optimizers,
not only the SGLBO.

Optimizers for VQAs and their implementations
To compare the SGLBO with other existing optimizers, we consider
the following three state-of-the-art optimizers: adaptive moment
estimation (Adam)57, individual coupled adaptive number of shots
(iCANS)34, and Nakanishi-Fujii-Todo method (NFT)23. Adam is a
variant of SGD; although a number of different strategies for
choosing step size in SGD have been proposed, Adam chooses the
step size adaptively based on the accumulated information of
estimates of the gradient used in previous iterations. The choice of
step size in Adam is known to work well for many applications in the
field of machine learning, but for VQAs, the required number of
measurement shots for the optimization with Adam has been still
prohibitively large34. We use Adam as a representative choice of a
straightforward application of SGD to VQAs. The iCANS is also a
variant of stochastic gradient optimizers in which the number of
measurement shots at each iteration is chosen frugally based on the
first and second moment of the gradient to improve performance in
VQAs. While both of these optimizers are gradient-based optimizers,
NFT is a sequential optimization method along an axis of the
parameters using function fitting rather than the gradient.
For iCANS, we in particular use iCANS134, and for Adam, we

used the same values of the hyperparameters as ref. 34. In terms
of the initial number of measurement shots used in iCANS, which
is not mentioned in ref. 34, we set sð0Þi ¼ 2 for all i in our numerical
experiments. Here we note that for iCANS1, the step size ηt is
changed depending on the tasks of VQAs as specified in
“Advantage of SGLBO for various system sizes” section and
“Robustness against hardware noise in SGLBO” section, following
ref. 34. In addition, we used sðtÞi ¼ 1000 shots for each evaluation
of the cost function in Eq. (8) in Adam and sðtÞcost ¼ 1000 shots for
each evaluation of the cost function to fit the function in NFT.
Note that the values of the hyperparameters for which the
optimizer works well are selected manually or by referring to the
values of previous studies, and we did not perform an exhaustive
hyperparameter search since such a search is computationally
too costly to perform. After all, it may be infeasible to run such a
hyperparameter search when we apply these optimizers to
practical problems.

In these numerical experiments, we simulate quantum circuits
by using Pennylane82. In “Advantage of SGLBO for varisou system
sizes” section and “Robustness against hardware noise in SGLBO”
section, the values of the cost function appearing in the figures

are evaluated at the point of the final iterate in ðθ̂ðtÞÞt (and the
suffix averaged point in the SGLBO) by a noiseless simulator,
where both the statistical noise and the hardware noise are
ignored; in “Merits of noise-reducing techniques for general
optimizers” section, these values are evaluated at the suffix
averaged point by the noiseless simulator. For each optimizer, we
repeated the overall optimization procedures fifteen times from
uniformly random initial points, where each run from an initial
point is repeated twice, and took the average over all the thirty
runs. In the figures, we display the logarithm of the average as a
thick line and each run as a thin line, using log-linear plots.

Advantage of SGLBO for various system sizes
In this section, we investigate the performance of SGLBO as we
scale up the system size. We evaluate the performance of the
optimizers in terms of the total number of measurement shots
used during the optimization. In each iteration, we calculate
the difference per site between the cost-function value at
the current point of each optimizer and the minimum value of
the cost function. In particular, we here consider a VQE task5 for
a 1D transverse field Ising model under open boundary
conditions. The VQE is an algorithm to calculate the ground
state energy of a given Hamiltonian, where the cost function is
defined as the expectation-value of the Hamiltonian. The
Hamiltonian here is given by

H ¼ �J
Xn�1
j¼1

ZjZjþ1 þ g
Xn
j¼1

Xj

 !
(37)

where Zj and Xj are the Pauli Z and X matrices, respecitvely, at the
jth site on a 1D chain of qubits, J represents the energy scale, and
g is the relative strength of the external field compared to the
nearest-neighbor couplings83. We choose J= 1.0 and g= 1.5. We
use the ansatz circuit in Fig. 2 with r= 4 repetitions for
n= 4, 8, 12 qubits. These sizes of the circuits are chosen based
on the feasibility of classical simulation. We remark that we do
not change the depth of the ansatz circuits in this setting and
change only the system size, so that the gradient does not
vanish exponentially for the large system size84; that is, it is
expected that the problem of the barren plateau, which
potentially make the optimization infeasible84–86, is avoided in
our setting. In this problem, for the SGLBO, we restrict the region
for the line search Li by β= 3, and for the iCANS, we set the step
size ηt= 1/∣∣H∣∣, following ref. 34.
The result of the numerical simulation is shown in Fig. 3.

Significantly, we discover that the SGLBO outperforms the other
optimizers23,34,57 in all the cases of n= 4, 8, 12 qubits, in terms of
both the speed of convergence and the accuracy of estimating the
minimum of the cost function. Thus, these advantages of the
SGLBO can be obtained not only for the relatively small system
size n= 4 but more broadly for the larger system sizes n= 8, 12.
While NFT and Adam hit the limit of accuracy of the minimization
in the early stage of the optimization, SGLBO and iCANS continue
to improve the cost function even at the end of the optimization,
which shows the advantage of deciding the number of measure-
ment shots adaptively for each iteration in these algorithms.
Moreover, owing to using the BO for estimating the optimal step
size in each iteration, the SGLBO enjoys faster convergence with a
fewer number of overall measurement shots. The additional cost
of measurement shots in the BO in Eq. (22) turns out to be
negligible even on a small scale n= 4, as well as the larger scales
discussed in “Description of algorithm” section. Consequently, for
the VQE tasks in Fig. 3, the SGLBO achieves the optimization of
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parameterized quantum circuits at the significantly faster con-
vergence speed in terms of the number of measurement shots,
and with better accuracy in minimizing the cost function than the
other state-of-the-art optimizers.

Robustness against hardware noise in SGLBO
Next, we investigate the noise robustness of SGLBO. We consider
VQC58 with a fixed input state. The task of VQC is to find
parameters of a parameterized circuit so that the unitary
implemented by the circuit should act as equivalently as possible
to a given target unitary when acting on a given input state.
Following ref. 58, we define the cost function as

f ðθÞ ¼ 1� 1
n

Xn
j¼1

GðjÞ0 ; (38)

where

GðjÞ0 ¼ Tr½ð 0j i 0h jj � 1jÞUyðθÞUðθ�Þð 0j i 0h jÞ�nUyðθ�ÞUðθÞ�: (39)

Here 1j is an identity operator acting on all qubits except the
jth qubit, GðjÞ0 is the probability of getting the outcome 0 on the
jth qubit, θ is a vector of circuit parameters to be optimized, and
θ* is a target vector of circuit parameters that are chosen here as
θ� ¼ ð0; ¼ ; 0Þ> 2 RD. The target unitary is U(θ*), and the input
state is ð 0j i 0h jÞ�n. The ansatz circuit U(θ) used here is the one in
Fig. 2 with n= 4 and r= 6. In this case, the ansatz circuit can
reach the optimal point at θ= θ* to output ð 0j i 0h jÞ�n, where the
value of the cost function is exactly zero at the optimal point, and
y-axis shows the difference between the true optimal value (i.e.,
zero) and the value at the estimated optimal point. We note that
this cost function is defined by local observables, so the gradient
does not vanish in the shallow ansatz circuit used in this VQC
task58,85. In VQC, we demonstrate the performance of the
optimizers in both noiseless and noisy cases. To simulate noise
in the noisy case, we used information about the gate-operation
and readout errors and the connectivity of IBM’s Bogota
processor87,88. The detailed explanation on the parameters of
the noise model is in Supplementary Information. We set β= 6 to
limit the region Li for SGLBO and choose the step size ηt= 0.1 for
iCANS, following ref. 34.
The result of the numerical simulation is presented in Fig. 4. In the

noiseless case, the SGLBO works better than the other state-of-the-art

optimizers, which is consistent with the result of the VQE in Fig. 3.
Even more remarkably, even in the presence of a moderate amount
of hardware noise described above, the SGLBO can achieve almost
the same accuracy in minimizing the cost function as that in the
noiseless case, while the other optimizers converge to worse cost-
function values. This result indicates a remarkable noise resilience of
the SGLBO, owing to using the BO and also the technique of suffix
averaging. In the SGLBO, the estimates of the minimizer of the cost
function may be affected by hardware noise, and even if we use the
BO that is relatively robust against the noise, these estimates may
oscillate around the minimizer. However, the suffix averaging of these
estimates makes it possible to obtain a point that is even nearer to
the minimizer. In addition, the cost function in VQC has a preferable
property that the minimizer is not susceptible to shifting caused by
hardware noise89, and this property also contributes to the noise
resilience in this case; that is, in other tasks for the VQAs without this
property, the same accuracy as noiseless cases would be hard to
achieve in noisy cases. This result shows that the SGLBO can be more
tolerant to hardware noise than the other state-of-the-art optimizers,
which is crucial for the feasibility of performing VQAs on NISQ devices.

Merits of noise-reducing techniques for general optimizers
We here also show that the technique of suffix averaging and
adaptive shot strategy that we use in SGLBO turns out to be
advantageous even in improving performance and noise robust-
ness of the other state-of-the-art optimizers, not only the SGLBO.
In particular, we here consider the same task of VQC as

“Robustness against hardware noise in SGLBO” section, and we first
apply the suffix averaging technique to all the optimizers, i.e., iCANS,
Adam, and NFT as well as SGLBO. The result of the numerical
simulation is shown in Fig. 5. In both the noiseless and noisy cases,
the technique of suffix averaging can significantly improve the
accuracy of the state-of-the-art optimizers, especially NFT and Adam,
compared to the cases without suffix averaging in Fig. 4. For iCANS,
suffix averaging may not be as effective as NFT and Adam, but can
still achieve a comparable accuracy to the cases without suffix
averaging. This result shows that the technique of suffix averaging
that we apply in the SGLBO can indeed be useful as a general
technique for improving a wide class of optimizers, not only for the
SGLBO itself. At the same time, our numerical simulation shows that
even if we improve the other optimizers by the suffix averaging, the
SGLBO still outperforms these optimizers.

Fig. 3 Comparison of optimizers in terms of the performance on the VQE tasks. We optimize the cost function of the VQE for 1D transverse
field Ising model with n= 4, 8, 12 qubits in the noiseless case. In all plots, the x-axis represents the total number of measurement shots used
during the optimization, and the y-axis represents the difference ΔE per site between the true value of the cost function (i.e., not evaluated
with finite measurement shots) at each iteration and the minimum value of the cost function under the ansatz described in Fig. 2 with r= 4.
For each optimizer, the thin lines represent each run repeated twice from fifteen different initial points, and the thick line represents the
average of these thirty runs. Significantly, the SGLBO outperforms the other state-of-the-art optimizers in terms of both the convergence
speed and the achievable accuracy for, a broad region n= 4, 8, 12 of the number of qubits.
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Next, we apply the technique of adaptive shot strategy to Adam.
Note that our technique of adaptive shot strategy cannot be
applied directly to NFT since NFT does not use gradient; also, iCANS
uses its own variant of adaptive shot strategies, and hence, our
technique based on the norm test cannot be combined with iCANS
either without changing its own strategy. Following the setting of
SGLBO with (33), we set sð0Þi ¼ 2 for all i when we combine the
adaptive shot strategy with Adam in these experiments. The results
of the numerical experiments are shown in Fig. 6. In both noiseless
and noisy cases, the adaptive shot strategy improves the
performance of the original Adam. This indicates that the adaptive
shot strategy based on the norm test is effectively applicable to
the gradient-based optimizers and can improve the performance of

the optimizers. In Fig. 6, we also demonstrate the combination of
the suffix averaging and the adaptive shot strategy with Adam. In
noiseless case, since Adam with the adaptive shot strategy has not
yet hit the floor in the minimization and is still improving its
accuracy, taking suffix averaging worsened the accuracy, as
opposed to the case of averaging out the noise around the optimal
points. On the other hand, in noisy case, the accuracy is improved.
This result further confirms the effectiveness of the suffix averaging
technique against hardware noise. The SGLBO still outperforms the
other optimizers combined with these techniques.
In this way, the techniques that we develop for the SGLBO are

also applicable broadly beyond the SGLBO itself, establishing a
foundation for designing further efficient optimizers for VQAs in

Fig. 5 Comparison of optimizers with the suffix averaging technique (SA), in the performance on the same VQC tasks as Fig. 4. The suffix
averaging technique is not applied to iCANS, NFT, and Adam in Fig. 4 but is applied to all the optimizers in this figure. The x- and y-axes are the
same as Fig. 4. For each optimizer, the thin lines represent each run repeated twice from fifteen different initial points, and the thick line
represents the average of these thirty runs. In both the noiseless (a) and noisy (b) cases, the technique of suffix averaging can significantly
improve the accuracy of state-of-the-art optimizers, especially NFT and Adam, while the SGLBO still outperforms the others. This shows that
the suffix averaging technique developed here is not only a particular technique for improving the SGLBO but can be a broadly applicable
technique for designing an efficient optimizer for VQAs.

Fig. 4 Comparison of optimizers in terms of the performance on VQC tasks. We optimize the cost function of the VQC task a without
hardware noise and b with hardware noise for the ansatz circuit in Fig. 2 with n= 4 qubits and r= 6 repetitions. In both plots, x-axis represents
the total number of measurement shots used during the optimization, and y-axis represents the cost-function value. For each optimizer, the
thin lines represent each run repeated twice from fifteen different initial points, and the thick line represents the average of these thirty runs.
Remarkably, even under the moderate amount of the noise explained in the main text, the SGLBO can achieve almost the same accuracy as
the noiseless case, whereas the achievable accuracy of the other state-of-the-art optimizers becomes worse in the noisy case.
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future research. At the same time, these results show that SGLBO
is an effective combination of all the techniques, i.e., SGD, BO, the
suffix averaging, and the adaptive shot strategy, to outperform the
state-of-the-art optimizers.

DISCUSSION
In this work, we have developed an efficient framework, stochastic
gradient line Bayesian optimization (SGLBO), for optimizing
parameterized quantum circuits in variational quantum algorithms
(VQAs). The core idea of the SGLBO is to estimate the direction of
the gradient based on stochastic gradient descent (SGD), and also
to use Bayesian optimization (BO) for estimating the optimal step
size in this direction. The BO used for estimating the optimal step
size in the SGLBO contributes to minimizing the cost function
faster and more accurately, owing to the robustness of the BO
against noise. To achieve the optimization feasibly within the
fewer number of measurement shots, we also formulated an
adaptive measurement-shot strategy based on the norm test to
estimate the direction of the gradient efficiently. In addition, to
suppress the effect of statistical error and hardware noise, we
introduce the suffix averaging technique. The SGLBO with these
techniques can save the cost of the number of measurement
shots in optimizing the parameterized circuits, and also improve
the accuracy in minimizing the cost function in the VQAs.
To compare the performance of the SGLBO with other state-of-

the-art optimizers, we numerically investigated two situations: (1)
when the system size increases and (2) when the hardware noise is
present. For various system sizes, we discover that the SGLBO
significantly improves the required number of measurement shots
for achieving a desired accuracy in minimizing cost functions, and
reaches an even better accuracy in minimizing the cost functions
than other state-of-the-art optimizers, as shown in Fig. 3.
Furthermore, we have shown that, even in the presence of a
moderate amount of hardware noise, the SGLBO can achieve
almost the same accuracy as that in the noiseless case, whereas the
accuracy of the other state-of-the-art optimizers has got worse, in
the task shown in Fig. 4. To suppress the noise, the suffix averaging
technique as well as the use of the BO is crucial, and it turns out
that the suffix averaging and the adaptive shot strategy developed
for the SGLBO can also improve the accuracy and the noise
robustness of other existing optimizers as demonstrated in Fig. 5.

Consequently, integrating two different optimization approaches,
SGD and BO, our results on the SGLBO open an alternative way to
drastically reduce the cost of measurement shots in the optimization
of parameterized quantum circuits, and also to make VQAs more
feasible under unavoidable hardware noise in near-term quantum
devices. The techniques introduced here are versatile for problems
with various system sizes, effective even in presence of noise, and
widely applicable to a variety of algorithms for optimizing
parameterized quantum circuits in the setting of VQAs, as demon-
strated above. At the same time, the approach developed for the
SGLBO provides a fundamental insight into how VQAs can use
classical information extracted from quantum states, progressing
beyond estimating expectation values. Moreover, the idea of the
SGLBO indeed provides a general framework for optimizing noisy
functions in the field of machine learning (ML), not specifically to
VQAs. Thus, our results are expected to be of interest not only to users
of noisy intermediate-scale quantum (NISQ) devices but to much
broader communities of quantum information, such as those working
on ML-assisted calibration of quantum devices in experiments,
quantum tomography using an ansatz, and quantum metrology.
These results point toward various directions of future research.

One possible direction is to investigate the difference in performance
when the 1D subspace for the BO currently taken in the gradient
descent direction (Eq. (19)) is chosen in another direction, such as
natural gradient descent28,30,90,91, negative curvature descent92, and
conjugate gradient93. Also, the development of a more efficient
method for determining appropriate hyperparameter values in the
SGLBO is also important for improving the accuracy. In our work, we
have empirically found that the SGLBO with suffix averaging
performs well in practice even if hardware noise is considered, but
further research is needed to clarify of what class of hardware noise
the suffix averaging can be tolerant, and how many iterations are
needed to achieve comparable performance to the noiseless case. It
would also be interesting to provide a theoretical guarantee on the
performance of the SGLBO under appropriate assumptions, espe-
cially in the setting of non-convex optimization; after all, both
empirical and theoretical studies are crucial for harnessing the
potential for near-term applications of VQAs. Finally, since the SGLBO
discovers a way to avoid the cost of precise estimation of expectation
values in optimizing parameterized circuits for VQAs, it is even more
advantageous to pursue applications of VQAs that do not require
estimating the expectation values throughout running the entire

Fig. 6 Comparison of Adam with the suffix averaging technique (SA) and/or the adaptive shot strategy (ASS), in terms of the
performance on the same VQC task as Fig. 4. The x- and y-axes are the same as Fig. 4. For each optimizer, the thin lines represent each run
repeated twice from fifteen different initial points, and the thick line represents the average of these thirty runs. In both the noiseless (a) and
noisy (b) cases, the adaptive shot strategy improves the performance of the original Adam, but the SGLBO outperforms the others. This shows
that the adaptive shot strategy is also useful in improving the accuracy of Adam, rather than a specific technique for the SGLBO.
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algorithm, i.e., even after the optimization; for example, state-of-the-
art quantum algorithms for quantum machine learning avoid the
expectation-value estimation by solving sampling problems so that
the speedup should not be canceled out94–96, and further research is
needed to clarify how we can similarly avoid the expectation-value
estimation in quantum machine learning with VQAs.
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