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Abstract: Optical lattices (OLs) with conventional spatial
periodic 𝜆∕2, formed by interfering the counterpropagat-
ing laser beams with wavelength 𝜆, are versatile tools
to study the dynamical and static properties of ultracold
atoms. OLs with subwavelength spatial structure have
been realized in recent quantum-gas experiment, offering
newpossibility for nonlinear andquantumcontrol of ultra-
coldatomsat thenanoscale.Herein,we study theoretically
and numerically the formation, property, and dynamics
of matter-wave localized gap modes of Bose–Einstein
condensates loaded in a one-dimensional nanoscale dark-
state OL consisted of an array of optical subwavelength
barriers. The nonlinear localized modes, in the forms of
on- andoff-site fundamental gap solitons, anddipole ones,
aredemonstrated; andweuncover that, counterintuitively,
these modes exhibit always a cusplike (side peaks) mode
even for adeeply subwavelengthadiabatic lattice, contrary
to the previously reported results in conventional deep
OLs where the localized gap modes are highly confined
in a single lattice cell. The (in)stability features of all the
predicted localized modes are verified through the linear-
stability analysis and direct perturbed simulations. Our
predicted results are attainable in current ultracold atoms
experiments with the cutting-edge technique, pushing the
nonlinear control of ultracold atomswith short-period OLs
as an enabling technology into subwavelength structures.

*Corresponding author: Jianhua Zeng, State Key Laboratory of
TransientOpticsandPhotonics,Xi’an InstituteofOpticsandPrecision
Mechanics of Chinese Academy of Sciences, Xi’an 710119, China; and
University of Chinese Academy of Sciences, Beijing 100049, China,
E-mail: zengjh@opt.ac.cn. https://orcid.org/0000-0003-0189-1856
Zhiming Chen, State Key Laboratory of Transient Optics and
Photonics, Xi’an Institute of Optics and Precision Mechanics of
Chinese Academy of Sciences, Xi’an 710119, China; and School
of Science, East China University of Technology, Nanchang 330013,
China; and Collaborative Innovation Center of Light Manipulations
and Applications, Shandong Normal University, Jinan 250358, China,
E-mail: zmchen@ecut.edu.cn https://orcid.org/0000-0001-6923-
2836

Keywords: Bose–Einstein condensation; gap solitons;
nanoscale dark-state optical lattices; three-level atomic
system.

1 Introduction
Because of possessing unique features (e.g. size, strength
and structure) that are tunable, controllable and man-
ageable freely, optical lattices (OLs) become a chosen
multifunctional tool for understanding and manipulating
the dynamical and stationary properties of quantum gases
[1–4] whose inter-particle interactions, per se, can be
changed at will by means of Feshbach resonances [5–8].
Specific highlights include but not limit to the creation
of Bose–Einstein condensation (BEC) by laser cooling
[9], the realizations of quantum simulators with phase
transition between superfluid and Mott-insulator [10–13],
syntheticgaugefieldsandspin–orbit coupling [14, 15],new
topological quantum materials [16, 17], as well as new-
generation atomic clocks with unprecedented precision
[18, 19]. OLs are optical periodic potentials fabricated
by the interference of pairs of counterpropagating laser
beams with wavelength 𝜆 and, therefore, featuring a
half wavelength characteristics—the lattice period always
equates 𝜆∕2, because of which, manipulating quantum
matters using the regular OLs [1–4, 20–26] (and other
periodic structures in optics context [27–33]) has been
exclusively confined to the wavelength scale (i.e., few
hundred nanometers).

Inpastyears, several techniquescancontribute tosub-
wavelength lattice structures, including adiabatic optical
potentials with 𝜆∕4 periodicity induced by Raman coher-
ences [34], sculpting a subwavelength lattice potential
using multiphoton transitions [35–37], radio-frequency-
dressed state-dependent subwavelength lattices [38, 39],
dynamic spin-dependent lattices (of subwavelength spac-
ing) with a time-periodic modulation [40], dark state opti-
cal potentials with a subwavelength structure [41–45]. In
particular, recent experimental observation has confirmed
the creation of dark state OLs with subwavelength optical
barriers (resemble an optical “Kronig–Penney” potential)
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with width less than 𝜆∕50 = 10 nm [43]. Subwavelength
lattice structures provide new opportunities for investi-
gating both the weakly interacting single-particle (mean-
field theory) property and strongly interacting quantum
many-body physics of ultracold quantum gases (including
ultracold polar molecules [46]) down to the scale of
tens of nanometers, such as enhancing the whole energy
scale; greatly facilitating the formation of low-temperature
states;modulating the balanced (atom–atom) interactions
between on-site and neighboring atoms [41–43]; engineer-
ing artificial gauge fields [40]; performing subwavelength
quantum nondemolition measurements [47, 48]; imaging
of atoms using nanoscale atomic density microscopy with
unprecedented spatial resolution approximately (breaking
the diffraction limit) [49]; etc.

By adopting the above-mentioned one-dimensional
(1D) optical “Kronig–Penney” potential [42, 43] in which
Bose–Einstein condensates (BECs) are loaded, we report
on theoretical and numerical studies of the formation,
property, and dynamics of nonlinear self-trapping of
matter waves, representing as fundamental gap solitons
of on-site and off-site types, as well as the dipole ones,
found in the first, second, and third finite band gaps of
the associated linear Bloch spectrum, in such 1D setting
with both shallow and deep lattice depths. In particular,
we uncover that these self-trapped modes exhibit always
a cusplike (side peaks) characteristic even for a deeply
nanoscale dark-state lattice, different from the scenario of
conventional deep OLs where no any modulation exists
for localized gap modes. The (in)stability features of all
the self-trapped modes are verified by linear-stability
analysis and direct perturbed simulations. Our findings
provide in-depth insights into soliton physics in periodic
systems, pushing nonlinear manipulation of gap solitons
into periodic potentials on the subwavelength scale. Con-
sidering the fact that the1DBose–Einsteingapsolitonsand
broad gap waves of 87Rb atoms with repulsive atom–atom
interaction have, respectively, been observed in weak
(shallow) [50] and superimposed deep [51] optical periodic
potentials, there is no doubt that the localized gap solitons
predictedhereareobservable in suchexperimentsbutwith
nanoscale dark-state optical “Kronig–Penney” potentials.

2 Theoretical model

2.1 Nonlinear Schrödinger equation
Dynamics of wave function Ψ(x, t) of the BECs in a 1D
nanoscale dark-state OL consisted of an array of optical

subwavelength barriers can be described by mean-field
theory, Gross–Pitaevskii equation (nonlinear Schrödinger
equation):

iℏ𝜕Ψ
𝜕t = − ℏ

2

2m
𝜕2Ψ
𝜕x2 + ERV(x)Ψ+ 4𝜋ℏ2as

m
|
|Ψ|

|
2Ψ. (1)

Here ER = ℏ2k2∕m, withm the mass of atoms and k =
2𝜋∕𝜆, 𝜆 being the wavelength of light mentioned above.
The last (defocusing nonlinear) term accounts for atoms
with repulsive–repulsive interactions, with defocusing
scattering length of atoms as > 0. We stress that our
potential V(x) is the same as the nanoscale dark-state
optical “Kronig–Penney” potential proposed in [42] and
demonstrated experimentally in [43],more relevant details
can be read from there. We briefly describe the formation
of such novel optical potential: the optical subwavelength
barrier of the dark-state lattice potential is prepared in a
three-level (Λ-type) atomic system which owns a “dark
state” as supposition of two lowest atomic (ground) states
|1⟩ and |2⟩ whose connection, in reality, is bridged by a
resonant Raman coupling between a strong control field
Ωc(x) = Ωcsin(kx) and a weak probe constant field Ωp,
see Figure 1(a). Thus, the nanoscale dark-state OL V(x), in
essence, is emerged from the mechanism of nonadiabatic
corrections to adiabatic Born–Oppenheimer potentials for
atomic motion [41, 42]. Optical periodic potential with a
subwavelength structure yields:

V(x) = cos2(kx)
𝜀2[1+ 𝜀−2 sin2(kx)]2

. (2)

Here 𝜀 = Ωp∕Ωc denotes the ratio of Rabi frequencies.
The nanoscale dark-state optical potential V(x) can be

Figure 1: Physical scheme for creating a nanoscale dark state
optical lattice.
(a) The optical subwavelength barrier is created under a three-level
(Λ-type) atomic system that exists a ‘‘dark state’’ as supposition of
two lowest atomic (ground) states |1⟩ and |2⟩, which are connected
by a resonant Raman coupling between a strong control fieldΩc(x)
and a weak probe fieldΩp (see text). (b) The spatial (geometry)
structure of the generated subwavelength dark state optical lattice
with different ratio of Rabi frequencies 𝜀 (= Ωp∕Ωc).
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viewed as optical “Kronig–Penney” potential provided
that 𝜀 ≪ 1 [52–54], according to Figure 1(b). It is also
observed that a decrease of 𝜀 would render the dark-
state lattice change from shallow depth to deep one
(lattice strength).V(x) is a periodic arrangement of narrow
potential barriers spaced by 𝜆∕2, with the barrier heights
scaling as 1∕𝜀2, where the energy levels |1⟩, |2⟩, and
|3⟩ can be selected, respectively, as 52S1∕2(F = 1), 52S1∕2
(F = 2), and 53P1∕2(F = 2) of 87Rb atoms [55]. Therefore, the
wavelength of light is around 795 nm, and the full width at
half maximum is about tens of nanometers or less.

To discuss conveniently, we convert Eq. (1) into the
dimensionless form:

i𝜕𝜓
𝜕𝜏

= − 1
2
𝜕2 𝜓

𝜕𝜉2
+ V(𝜉)𝜓 + |𝜓 |2 𝜓, (3)

where the scales of coefficients are 𝜏 = tER∕ℏ, 𝜉 = kx, and
𝜓 = 2k−1

√
𝜋aRΨ.

We search stationary wave function 𝜓 (𝜉, 𝜏) =
𝜙 (𝜉) e−i𝜇𝜏 (chemical potential𝜇) for Eq. (3), theunderlying
stationary equation yields:

𝜇𝜙 = − 1
2
𝜕2𝜙

𝜕𝜉2
+ V(𝜉)𝜙+ |𝜙|

2
𝜙. (4)

In the following, the soliton solutions 𝜙(𝜉) are con-
structed by choosing a properly selected initial Gaussian
guess from Eq. (4) via Newton’s interaction, their linear
stability is evaluated through linear stability analysis,
and direct perturbed simulation of the dynamical Eq. (3)
by means of the fourth-order Runge–Kutta method. The
methods are expressed elaborately in Appendix A. To
facilitate discussion, the number of ultracold atoms N
(norm) is defined as N = ∫ |𝜙|2d𝜉.

2.2 Band-gap structures of the nanoscale
dark-state lattice

Before going deep insight into the gap solitons supported
by the full model, one should know clearly about the
band-gap structure of the underlying linear model. By
discarding the last term of Eq. (4), and by solving the
eigenvalueproblem,wecanget theassociated linear-Bloch

spectrum as a function of 𝜀 (the ratio of Rabi frequencies
Ωp∕Ωc) which is depicted in Figure 2(a). Recall that for
increasing 𝜀 leads to decrease the lattice strength [c.f.
Figure 1(b)], making the width of finite band gaps shrinks
gradually [see Figure 2(a)]. For particular values of 𝜀 = 0.1
and 𝜀 = 0.25, representing the nanoscale dark-state lattice
withdeep strength and the shallowone, the corresponding
eigenvalues of linear Bloch-wave modes forming a band-
gap structure are displayed, respectively, in Figure 2(b)
and (c). It is seen from both panels that there are first
three finite band gaps (the first, second and third one),
withinwhere thematter-wave gap solitonsmay be resided.
An unique feature of the band-gap structure of a deeply
nanoscale dark-state lattice is the smoothness of the
lowest Bloch bands, according to Figure 2(b) at 𝜀 = 0.1
which corresponds to a very deep lattice with strength
100 (c.f. Figure 1(b)), flat Bloch bands appear at around
𝜀 = 0.03 [see Figure 2(a)] while the lattice strength is 1000,
amazingly deep.

An extraordinary property of the bang-gap structure
of the nanoscale dark-state lattice is that the widths of
higher gaps are wider than that of lower gaps [comparing
I, II, III regions in Figure 2(a)–(c)], which challenges our
knowledge of conventional periodic potentials (including
the “Kronig–Penney” potentials [52–54])where thewidest
width is always for the first band gap. Noticeably, the latter
fact is followed up for dark-state lattice if the 𝜀 ≥ 0.4 [see
Figure 2(a)], since under such a situation the dark-state
lattice recovers to a conventional OL which, as pointed out
elsewhere [1–4], can be more easily to be created without
using the dark-state of the atoms.

3 Numerical results

3.1 Fundamental gap solitons of on- and
off-site types in both shallow and deep
lattices

Below, we focus our attention on the formation of funda-
mental gap solitons which, in principle, can be grouped as

Figure 2: Band-gap structure of the 1D
nanoscale dark state optical lattice.
(a) Linear Bloch-wave spectrumwith varying 𝜀.
(b, c) Eigenvalues of linear Bloch-wave modes
forming a band-gap structure at 𝜀 = 0.1 and
𝜀 = 0.25. The first three (first, second, and
third) finite band gaps are denoted by I, II, and
III, respectively.
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on-site type and off-site one according to the positions of
their central parts that place, respectively, at themaximum
and minimum values of the nanoscale dark-state lattice.
Characteristic examples of off-site fundamental gap soli-
tons supported by a shallow lattice (𝜀 = 0.25) are depicted
in Figure 3(a), showing that such mode is single-peaked,
isotropic, and modulated in a cusplike shape. The same
structure properties appear to the on-site gap solitons,
as displayed in Figure 3(b), one exceptional property for
the on-site mode is the double-peak structure, with the
spacing D between the two peaks equating the period
of lattice. For both modes, the side-peak modulations
become stronger when the gap solitons are prepared
in the second finite band gap (of the underlying linear
Bloch-wave spectrum). Our linear-stability analysis and
direct numerical simulations of the perturbed gap solitons
solutions added with initial small perturbations, both
reach an excellent agreement, demonstrate three unique
properties of the gap solitons: (i) the stability regions of
both off- and on-site modes, created in the shallow lattice,
constrain greatly from the first through second to the third
band gaps; (ii) the stability region for the former is wider
than that of the latter mode; (iii) in the third band gap,
the stable fundamental gap solitons are only for off-site
mode, as can be seen from the number of atoms N versus
chemical potential 𝜇 and the underlying linear-stability
results of off- and on-site gap solitons in Figure 3(c) and
(d), respectively.

For the fundamental gap solitons generated in a deep
lattice, their off- and on-site modes can be constructed
too, see typical examples of them in Figure 4(a) and (b).
Compared to their counterparts in a shallow lattice [c.f.
Figure 3(a) and (b)], the structure property remains for the
case of deep lattice, a distinctive difference is the shrinkage
of the spatial side modulations. The fact that the funda-
mental gap solitons accompany always by a cusplikemod-
ulation in the deep nanoscale dark-state OLs, challenging
their general caseswithout anymodulation indeep regular
lattices (without a subwavelength structure)—which is a
commonknowledge [56, 57], demonstrating once again the
unique feature of the localized gap modes supported by
this novel type of nanoscale lattice. Such counterintuitive
feature is naturally, and may be understood by taking into
account the fact that, in a nanoscale dark-state lattice,
the width of a subwavelength barrier is not sufficient
for a complete Bragg scattering (which is balanced by
nonlinearity to form a gap soliton) and, therefore, a nec-
essary condition is the multiple Bragg scatterings which
induce side modulations of a gap solitons. By contrast, in
a conventional deep optical periodic potential, almost all

Figure 3: Number of atoms N versus chemical potential 𝜇,
linear-stability results, and profiles of fundamental gap solitons in a
shallow lattice (𝜀 = 0.25). Typical profiles of off-site (a) and on-site
(b) gap solitons within the first and second finite gaps. The black
dotted lines in (a, b) represent the normalized nanoscale dark-state
lattice. Dependency N(𝜇) for off-site (c) and on-site (d) gap solitons,
whose eigenvalues shown as the maximal real value of the
perturbation growth rate Re(𝛿) versus 𝜇 are depicted as red solid
line. Stability and instability regions for gap solitons in panels (c, d)
are marked by blue solid and red dashed lines, respectively.

the atoms (of a gap soliton) are within a single cell (whose
width satisfies well with the Bragg resonance condition)
of the lattice, making the availability of tight binding
approximation (the matter-wave gap solitons are fully
localized in a potential minimum cell and are entangled
via tunneling to their nearest neighbors) and the discrete
nonlinear equation (model) [56, 57]. Opposing to their
stability regions in shallow lattice [c.f. Figure 3(c) and
(d)], the gap solitons of both off- and on-site types are
exceptionally stable even extending to the third finite band
gap, according toFigure4(c) and (d), uncovering the strong
localization property in deep lattices. We emphasize that
the dynamical perturbed evolutions of both localized gap
modes in shallow and deep nanoscale lattices have been
collected in Appendix B.

3.2 Dipole matter-wave gap solitons in a
deeply nanoscale dark-state lattice

In the presence of a deeply nanoscale dark-state lattice,
it is interesting to study the existence and property of
compound solitons, the higher-order gap solitons, the
simplest mode of which is the dipole gap solitons. It is well
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known that the stability regionof higher-order gap solitons
is always narrower than that for fundamental modes and,
as shown above in Figure 3(c) and (d), whose stability in
the third band gap is limited to a small region under the
shallow lattice, therefore here we concentrate our interest
on adeeply nanoscale dark-state lattice. Figure 5(a) and (b)
display the dipole gap solitons, populated, respectively, in
first and second finite band gaps, whose spacing (between
the two peaks) D is set as 3𝜋 (triple to that of the lattice
period). Our numerous simulations verify that the dipole
matter-wave gap solitons can be stable physical objects
provided that the spacing D ≥ 3𝜋. The dependency N(𝜇)
for such dipole gap solitons is shown in Figure 5(c),
displayed in this panel is also for their linear-stability
analysis by solving the corresponding eigenvalue problem
inAppendixC. It isobserved that thedipolegapsolitonsare
robustly stable in first two band gaps, while have a limited
stability region in the third gap where the stronger Bragg
reflectionsdemolish thephasepropertyof thedipolemode.
It should be noted that the narrow dipole (antisymmetric)
gap solitons (alias subfundamental gap solitons) [54],
each soliton of which is confined into a single cell, are
completely unstable in the given nanoscale dark-state
lattice.

Let us discuss the experimental observation of thepre-
dicted localized gap solitons in ultracold atoms systems.
The first issue is to compare to the cases in conventional
optical periodic potentials (with half wavelength periodic)
whose shallow and deep depths contexts, as reported
before, have aided to the creation of matter-wave gap

Figure 4: The same as Figure 3, but with a 1D deeply nanoscale dark
state optical lattice with strength 𝜀 = 0.1.

Figure 5: Number of atoms N versus chemical potential 𝜇,
linear-stability results, and profiles of dipole gap solitons in a deeply
lattice (𝜀 = 0.1). Typical profiles of dipole gap solitons within the
first (a) and second (b) finite gaps. (c) Dependency N(𝜇) for 1D dipole
gap solitons, whose eigenvalues shown as the maximal real value of
the perturbation growth rate Re(𝛿) versus 𝜇 are depicted as red solid
line. Stability and instability regions for the gap solitons in panel (c)
are marked by blue solid and red dashed lines, respectively.

solitons [50] and broad gap waves [51] in Bose-condensed
87Rb atoms with repulsive atom–atom interaction, with
total number of atoms around 250 and 5000. Our the-
oretical model is quantitatively the same as the exper-
imental situations, replacing only the conventional OLs
by a nanoscale dark-state lattice [Eq. (2)]. By comparison,
although the localized gap modes predicted here may be
realized in the photonic crystals of “Kronig–Penney” type
[52–54] which, in reality, are more difficult to make in
experiments.

We remark that the previously literatures [58–60]
on subwavelength plasmonic/photonic lattice solitons in
arrays of metallic nanowires where the inherent loss
is inevitable, and the localized modes share the same
formation mechanism of graceful balance between Bragg
reflections (induced by periodic potentials) and nonlin-
earity. In terms of experiments, the nanoscale dark-state
OLs with tunable lattice depth, periodicity, and spatial
structural distribution can be easily fabricated, and are
a more promising platform for soliton generation and
manipulation accordingly.

4 Conclusions

Summarizing, we have investigated numerically and with
an analysis the existence, property and dynamics of non-
linear localized modes of BECs trapped by 1D nanoscale
dark-state OLs with both shallow and deep strengths. The
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matter-wave localized modes appearing as on- and off-site
fundamental gap solitons and dipole modes, prepared
in the first, second, and third finite band gaps of the
underlying linear band-gap structure, were demonstrated.
Linear-stability analysis combining the direct perturbed
numerical simulationswasutilized toevaluate the stability
regions of all the localized modes, and they reach a
quantitative agreement. In particular, we found that the
matter-wave gap solitons are always in a cusplike mode
(with multiple side peaks) even being created in a deeply
subwavelengthadiabatic lattice, in contrast to the scenario
of conventional deep optical periodic potentials where
the whole gap solitons are spatially localized inside a
single lattice cell (potential minimum) and thus the tight
binding approximation and discrete model can apply.
The effective discrete nonlinear Schrödinger equation, in
essence, is derived from the continuous (mean-field) full
wave Gross–Pitaevskii equation which contains complete
static and dynamical details of the Bose–Einstein atoms.
The predicted localized modes are highly accessible in
current ultracold atoms experiments, laying a solid theo-
retical foundation for future experimental realization, and
opening new opportunities to reveal nonlinear localized
wave regimes using optical standing waves (or other
periodic potentials like photonic crystals and lattices in
optics) at the subwavelength.
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Appendix A: Linear stability
analysis and numerical methods
The stationary solutions 𝜙(𝜉) are constructed by solv-
ing Eq. (4) by using the Newton’s iteration, and their
stability property against linear perturbation is a fun-
damental issue. For such purpose, we take the per-
turbed wave function as 𝜓(𝜉, 𝜏) = [𝜙(𝜉)+ p(𝜉) exp(𝛿𝜏)+

q∗(𝜉) exp(𝛿∗𝜏)] exp(−i𝜇𝜏), here 𝜙 the unperturbed wave
function calculated from Eq. (4), p(𝜉) and q∗(𝜉) are small
perturbations at a defined eigenvalue 𝛿. Substituting such
expression into the dynamical model Eq. (3) can lead to
linear eigenvalue problem:

(
L 𝜙2

−𝜙∗2 −L

)(
p
q

)

= i𝛿
(
p
q

)

, (5)

with L = −𝜇 − 1
2
𝜕2

𝜕𝜉2
+ 2|𝜙|2 + V(𝜉). In our numerics, the

eigenvalue equation is solved by means of the Fourier
collocation method [61], the corresponding eigenvalues 𝛿
decide the stability conditions of the perturbed localized
mode solutions—they are stable when all the real parts of
theeigenvaluesarezero, i.e.,Re(𝛿) = 0;otherwise, theyare
unstable objects. Furthermore, the solution’s stability is
also measured via direct numerical simulations of the per-
turbed solution in the dynamical model [Eq. (3)] using the
high-accurate numerical algorithm based on fourth-order
Runge–Kutta method; and remarkably, outcomes of the
linear stability analysis and direct perturbed simulation
match very well.

Appendix B: Dynamics of
fundamental gap solitons
In this section, the time evolution of perturbed funda-
mental matter-wave gap solitons is displayed by using the
above mentioned two ways, the linear stability analysis
and direct numerical simulations.

We focus first on a shallow nanoscale dark-state
optical lattice with strength 𝜀 = 0.25. In Figure 6, we have
shown the profiles of localized gap solitons constructed
as off-site and on-site modes (their structures and depen-
dency N(𝜇) have been described in the main text) in the
first line, with the stable solitons in themidst of the second
finite gap and the unstable ones near the left edge of the
third finite gap, their corresponding eigenvalues via the
linear stability analysis are collected in the second line,
and thedirect perturbeddynamics are shown in thebottom
line. It is observed that the direct perturbed evolutions over
time indeed match up with the linear stability analysis
results, and the robust coherence keeps for the stable
fundamental gap solitons while the unstable solitons are
subject to decay and radiation.

For the case of a deeply nanoscale dark-state optical
lattice with strength 𝜀 = 0.1. The profiles, linear-stability
spectra (eigenvalues), and direct numerical simulations
of the perturbed fundamental gap solitons of the off-site
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Figure 6: The profiles of off-site localized gap modes at 𝜇 = 3.2 (a1) and 𝜇 = 5.7 (b1), and on-site localized gap modes at 𝜇 = 3.2 (c1) and
𝜇 = 6.0 (d1) in a shallow lattice (𝜀 = 0.25). Subfigures (a2–d2) and (a3–d3) are the corresponding eigenvalues and perturbed evolutions of
the off-site and on-site gap solitons displayed in subfigures (a1–d1).

and on-site types are collected in Figure 7, where the
unstable fundamental gap modes can be existed with a
longer time compared to that in a shallow lattice, and the
stable solitons keep their excellent coherence over the long
time evolution. The similarity of fundamental gap solitons

in shallow and deeply lattices is that they are very stable in
the first finite gap, and partially unstable only close to the
edges of the second and third gaps, thus their perturbed
evolutions are only shown when they are excited within
the latter two gaps.

Figure 7: The profiles of off-site localized gap modes at 𝜇 = 3.2 (a1) and 𝜇 = 5.0 (b1), and on-site localized gap modes at 𝜇 = 3.2 (c1) and
𝜇 = 5.1 (d1) in a deeply lattice (𝜀 = 0.1). Subfigures (a2–d2) and (a3–d3) are the corresponding eigenvalues and perturbed evolutions of the
off-site and on-site gap solitons displayed in subfigures (a1–d1).
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Figure 8: The profiles of dipole localized gap modes under changeable chemical potential 𝜇: (a1) 𝜇 = 3.2, (b1) 𝜇 = 5.2, and (c1) 𝜇 = 6.2 with
a deeply lattice (𝜀 = 0.1). Subfigures (a2–c2) and (a3–c3) are the corresponding eigenvalues and perturbed evolutions of the dipole gap
solitons displayed in subfigures (a1–c1).

Appendix C: Dynamics of dipole
gap solitons
We then discuss the dynamics of higher-order gap solitons
consisted of dipolemode, two off-site fundamentalmatter-
wave gap solitons with opposite amplitudes. As described
in the main text, the dipole gap solitons supported by the
nanoscale dark-state optical lattice are also constructed
with the spacing between the two peaks D = 3𝜋, three
times to that of the lattice period. It should be emphasized
that althoughwehere concentrateon thecasewithD = 3𝜋,
the stability properties can also be envisioned under the
situation of D > 3𝜋, recalling that any higher-order gap
solitons should have a more narrower stability region
compared to that of their fundamental counterparts, on
account of the destructive interference between the soli-
tons in the former.

As the examples shown above, in Figure 8, we also
display the profiles, linear-stability spectra (eigenvalues),
anddirect simulationsof theperturbeddipolematter-wave
gap solitons of Bose–Einstein condensates trapped by a
deeply nanoscale dark-state optical lattice with strength
𝜀 = 0.1. One can observe from the figure that the dipole
gap solitons could generate perturbations between the
interference of two solitons, enlarging their robustness
against initial perturbations and making their stability

regions are further compressed near the edges of the finite
gaps (as also depicted in their N(𝜇) dependency in the
main text).
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