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Abstract. Up-to-date digital soil resources information, and its comprehensive understanding, is 25 

crucial to support crop production and sustainable agricultural development. Generating such 26 

information through conventional approaches consumes time and resources, which is difficult for 27 

developing countries. In Ethiopia, the soil resource map that was in use is qualitative, dated (since 28 

1984), and small-scale (1:2 M) which limits its practical applicability. Yet, a large legacy soil profile 29 

data accumulated over time and the emerging machine learning modelling approaches can help in 30 

generating a high-quality quantitative digital soil map that can provide accurate soil information. 31 

Thus, a group of researchers formed a coalition of the willing for soil and agronomy data sharing and 32 
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collated about 20,000 soil profile data and stored them in a central database. The data were cleaned 33 

and harmonized using the latest soil profile data template and prepared 14,681 profile data for 34 

modelling. Random Forest was used to develop a continuous quantitative digital map of 18 WRB 35 

reference soil groups at 250 m resolution by integrating environmental variables-covariates 36 

representing major Ethiopian soil-forming factors. The validated map will have tremendous 37 

significance in soil management and other land-based development planning, given its improved 38 

spatial nature and quantitative digital representation. 39 

Keywords: soil profiles, environmental covariates, modelling, expert validation, Reference Soil 40 

Group 41 

1 Introduction     42 

Soils are important resources that support the development and production of various economic, 43 

social, and ecosystem services, and are useful in climate change mitigation and adaptation (Baveye 44 

et al., 2016). Data on soils’ physical and chemical characteristics and spatial distribution are needed 45 

to define and plan their functions over time and space, which is an important step toward the 46 

sustainable use and management of soils (Elias, 2016; Hengl et al., 2017).  47 

 In Ethiopia, soil surveys and mapping have been conducted at various scales with varying scope, 48 

approach, methodology, quality, and level of detail (Abayneh, 2001; Abayneh and Berhanu, 2007; 49 

Berhanu, 1994; Elias, 2016; Zewdie, 2013). The most recent country-wide digital soil mapping 50 

efforts focused primarily on soil characteristics (Ali et al., 2020; Iticha and Chalsissa, 2019; Tamene 51 

et al., 2017), although soil class maps are equally important for allocating a particular soil unit for 52 

specific use (Leenaars et al., 2020a; Wadoux et al., 2020). Many notable attempts have been made to 53 

improve digital soil information system (Hengl et al., 2021, 2017; 2015; Poggio et al., 2020). 54 

However, such initiatives were based on limited and unevenly distributed soil profile data (e.g., 1.15 55 

soil profiles per 1,000 km2 for Ethiopia) which limits the accuracy and applicability of the products.  56 

Thousands of soil profile data were collected since the 1960s (Erkossa et al., 2022), but these data 57 

were hardly accessible as they were scattered across different institutions and individuals (Ali et al., 58 

2020). Furthermore, country-wide quantitative and grided spatial soil type information is hardly 59 

available (Elias, 2016). The Ethiopian Soil Information System (EthioSIS) project attempted to 60 

develop a countrywide digital soil map focusing on topsoil characteristics, including plant nutrient 61 
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content, but overlooked soil resource mapping (Ali et al., 2020; Elias, 2016), despite a strong need 62 

for a high-resolution soil resource map (Mulualem et al., 2018). 63 

Ethiopia has an area of about 1.14 mill. km2 consisting of varied environments, making its soils 64 

extremely heterogeneous; thus capturing heterogeneity using conventional soil survey and mapping 65 

approaches is a resource- and time-consuming endeavour (Hounkpatin et al., 2018). This can be 66 

circumvented using available legacy soil profile data accumulated over time coupled with advanced 67 

analytical techniques to develop high-resolution digital soil maps (Hounkpatin et al., 2018; Kempen, 68 

2012, 2009). 69 

The objectives of this study were to (1) develop a national legacy soil profile dataset that can be used 70 

as an input for various digital soil mapping exercises, and (2) generate an improved 250 m digital 71 

International Union of Soil Science (IUSS) World Reference Base (WRB) Reference Soil Groups 72 

(RSGs) map of Ethiopia using the legacy soil profile dataset and advanced machine learning 73 

techniques.  74 

2 Methods  75 

2.1 The study area 76 

The study area covered the entire area of Ethiopia (1.14 mill. km2) located between 3°N and15° N, 77 

and between 33° E and 48° E (Figure 1). The topography of the country is marked by a large 78 

altitudinal variation, ranging from 126 meters below sea level at Dalol to 4,620 m at Ras Dashen 79 

Mountain in the northwest part of the highlands (Billi , 2015; Enyew and Steeneveld, 2014). The 80 

country embraces diverse agroecological zones and farming systems. Ethiopia’s wide range of 81 

topography, climate, parent material, and land use types created conditions for the formation of 82 

different soil types (Abayneh., 2005; Donahue,1962; Mesfin, 1998; Zewdie, 2013, 1999). More than 83 

33% of the country is covered by the central upper and highland complex (Abegaz et al., 2022), 84 

which embraces Africa's most prominent mountain system, reaching a maximum altitude of 4,620 m 85 

above sea level (Hurni,1998). 86 
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 87 

Figure 1. Location map of Ethiopia, overview map © Esri World Topographic Map. 88 

2.2 Legacy soil profile data collation and preparation   89 

In Ethiopia, soil profile data have been generated over decades through various soil survey missions 90 

but kept in a variety of formats and quality with limited accessibility. There has been no institution 91 

with a national mandate to coordinate the generation, collation, harmonization, and sharing of soil 92 

profile data. This has led to the formation of the Coalition of the Willing (CoW) in 2018––a group of 93 

individuals and institutions willing to exchange soil and agronomy data to overcome the challenges 94 

posed by the lack of data access and sharing mechanism in the country (Tamene et al., 2021). 95 

The CoW conducted a national soil and agronomy data ecosystem mapping which revealed that a 96 

plethora of legacy soil resource data sets do exist but are scattered across different institutions and 97 
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individuals (Ali et al., 2020). The assessment also revealed that a sizable proportion of the data 98 

holders were willing to share the data in their custody, provided that some regulations are put in 99 

place to administer the data. The CoW supported and facilitated data collation campaigns, which 100 

involved both formal and informal approaches to data holders.  101 

Soil profile data collected from the 1970s to 2021 were acquired from over 88 diverse sources 102 

through a data collation campaign (Tamene et al., 2022). Initially, 8000 profile data points were 103 

collated and subjected to improved modelling techniques to create a provisional WRB reference soil 104 

group map of Ethiopia. This was presented for various partners and data holding institutions to 105 

demonstrate the power of data sharing. This created awareness and enabled to mobilise and  collate 106 

over 20,000 legacy soil profile data. These date were then added to the national data repository. 107 

The data had varying levels of completeness in terms of soil field and environmental descriptions 108 

and laboratory analysis. This required a rigorous expert-based quality assessment and 109 

standardization before compilation into a harmonized format. The expanded version of the Africa 110 

Soil Profile (AfSP) database (Leenaars et al., 2014) template was used for standardizing and 111 

harmonizing the data. Out of the collated soil profile data, 14,681 georeferenced data points were 112 

extracted based on completeness and cleanness for the purposes of modelling. The cleaned soil 113 

profile data set contains at least the reference soil group (RSG) nomenclature as outlined in the WRB 114 

legend. While the original soil profile records were set in different coordinate systems, all were 115 

projected into the adopted standard georeferencing system, namely WGS84, decimal degrees in the 116 

QGIS (3.20.2) environment (QGIS Development Team, 2021). To verify their position, soil profile 117 

locations were plotted using a standard WGS84 coordinate system to verify that points are matching 118 

with the site description, geomorphological settings, and at the very least the source project 119 

boundary outline.  120 

The accuracy of the data depends on the quality and reliability of the survey data itself which in turn 121 

requires expert knowledge and experience in soil description (Leenaars et al., 2020a). In this study, 122 

data cleaning, validation, reclassification, and verification were carried out by a team of prominent 123 

national pedologists and soil surveyors, including those involved in the generation of some of the 124 

soil profile data themselves (Figure 2). 125 
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 126 

Figure 2. Schematic presentation of data acquisition and workflow.  127 

In addition, the Ministry of Agriculture (MoA) soil survey and mapping experts and other volunteers 128 

have validated the legacy soil profile observations. This led to the reclassification of the soil types as 129 

deemed necessary. Such validation and reclassification involved re-examining the geomorphological 130 

setup of the soil profile locations using Google earth as well as reviewing the site and soil 131 

description and the corresponding laboratory data and reviewing the proposed soil type. The 132 

harmonised data sets in the database were used as input soil profile data for modelling and mapping 133 

IUSS WRB reference soil groups. 134 

2.3 Selection and pre-processing of covariates   135 

In order to develop spatially continuous soil class/type maps, data on environmental covariates that 136 

represent directly or indirectly the soil-forming factors have to be integrated with soil profile data 137 

(Hengl and MacMillan, 2019). Environmental covariates representing soil-forming factors (climate, 138 

organisms, relief, parent material, and time) were derived from diverse remote sensing products and 139 

thematic maps (Hengl and MacMillan ,2019; McBratney et al., 2003). Selected environmental 140 

covariate layers were then used to predict the soil property across the full extent of the prediction 141 
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area using the soil observation data from the sampling locations (McBratney et al., 2003, Miller et 142 

al., 2021).  143 

In this study, a set of 27 covariate layers (Appendix B), from  68 potential covariates, were prepared 144 

in GeoTiff format with 250 m resolution and Lambert azimuthal equal-area projection with the 145 

latitude of origin 8.65 and centre of meridian 39.64 which is the centre point for Ethiopia. This 146 

projection was selected since it is effective in minimizing area distortions over land. All layers were 147 

masked for buildings and water bodies by the national boundary of Ethiopia and stacked using the 148 

stack () function of the raster package in R [version 4.05] (R Core Team, 2020). A 250 m spatial 149 

resolution was chosen to accommodate both the spatial resolution of the major co-variate inputs and 150 

make it applicable for large-scale analysis.  151 

The covariates included terrain variables derived from the 90-meter Shuttle Radar Topography 152 

Mission (SRTM) digital elevation model (DEM) (Vågen, 2010), climatic variables from Enhancing 153 

National Climate Services (ENACTS) (Dinku et al., 2014), Moderate Resolution Imaging 154 

Spectroradiometer (MODIS) imagery raw bands and derived indices (Vågen, 2010), national 155 

geology map of Ethiopia (Tefera et al., 1996), and land use/ cover map of Ethiopia (WLRC-AAU, 156 

2010) (Table 1).  157 

A 4 km climate grid data from the National Meteorological Agency’s (NMA) ENACTS initiative 158 

was used because it addresses the spatial and temporal gaps and quality problems of other climatic 159 

data sources for Ethiopia (Dinku et al., 2014). The long-term mean, minimum, maximum, and 160 

standard deviation temperature, and precipitation data for the period between 1983 and 2016 from 161 

the ENACT-NMA initiatives (Dinku et al., 2014) were used. In addition, the hydrologically 162 

corrected DEM of the Africa soil information service (Vågen, 2010) and DEM derivatives were 163 

calculated using SAGA-GIS version 7.3.0 (Conrad et al., 2015) for topography as a soil-forming 164 

factor. We used national geological (Tefera et al., 1996) and land use/land cover (WLRC-AAU, 165 

2010) thematic maps of Ethiopia to represent parent material and organisms, respectively.  166 

The covariate pre-processing, visual inspection for inconsistencies, resampling to a target grid of 250 167 

m and compilations were conducted in QGIS [3.20.2] (QGIS Development Team, 2021), SAGA GIS 168 

[7.8.2] (Conrad et al., 2015) and R [version 4.05] (R Core Team, 2020) software packages. Once 169 

each covariate was adjusted to have an identical spatial resolution, extent and projection, continuous 170 

https://doi.org/10.5194/egusphere-2022-301
Preprint. Discussion started: 23 May 2022
c© Author(s) 2022. CC BY 4.0 License.



8 

covariates were resampled using the bilinear spline method whereas categorical covariates were 171 

resampled using the nearest neighbour method. 172 

The near-zero variance, available in the near ZeroVar function caret package in R (Kuhn, 2008) was 173 

used to identify and remove environmental variables that have little or no variance. After expert 174 

judgement to determine the type of covariates for modelling RSGs and near-zero variance analysis, a 175 

total of 27 environmental variables (24 continuous and 3 categorical) were used for the modelling.  176 

2.4 Modelling and mapping soil types/reference soil groups    177 

2.4.1 Model tuning and quantitative evaluation 178 

Recent developments in data analytics showed the potential to undertake sophisticated analysis 179 

involving large datasets within a relatively short time using models. In digital soil mapping, 180 

machine-learning techniques have been extensively used to determine the relationship between soil 181 

types and environmental variables (McBratney et al., 2003). Many machine learning models were 182 

developed in the past decades for digital soil mapping to spatially predict soil classes based on 183 

existing soil data and soil-forming environmental covariates (Heung et al., 2016). Random Forest 184 

(RF), a tree-based ensemble method, is one of the most promising machine learning techniques 185 

available for digital soil mapping (Breiman, 2001; Heung et al., 2016), which has gained tremendous 186 

popularity due to its high overall accuracy and has been widely used in predictive soil mapping 187 

(Brungard, 2015; Hengl et al., 2018).  188 

Examples of the main strengths of the RF model are its ability to handle numerical and categorical 189 

data without any assumption of the probability distribution; and its robustness against nonlinearity 190 

and overfitting (Breiman, 2001; Svetnik et al., 2003). In the RF model, data are split into training (80 191 

%) and testing (20 %) components for building the model and model testing, respectively (Kuhn, 192 

2008).  193 

Hyper-parameter optimization and cross-validation on the training dataset have been performed for 194 

optimal model application using Caret package (Kuhn, 2008). Model tuning was performed with a 195 

repeated 10-fold cross-validation procedure and applied multiple combinations of hyper-parameters 196 

for the ranger method, which is a fast implementation of RF, particularly suited for high dimensional 197 

data (Wright and Ziegler, 2017). Three parameters, i.e., the number of covariates used for the splits 198 

(mtry), splitting rules (splitrule) and minimum node size (min.node.size) were optimised. The values 199 
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of 1,000 number of trees (ntree) with mtry ranged from 10 to 20, min.node.size ranged from 5 – 15 200 

with an interval of five and extra trees as splitrule fed for the optimization procedure.  201 

The accuracy of the testing dataset was related to the model performance for the new dataset, 202 

indicating the capacity of the model to predict at the unsampled location. A confusion matrix was 203 

also used to calculate a cross-tabulation of observed and predicted classes with associated statistics 204 

i.e., producer’s accuracy and user’s accuracy. The computational framework was based on open-205 

source software and was performed on a windows server 2016 standard with 250 GB of working 206 

memory. 207 

2.4.2 Qualitative evaluation of spatial patterns of the beta-version soil map 208 

Expert knowledge of soil-landscape relations and soil distribution remains important to evaluate the 209 

predictive soil mapping results and assess if predicted spatial patterns make sense from a pedological 210 

viewpoint (Hengl et al., 2017; Poggio et al., 2020). An important step in model evaluation is, 211 

therefore, expert assessment whereby professionals with broad experience in soil survey and 212 

mapping can evaluate and improve the quality of the soil resource map. Accordingly, an expert 213 

validation workshop was conducted using the first version of the reference soil groups (RSGs) map. 214 

About 45 multi-disciplinary scientists including soil surveyors, pedologists, geologists, and 215 

geomorphologists were drawn from national and international research, development, and higher 216 

learning institutions to review the draft RSG map in plenary. This was followed by breakout sessions 217 

where groups of experts evaluated the map based on their experience and knowledge of soil-218 

landscape relations of the country.   219 

While the plenary discussion provided an overview of the approaches followed in developing the 220 

map, the facilitated group discussion helped to have an in-depth review of the selected polygons of 221 

the map assigned to them. Participants were split into five groups (with 8-10 members each) and 222 

have chosen up to 60 polygons representing areas with which at least one of the group members has 223 

sufficient information, including data sources. Overall, the groups have checked a total of 126 224 

polygons (Figure 3) which were fairly distributed across the country. In cases where there is 225 

ambiguity, the experts overlaid the soil profile locations on Google earth map to evaluate the 226 

description and soil lab results. The group members displayed the polygons one by one in a GIS 227 

environment and discussed the predicted dominant and associated soil reference soil groups and 228 
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labelled them in one of three confirmation categories: 1. confirmed with ‘no concern’, 2. confirmed 229 

with “minor concern”, and 3. confirmed with ‘major concern’.  Confirmation with ‘no concern’ was 230 

made when all members of a group agreed on both the types and relative coverage of the predicted 231 

soils within the polygon.  Confirmation with  ‘minor concern’ was made when all or some of the 232 

team members agreed on the predicted soil types within the polygons but did not agree on the order 233 

of abundance or the probability occurrence of one or two soils, while confirmation with ‘major 234 

concern’ was made when all members of the team did not agree on the predicted soil type, or when 235 

the presence of another soil type, other than the predicted ones is noted.  236 

 237 

Figure 3. The spatial distribution of districts validated by stakeholders and feedback categories 238 

according to the level of concerns raised. 239 

After finalising the evaluation at the group’s level assessment, each group presented the results in the 240 

plenary followed by a discussion to get feedback from other participants. Following the plenary 241 
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discussions, the participants created a group of six senior pedologists to work on the 242 

recommendations, including validation of the additional data obtained during the event. Based on 243 

these outputs, the model was re-runto produce the current version of the soil map. 244 

3 Results and Discussion  245 

3.1 Soil profile datasets   246 

Using the IUSS WRB, 2015, the preliminary identified 14,742 georeferenced legacy soil profiles 247 

were classified/reclassified into twenty-three reference soil groups (RSGs). Nearly 90% of the soil 248 

profile points represented Vertisols, followed by Luvisols, Cambisols, Leptosols, Fluvisols, and 249 

Nitisols, which were found to be the dominant soil types in Ethiopia (Figure 4). The remaining 10% 250 

represented the Regosols, Alisols, Andosols, Arenosols, Calcisols, Solonetzs, Lixisols, Phaeozems, 251 

Solonchaks, Acrisols, Planosols, Gleysols, Umbrisols, Ferralsols, Gypsisols, Plinthosols, and 252 

Stagnosols.  253 

The results suggest that about 72 % of the IUSS WRB (2015) RSGs were confirmed to occur in 254 

Ethiopia. In this regard, Ethiopia is considered as a soil museum having endowed with a diverse 255 

range of soil types owing to the diversities in the pedogenetic factors (Elias, 2016), which is known 256 

to have most of the reference soil groups in varying frequencies depending on existing physiographic 257 

and agroecological positions (Mishra et al., 2004). 258 

One of the challenges with legacy soil data in categorical mapping is that of imbalanced soil 259 

samples, in that all classes were not represented equally (Wadoux et al., 2020). For this study, soil 260 

profiles with less than 30 observations were objectively excluded from the model after examining 261 

the accuracy and spatial distribution of each reference soil group. Five reference soil groups 262 

(Umbrisols, Ferralsols, Gypsisols, Plinthosols, and Stagnosols) were excluded from the model and 263 

left unmapped in this EthioSoilGrid version 1.0 map.  264 

 265 
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 266 

Figure 4. Number of profile points per WRB reference soil groups.  267 

With regards to the total area of Ethiopia and excluding the built-up (urban) and water surface areas, 268 

and, the soil profile spatial distribution (Figure 5) represented an average density of 13.1 soil profiles 269 

per 1,000 km². The actual density of observations varied greatly between different parts of the 270 

country. The variation tends to follow river basins, sub-basins, and agricultural land-use types-based 271 

studies from which legacy soil observations were pulled for the present study. For instance, in 30 272 

intervention districts of the Capacity Building for Scaling up of Evidence-Based Best Practices in 273 

Agricultural Production in Ethiopia (CASCAPE) project, the average profile density was 1 profile 274 

per 11.5 km² (about 87 profiles per 1,000km2) for a total area of about 26,830 km² (Leenars et 275 

al.,2020a). Similar semi-detailed soil mapping missions in 15 districts were conducted through the 276 

Bilateral Ethiopia-Netherlands Effort for Food, Income and Trade (BENEFIT)-REALISE project 277 

which generated about 217 observations per 1,000 km² (Leenars et al., 2020b).  278 

A soil type and depth map compilation and updating mission at a 1:250,000 scale by the Water Land 279 

Resource Centre (WLRC) of Addis Ababa University collated and used about 3,949 legacy soil 280 

profiles for the entire country (Ali et al., 2020), about 3.5 profiles per 1,000 km2. The existing 281 

accessible compiled legacy soil profile database of Ethiopia prepared by the Africa soil profile 282 

database consisted of 1,712 legacy soil profile observations or 1.5 profiles per 1,000 km² (Batjas et 283 

al., 2020; Leenaars et al., 2014), which indicates that the number of data used in this study is 8.5 284 

times higher than that was used in the former. However, the soil profile distribution across the 285 
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country was uneven; additional soil survey missions are needed for the eastern lowlands and other 286 

less represented areas in the future.  287 

 288 

Figure 5. Spatial distribution of collated legacy soil profile data.  289 

The soil profiles distribution across the 32 agro-ecological zones (AEZ) of Ethiopia revealed that all, 290 

except two–tepid per-humid mid highland (0.13% landmass) and very cold sub-humid sub-afro 291 

alpine to afro-alpine (0.03 % landmass)–were represented by soil profiles observations. Furthermore, 292 

about 95 % of the profile observations represented 91 % of the AEZs aerial coverage (Appendix A). 293 

The distribution of legacy soil profiles varied across AEZs. In general, top-ranked lowland AEZs 294 

with roughly 56 % area coverage obtained 23 % of the total profile observations, while top-ranked 295 

highland AEZs with 20 % area coverage received 47 % of profile observations. For instance, warm 296 

desert, warm moist, hot arid, and warm sub-moist lowlands with area coverage of around 20 %, 15 297 
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%, 11 %, and 10 %, were represented roughly by 3 %, 11 %, 2 %, and 7 % of the total profiles, 298 

respectively. Tepid moist mid highlands (8% area coverage), tepid sub-humid mid highlands (7 % 299 

area coverage), and tepid sub-moist mid highlands (5 % area coverage) each were represented by 20 300 

%, 15 %, and 12 % of the profiles, respectively. 301 

3.2 Modelling and Mapping   302 

   3.2.1 Variable importance  303 

The reference soil group spatial pattern is primarily influenced by long-term average surface 304 

reflectance, flow-based DEM indices, and precipitation. Figure 6 shows variables of importance for 305 

determining RSGs spatial prediction. The top-ranked variables were (i) long-term MODIS Near-306 

Infrared (NIR) reflectance; (ii) multiresolution index of valley bottom flatness, (iii) long-term mean 307 

day-land surface temperature; (iv) long-term mean soil moisture; (v) standard deviation of long-term 308 

precipitation; (vi) long-term mean precipitation; and (vii) topographic wetness index. 309 

MODIS long-term mean spectral signatures showed high relative importance.  According to Hengl et 310 

al (2017), accounting for seasonal vegetation fluctuation and inter-annual variations in surface 311 

reflectance, long-term temporal signatures of the soil surface, derived as monthly averages from 312 

long-term MODIS imagery were more effective. Furthermore, Hengl and MacMillan (2019) 313 

explained that long-term average seasonal signatures of surface reflectance provide a better 314 

indication of soil characteristics than only a single snapshot of surface reflectance. 315 

The Multi-Resolution Valley Bottom Flatness Index, a DEM-derived topography index, is the 316 

second top-ranked covariate driving soil variability across Ethiopia. This hydrological/soil removal 317 

and accumulation/deposition index is used to distinguish valley floor and ridgetop landscape 318 

positions (Soil Science Division Staff, 2017) highly responsible for multiple soil-forming processes 319 

to operate over a particular landscape, resulting in a wide range of soil development. The influence 320 

of topography on spatial soil variation is manifested in every landscape of Ethiopia (Belay, 1997; 321 

Mesfin, 1998; Zewdie, 2013).  322 

Long-term daily mean land surface temperature, mean soil moisture, rainfall standard deviation and 323 

mean annual rainfall were among the top-ranked covariates for predicting reference soil groups’ 324 

spatial variation across the country. In Ethiopia, different soil genesis studies revealed that climate 325 
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has a significant influence on soil development and properties and is, therefore, responsible for 326 

having widely varying soils in the country (Abayneh, 2006, 2005; Fikru, 1988, 1980; Zewdie, 2013).  327 

Rainfall variability in Ethiopia is governed by global, regional, and local factors. Ethiopian climate 328 

is substantially governed by local factors in which the topography is powerful. It is known as a 329 

country of natural contrast; characterised by a complex topography that strongly defines both rainfall 330 

and temperature patterns, by modifying the influence of the large-scale ocean-land-atmosphere 331 

pattern, thus creating diverse localised climates.  332 

Spatially, rainfall in Ethiopia is characterised by a decreasing trend in the direction from west to east, 333 

south-north, west-north-east and west-east. The lowlands in the southeast and northeast, covering 334 

approximately 55% of the country’s land area, are under arid and semi-arid climates. Annual rainfall 335 

ranges from less than 300 mm in the south-eastern and north-western lowlands to over 2,000 mm in 336 

the southwestern (southern portion of the western highlands). The eastern lowlands get rain twice a 337 

year, in April–May and October–November, with two dry periods in between. The total annual 338 

precipitation in this regime varies from 500 to 1,000 mm. The driest of all regions is the Denakil 339 

Plain, which receives less than 500 mm and sometimes none (Fazzini et al., 2015). Temperatures are 340 

also greatly influenced by the rapidly changing altitude in Ethiopia and mean monthly values vary 341 

from about 35oC, in the northeast lowland to less than 7.5oC over the north and central highland.  342 

Among the most important covariates for predicting reference soil groups in the Ethiopian highlands, 343 

(Leenars et al., 2020a), are monthly average soil moisture for January (ranked 3rd), long-term 344 

average soil moisture (ranked 4th), and monthly average soil moisture for August (ranked 5th). 345 

Similarly, in this study, soil moisture was among the top ten-ranked covariates in modelling and 346 

explaining long-distance soil type variability across the country. 347 
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 348 

Figure 6. Random forest covariate relative importance for modelling RSGs. See Appendix B for 349 

abbreviations.  350 

In this study, lithology showed a relatively low influence on soil variability. This is against the long-351 

standing fact that Ethiopia is believed to be a land of geologic contrast  (Abyneh,2005; Alemayehu 352 

et al., 2014; Elias., 2016; Jarvis et al., 2011; Zewdie, 2013) characterised by  (i) recent and old 353 

volcanic activities; (ii) the highlands consisting of igneous rocks (mainly basalts); (iii) steep-sided 354 

valleys characterise by strong colluvial and alluvial deposits; (iv) denudation process exposed 355 

metamorphic rocks; and (v) occurrence of various sedimentary rocks like limestone and sandstone in 356 

the relatively lower areas. The low influence of lithology may be related to the use of a coarse-scale 357 

and less detailed lithology map, which may not sufficiently capture the spatial variability of the 358 

parent materials. 359 
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3.2.2 Model performance 360 

The parameter optimization process resulted in mtry 20, split rule extra trees and minimum node size 361 

5. The overall accuracy of the model was 56.24 % which ranged between 54.43% and 58.1% with a 362 

95% confidence interval. The kappa values based on the internal cross-validation and testing dataset 363 

showed that the overall model performance produced using 10–fold cross-validation with the 364 

repeated fitting was 48%. Considering similar area-based digital soil class mapping efforts, the 365 

overall purity (accuracy) was in line with the accuracies that were typically reported for soil class 366 

maps developed with random forest model (Leenaars et al., 2020a) and statistical methods (Heung et 367 

al., 2016; Holmes et al., 2015). Table 1 shows the confusion matrix at validation/testing points i.e., 368 

20 % of the observation. Further, the matrix indicates the producer’s accuracy (class representation 369 

of observed versus predicted) and user’s accuracy (map purity) were not similar for all RSGs. The 370 

map purity is in the order of Lixisols, Calcisols, Alisols, Phaeozems, Vertisols, Andosols, 371 

Solonchaks, Fluvisols, Arenosols, Leptosols, Luvisols, Nitisols, and Cambisols. However, Vertisols, 372 

Calcisols, and Andosols are the observed classes that are best represented by the map followed by 373 

Fluvisols, Alisols, Nitisols, Leptosols, Luvisols and Cambisols. 374 

Global Soil Grids at 250 m resolution used machine learning algorithms to map the global WRB 375 

reference soil groups with map purity and weighted kappa of 28% and 42%, respectively (Hengl et 376 

al., 2017). The Soil Grids 250 m WRB soil groups/classes prediction output-spatial soil patterns 377 

were not evaluated based on expert knowledge while in this study we did an extensive back and 378 

forth qualitative assessment by a panel of pedologists. The quantitative accuracy in the present study 379 

(about 56 %) coupled with an expert-based qualitative evaluation of the predicted maps indicated the 380 

development and achievement of a substantially enhanced national product for users of spatial soil 381 

resources information. This finding is a step forward and acceptable considering that Soil Grids are 382 

not expected to be as accurate as locally produced maps and models that use much more local point 383 

data and finer local variables (Mulder et al., 2016). Further, the data and finding in this study can 384 

help improve the soil maps of Africa as it partially addresses the concern by Hengl et al. (2017) who 385 

recognised that WRB RSGs modelling in the global Soil Grids 250 m is critically uncertain for parts 386 

of Africa.  387 

 388 
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Table 1. Confusion matrix of random forest RSG prediction (at validation/testing observations). 389 

 3.2.3 Modelling and Mapping: EthioSoilGrids Version 1.0   390 

The study identified eighteen reference soil groups in Ethiopia, mapped at 250 m resolution (Figure 391 

7). The model prediction showed that seven soil reference groups including Cambisols, Leptosols, 392 

Vertisols, Fluvisols, Nitisols, Luvisols, and Calcisols covered nearly 98% of the total land area of the 393 

country (Figure 8). Five soil reference groups (Solonchaks, Arenosols, Regosols, Andosols, and 394 
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Acrisols 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

               

0.33  3 

Alisols 0 40 0 0 0 0 1 1 0 0 9 4 0 0 2 0 0 2 
               
0.68  59 

Andosols 0 0 28 1 1 3 5 0 2 0 2 0 0 0 0 0 1 1 

               

0.64  44 

Arenosols 0 0 0 11 0 2 1 0 0 0 5 0 0 0 0 0 0 1 

               

0.55  20 

Calcisols 0 0 0 0 21 0 1 0 0 0 2 0 0 0 0 0 0 5 
               
0.72  29 

Cambisols 2 3 6 9 1 197 28 2 35 2 47 16 5 1 16 3 3 28 

               

0.49  404 

Fluvisols 1 0 3 5 1 34 144 0 9 0 15 7 0 0 1 5 5 17 

               

0.58  247 

Gleysols 0 0 0 0 0 0 1 2 0 0 1 0 0 1 0 0 0 0 
               
0.40  5 

Leptosols 0 1 4 3 3 47 11 0 176 0 27 7 1 0 32 0 0 24 

               

0.52  336 

Lixisols 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

               

1.00  1 

Luvisols 2 16 3 8 0 34 13 2 33 3 216 30 3 0 25 1 0 41 
               
0.50  430 

Nitisols 6 8 0 0 1 23 8 3 18 8 29 132 0 1 8 0 1 21 

               

0.49  267 

Phaeozems 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 

               

0.67  3 

Planosols 0 0 0 0 0 0 0 0 0 0 1 1 0 5 1 0 0 1 
               
0.11  9 

Regosols 0 0 0 0 0 7 1 0 7 1 8 1 0 0 22 0 0 5 

               

0.42  52 

Solonchaks 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 1 0 

               

0.60  5 

Solonetzs 0 0 0 0 1 4 1 0 0 0 0 0 0 0 0 1 6 0 
               
0.46  13 

Vertisols 3 1 3 5 5 92 32 2 61 3 81 31 5 5 25 2 6 641 

               

0.64  1,003 

Producer  

Accuracy 0.07 0.58 0.60 0.26 0.62 0.44 0.58 0.17 0.51 0.06 0.49 0.58 0.13 0.38 0.17 0.20 0.25 0.81      0.56    - 

Total 15 69 47 42 34 443 247 12 342 18 445 229 16 13 132 15 24 787   - 2,930 
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Alisols) were estimated to cover about 2% of the land area, while trace coverages of Solonetzs (, 395 

Planosols, Acrisols, Lixisols, Phaeozems, and Gleysols were also found in some pocket areas. 396 

In terms of spatial distribution, Nitisols and Luvisols dominated the northwestern and south-western 397 

highlands while the south-eastern lowlands were dominantly covered by Cambisols, Calcisols, and 398 

Fluvisols with some Solonchaks. The Vertisols extensively covered the north and south-western 399 

lowlands along with the Ethio-Sudan border areas and central highland plateaus. Overall, each RSG 400 

position, with other RSGs, along the landscapes/catena/topo-sequence, is in good agreement with the 401 

established schematic soil sequence, previous spatial soil information of Ethiopia and with experts’ 402 

opinions validated across 126 geographic windows of the country.  403 

The probability of occurrence of each RSG was mapped (Appendix C) in each modelling spatial 404 

window (i.e., the cell size of 250-meter X 250 m). The dominant RSGs were aggregated based on 405 

the most probable RSG in each spatial modelling window. There was high correspondence between 406 

the top seven ranked prediction probabilities and observed soil types as confirmed visually by 407 

overlaying observed classes and prediction probabilities.  408 

The overall occurrence and the relative position of each of the RSG along the topo-sequence and its 409 

association with other RSGs agree with previous works (Abayneh, 2006; Ali et al., 2010; Abdenna et 410 

al., 2018; Asmamaw and Mohammed, 2012; Belay, 2000, 1998, 1997, 1996; Driessen et al., 2001; 411 

Elias, 2016; FAO 1984a; Fikre, 2003; Mitku, 1987; Mohammed and Belay, 2008; Mohammed and 412 

Solomon, 2012; Mulugeta et al., 2021; Sheleme, 2017; Shimeles et al., 2007; Tolossa, 2015; Zewdie, 413 

2013). However, there were cases where the RSGs’ position along the topo-sequence and association 414 

with other RSGs require further investigation, which was not adequately captured and explained in 415 

this study. This might be attributed to the positional accuracy of legacy point observations, 416 

modelling approach, and most importantly the level of details and scale/resolution of the 417 

environmental variables used in this study. 418 
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 419 

Figure 7. Major reference soil groups of Ethiopia (EthioSoilGrid V1.0). 420 

Considering the third position of Cambisols in the order of frequency occurrence of RSGs per point 421 

observations (following Vertisols and Luvisols), these soils seem to be over-represented on the map 422 

(ranked 1st) apparently at the expense of Vertisols and Luvisols, and to some extent in places of 423 

Leptosols and other RSGs. This might be attributed to the fact that Cambisols create a geographical 424 

continuation with Vertisols and/or Luvisols at the lower slopes and Leptosols/ Regosols at the higher 425 

slopes, suggesting the presence of some bordering soil qualities in respective transitional zones (Ali 426 

et al., 2010; Asmamaw and Mohammed, 2012; Sheleme, 2017; Zewdie, 2013). 427 

The proportion of area mapped as Cambisols (34 %) revealed new insights compared with the 428 

information from the most cited spatial soil maps:  Cambisols ranked 2nd (21 %), 2nd (16 %), 4th (9 429 

%), and 4th (8 %) as reported by Berhanu (1980), FAO (1984b), FAO (1998), and Soil Grids- Hengl 430 
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et al (2017), respectively. This might be due to: (i) the number and distribution of profile 431 

observations, which is more extensive than the previous ones, (ii) the type and level of details of 432 

covariates considered; (iii) variations and rearrangements in the keys for Classification of the RSGs 433 

among soil classification versions used in previous studies and misclassification/confusion of 434 

Vertisols with Vertic Cambisols, as legacy soil profile data coming from diverse sources.  435 

 436 

Figure 8. The area coverage (in %) for the major WRB RSGs (Note: the remaining 10 RSGs-437 

Arenosols (0.44 %), Regosols (0.35 %), Andosols (0.31%), Alisols (0.16 %), Solonetzs (0.04 %), 438 

Planosols (0.04 %), Acrisols (0.02 %), Lixisols (0.02%), Phaeozems (0.02 %), and Gleysols (0.01 439 

%)  were not plotted because of their relatively small area coverage). 440 

Balanced datasets are ideal to allow decision trees algorithms to produce better classification but for 441 

datasets with uneven class size, the generated classification model might be biased towards the 442 

majority class (Hounkpatin et al., 2018; Wadoux et al., 2020). This likely scenario requires further 443 

investigation for future similar studies and prediction accuracy enhancement.  444 

Considering the number and distribution of legacy soil profiles used, the quality monitoring process 445 

method was followed to filter dubious soil profiles, and soil classification harmonization protocols 446 

were implemented. The study followed a robust modelling framework and generated new insights 447 

into the relative area coverage of WRB RSGs in Ethiopia. Further, it provided coherent and up-to-448 

date digital quantitative gridded spatial soil resource information to support the successful 449 
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implementation of various digital agricultural solutions. The approach used demonstrates the power 450 

of data and analytics, and the output is an exemplary use case for similar digital content development 451 

efforts in Ethiopia. However, the EthioSoilGrids v1.0 product from this first country-wide RSGs 452 

modelling effort requires complementary activities. These include modelling and mapping that 453 

should go beyond RSGs and need to include 2nd level classifications. This will be achieved through 454 

modelling and mapping a set of principal and supplementary qualifiers along with RSGs which will 455 

enable the integration of taxonomy details and requirements with spatial scale protocols, as outlined 456 

in IUSS WRB 2015 classification system.  457 

3.3 Expert validation of the soil map  458 

Expert knowledge of soil-landscape relations and soil distribution is important in evaluating the 459 

predictive soil mapping results and assessing if predicted spatial patterns make sense from a 460 

pedological viewpoint (Hengl et al., 2017). The expert validation workshop participants have 461 

commended the initiative and the approach that led to the development of the national soil resource 462 

map, including the commitment of the technical experts involved and resources invested in it by 463 

partner organizations. Overall, they expressed that the map passed meticulous quality-enhancing 464 

processes and that its content and accuracy exceeded their expectations. 465 

All three groups have rated the accuracy of the map at 60 +%; of the 126 polygons, they have 466 

expressed no concern for 63 %, minor concern for 23 % and a major concern for 14 % of the 467 

polygons. While the minor concerns are mostly related to the accuracy of the relative coverage of the 468 

predicted dominant soil types, the major concerns may indicate a possible mismatch between the 469 

predicted soil type and the experience of some of the group members of the target area such as an 470 

important soil type missed out (expected by the experts based on their knowledge of soil coverages 471 

and prevailing soil-forming factors in specific areas).  472 

After the plenary discussions that followed group presentations, participants have suggested that the 473 

final version of the map be released for use after additional desk validation and improvements, 474 

especially for the polygons with major concerns. It was recommended to re-run the model after 475 

revising the data for the polygons where concerns are reported and use additional data obtained 476 

during the event. A small team of senior pedologists was formed to support the core group in 477 
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revising the data from polygons with reported major concerns. Newly acquired data were cleaned 478 

and validated before re-running the model to generate the final version of the map.  479 

4 Conclusions 480 

Coherent and up-to-date country-wide digital soil information is essential to support digital 481 

agricultural transformation efforts. This study involved collation, cleaning, harmonization, and 482 

validation of the legacy soil profile data sets, involving soil scientists with different backgrounds 483 

individually and in groups. To develop the 250 m digital soil resource map, a machine learning 484 

modelling approach and expert validation were applied to the harmonised soil database and 485 

environmental covariates affecting soil-forming processes. Accordingly, about 20,000 soil profile 486 

data have been collated, out of which, about 14,681 were used for the modelling and mapping of 487 

eighteen RSGs out of the identified twenty-three RSGs. Although unevenly distributed, the legacy 488 

soil profile data used in the modelling covered most of the agro-ecologies of the country. Among the 489 

mapped 18 RSGs, the highest number of observed (3,935) profiles represent Vertisols, followed by 490 

Luvisols, Cambisols and Leptosols, while Gleysols were represented with the lowest number (63) of 491 

profiles. The modelling revealed that MODIS long term reflectance, multiresolution index of valley 492 

bottom flatness, land surface temperature, soil moisture, long-term mean annual rainfall, and wetness 493 

index of the landscape is the most important covariates for predicting reference soil groups in 494 

Ethiopia.  495 

Our ten-fold spatial cross‑validation result showed an overall accuracy of about 56 % with varying 496 

accuracy levels among RSGs. The modelling result revealed that seven major soil reference groups 497 

including Cambisols (34 %), Leptosols (20 %), Vertisols (18 %), Fluvisols (10 %) Nitisols (7 %), 498 

Luvisols (6 %) and Calcisols (3 %) covered nearly 98 % of the total land area of the country, while 499 

minor coverage of other reference soil groups (Solonchaks, Arenosols, Regosols, Andosols, Alisols, 500 

Solonetzs, Planosols, Acrisols, Lixisols, Phaeozems, and Gleysols) were also detected in some areas. 501 

Compared to the existing soil resource map, the coverage of the first three major soil groups has 502 

substantially increased which is related to the increased availability of soil profile data covering 503 

larger areas of the country, implying that these soils were previously underestimated. Cambisols and 504 

Vertisols which together represent nearly half of the total land area are relatively young with 505 

inherent fertility, implying the high agricultural potential for the country. However, given their 506 
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limitations, these and the other soil types require the implementation of suitable land, water, and 507 

crop management techniques to sustainably exploit their potential. 508 

Given its resolution and quantitative digital representation, the map will have tremendous 509 

significance in both agricultural and other land-based development planning while safeguarding the 510 

environment. For instance, the accessibility of good quality digital soil data is crucial for developing 511 

and using decision support tools (DSTs) such as land use and management decisions. However, 512 

effective use of the map requires that the associated WRB second-level classification including 513 

principal and supplementary qualifiers and soil atlas providing details of the soil physicochemical 514 

properties be accessed together with the map, which the authors and others responsible need to 515 

prioritize in their future endeavours.   516 

517 
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Appendix A: Legacy soil profile data distribution 518 

Table A1. Distribution of legacy soil profile data by agroecology zones.  519 

MAJOR_AGRO AEZ area 

coverage (%)* 

Profiles  

Observation (%)** 

Warm arid lowland plains 19.76 3.40 

Warm moist lowlands 15.12 10.74 

Hot arid lowland plains 10.79 2.44 

Warm sub-moist lowlands 9.63 6.94 

Tepid moist mid highlands 8.05 20.21 

Warm sub-humid lowlands 7.11 5.69 

Tepid sub-humid mid highlands 6.63 15.26 

Tepid sub-moist mid highlands 5.17 12.39 

Warm semi-arid lowlands 2.75 3.23 

Tepid humid mid highlands 2.65 2.48 

Warm humid lowlands 2.29 0.45 

Cool moist mid highlands 1.74 4.15 

Hot sub-humid lowlands 1.67 0.07 

Cool sub-moist mid highlands 1.16 3.00 

Cool  humid mid highlands 0.82 1.01 

Warm per-humid lowlands 0.68 0.01 
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MAJOR_AGRO AEZ area 

coverage (%)* 

Profiles  

Observation (%)** 

Hot moist lowlands 0.59 3.56 

Hot sub-moist lowlands 0.56 0.03 

Cool sub-humid mid highlands 0.52 1.38 

Tepid arid mid highlands 0.43 0.39 

Hot semi-arid lowlands 0.40 2.05 

Tepid semi-arid mid highlands 0.19 0.67 

Cold moist sub-afro-alpine to afro-alpine 0.07 0.16 

Cold sub-moist mid highlands 0.07 0.04 

Cold sub-humid sub-afro-alpine to afro-alpine 0.06 0.03 

Cold humid sub-afro-alpine to afro-alpine 0.06 0.01 

Very cold humid sub-afro-alpine 0.04 0.02 

Very cold sub-moist mid highlands 0.02 0.02 

Very cold moist sub-afro-alpine to afro-alpine 0.01V 0.03 

Hot per-humid lowlands 0.01 0.15 

Tepid perhumid mid highland 0.13 0 

Very cold sub-humid sub-afro alpine to afro-

alpine 

0.03 0 

Note: *= total area of Ethiopia 1.14mln km2 ; **=total number of profiles 14,681 520 

521 
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Appendix B: Environmental covariates 522 

Table B1. List, description, spatial and temporal extent, and source of covariates used in modelling 523 

the reference soil groups. 524 

Categories Covariates  Descriptions  Spatial 

resolution 

 

Temporal 

resolution 

Source 

Climate prep Precipitation  4 km 1981 - 2016 ENACTS (Dinku et al.,2014) 

prep_sd The standard deviation 

of precipitation 

4 km 1981 - 2016 Derived from ENACTS 

(Dinku et al.,2014) 

tmax Maximum Temperature  4 km 1983 - 2016 ENACTS (Dinku et al.,2014) 

tmin Minimum Temperature 4 km 1983 - 2016 ENACTS (Dinku et al.,2014) 

trange Temperature range 4 km 1983 - 2016 ENACTS (Dinku et al.,2014) 

tav_sd Standard deviation of 

average temperature 

4 km 1983 - 2016 Derived from ENACTS 

(Dinku et al.,2014) 

pet Potential 

evapotranspiration  

4 km 1981 - 2016 Derived from ENACTS 

(Dinku et al.,2014) using 

Modified Penman method  

lstd 

Land surface 

temperature- Day (Aqua 

MODIS- MYD11A2 , 

time series monthly 

average) 

 

1000 m 2002-2018 AfSIS a 

lstn Land surface 

temperature-Night (Aqua 

MODIS- MYD11A2 , time 

series monthly average) 

 

1000 m 2002-2018 AfSIS 

soil_moist Soil Moisture (Derived 

from one-dimensional 

soil water balance) 

4 km 1981 - 2016 Ethiopian Digital 

AgroClimate Advisory 

Platform (EDACaP) 

soil_temp Soil temperature  30 km 1979 - 2019 ERA 5-Reanalysis ECMWF 

data b  

Topography DEM  Digital elevation model 

(Elevation) 

90 m -  SRTM- DEM (Vågen, 

2010) 

twi  Topographic wetness 

Index 

90 m - SAGA GIS-based  
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Categories Covariates  Descriptions  Spatial 

resolution 

 

Temporal 

resolution 

Source 

SRTM-DEM derivative 

aspect Topographic Aspect 90 m - SAGA GIS-based  

SRTM-DEM derivative 

curv Topographic Curvature 90 m - SAGA GIS-based  

SRTM-DEM derivative  

conv Topographic 

convergence index 

90 m - SAGA GIS-based  

SRTM-DEM derivative  

ls Slope Length and 

Steepness factor 

(ls_factor) 

90 m - SAGA GIS-based  

SRTM-DEM derivative 

morph Terrain Morphometry 90 m - SAGA GIS-based  

SRTM-DEM derivative  

mrvbf Multiresolution index of 

valley bottom flatness 

90 m - SAGA GIS-based  

SRTM-DEM derivative  

slope Slope class (%) 90 m - SAGA GIS-based  

SRTM-DEM derivative  

Vegetation  ndvi Normalised Difference 

Vegetation Index 

(NDVI) (MODIS- MODIS 

MOD13Q1, time series monthly 

average) 

250 m 2000-2021  AfSIS a 

evi Enhanced Vegetation 

Index (EVI) (MODIS- 

MODIS MOD13Q1, time series 

monthly average) 

250 m 2000-2021 AfSIS 

lulc Land use/ landcover 30 m 2010 Water and Land Resource 

Centre-Addis Ababa 

University (WLRC-AAU, 

2010) 

parent 

material 

lithology Geology/parent material 1:2,000,000 1996 The Ethiopian Geological 

Survey (Tefera et al.,1996) 

MODIS 

spectral 

refelectance 

ref1 Red band 
(MODIS- MODIS MOD13Q1, 

time series monthly average) 

250 m 2000 – 2018 AfSIS a   

ref2 Near-Infrared 
(MODIS- MODIS MOD13Q1, 

time series monthly average) 

250 m 2000 – 2018  AfSIS 

ref7 Mid-Infrared  
(MODIS- MODIS MOD13Q1, 

time series monthly average) 

250 m 2000 – 2018 AfSIS 
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Appendix C: Probability of occurrence of reference soil groups 525 

 526 

Figure C1. Occurrence probability maps of Cambisols, Leptosols, Vertisols, and Fluvisols. 527 

528 
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 529 

Figure C2. Occurrence probability maps of Nitisols, Luvisols, and Calcisols. 530 

531 
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Brouwer, F.: Major soil-landscape resources of the cascape intervention woredas, Ethiopia: 733 

Soil information in support to scaling up of evidence-based best practices in agricultural 734 

production (with dataset), CASCAPE working paper series No. OT_CP_2016_1, Cascape. 735 

https://edepot.wur.nl/428596, 2016. 736 

Leenaars, J. G. B., Elias, E., Wösten, J. H. M., Ruiperez-González, M., and Kempen, B.: Mapping 737 

the major soil-landscape resources of the Ethiopian Highlands using random forest, 738 

Geoderma, 361, https://doi.org/10.1016/j.geoderma.2019.114067, 2020a. 739 

Leenaars, J. G. B., Ruiperez, M., González, M., Kempen, B., and Mantel, S.: Semi-detailed soil 740 

 resource survey and mapping of REALISE woredas in Ethiopia,  Project report to the 741 

BENEFIT-REALISE programme, December, ISRIC-World Soil Information, Wageningen, 742 

2020b. 743 

McBratney, A. B., Santos, M. M., and Minasny, B.: On digital soil mapping, Geoderma, 117 (1-2), 744 

3-52, 2003. 745 

Mesfin, A.: Nature and Management of Ethiopian Soils, ILRI, 272, 1998. 746 

Mishra, B. B., Gebrekidan, H., and Kibret, K,: Soils of Ethiopia: Perception, appraisal and 747 

constraints in relation to food security, JFAE, 2(3 and 4): 269-279, 2004. 748 

Mitiku, H.: Genesis, characteristic and classification of the Central Highland soils of Ethiopia, Ph.D. 749 

Thesis, State University of Ghent, Belgium, 1987. 750 

Mohammed, A., and Belay, T.: Characteristics and classification of the soils of the Plateau of Simen 751 

Mountains National Park (SMNP), Ethiopia, SINET: EJSc.,31 (2),  89-102, 2008. 752 

Mohammed, A. and Solomon ,T. : Characteristics and fertility quality of the irrigated soils of 753 

Sheneka, Ethiopia, EJNR,12 (1 and 2), 1-22, 2012. 754 

https://doi.org/10.5194/egusphere-2022-301
Preprint. Discussion started: 23 May 2022
c© Author(s) 2022. CC BY 4.0 License.



39 

Mulder, V. L., Lacoste, M., Richer de Forges, A. C., and Arrouays, D.: GlobalSoilMap France: high-755 

resolution spatial modelling the soils of France up to two meter depth. Science of the Total 756 

Environment 573, 1352-1369, 2016. 757 

Mulualem, A., Gobezie, T.B., Kasahun, B., and Demese, M.: Recent Developments in Soil Fertility 758 

Mapping and Fertilizer Advisory Services in Ethiopia, A Position Paper, 759 

https://www.researchgate.net/publication/327764748/, 2018. 760 

Mulugeta, T., Seid, A., Kefyialew, T., Mulugeta, F., and Tadla , G.: Characterization and 761 

Classification of Soils of Askate Subwatershed, Northeastern Ethiopia,  Agri., For. and 762 

Fisheries, 10 (3) , 112-122,  doi: 10.11648/j.aff.20211003.13, 2021. 763 

Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and 764 

Rossiter, D.: Soil Grids 2.0: producing soil information for the globe with quantified spatial 765 

uncertainty, 2020. 766 

R Core Team R: A Language and Environment for Statistical Computing, R Foundation for 767 

Statistical Computing, Vienna, 2020. 768 

 769 

Sheleme, B.: Topographic positions and land use impacted soil properties along Humbo Larena-Ofa 770 

Sere toposequence, Southern Ethiopia, JSSEM, 8(8),135-147, 771 

https://doi.org/10.5897/JSSEM2017.0643, 2017. 772 

Shimeles, D., Mohamed, A., and Abayneh, E.: Characteristics and classification of the soils of 773 

 Tenocha Wenchacher Micro catchment, South west Shewa, Ethiopia. EJNRS, 9 (1), 37- 62, 774 

2007. 775 

Soil Science Division Staff: Soil survey manual, edited by: Ditzler, C., Scheffe, K., and Monger, 776 

H.C., USDA Handbook 18,  Government Printing Office, Washington, D.C., 2017. 777 

Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., and Feuston, B.P.: Random forest: 778 

a classification and regression tool for compound classification and QSAR modeling, J. of 779 

Che. Info. and Com. Sc., 43, 1947–1958, doi: 10.1021/ci034160g, 2003. 780 

Tamene, L. D., Amede, T., Kihara, J., Tibebe, D., and Schulz, S.: A review of soil fertility 781 

management and crop response to fertilizer application in Ethiopia: towards 782 

development of site- and context-specific fertilizer recommendation, CIAT 783 

Publication No. 443, International Center for Tropical Agriculture (CIAT), Addis 784 

Ababa, Ethiopia, hdl.handle.net/10568/82996, 2017. 785 

https://doi.org/10.5194/egusphere-2022-301
Preprint. Discussion started: 23 May 2022
c© Author(s) 2022. CC BY 4.0 License.



40 

Tamene, L., Erkossa, T., Tafesse, T., Abera, W., and  Schultz, S.: A coalition of the willing 786 

powering data-driven solutions for Ethiopian agriculture, CIAT Publication No. 518, CIAT, 787 

Addis Ababa, Ethiopia, 2021. 788 

Tefera, M., Chernet, T., and Workineh, H.: Geological Map of Ethiopia, Addis Ababa, Ethiopia: 789 

Federal Democratic Republic of Ethiopia, Ministry of Mines and Energy, Ethiopian Institute 790 

of Geological Surveys, 1999. 791 

Tolossa, A.R.: Vertic Planosols in the Highlands of South-Western Ethiopia: Genesis, 792 

Characteristics and Use, Ghent University, Faculty of Sciences, 2015. 793 

Vågen, T.G.: Africa Soil Information Service: Hydrologically Corrected/Adjusted SRTM DEM 794 

(AfrHySRTM), International Center for Tropical Agriculture –Tropical Soil Biology and 795 

Fertility Institute (CIAT-TSBF), World Agroforestry Centre (ICRAF), Center for 796 

International Earth Science Information Network (CIESIN), Columbia University, 797 

https://cmr.earthdata.nasa.gov/search/concepts/C1214155420-SCIOPS,2010. 798 

Wadoux, A.M.J.C., Minasny, B., and McBratney, A.B.: Machine learning for digital soil mapping: 799 

Applications, challenges and suggested solutions, Earth Sci. Rev., 210, 103359, 2020. 800 

Wright, M. N., and  Ziegler, A.: Ranger: A fast implementation of random forests for high 801 

dimensional data in C++ and R,  JSS, 77(1), https://doi.org/10.18637/jss.v077.i01, 2017. 802 

Water and Land Resource Center-Addis Ababa University (WLRC-AAU): Land use/land cover map 803 

of Ethiopia, Addis Ababa, 2010. 804 

Zewdie, E.: Properties of major Agricultural Soils of Ethiopia, Lambert Academic Publishing, 2013.  805 

Zwedie, E.: Selected physical, chemical, and mineralogical characteristics of major soils occurring in 806 

Chercher highlands, Eastern Ethiopia, EJNRS, 1(2), 173 – 185, 1999. 807 

https://doi.org/10.5194/egusphere-2022-301
Preprint. Discussion started: 23 May 2022
c© Author(s) 2022. CC BY 4.0 License.


