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Abstract
In this review we focus on the fundamental theory of magnetohydrodynamic

reconnection, together with applications to understanding a wide range of dynamic

processes in the solar corona, such as flares, jets, coronal mass ejections, the solar

wind and coronal heating. We summarise only briefly the related topics of colli-

sionless reconnection, non-thermal particle acceleration, and reconnection in sys-

tems other than the corona. We introduce several preliminary topics that are

necessary before the subtleties of reconnection can be fully described: these include

null points (Sects. 2.1–2.2), other topological and geometrical features such as

separatrices, separators and quasi-separatrix layers (Sects. 2.3, 2.6), the conserva-

tion of magnetic flux and field lines (Sect. 3), and magnetic helicity (Sect. 4.6).

Formation of current sheets in two- and three-dimensional fields is reviewed in

Sect. 5. These set the scene for a discussion of the definition and properties of

reconnection in three dimensions that covers the conditions for reconnection, the

failure of the concept of a flux velocity, the nature of diffusion, and the differences

between two-dimensional and three-dimensional reconnection (Sect. 4). Classical

2D models are briefly presented, including magnetic annihilation (Sect. 6), slow and

fast regimes of steady reconnection (Sect. 7), and non-steady reconnection such as

the tearing mode (Sect. 8). Then three routes to fast reconnection in a collisional or

collisionless medium are described (Sect. 9). The remainder of the review is ded-

icated to our current understanding of how magnetic reconnection operates in three

dimensions and in complex magnetic fields such as that of the Sun’s corona. In

Sects. 10–12, 14.1 the different regimes of reconnection that are possible in three

dimensions are summarised, including at a null point, separator, quasi-separator or a

braid. The role of 3D reconnection in solar flares (Sect. 13) is reviewed, as well as

in coronal heating (Sect. 14), and the release of the solar wind (Sect. 15.2).

Extensions including the role of reconnection in the magnetosphere (Sect. 15.3), the

link between reconnection and turbulence (Sect. 16), and the role of reconnection in

particle acceleration (Sect. 17) are briefly mentioned.
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1 Introduction

Magnetic reconnection is a fundamental process responsible for many dynamic

phenomena in solar physics. It occurs in any plasma that is almost-ideal, in the sense

that the global Lundquist number (i.e., the magnetic Reynolds number based on the

Alfvén speed)

Rme � S � LevAe

g
ð1Þ

is much greater than unity, where Le is the global length scale, Be is the corre-

sponding magnetic field, g is the magnetic diffusivity, and vAe ¼ Be=
ffiffiffiffiffiffi

lq
p

is the

global Alfvén speed. In this article we give a review of the MHD aspects of

reconnection theory and refer the reader for further details to Priest and Forbes

(2000), Birn and Priest (2007), Yamada et al. (2010) and Priest (2014), including

collisionless theory and observational effects of reconnection. Many aspects that

have been fully developed in Priest (2014) are treated more briefly here, but newer

aspects are added including the magnetic topology of global coronal magnetic fields

(Sects. 2.5, 2.7), current sheet formation in 3D magnetic fields (Sects. 5.3–5.6), the

plasmoid instability (Sect. 8.3), fast reconnection in a collisional or collisionless

medium (Sect. 9), new aspects and models of 3D reconnection and its implications

for coronal dynamics (Sects. 10–14), reconnection during flux emergence

(Sect. 15.1.2), interchange reconnection (Sect. 15.2), and brief overviews of our

understanding of 3D reconnection in the Earth’s magnetosphere (Sect. 15.3), in
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turbulence (Sect. 16) and non-thermal particle acceleration during reconnection

(Sect. 17).

When the plasma is ideal (Rme ! 1), the magnetic connections between plasma

elements are preserved. However, when non-ideal effects in the induction equation

come into play in a localised region of size L (� Le), say, magnetic reconnection

can occur—i.e., there can be a change of connectivity of plasma elements (as

indicated in Fig. 1). Often the following physical effects are produced by magnetic

reconnection:

(a) the generation of strong electric currents, electric fields and shock waves,

which in the solar atmosphere may accelerate fast particles;

(b) ohmic dissipation of the currents, which transforms some of the magnetic

energy into heat;

(c) the appearance of strong Lorenz forces, which accelerate plasma to high

speeds;

(d) changes in the global connections of magnetic field lines, which alter the

paths of fast particles and heat flow.

Resistive MHD provides a good model when the plasma is highly collisional, such

as in the Sun’s interior and low atmosphere. Even in the collisionless outer corona, it

still gives a reasonable model under certain caveats (see Birn and Priest 2007; Priest

2014), but Hall MHD with a two-fluid approach or a kinetic model provide fuller

treatments, especially in the interiors of the tiny diffusion region and shock waves

(Sect. 9).

In this review, we first develop the background and fundamental concepts that are

necessary for understanding the nature of reconnection (Sects. 1–5). We discuss the

structure of null points, where the magnetic field vanishes, both in two dimensions

(2D) (Sect. 2.1) and three dimensions (3D) (Sect. 2.2), as well as the ways in which

such nulls collapse. Then we describe other geometrical features such as

separatrices and quasi-separatrices, which map out the skeleton and quasi-skeleton

of a complex magnetic configuration (Sects. 2.5,2.6). Other useful and subtle

concepts are magnetic helicity (Sect. 4.6), the conservation of magnetic flux and

field lines (Sect. 3.2), magnetic diffusion and field-line motion (Sect. 3.3). These

(a) (b)

Fig. 1 A change of magnetic connectivity is produced by reconnection in a localised diffusion region
(shaded), such that a plasma element A is initially connected to a plasma element B but after reconnection
it has become connected to C. For a related movie (courtesy of K. Galsgaard) see Supplementary
Information
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enable us to go on to describe the different models for 2D and 3D reconnection in

Sects. 6–12, as well as some applications and extensions in Sects. 13–17.

1.1 Historical overview

Reconnection theory originated with: Giovanelli (1947)’s idea that electric fields

near a magnetic neutral point may accelerate particles and generate heat in solar

flares; Cowling (1953)’s realisation that a current sheet only a few metres thick and

created by the collapse of an X-type neutral point could do so; and Dungey (1961)’s

proposal of reconnection at the Earth’s Magnetosphere.

There have been four phases in the development of the theory, as follows.

(i) The Sweet–Parker model (Sweet 1958a; Parker 1957) for steady-state

reconnection in a thin current sheet of length L, in which magnetic field Bi

is carried into the sheet at a speed

vi ¼
vAi

R
1=2
mi

; where vAi ¼
Bi
ffiffiffiffiffiffi

lq
p and Rmi ¼

LvAi

g ð2Þ

are the inflow Alfvén speed and magnetic Reynolds number, respectively,
based on Bi, L and vAi. When Rmi � 1, the reconnection rate (vi) is much

smaller than vAi, and so this model describes slow reconnection.
Then Furth et al. (1963) discovered several resistive reconnection insta-

bilities of a current sheet, including the tearing mode (Sect. 8). Also,

Petschek (1964) proposed the first regime of fast reconnection, whose

maximum reconnection rate is typically a hundredth or a tenth of the global

Alfvén speed (0:1vAe), and so it is indeed rapid enough for a solar flare.

Most of the energy conversion takes place at four slow-mode shock waves

that stand in the flow and extend outwards from a tiny central Sweet–Parker

current sheet.

(ii) Numerical experiments (Biskamp 1986) revealed solutions quite different

from Petschek’s. These at first cast doubt on the validity of the Petschek

mechanism, until Priest and Forbes (1986) discovered a whole family of

Almost-Uniform models for fast reconnection, which include the solutions

of both Petschek and Biskamp as special cases. The stability of these

models has been clarified by Baty et al. (2009a, b), who found them to be

stable when the magnetic diffusivity in the diffusion region is enhanced,

which may well be produced by current-induced micro-turbulence. Such

fast reconnection is thus one way to produce fast reconnection in the solar

atmosphere.

(iii) The realisation that fast reconnection at a similar rate to Petschek’s

mechanism also occurs in two other situations, namely, collisionless
reconnection and impulsive bursty reconnection. When reconnection is

collisionless, the Hall effect creates an ion diffusion region of width equal

to an ion inertial length together with a smaller electron diffusion region,

and these replace the resistive diffusion region (Shay et al. 1998; Huba

2003). Here, the GEM Challenge has revealed that the same fast rate of
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reconnection is produced by full-particle, hybrid and Hall MHD codes

(Birn et al. 2001). In impulsive bursty reconnection, the diffusion region

becomes unstable to secondary tearing (Bulanov et al. 1979; Biskamp

1986; Priest 1986; Forbes and Priest 1987; Loureiro et al. 2007;

Bhattacharjee et al. 2009).

(iv) Most of the attention is now focused on 3D reconnection, which is

revealing many new features that are completely different from 2D

reconnection (Priest et al. 2003). A key realisation (Schindler et al. 1988)

is that the condition for reconnection in 3D is the presence of an electric

field (Ek) parallel to the magnetic field, namely,
Z

Ek ds 6¼ 0;

where the integral is taken along a magnetic field line through a diffusion

region where the plasma is not ideal. If it is evaluated over all field lines, its

maximum value determines the reconnection rate. Unlike the situation in

2D, this can occur in the absence of null points.

Various types of 3D reconnection have been discovered whenever strong localised

currents form, depending on whether the current is concentrated along the spine or

fan of a null point or along a separator (joining two null points) or a quasi-separator

field line (i.e., a hyperbolic flux tube) or in a braid, namely:

– torsional spine or torsional fan reconnection (Sect. 10.2) with rotational

motions near a null;

– spine-fan reconnection with shearing motions near a null (Sect. 10.2);

– separator reconnection (Sect. 11) at the intersection of two separatrix surfaces;

– quasi-separator or HFT reconnection (Sect. 12) at the intersection of two quasi-

separatrix layers (QSLs);

– and braid reconnection (Sect. 14.1).

Across a separatrix surface the mapping of magnetic field lines changes

discontinuously, whereas across a QSL it changes extremely rapidly but contin-

uously. Quasi-separator reconnection has also been referred to as slip-running
reconnection (Aulanier et al. 2006), which refers to the magnetic flipping process

(Priest and Forbes 1992) that is a common feature of much reconnection in three

dimensions.

1.2 Summary of reconnection concepts

The behaviour of magnetic fields in 3D is much more subtle and complex than in 2D

and exhibits many new features [see Sect. 4 and Priest (2014) for details]. If the

plasma behaves in a nonideal way in a finite localised region, then 2D reconnection

is only one of several classes of behaviour that obey Faraday’s law and $ � B ¼ 0.

The largest subclass is the one that conserves electromagnetic flux

(
R

SðtÞ B � dSþ
R

SðtÞ E � dl dt ¼ constÞ: Within that, there lie two large classes of
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solution, namely, those that conserve magnetic flux (
R

SðtÞ B � dS ¼ const) and those

that represent 3D reconnection Hornig, 2001. These in turn intersect in the subclass

of 2D reconnection.

Magnetic flux is conserved when the magnetic flux through any surface moving

with the plasma is constant, whereas magnetic field lines are conserved when any

pair of plasma elements lying initially on a magnetic field line remain connected by

a field line. For an ideal plasma, Eþ v� B ¼ 0 and both of these conservation laws

hold. A consequence of this is that the magnetic topology is also conserved, where

magnetic topology refers to any property that is preserved during a smooth

deformation, such as the linkage or knottedness of magnetic field lines.

However, when the plasma is non-ideal, so that Eþ v� B ¼ N; say, where

N 6¼ 0 represents any nonideal process, the physical effects depend on the form of

N. Thus, when B� ð$� NÞ ¼ 0 magnetic field lines are conserved, but when

$� N ¼ 0 magnetic flux is conserved. The forms of these conditions imply that

flux conservation and field-line conservation are no longer equivalent, in the sense

that flux conservation implies field-line conservation, but the opposite is not true

(Sect. 3.2).

There is an important distinction between magnetic diffusion and magnetic
reconnection (Sect. 4.1). Reconnection is a global process which includes diffusion

in a localised region, but there are examples of diffusion with no reconnection; for

example, the magnetic field may diffuse though the plasma with plasma elements

not changing their magnetic connectivity.

The form of N determines whether diffusion or reconnection occurs and also the

type of reconnection. If it cannot be written in the general form N ¼ u� Bþ $U,
then 2.5D or 3D reconnection takes place. However, if it can be written in this form,

then:

(a) if u is smooth, the magnetic field diffuses or slips through the plasma without

reconnection;

(b) but if u is singular, then 2D reconnection occurs.

In 2D, therefore, one can either have slippage of the magnetic field, or

reconnection (at an X-type null point), or destruction or generation of magnetic flux

(at an O-type null point).

3D reconnection, however, has a completely different nature to 2D reconnection

(Sect. 4.4). For example, in 2D, reconnection takes place at an X-point, with the

field lines slipping through the plasma in the diffusion region in a manner described

by the flux velocity and changing their connections only at the X-point. However,

none of these properties hold in 3D, where reconnection may take place at a null or

at a separator or quasi-separator (or hyperbolic flux tube), and in the diffusion

region field lines continually change their connections. Also, the concept of a flux

velocity has to be rethought, since a single flux velocity no longer exists

(Sect. 3.3.3, Sect. 4.4).

All of the above concepts are developed in detail in Priest (2014) and briefly in

the following sections. However, we begin in the next two sections by discussing

important aspects of magnetic field structure in two and three dimensions.
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2 Topological and geometrical features of magnetic fields

In two dimensions reconnection occurs only at null points (described in Sect. 2.1).

These nulls may be pre-existing in the field and undergo local collapse to form a

current sheet (Sect. 2.1), or a one-dimensional current sheet may form, within which

a 2D null is created when reconnection is initiated. By contrast, in three dimensions,

reconnection is not constrained to occur only at null points: several other magnetic

field structures may be sites of reconnection, since they are natural locations where

current concentrations tend to form and dissipate. These include separatrix surfaces

and their intersections in separator curves (Sect. 2.3), which form a topological
skeleton or web-like structure in a complex magnetic configuration (Sect. 2.5).

Separatrices contribute to the topological structure of a configuration, which may

undergo sudden changes in structure, called bifurcations (Sect. 2.4). In addition,

non-topological (i.e., geometrical) features, called quasi-separatrix layers (QSLs),

can be an important part of the geometry of a magnetic field and form a quasi-
skeleton. They intersect in quasi-separators or hyperbolic flux tubes (HFTs), where
strong currents may also accumulate (Sect. 2.6). The term structural skeleton has

been suggested by Titov to refer to the sum of the topological and quasi-skeleton

(i.e., both the separatrices and QSLs) and it may be best identified by Titov’s

Q-factor (Sect. 2.6) (Titov 2007; Titov et al. 2009). For an in-depth account of

magnetic topology which complements this review, see Longcope (2005).

2.1 Null points in two dimensions

Special locations in a magnetic configuration where the field vanishes are called

neutral points or null points. In 2D, they come in two types, X-points or O-points,
near which the field lines are hyperbolic or elliptic, respectively (Fig. 2). X-points

have a tendency to collapse and form intense sheets of current where reconnection

takes place, whereas O-points can be locations of creation or destruction of

magnetic flux.

Sufficiently close to a generic magnetic null, the field is dominated by linear

terms and has the form

Fig. 2 Examples of 2D null points of (left) O-type and (right) X-type
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B ¼ ½Bx;By� ¼
B0

r0
½y; �a2x�; ð3Þ

where B0, r0 and �a are constants.

From j ¼ $� B=l, the value of the current density (in the z-direction) is

jz ¼
B0

lr0
ð�a2 � 1Þ: ð4Þ

O-points arise when �a2\0, with the particular case �a2 ¼ �1 giving circular field

lines (Fig. 2a). X-points arise when �a2 [ 0, for which the limiting field lines

y ¼ 	 �a x, known as separatrices, are inclined at 	 tan�1 �a to the x-axis. The par-

ticular case �a ¼ 1, gives a separatrix angle of 1
2
p (Fig. 2b) and makes the current

density vanish (Eq. 4).

An X-type neutral point tends to be locally unstable if the sources of the magnetic

field are free to move (Dungey 1953). This may be demonstrated by a qualitative

physical analysis, a linear analysis or a nonlinear self-similar solution, as detailed in

Priest (2014).

An equilibrium X-point (Eq. 3) with �a ¼ 1 has field lines given by y2 � x2 ¼
const (Fig. 3a), and is acted on by a Lorentz force (j� B), which may be split into a

magnetic tension force (T � B � rÞB=l) acting outwards and a magnetic pressure

force (P � �rðB2Þ=ð2lÞ) acting inwards. Initially, these two balance one another,

but, if the field is distorted by keeping the form of Eq. (3) and letting �a2\1, it is no

longer in equilibrium (Fig. 3b). The equation for the magnetic field lines becomes

y2 � �a2x2 ¼ const; with the separatrix field lines ðy ¼ 	 �axÞ no longer being

inclined at 1
2
p. Along the x-axis, the outwards magnetic tension force now dominates

the magnetic pressure due to the increase in field-line curvature, while along the y-
axis the inwards magnetic pressure dominates. The equilibrium (3) is unstable,

because the Lorentz force tends to make the separatrices close up even more. The

resulting increase in �a implies that the current density also increases.

Fig. 3 (left) The field lines of an X-point in equilibrium, with perpendicular separatrices, such that the
magnetic pressure (P) and tension (T) forces acting on a plasma element (shaded) balance one another.
(right) A perturbation with uniform current produces a resultant force R ¼ T þ P that acts to make the
separatrices close up. Here we show P and T in just the top and left quadrants and R in just the bottom and
right quadrants
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Note that the instability occurs only if conditions at distant boundaries allow. It

cannot take place in, for example, a potential magnetic configuration whose field

lines are tied to the boundaries, since such a minimum-energy state would be stable.

However, for a more complex non-potential configuration containing extra energy,

collapse may be a means of forming strong currents and so dissipating the excess

energy. A series of thorough linear analyses of X-type collapse have been

undertaken (e.g., Bulanov et al. 1990; Craig and McClymont 1991, 1993; Titov and

Priest 1993). They demonstrate that collapse occurs for a wide variety of initial and

boundary conditions, provided the perturbation rate is fast enough that dynamic

effects are important, and they show surprisingly that magnetic reconnection during

the linear regime is fast and scales as 1/(ln g).

2.2 Null points in three dimensions

At a linear 3D null point the magnetic field vanishes, and nearby the field increases

linearly with distance from it. The simplest example has magnetic components

Fig. 4 The two main features of a 3D null point are the spine field line [using Priest and Titov (1996)’s
notation] (or c-line, using Lau and Finn (1990)’s notation) and the fan surface (or R-surface). For a a
proper radial null, the field lines of the fan spread out radially in all directions, while for b an improper
radial null, most of them touch one of the directions. c A spiral null point occurs when jk exceeds a

critical value, while d an oblique null point results when j? 6¼ 0 (see Eq. 6)
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ðBx;By;BzÞ ¼ ðx; y;�2zÞ; ð5Þ

and obeys $ � B ¼ 0 identically. The magnetic field lines satisfy

dx=Bx ¼ dy=By ¼ dz=Bz, and so their equations are given by y ¼ Cx and z ¼ K=x2;
where C and K are constant. They give rise to quite a different structure from 2D

(see Fig. 4).

Two special families of field lines pass through a 3D null point (Fig. 4a), as first

discussed in a far-sighted paper by Lau and Finn (1990). The terms spine and fan
were later coined for them by Priest and Titov (1996). In the linear null point field of

Equation (5), the spine curve is the single field line that approaches or recedes from

the origin along the z-axis, with nearby field lines making up two bundles that

spread apart as they approach the xy-plane (i.e., the fan surface). When the fan field

lines radiate from the null we refer to it as a positive null point, whereas when they

converge on the null we call it a negative null point. A positive null has topological

degree �1 while a negative null has topological degree þ1: they were referred to as

‘‘B-type’’ and ‘‘A-type’’, respectively, by Lau and Finn (1990).

The above null point (Equation 5) is referred to as a proper radial null, since it

has fan field lines that are straight. A broader class of null points has field

components

ðBx;By;BzÞ ¼ ðx; ay;�ða þ 1ÞzÞ:

When a 6¼ 1, we have an improper radial null, whose fan field lines are curved,

touching the y-axis when 0\a\1 and the x-axis when a[ 1 (Fig. 4b).

A general linear null possesses a magnetic field with nine arbitrary constants.

However, these may be reduced to only four independent constants (a; b; jk; j?) by

using $ � B ¼ 0, normalising and rotating the coordinate axes (Parnell et al. 1996),

so that
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When the component ðj?Þ of the current perpendicular to the spine vanishes, the fan

surface is normal to the spine: otherwise it is referred to as an oblique null (Fig. 4d).
When the component ðjkÞ of current parallel to the spine is sufficiently large, the

eigenvalues of the matrix in Eq. (6) become complex and it transforms into a spiral
null, whose fan field lines spiral into or out of the null (Fig. 4c). The collapse of a

linear 3D null point in different ways has been studied, for example, by Bulanov and

Olshanetsky (1984), Parnell et al. (1997), and Mellor et al. (2003).

The existence of null points in the solar corona has been discussed by several

authors. Twelve hexagonal supergranule cells with sources at their boundaries and

centres were modelled by Inverarity and Priest (1999). The distribution of coronal

null points due to a random distribution of photospheric sources possesses typically

one coronal null for every ten photospheric sources (Schrijver and Title 2002;
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Longcope et al. 2003). For a field extrapolated from an observed MDI magne-

togram, Longcope and Parnell (2009) found one null above a height of 1.5 Mm per

322 Mm2 patch of the quiet Sun, but this has not yet been repeated for higher-

resolution SDO/HMI or SUNRISE magnetograms. Freed et al. (2015) searched for

magnetic nulls in potential field source-surface (PFSS) extrapolations based on

synoptic magnetograms from the Wilcox Solar Observatory, and compared them

with observations of coronal emissions from SDO/AIA. Using only 29 harmonics in

the expansion they found 582 null points in the extrapolated field between 1:05R

and 2:5R
. They also discussed whether the presence of nulls can be inferred from

coronal observations of hyperbolic X-type shapes in the emission.

Fig. 5 In two dimensions, separatrix curves a may arise from an X-point or b they may touch a boundary.
c In three dimensions, an example of the topology of a global potential field extrapolation. Null points are
dark blue and red, while separatrix surfaces are pale blue and pink, intersecting in separators (yellow).
Images (a) and (b) are reproduced with permission from Priest (2014), copyright by CUP, and (c) from
Platten et al. (2014), copyright by ESO
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2.3 Separatrices and separators

The coronal magnetic field may be modelled as being produced by continuous or

discrete photospheric flux sources and sinks. A two-dimensional field in general

contains special field lines, called separatrix curves, which divide the plane up into

topologically distinct regions, each containing the field lines that start from a

particular source and end at a particular sink. Figure 5a,b illustrates the two types of

separatrix curve that are possible in 2D, namely, those that originate at X-points and

those that touch the boundary in a so-called bald patch (Titov et al. 1993). During

2D reconnection, the field lines are broken and rejoined at an X-point as magnetic

flux moves from one topological region to another across the separatrices.

These ideas naturally extend into three dimensions, where surfaces of field lines

called separatrix surfaces or separatrices divide the volume into regions of distinct

field-line connectivity. When these surfaces intersect one another, they do so in a

special field line called a separator, which begins and ends at null points or on the

boundary (Figs. 5c, 6). Separators were first considered in a ground-breaking paper

by Sweet (1958b) and later analysed by many others (Lau and Finn 1990; Priest and

Titov 1996; Longcope and Cowley 1996; Longcope 2005; Parnell et al. 2010). The

separatrix surfaces are of two types, namely separatrix fan surfaces, which are the

fan surfaces of null points described in the previous section, and separatrix touching
surfaces, which touch a boundary in a curve referred to as a bald patch (Fig. 5)

(Seehafer 1986; Titov et al. 1993; Bungey et al. 1996; Titov and Démoulin 1999).

The concept of a touch curve for the Earth’s magnetic field was proposed by Hide

(1979), and the role of bald patches has been considered for solar prominences and

flares (Delannée and Aulanier 1999; Aulanier et al. 2000; Aulanier and Schmieder

2002; Schmieder et al. 2001; Pariat et al. 2004). The global topology or so-called

skeleton of complex fields due to many sources then comprises a network of

separatrix surfaces and their associated null points and separators. Many different

configurations are possible, as discussed in Sect. 2.5.

Two types of separatrix may be seen in Fig. 7, namely, open separatrices and

closed separatrices (Priest 2014). Open separatrix surfaces are bounded by spines

and meet the boundary in non-closed curves, so that, even though the field-line

mapping has a discontinuity as the separatrix is crossed, all the field lines occupy

one region, since any two points in the volume can be joined by a curve that does

not cross any separatrices. On the other hand, closed separatrices meet the boundary

in closed curves, and so form closed flux surfaces that split the volume into

topologically different regions.

2.4 Changes in topology and creation of null pairs by a bifurcation

A local bifurcation takes place when the number or nature of null points changes,

whereas a global bifurcation in 2D makes the separatrices change their connectivity.

In general, a local separator bifurcation may create or destroy isolated null points in

pairs (N1 and N2, say). The topological structure of the magnetic field during this

process is shown in Fig. 7a, where the spines of each null lie in the fans of the other

null. The fans (F1 and F2) are bounded by the spines (S2 and S1) of the opposite
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nulls and form two sheets which intersect in a single separator that links one null to
the other (see also Fig. 6). During the creation of a linear null pair, a second-order

null appears and then splits into two nulls joined by a separator, as shown.

Additional separators joining a pair of nulls can be created by a global bifurcation.

For instance, Fig. 7b shows a double separator consisting of a pair of separators,

both of which join the two nulls.

Albright (1999) described the way that null points can form in clusters, due to

fluctuations in the weak-field region surrounding a null of a ‘‘large-scale’’ field.

Thus, another way in which a pair of null points can be created is near a pre-existing

null, as shown in Fig. 8. Separators link the new lateral nulls to the central null, and

Fig. 6 Magnetic field line
structure formed when the fan
surfaces of two null points
intersect to form a separator line
(red) joining the two nulls. For a
related movie see
Supplementary Information. The
movie shows a rotating 3D
perspective (courtesy of
K. Galsgaard)

Fig. 7 The topological structure of the field near a pair of nulls (N1 and N2), with spines S1 and S2 and
fans F1 and F2. In a the fans of the two nulls are open separatrices that intersect the boundary in non-
closed curves (indicated by dotted lines) and intersect each other in a single separator line. This is the
generic case for the creation or destruction of a separator by a local bifurcation. In b the fans are closed
separatrices that intersect the boundary in closed curves and each other in a double separator forming a
closed curve; the spines of the other nulls lie on them but do not bound them: they represent the only field
lines that connect to the other nulls. Image reproduced with permission from Priest (2014), copyright by
CUP

123

Magnetic reconnection: MHD theory and modelling Page 15 of 202 1



the fan of the central null is an open separatrix (Fig. 8b). A common situation in the

corona (Fig. 8c) is to have a separatrix dome possessing three nulls and an open

separatrix, which can make up a pseudo-streamer (Titov et al. 2011; Scott et al.

2021).

The reason why null points are invariably created in pairs is that the topological

degree of the volume must be preserved at all times (unless nulls cross the

boundary): nulls contribute either þ1 (negative null) or �1 to this topological

degree, and so must be created in pairs of opposite sign. Many numerical

experiments, such as those on coronal heating or flux emergence, possess a large

number of null points that form like beads on a string or chain, joined in multiple

ways by short separators (Parnell et al. 2010; Haynes and Parnell 2010). These

separators tend to appear as either tiny intracluster separators connecting nulls

inside a cluster or as long intercluster separators that join distant nulls or other

clusters.

Topological or structural stability refers to a situation where the topological

features of a magnetic configuration (comprising its skeleton) are not changed by a

small change in the field (Hornig and Schindler 1996). Topological instability, on
the other hand, implies that an arbitrary change of the magnetic field causes a

topological change. Linear null points are structurally stable in 2D or 3D (Hornig

and Schindler 1996), but null lines or null sheets (which comprise curves or surfaces

where the field vanishes) are structurally unstable, since they will usually break up

into a set of null points when perturbed. In general, null points are structurally

unstable when they are degenerate, so that the Jacobian matrix ðDB) given by

Eq. (6) is singular.

2.5 Skeletons of complex magnetic configurations

To understand the dynamics of complex magnetic fields such as the field of the solar

corona, a key question is how to characterise the magnetic field’s structure. The

photospheric magnetic field is concentrated by convection into many intense flux

Fig. 8 a An initial null point (N1), which b spawns two new nulls (N2 and N3) by means of a local double
separator bifurcation. The resulting topology possesses an open separatrix coming from the fan F2 of (N2)
and bounded by spines S1 and S3 of the other two nulls (Brown and Priest 2001). c A common situation in
the corona where a dome that arches down to the solar surface consists of the fans F1 and F3 of two nulls,
while an open separatrix expands outwards from a third null and is bounded by the spines S1 and S3.
Image reproduced with permission from Priest (2014), copyright by CUP
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tubes, and each corresponding photospheric flux concentration is itself linked in the

corona to many other sources by magnetic field lines (e.g., Schrijver and Title

2002). Magnetic nulls, separatrices and separators are potentially important

locations for rapid energy conversion, and so together they can reveal important

clues to understanding the dynamics of the solar atmosphere. Thus, a powerful way

to understand the behaviour of plasmas threaded by such complicated magnetic

fields is to construct the skeleton of the field, namely, the set of separatrix surfaces

that originate both in the fans of null points and in bald patches and which intersect

in separators (see Sect. 2.3).

Early analyses of the different topological magnetic field structures that might be

found in the corona made use of the magnetic charge topology approach (see

Longcope 2005, for an extensive review). In this model, the photospheric flux

concentrations are approximated by magnetic point sources (monopoles). Priest

et al. (1997), Brown and Priest (1999) catalogued the different configurations that

are possible when three photospheric sources are present, and the bifurcations that

occur during transitions between those states. This was extended to four flux sources

by Beveridge et al. (2002, 2003). These magnetic charge topology models contain a

number of photospheric and coronal null points (and separators joining them).

However, when the field is modelled alternatively with continuous flux sources,

some of the photospheric nulls are no longer present (Lee and Brown 2020), while

some of the separators become quasi-separators (or hyperbolic flux tubes)

(Sect. 2.6).

Later, the magnetic skeleton in fields with continuous photospheric flux

distributions was analysed in detail, with different characteristic structures

identified. Platten et al. (2014) showed that the separatrices associated with coronal

magnetic nulls (and the spines of those nulls that typically bound one or more fans

as in Figs. 7, 8) can intersect with one another in various different configurations

involving both closed and open separatrix structures. They identified new

topological features, such as separatrix caves and separatrix tunnels (Fig. 10).

In the solar corona, the skeleton thus possesses several building blocks:

Fig. 9 Building blocks for coronal magnetic field topology arising from coronal nulls. Separatrix domes
are formed by the spreading of the fan of the null point down to the solar surface, while separatrix curtains
form when a null-point fan is open into the high corona
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– separatrix domes, whose photospheric field encloses a region of parasitic

polarity, above which lies a coronal null (N) with a fan that closes down to the

photosphere (Fig. 9a);

– separatrix curtains, which spread out from the fans of coronal nulls as open flux

sheets that project out into the solar wind, either as closed separatrices or open

separatrices (Fig. 9b);

– bald-patch separatrices, which touch the solar surface at bald patches;

– separatrix caves, having open separatrix domes with one opening, formed from

a dome that does not intersect the photosphere on all sides but is bounded by the

spine of an opposite polarity null (Fig. 10);

– separatrix tunnels, having open separatrix domes with two openings, formed

from a dome that does not intersect the photosphere on all sides but is bounded

by two spines from opposite polarity nulls (Fig. 10).

2.6 Quasi-skeletons

2.6.1 Quasi-separatrix layers (QSLs) and the squashing factor

As described above, magnetic nulls and separators are potential sites of reconnec-

tion in three dimensions. This is in part because they produce discontinuities of the

field-line mapping, and so stress tends to accumulate at these structures and drive

growth of the electric current (see Sect. 5). However, intense electric currents can

also accumulate at locations where the field-line mapping (or connectivity) is

continuous, but exhibits steep gradients. Such locations are called quasi-separatrix
layers (QSLs), a concept first proposed by Priest and Démoulin (1995), built on an

earlier idea of singular field lines (Priest and Forbes 1989) and later improved (Titov

et al. 2002) and soon applied extensively to active regions and flares (Démoulin

et al. 1996a, 1997b, a; Démoulin 2006; Aulanier et al. 2006). A collection of QSLs

of a field is known as a quasi-skeleton.
Consider the mapping of a 2D X-point field (Bx ¼ x; By ¼ �y) from one point

ðx0; y0Þ on the boundary to another point ðx1; y1Þ. When ðx0; y0Þ crosses a separatrix,
there is a discontinuity in the mapping as the point ðx1; y1Þ suddenly jumps in

location (Fig. 11a).

In 3D, discontinuities in the mapping are also present at separatrix surfaces that

spread out from the fans of null points or from bald patches. In the absence of nulls

and bald patches, there are no separatrices, and so the mapping from one footpoint

to another is continuous (Schindler et al. 1988). Priest and Démoulin (1995),

however, discovered that, even when the mapping is continuous, there often exists a

remnant structure known as a quasi-separatrix layer, where the gradient of the

mapping is much larger than normal. For example, suppose we add a uniform field

lẑ to the 2D X-point field to give

ðBx;By;BzÞ ¼ ðx;�y; lÞ

inside a cube of side 1 (�1
2
6 x 6

1
2
; �1

2
6 y 6

1
2
; 0 6 z 6 1). Suppose l � 1, so

that e�1=l ¼ � � 1. Then the planes x ¼ 0 and y ¼ 0 are QSLs, which can be seen as
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follows. The mapping from the base z ¼ 0 to the top z ¼ 1 and side x ¼ 1
2
is given

by

Fig. 10 The structure in pink of a separatrix cave (above) and a separatrix tunnel (below). 3D images of
the topology are shown (left) together with maps of the locations where the skeleton meets the
photosphere (right). Blue represents a separatrix curtain and green a heliospheric current sheet curtain.
Images reproduced with permission from Platten et al. (2014), copyright by ESO

Fig. 11 a A 2D X-field has a discontinuity in the mapping of footpoints from the top boundary of a square
to the side boundary, b but a 3D sheared X-field has a mapping that is continuous from one plane z ¼ 0 to
another plane z ¼ L. Image reproduced with permission from Priest and Démoulin (1995), copyright by
AGU
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x1 ¼ x0 ez1=l; y1 ¼ y0 e�z1=l:

Thus, as the point A moves a small distance across x ¼ 0 from x0 ¼ �e�1=l to

x0 ¼ e�1=l, while y0 remains constant, so x1 moves rapidly over a large distance on

the top from �1=2 to þ1=2, as indicated in Fig. 11b (y1 remains constant and very

much smaller than y0).
In order to investigate more generally the quasi-topology of a 3D configuration,

the technique is to calculate the mapping of field-line footpoints from one part of a

boundary to the other and to determine where the mapping gradient is large (Priest

and Démoulin 1995). For example, follow Titov et al. (2002) in considering a

typical solar active region with field lines joining photospheric domains of positive

and negative polarity (Fig. 12). Set up Cartesian coordinates with z ¼ 0 representing

the photosphere and suppose the two photospheric footpoints of a given field line

have coordinates ðxþ; yþÞ and ðx�; y�Þ. The mappings are represented by vector

functions X�ðxþ; yþÞ and Y�ðxþ; yþÞ for the mapping in one direction, as well as

Xþðx�; y�Þ and Yþðx�; y�Þ for the mapping in the opposite direction. Priest and

Démoulin (1995) had suggested that the location of QSLs can be found from the

condition N	 � 1, where N	 are the norms of the footpoint mapping matrices,

defined by

N	 � Nðx	; y	Þ ¼
oX�
ox	

� �2

þ oX�
oy	

� �2

þ oY�
ox	

� �2

þ oY�
oy	

� �2
" #1=2

:

Applying this condition for the location of a QSL to magnetic fields in active

regions worked well (e.g., Démoulin et al. 1997a), but Titov et al. (2002) and Titov

(2007) realised that it could be improved. They suggested instead that N be nor-

malised to give the so-called squashing factor (Q) and imposed the condition Q � 2

to identify QSLs, where Q is defined to be either

Qþ ¼
�N2

þ
Bzþ=Bz�

or Q� ¼ �N2
�

Bz�=Bzþ
: ð7Þ

When a circle of footpoints is mapped along field lines to give an ellipse, its aspect

ratio is given by Q=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2=4� 1
p

, which tends to Q when Q � 2. Thus, Q

Fig. 12 The photospheric plane and magnetic field lines connecting positive and negative polarities from
ðxþ; yþÞ to ðx�; y�Þ, which are separated by the polarity inversion line (IL). Image reproduced with
permission from Titov et al. (2002), copyright by AGU
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represents the degree of squashing of an infinitesimal flux tube, which becomes a

thin layer-like flux tube when Q � 2. The basic properties of Q are as follows:

(i) Q is independent of the direction of the mapping so Qþ= Q�;
(ii) Q ! 1 at a separatrix surface;

(iii) Q � 2 at a quasi-separatrix layer;

(iv) Maps of Q identify the locations (i.e., both separatrices and QSLs) where

large current densities may accumulate, provided appropriate velocities are

present, and therefore where reconnection has the potential to occur.

Titov stresses that a QSL is a geometric rather than a topological feature and also

emphasizes its importance for current sheet formation by stagnation-point flows

(Cowley et al. 1997; van Ballegooijen 1985; Mikić et al. 1989; Longcope and

Strauss 1994; Galsgaard and Nordlund 1996).

Later, Titov (2007) derived a covariant form for the squashing factor (Q) which

enabled him to diagnose the presence of QSLs in closed and open configurations

with arbitrary boundary shapes. He also showed that the perpendicular squashing

factor (Q?) is superior to Q, since it eliminates the projection effect that is present in

field lines that nearly touch a boundary. Furthermore, Titov et al. (2009) introduced

the concept of slip-forth (Qsf ) and slip-back squashing factors (Qsb), which enable

the identification of flux tubes that have either just reconnected or are about to be

reconnected (Sect. 12.1).

2.6.2 Examples of QSLs

Titov (2007) described two examples of simple configurations for modeling solar

flares. The first is a potential quadrupole configuration (Sweet 1969; Baum and

Bratenahl 1980; Gorbachev and Somov 1988), which possesses a separator joining

two nulls when the photospheric magnetic flux is concentrated in discrete patches.

However, when the photospheric flux is distributed smoothly, the nulls and

Fig. 13 A potential quadrupole configuration, showing the photospheric distributions of a the squashing
degree Q superimposed on a few iso-contours of the corresponding magnetogram and b half of the
magnetic flux surface Q ¼ 100 demonstrating the shape of the mid cross-section of the HFT. Image
reproduced with permission from Titov et al. (2002), copyright by AGU
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separator disappear, but a quasi-separator (or hyperbolic flux tube) remains, as

shown in Fig. 13.

The quasi-separator represents the intersection of two quasi-separatrix layers

(QSLs), and the region around the quasi-separator is known as a Hyperbolic Flux
Tube (HFT) (Titov et al. 2002). The Hyperbolic Flux Tube is bounded by the

magnetic flux surface Q ¼ const � 2 and has a shape that continuously transforms

along the tube from a narrow flattened tube to a cross and then to a second

orthogonal narrow flattened tube at the other end, as follows (Titov et al. 2002):

The second example is a model for a twisted flux tube, which also contains a pair

of QSLs and a quasi-separator (or hyperbolic flux tube) (Démoulin et al. 1996b).

Titov and Démoulin (1999) suggested an approximate, cylindrically symmetric

equilibrium for a thin force-free toroidal flux rope with a net current I, major radius

R and minor radius a (Fig. 14). The symmetry axis of the flux rope lies below the

photospheric plane z ¼ 0 at a depth d. There is a balance between the outward radial

j� B self-force of the flux rope and the field of two magnetic charges of opposite

sign located on that symmetry axis below the photosphere at distances 	L from the

torus plane. The field outside the torus is current-free and contains a magnetic

X-line.

A line current I0 is added along the symmetry axis and creates a toroidal field

component, which turns the environment of the X-line into an HFT, as can be seen

in the photospheric distribution of Q in Fig. 15a (Titov 2007).

The most intense squashing occurs in very thin QSLs whose footprints have the

shape of narrow fishhook-like strips. Fig. 15b shows the flux surface Q ¼ 100 of the

Fig. 14 The Titov–Démoulin model of a circular force-free flux rope (left) with a net current I, embedded
in a potential background field produced by two subphotospheric magnetic charges (�q, q) and a line
current (I0). The resulting coronal field has a photospheric magnetogram (right) that resembles that of a
typical solar active region. The solid and dashed curves represent positive and negative iso-contours of
Bz, respectively. Image reproduced with permission from Titov and Démoulin (1999), copyright by ESO
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HFT. The variation of its cross-section is similar to that of the first example, except

that the whole structure is also twisted.

2.7 Global topology of coronal magnetic fields and methods of analysis

Several complementary tools have been developed in order to find the skeleton or

quasi-skeleton of a magnetic configuration. For the magnetic skeleton, the first step

is to locate the magnetic nulls, for which a common, robust way is the trilinear
method described by Haynes and Parnell (2007). Other techniques for finding

magnetic nulls exist, depending on the type of data, and these are compared by

Olshevsky et al. (2020). From the nulls, the spine and fan field lines can be

followed. Finding separator lines is challenging since the field lines tend to diverge

away from them, but subtle techniques have been developed by Haynes and Parnell

(2010).

Platten et al. (2014) used these methods to find the magnetic skeleton of the

global corona; they noted incredible complexity, especially as the resolution of the

magnetogram used for coronal field extrapolation is increased. In general, as the

magnetogram resolution is increased, many more nulls appear, usually at low

altitudes. Generally speaking, at solar minimum the apex of the helmet streamer

separatrix remains relatively close to the equator, and open and closed separatrix

fans are found in abundance at low latitudes (Fig. 16a). On the other hand, at solar

maximum the complexity tends to be greater, with separatrices of different types

extending up to the source surface at all latitudes (Fig. 16b). Platten et al. (2014)

made a statistical analysis of the topological complexity during the cycle. They

found that the number of nulls is anti-correlated with the sunspot number (and as a

result so too is the number of separators), which can be understood from the fact

more of the photosphere is covered by mixed polarity at solar minimum. On the

other hand the nulls and associated separators are located higher in the corona at

solar maximum. Again there is an intuitive explanation, namely, that null points

tend to form at heights on the order of the separation of the photospheric flux

patches responsible for their presence, and these flux patches are large at solar

Fig. 15 For the twisted flux tube configuration of Fig. 14 a the photospheric distribution of the squashing
degree Q together with magnetogram iso-contours, and b a cut through the HFT by a midplane with its
cross-section and footprint shown in black and white, respectively. Image reproduced with permission
from Titov (2007), copyright by AAS
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maximum. While this and many previous studies (see Sect. 2.5) focussed on

potential fields, Edwards et al. (2015) analysed the topological skeleton of a force-

free model for the coronal field. They showed that there are substantial differences

with the topology of the equivalent potential field models: for example, open field

domains (coronal holes) that are present in one model can be absent in the other. It

is also worth noting that, while the existence of nulls is relatively robust to the

extrapolation method, the details of the null spine-fan structure can be dependent on

the force-free extrapolation method (Metcalf et al. 2008). It is clear that extension

beyond potential field models is an important future avenue of research.

One disadvantage of calculating the magnetic skeleton is that QSLs and HFTs are

not included, leaving an incomplete picture of potential sites for reconnection. By

contrast, the squashing factor (Q) reveals the locations of both separatrices and

QSLs. However, it does not distinguish between them, except for the fact that

separatrices appear generally as thinner structures in practice (e.g., Titov 2007;

Titov et al. 2012; Masson et al. 2012). This is because separatrices correspond to

surfaces at which Q ! 1, whereas the finite resolution of such calculations means

that they deal only with large, finite Q values. A recent advance which allows fast,

accurate calculation of Q is the qslsquasher code developed by Tassev and

Savcheva (2017). It allows for accurate calculations of Q that are not susceptible to

noise, even for large integration steps along the field line, so that Q can be

calculated much more quickly than before (for a given spatial resolution).

Thus, in order to obtain a full and accurate picture of the important magnetic field

structures for reconnection, both the skeleton and the squashing factor should be

Fig. 16 Magnetic skeleton with positive (green) and negative (blue) field lines, as calculated by Platten
et al. (2014) at a solar minimum and b solar maximum. Positive and negative polarity open-field regions
are labelled OFP1, OFP2, ...and OFN1, OFN1, ...respectively. Topological structures include separators
(thick yellow), and separatrix surfaces (green and blue) traced from nulls and from the null lines (thick
green and blue) on the outer boundary at the base of the heliospheric current sheet (HCS). Image
reproduced with permission from Platten et al. (2014), copyright by ESO
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obtained. Recently, Scott et al. (2018, 2019) have used global calculations of Q to

segment the coronal volume into magnetic flux domains bounded by surfaces of

high Q, and have additionally calculated the magnetic nulls. Their motivation was to

explore the nature of structures bounding open and closed magnetic flux in the

corona: it is proposed that ‘‘interchange’’ reconnection—i.e., reconnection between

closed and open magnetic field lines—may be important for structuring the solar

wind (Fisk et al. 1998; Crooker et al. 2002; Antiochos et al. 2011)—see Sect. 15.2.

They discovered that, in a survey of potential fields, approximately half of these ‘‘S-

web’’ structures contain magnetic nulls, while the other half do not (Scott et al.

2019). This highlights the importance of determining the locations of both the QSLs

and the nulls and separatrices.

3 Conservation of magnetic flux or field lines

Central to understanding magnetic reconnection in three dimensions are the

concepts of flux and field-line conservation, which are much more subtle than

normally appreciated. For an ideal MHD plasma, the situation is straightforward,

since both flux and field lines are conserved, and the plasma velocity is identical

with the flux velocity and the field-line velocity (Sect. 3.1). In nonideal MHD,

however, flux and field-line conservation are no longer equivalent (Hornig and

Schindler 1996), and neither flux velocity nor field-line velocity is unique

(Sect. 3.2). Hornig (1997) has developed a more general concept of Electromag-
netic Flux Conservation, of which magnetic flux conservation is just a subclass [see

Priest (2014)], but here we focus just on the concepts of flux and field-line

conservation, following Hornig (1997, 2001).

3.1 Conservation in an ideal plasma

When the magnetic Reynolds number is very large (Rm � 1), the plasma behaves in

an ideal manner. The induction equation for magnetic field evolution and Ohm’s

law reduce to

oB

ot
¼ $� ðv� BÞ and Eþ v� B ¼ 0: ð8Þ

It may then be shown that magnetic flux, magnetic field lines and magnetic topology

are all conserved, and that the components perpendicular to the magnetic field of

plasma velocity (v?), flux velocity (w?) and field-line velocity (wL?) are the same,

namely,

v? ¼ w? ¼ wL? ¼ E� B

B2
:

For Magnetic Flux Conservation, the magnetic flux (
R

S B � dS) through any surface

composed of plasma elements is fixed (Fig. 17). Magnetic Field Line Conservation,
on the other hand, implies that two plasma elements that are initially linked by a

magnetic field line, will continue to be so at later times (Fig. 18).
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3.2 Conservation in a non-ideal plasma

When the plasma is not ideal, we assume that Ohm’s law takes the form

Eþ v� B ¼ N; ð9Þ

where the term N on the right is any general non-ideal term due to for instance

collisions, fluctuations, particle inertia or classical resistivity; in the case of classical

resistivity, it is written N ¼ g$� B. We shall find that flux and field-line conser-

vation depend on the form of N.

3.2.1 Magnetic flux conservation in a non-ideal plasma

The concept of flux transport can be extended to include non-ideal plasmas,

although the velocity of this transport is not unique. If a magnetic flux velocity ðwÞ
exists with the same flux-preserving property as in ideal MHD, namely, one for

which

Fig. 17 Magnetic flux
conservation: the flux through a
curve C1 at time t1 remains
constant when it is distorted into
a curve C2 at time t2 by a plasma
motion

Fig. 18 Magnetic field-line
conservation: plasma elements
(red, black, green circles) that
lie on the same field line at an
initial time (t1) will continue to
lie on a single field line at later
times (t2)
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oB

ot
¼ $� ðw� BÞ; ð10Þ

then we say that magnetic field evolution satisfying Eq. (10) is flux-preserving. For
an Ohm’s Law of the form (9), Faraday’s equation (oB=ot ¼ �$� E) implies that

oB

ot
¼ $� ðv� B� NÞ: ð11Þ

Comparing Eq. (10) with Eq. (11), we see that a flux velocity ðwÞ exists—and so

Magnetic Flux is Conserved—provided the nonideal term in Eq. (9) can be written

in the form

N ¼ u� Bþ $U; ð12Þ

where U is a potential and the difference (u � v� w) between the plasma and flux

velocities is the slippage velocity. Since u� B is perpendicular to B, it can be seen

from Eq. (9) that it is the $U term that can produce a component (Ek) of E along the

magnetic field, which is essential for 3D reconnection (Sect. 4.5). Furthermore,

Ohm’s law can then be written in terms of the flux velocity as

Eþ w� B ¼ $U: ð13Þ

In addition, magnetic flux is conserved provided N satisfies

$� N ¼ 0: ð14Þ

3.2.2 Magnetic flux velocity

Since displacements along the magnetic field are arbitrary when considering

transport of flux, we may set them to zero, so that ðw� vÞ � B ¼ 0. Then, useful

information about the nature of w can be found by taking the vector and scalar

products of Eq. (13) with B. First of all, taking vector products of the two forms (9)

and (13) of Ohm’s law with B and subtracting them implies that the flux velocity

may be written

w ¼ vþ ðN� $UÞ � B

B2
; ð15Þ

which implies that ðwÞ may become singular at a null point (where B ¼ 0).

Next, take the scalar product of Eq. (13) with B to give

B � $U ¼ E � B;

which, provided nulls or boundary conditions do not lead to difficulty, may be

integrated along a field line B from an arbitrary value U0ðr0; tÞ at some reference

surface ðr0Þ, say, to give
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Uðr; tÞ ¼
Z r

r0

E � dsþ U0ðr0; tÞ: ð16Þ

Since U0 is arbitrary, both Uðr; tÞ and ðwÞ in Eq. (15) are not unique.

When Ek ¼ 0 there is no 3D reconnection, but there is magnetic diffusion with a

slippage velocity given for a resistive Ohm’s law by Eq. (15) as

u � v� w ¼ � j� B

rB2
:

In order to avoid U becoming multiple-valued as one integrates around a closed field

line, a necessary condition for (16) to be valid is that

U ¼ �
I

E � dl ¼ 0

around such a field line. When the magnetic field is steady (so that $� E ¼ 0), this

is always satisfied, but, when it is unsteady, it may fail (Hornig 2001).

3.2.3 Magnetic field line conservation in a non-ideal plasma

Whenever magnetic flux is conserved, it turns out that magnetic field lines are also

conserved. By contrast, there are many evolutions in a non-ideal plasma that

conserve field lines but do not conserve flux. In a non-ideal plasma, magnetic flux is

conserved if Eq. (10) holds, whereas magnetic field lines are conserved if

oB

ot
¼ $� ðwL�BÞ þ kLB; ð17Þ

so that, by comparing with Eq. (11), N must have the property that $� N is parallel

to B, i.e., field lines are conserved if

B� ð$� NÞ ¼ 0: ð18Þ

In Eq. (17), wL is a magnetic field-line velocity and k is a scalar function of

position, and so, by choosing k ¼ kL þ $ � wL and using $ � B ¼ 0, Eq. (17) may be

rewritten

oB

ot
þ ðwL � $ÞB� ðB � $ÞwL ¼ kB:

Thus, if we choose kL ¼ 0 and wL ¼ w, Eq. (17) for field-line conservation reduces

to Eq. (10) for flux conservation. In other words, when flux is conserved, field lines

are conserved too. On the other hand, when kL 6¼ 0, field lines are conserved but flux

is not.

3.2.4 Magnetic field line velocity

When the plasma is not ideal, the field-line velocity component ðwL?Þ can be

defined uniquely if and only if Ohm’s Law may be written as
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Eþ wL�B ¼ a; ð19Þ

with $� a ¼ �kLB; in which case Eq. (19) and Eq. (8) imply Eq. (17). This def-

inition is field-line preserving but is only flux preserving when $� a ¼ 0, so that

a ¼ $U and kL ¼ 0.

When the plasma is ideal, it is always possible to write Eq. (19), and so the

perpendicular component of the field-line velocity is

wL? ¼ E� B

B2
;

but it is also possible when E � B ¼ 0. More generally, when Eq. (19) holds, the

field-line velocity is

wL? ¼ ðE� aÞ � B

B2
:

However, this form is not unique, since the magnetic field is unchanged if we

replace a by a0 ¼ aþ $W�, with ðB � $ÞW� ¼ 0, such that B�(19) does not change,
but the field-line velocity becomes instead

w0
L? ¼ ðE� a0Þ � B

B2
:

The concepts of flux and field line velocity, and their uniqueness or otherwise, are

invaluable when considering the properties of 3D reconnection (Sect. 4).

3.3 Magnetic diffusion and field-line motion

To complete our discussion of field line motion we consider the case of pure

diffusion (with plasma velocity v ¼ 0). Wilmot-Smith et al. (2005) presented

examples of magnetic diffusion in 1D (Sect. 3.3.1), 2D (Sect. 3.3.2) and 3D

(Sect. 3.3.3). Often, diffusion can be described with the help of a magnetic flux

velocity, but such a velocity is usually non-unique, so that the field lines may be said

to move in several different ways. For straight magnetic field lines with diffusion in

a current sheet, the magnetic field behaves as if the flux disappears either at a

current sheet and/or at infinity. In a similar manner, circular field lines diffuse as if

the magnetic field moves either towards the O-type neutral line and/or towards

infinity. In 3D, although magnetic field lines can always be defined at any time, the

decay of a field cannot necessarily be described in terms of the motion of magnetic

field lines, since it is not always possible to define a flux velocity. Instead, it may be

possible to describe the field behaviour in terms of a dual flux velocity (Sect. 3.3.3,

Sect. 4.4). For more details on these ideas, see Wilmot-Smith et al. (2005).

Consider resistive diffusion of a magnetic field with uniform magnetic diffusivity

(g), for which E ¼ g$� B and the induction equation becomes
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oB

ot
¼ $� ðg$� BÞ ¼ gr2B; ð20Þ

while the existence of a magnetic flux velocity (or flux transporting velocity) ðwÞ
requires Eq. (10). 1D, 2D, and 3D scenarios are considered in turn below.

3.3.1 Diffusion of a magnetic field with straight field lines

When a 1D magnetic field (B ¼ Bðx; tÞŷ) diffuses, magnetic field lines can

disappear either at a neutral sheet or at the boundary, and the diffusion equation (20)

reduces to

oB

ot
¼ g

o2B

ox2
:

Consider, for example, a magnetic field whose value is held fixed at two points ð	‘Þ
with Bð‘; tÞ ¼ �Bð�‘; tÞ ¼ B0; and that initially has a step profile with Bðx; 0Þ ¼ B0

for x[ 0, and Bðx; 0Þ ¼ �B0 for x\0, representing an infinitesimally thin current

sheet. The solution to the diffusion equation is

Bðx; tÞ ¼ B0

x

‘
þ 2B0

p

X

1

n¼1

1

n
exp �n2p2gt=‘2

� �

sin
npx

‘

� �

;

and the resulting magnetic field diffuses away very rapidly towards the steady-state

solution, BðxÞ ¼ B0x=‘. In terms of energy, a decrease in magnetic energy is

accounted for by Ohmic heating ðj2=rÞ and an outwards Poynting flux E� B=l ¼
�ðg=lÞoB=ox x̂ into the boundaries x ¼ 	‘. In the final steady state, the ohmic

heating (j2=r ¼ ðg=lÞðB0=‘Þ2 per unit length) is provided by a continual inflow of

energy through the boundaries.

In this case, a flux velocity ðw ¼ wx̂Þ exists and Eq. (13) becomes

g
oB

ox
þ wB ¼ E0ðtÞ;

with solution

w ¼ � g
B

oB

ox
þ E0

B
;

where E0ðtÞ is an arbitrary function representing a nonuniqueness in the form of the

flux velocity.

There are several physically reasonable ways of choosing E0, one of which is

E0 ¼ 0, so that w ¼ E� B=B2 and w is then a flux velocity associated with the

energy flow. In this case, the field lines are initially stationary (except at the origin)

and later move towards the origin with a singular velocity at x ¼ 0. The field is,

therefore, evolving as if the field lines are moving towards the origin and

disappearing (or ‘‘annihilating’’) there at a neutral sheet. As time increases, the flux

velocity increases everywhere in magnitude towards its steady-state value.
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3.3.2 Diffusion of a magnetic field with circular field lines

Consider next diffusion of a field Bðr; tÞĥ where B ¼ �oA=or, for which the

diffusive limit of the induction equation with uniform diffusivity in terms of the flux

function (A(r, t)) becomes

oA

ot
¼ g

o2A

or2
þ 1

r

oA

or

� �

:

For diffusion of an isolated circular flux tube of flux F0 at radius a with an initial

field Bðr; 0Þ ¼ F0dðr � aÞ and flux Aðr; 0Þ ¼ 0 for r\a, and Aðr; 0Þ ¼ �F0 for

r [ a, the solution is, in terms of the Bessel function I0,

Aðr; tÞ ¼ � F0

2gt

Z 1

a

se�ðs2þr2=ð4gtÞI0
rs

2gt

� �

ds;

for which the maximum field strength decreases in time, while the flux spreads

outwards.

The resulting total flux is

Að0; tÞ � Að1; tÞ ¼ F0ð1� e�a2=ð4gtÞÞ;

which decays away from an initial value of F0 to zero with a time-scale of a2=ð4gÞ.
The corresponding radial flux velocity is

w ¼ 1

B
E0 � g

oB

or

� �

;

where E0ðtÞ is an arbitrary function of time, which can again be chosen in a variety

of ways. For example, if E0ðtÞ is chosen to make w vanish at infinity, the field lines

would be disappearing at the O-point. This surprising fact that field lines can dis-

appear at O-points in 2D makes one wonder whether they can disappear in 3D.

3.3.3 Magnetic field diffusion in three dimensions

If a closed magnetic field line C exists enclosing a surface S, then the rate of change

of magnetic flux through S is

d

dt

Z

S

B � dS ¼ �
Z

S

$� E � dS ¼ �
Z

C

E � dl:

If, further, a flux velocity ðwÞ exists, then there is a function U such that Eq. (13)

holds, where E ¼ g$� B, which implies, since w� B is perpendicular to dl on C,

that
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Z

C

E � dl ¼
Z

C

$U � dl ¼ 0;

so that the flux through C does not change in time. Thus, if the flux through a closed

field line does indeed change in time, Eq. (13) cannot hold and no flux velocity ðwÞ
exists.

As an example, consider the diffusion of a linear force-free field satisfying $�
B ¼ a0B; where a0 is constant. The diffusive induction Eq. (20) reduces to

oB

ot
¼ �ga20B with solution Bðx; y; z; tÞ ¼ B0ðr; h;/Þe�ga2

0
t;

where B0ðr; h;/Þ is the initial state. As a particular case, consider the lowest-order

axisymmetric, linear-force-free field in a sphere of radius a, as sketched in Fig. 19,

which has flux function A ¼ r1=2J3=2ða0rÞ sin2 h with a0a 
 4:49 as the first zero of

the Bessel function J3=2.

This field possesses a closed field line (C) in the equatorial plane (h ¼ 1
2
p) at the

location a0r ¼ 2:46 of the first maximum of oA=or. Within C the poloidal flux

decreases in time, and so no single flux velocity exists. However, a pair of flux

velocities (wp and wt) may be introduced as follows.

Denoting poloidal and toroidal components by subscripts p and t, Bp and Bt

change in time according to

oBp

ot
¼ �$� Et and

oBt

ot
¼ �$� Ep:

Thus, two separate dual flux velocities velocities wp and wt may be defined by

Et þ wp � Bp ¼ 0 and Ep þ wt � Bt ¼ 0;

which are perpendicular to Bp and Bt, respectively. As it decays in time, the field in

Fig. 19 behaves as if the poloidal field is shrinking at wp towards the closed toroidal

field line (C) and disappearing into the O-points of the poloidal field. At the same

Fig. 19 A diffusing magnetic
field inside a sphere whose
poloidal field lines are shrinking
towards the toroidal line, while
the toroidal field is diffusing
towards the separator
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time the toroidal field can be regarded as shrinking and disappearing at the separator

joining the null points N1 and N2.

4 The nature of reconnection in three dimensions

Before describing the different regimes for reconnection in 3D, we need to lay the

groundwork by describing various fundamental concepts and the technique for

classification. In addition, we enumerate the many ways in which reconnection in

3D is very different from reconnection in 2D.

Ohm’s law may be written in a non-ideal plasma as

Eþ v� B ¼ N; ð21Þ

and it is the form of the nonideal term (N) that determines whether there is simple

diffusion of magnetic field lines or 2D reconnection or 3D reconnection. In 2D the

notion of a flux velocity is helpful in describing what happens, but in 3D it fails,

although it is possible to replace it by a dual flux velocity (Sect. 3.3.3, Sect. 4.4).

4.1 Form of the non-ideal term for reconnection: diffusion and reconnection

First, suppose that the nonideal term N in Eq. (21) can be written as

N ¼ u� Bþ $U:

Then the curl of Eq. (21) implies

oB

ot
¼ $� ðw� BÞ; ð22Þ

in terms of the flux velocity (w ¼ v� u) and slippage velocity (u). In this case, the

magnetic field may be said to move with the velocity w. Thus we see that the nature
of the evolution depends on the form of N, as follows:

(a) if N ¼ u� Bþ $U and u is smooth, the magnetic field slips or diffuses

through the plasma, but there is no reconnection;

(b) if N ¼ u� Bþ $U and u is singular at a point, then 2D reconnection takes

place there;

(c) if N 6¼ u� Bþ $U, then reconnection occurs in 2.5D or 3D.

The relation between diffusion and reconnection is that reconnection implies

diffusion (in an isolated region), but diffusion can take place without any

reconnection.

4.2 Two-dimensional reconnection (E � B= 0)

Suppose that E is perpendicular to B. Then from Eq. (21) N is also perpendicular to

B, and we have a two-dimensional situation. For instance, if v and B lie in the xy-
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plane and depend only on x and y, then E and N are in the z-direction. In this case

we may write $U � 0, so that the slippage velocity is

u ¼ ðB� NÞ
B2

:

Also, Eq. (21) reduces to

Eþ w� B ¼ 0;

and so there exists a flux velocity w? ¼ E� B=B2 that conserves the flux and is

smooth except possibly where the magnetic field vanishes. Three possibilities arise:

(a) If B 6¼ 0, then flux-conserving slippage of the magnetic field takes place, since

w is smooth everywhere;

(b) If there is an O-type null point at which E 6¼ 0, then w possesses a divergent

singularity at the O-point, where magnetic flux is destroyed or generated;

(c) If there is an X-type null point at which E 6¼ 0, then w possesses a hyperbolic

singularity, where magnetic flux is reconnected and flux is weakly conserved

with w regular except at the X-point.

4.3 Non-existence of a flux velocity in 3D

The notion of a flux velocity has been central to the theory of 2D reconnection, but

it fails in 3D (when E � B 6¼ 0), since, for an isolated 3D nonideal region, a flux-

conserving velocity (w) does not in general exist (Priest et al. 2003). The proof is

straightforward. If a flux velocity does exist, then Eq. (22) holds and a function U
exists such that

Eþ w� B ¼ $U:

From this equation we may deduce that E � B ¼ $U � B, which may be integrated

along a magnetic field line from one point (r1) to another (r2) on opposite sides of

the diffusion region, to give

Z r2

r1

Ekds ¼ Uðr2Þ � Uðr1Þ:

We may next assume that Ek is, say, positive in the diffusion region, and so

Uðr2Þ[Uðr1Þ. However, everywhere outside the isolated diffusion region, w ¼ v
and $U ¼ 0, so that U is uniform outside the diffusion region and therefore

Uðr2Þ ¼ Uðr1Þ. Thus, we have a contradiction, which leads to the conclusion that a

flux velocity does not exist, as required.

4.4 Fundamental differences between 2D and 3D reconnection

Magnetic reconnection in 3D is profoundly different from 2D with many new

features. Among the aspects of reconnection in 2D that do not survive in 3D are the

following:

123

1 Page 34 of 202 D. I. Pontin, E. R. Priest



(2D:i) Reconnection occurs only at neutral points of X-type; these nulls may

be pre-existing in the field and undergo local collapse to form a current

sheet, or a one-dimensional current sheet may form, within which a 2D

null is created when reconnection is initiated;

(2D:ii) A flux velocity (w) exists and describes the speed at which magnetic

flux moves, slipping relative to the plasma at a velocity w� v, but
preserving the magnetic field line connections between points on the

boundary; the exception is at an X-point, where w becomes singular

and the connections change as the field lines break;

(2D:iii) Before two flux tubes reconnect, they approach the diffusion region

with velocity w ¼ v, and then they break and re-connect perfectly to

create two new flux tubes, such that, once they have left the diffusion

region, they move out at w ¼ v (Fig. 20a);

(2D:iv) When a magnetic flux tube has part of its length inside a diffusion

region and part outside, the central section slips through the plasma

with w 6¼ v, while the two wings of the flux tube are frozen to the

plasma and move with w ¼ v (Figs. 20b).

In contrast, 3D reconnection has the following properties:

(3D:i) Magnetic reconnection may occur wherever sufficiently intense

electric current concentrations form, for example at a null point, a

separator or a quasi-separator (i.e., a hyperbolic flux tube) (Sects. 2.6,

5);

(3D:ii) In general a single flux tube velocity (w) does not exist (Sect. 4.3), but
it can be replaced by a pair (win;wout) of flux velocities (called a dual
flux velocity), which describe behaviour from two points of view,

namely, a field line that enters a diffusion region or one that leaves it

(Sect. 4.7.2);

(3D:iii) In the absence of a null point or bald patch, the field-line mapping from

one section of a boundary to another is continuous;

(3D:iv) Magnetic field lines continually change their connections as part of

them pass through a diffusion region; another way to view this is the

following;

Fig. 20 The nature of 2D reconnection. a Two flux tubes come in, break in the diffusion region (shaded)
and re-connect perfectly. b While in the diffusion region, a flux tube slips through the plasma but
preserves its connections, except at the X-point. For a related movie see Supplementary Information.
Image reproduced with permission from Priest et al. (2003), copyright by AGU
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(3D:v) In the process of reconnecting, two flux tubes split into four parts, each

of which flips in a different manner (Fig. 21b); field lines that are

projected through to the other side of a diffusion region flip, i.e., they

move with a virtual velocity that differs from the plasma velocity

(Sect. 4.3);

(3D:vi) In general magnetic field lines do not break and reform pairwise, and

neither do pairs of flux tubes (Figs. 21).

An illustrative example of this behaviour is presented in Sect. 4.7.2.

4.5 Classification and nature of 3D reconnection: general reconnection
or singular reconnection

To reiterate the above, in 2D the basic features of magnetic reconnection are:

(i) Two pairs of field lines approach an X-point, and are then broken and

rejoined;

(ii) There is an electric field ðEÞ perpendicular to the 2D plane;

(iii) During reconnection, the magnetic connectivity of plasma elements is

changed at the X-point surrounded by a localised non-ideal diffusion

region.

In 3D, since reconnection can occur without null points or separatrices (contrary to

(i)), Schindler et al. (1988) proposed a concept of ‘‘General Magnetic Reconnec-
tion’’ that is based on (iii) above and includes any process of local nonidealness that

gives rise to an electric field component ðEkÞ parallel to the magnetic field. Thus, the

generalisation of (ii) above is that the integral
Z

Ek ds 6¼ 0; ð23Þ

where the integral is performed along a magnetic field line. The maximum value of

this integral over all field lines that thread the non-ideal region represents the rate of

reconnection. Equivalently, 3D reconnection occurs if and only if the magnetic

helicity (Sect. 4.6) changes in time. As shown by Schindler et al. (1988) and Hesse

and Schindler (1988) when the condition (23) is met, plasma elements experience a

change in magnetic field line connectivity.

With 3D reconnection requiring that the condition (23) be met, it is the formation

of a localised current concentration that is the precondition for such reconnection.

The reason why reconnection occurs at nulls, separators, quasi-separators (or

hyperbolic flux tubes) and braids is that they are the natural locations where strong

currents focus (see Sect. 5). It should be noted, however, that the nulls, separators

and quasi-separators themselves are not the (only) locations for reconnection, since

it occurs throughout the finite diffusion regions that surround them.

The theory of general reconnection has been exemplified, developed and applied

in several directions. An analytical example of general magnetic reconnection has

been presented by Schindler et al. (1988) that demonstrates how a plasmoid can be
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(a) (b)

Fig. 22 Nearby flux tubes have a mutual helicity of a ðh1 � h2ÞFAFB=p, whereas crossing flux tubes have
b ðh3 þ h4ÞFAFB=p (after Berger 1999)

Fig. 21 The nature of reconnection in 3D: a two magnetic flux tubes approach one another, break and
partly rejoin, but b the projection of a flux tube beyond a diffusion region flips through the plasma in a
virtual flow. Image reproduced with permission from Priest et al. (2003), copyright by AGU.
c Illustration of the principles in (a) and (b), wherein the evolution of two representative flux tubes from
the solution of Hornig and Priest (2003) (see Sect. 4.7.2) are traced from ideal comoving footpoints
(marked black); the dark sections of the tubes move at the local plasma velocity (outside D), while the
light sections correspond to field lines that pass through the diffusion region. A localised diffusion region
(shaded surface in the first frame) is present around the origin. From Pontin (2011). For a related movie
see Supplementary Information

123

Magnetic reconnection: MHD theory and modelling Page 37 of 202 1



formed in 3D in the absence of a null point or separatrix. Furthermore, a

mathematical formalism for General Magnetic Reconnection has been developed by

Hesse and Schindler (1988), in which they express the magnetic field in terms of

Euler potentials (a; b) and find equations for the time-behaviour of a and b.
Sub-classes of general magnetic reconnection may be defined in different ways,

for example as driven and spontaneous reconnection, depending on whether motions

of flux at large distances or local effects (such as enhanced resistivity or instability)

dominate. Another way of categorising reconnection is in terms of the form of the

nonideal term in Ohm’s law, which distinguishes slippage from 2D reconnection

and 3D reconnection (See Sect. 4.1). While 2D reconnection occurs only at X-

points, the properties of generic 3D reconnection (with a localised diffusion region

within which E � B 6¼ 0) depend on whether a null-point is present (3D null

reconnection) or not (3D non-null reconnection)—as discussed in more detail in

Sects. 10-12.

General Reconnection includes examples of diffusion and slippage (such as in

double layers or shock waves) that are not usually included in the concept of

reconnection, and so it may be regarded as too general a concept. An alternative is

therefore to restrict the definition of reconnection to Singular field-line Reconnec-
tion, in which the presence of Ek along a field line is supplemented by the condition

that the nearby field has a certain topology in a plane perpendicular to the field line

(Priest and Forbes 1989; Hornig and Rastätter 1998). If the transverse topology is

X-type, then we would refer to it as X-type Singular Reconnection, which is close in

spirit to traditional 2D reconnection and includes most cases of separator and quasi-

separator (or hyperbolic flux tube) reconnection. If the transverse topology is

O-type, then we would refer to it as O-type Singular Reconnection, which includes

Flux Tube Disconnection (Wilmot-Smith and Priest 2007) and some examples of

separator reconnection discovered in numerical experiments (Parnell et al. 2010).

For further details, see Priest and Forbes (2000).

4.6 Magnetic helicity and its changes during 3D reconnection

Magnetic helicity measures the twisting and kinking of a flux tube (called self-
helicity), together with the linkage between different flux tubes (called mutual
helicity). In an ideal medium, as a global topological invariant it does not change,

whereas, in a resistive medium, it decays very slowly over the global magnetic

diffusion time (sd). During reconnection, magnetic helicity is approximately

conserved, although it can be converted from one form to another: for example,

mutual may be converted to self during the initial stages of a coronal mass ejection

or eruptive solar flare, which may explain much of the twist that is observed (e.g.,

Priest and Longcope 2017). However, during 3D reconnection the tiny change in

magnetic helicity that does take place is intimately related to its very occurrence, as

demonstrated below.

Magnetic helicity is thought to be critical in the Sun’s cycle: continual

photospheric motions energise the coronal magnetic field and increase the (modulus

of the) helicity; and the coronal magnetic field evolves through states that are nearly
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force-free, building up magnetic helicity until it is ejected by coronal mass ejections

(Heyvaerts and Priest 1984; Rust and Kumar 1994; Low 2001). An important step in

this understanding was the development of a theory for relative helicity by Berger

and Field (1984). Here we give definitions of magnetic helicity (Sect. 4.6.1, 4.6.2)

and discuss its evolution (Sect. 4.6.3, 4.6.4).

4.6.1 Definition of magnetic helicity

For a closed volume (V) that is bounded by a surface S, with normal vector n, the
magnetic helicity is defined as

H0 ¼
Z

V

A � B dV; ð24Þ

where the magnetic field may be written B ¼ $� A in terms of the vector potential

(A). Note that an arbitrary gauge $UA may be added to A without changing B, but it
can be shown that the magnetic helicity is independent of this gauge, i.e., it is gauge

invariant, provided that all magnetic field lines close within the volume (i.e., B � n ¼
0 on S).

However, if the boundary is open in the sense that magnetic fields enter or leave

it, Berger and Field (1984) made an important breakthrough in realising that a

relative magnetic helicity, defined as

H ¼
Z

V1

A � B� A0 � B0 dV; ð25Þ

is also gauge invariant, where B0 ¼ $� A0 is a reference field with respect to

which H0 is being measured, and V1 is the whole of space, including the volume

both inside and outside V. B0 is usually taken to be potential inside V, to be identical
with B outside V and to have A� n ¼ A0 � n on S.

4.6.2 Magnetic helicity of flux tubes

The magnetic helicity of a collection of flux tubes of magnetic flux Fi and twist UTi

may be written as a sum

H ¼
X

N

i¼1

Hsi þ
X

N

i\j
i;j¼1

Hmij;

of self-helicities

Hsi ¼
UTi

F2
i

2p
;

for each flux tube due to their own internal twist, and mutual helicities
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Hmij ¼ 2Lij FiFj; ð26Þ

due to the linking of one tube with another, where Lij is the linking number (Berger

1984).

For example, consider two coronal flux tubes having fluxes FA and FB, with

positive polarity footpoints Aþ;Bþ and negative footpoints A�;B� (Fig. 22). The

mutual helicity may be written in terms of angles \BþA�B� at footpoint Aþ and

\BþAþB� at footpoint Aþ as

H ¼ ð�\BþA�B� þ \BþAþB�Þ
FAFB

2p
:

The structures in Fig. 22 then have helicities ðh1 � h2ÞFAFB=p and ðh3 þ
h4ÞFAFB=p in terms of the angles shown.

4.6.3 Rate of change of magnetic helicity

If the gauge of the vector potential is chosen such that $ � Ap ¼ 0 and Ap � n ¼ 0 on

the boundary S, the rate at which magnetic helicity changes may be written

dH

dt
¼ �2

Z

V

E � B dV þ 2

Z

S

Ap � E � n dS: ð27Þ

Furthermore, when there is no diffusion on S and E is given by Ohm’s Law

ðE ¼ �v� Bþ j=rÞ, this reduces to

dH

dt
¼ �2

Z

V

j � B=r dV þ 2

Z

S

ðB � ApÞðv � n̂Þ � ðv � ApÞðB � n̂Þ dS; ð28Þ

where n̂ is the outwards normal to the volume.

The first term on the right of Eq. (28) represents resistive dissipation of magnetic

helicity on a time-scale equal to the global diffusion time ðsd ¼ L2=gÞ, where L is

the global length-scale over which the magnetic field varies. Thus, on times much

smaller than this, if the boundary is closed so that the normal components of B and v
vanish, the magnetic helicity is conserved. Furthermore, the second term represents

the rate at which magnetic helicity is carried across the boundary by plasma motions

normal to the boundary, whereas the third term shows that the magnetic helicity

may be injected into the volume or extracted from it by lateral motions.

4.6.4 Magnetic helicity changes during 3D reconnection

Since reconnection involves magnetic diffusion only in a diffusion region (DR),

which is a small part of the volume, the total magnetic helicity is approximately

conserved during reconnection. However, the very occurrence of three-dimensional

reconnection is directly related to the small change in magnetic helicity that takes

place. Consider Eq. (27). Since the electric field is perpendicular to the magnetic

field (E � B ¼ 0) everywhere except in the diffusion region DR, the first term on the
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right reduces to an integral over DR alone. If also the electric field vanishes (E ¼ 0)

on the surface S, the second term vanishes, and so the equation becomes

dH

dt
¼ �2

Z

DR

E � B dV ¼ �2

Z

DR

EkB dV: ð29Þ

Recall that, by definition, 3D reconnection takes place when the parallel electric

field is non-zero (Ek 6¼ 0) in DR, and so from Eq. (29) the occurrence of such

reconnection is equivalent to there being a change of magnetic helicity H with time.

Furthermore, if VR is the diffusion region volume and dH is the change of magnetic

helicity in a time dt, the parallel electric field is

Ek ’
1

2VRB0

dH

dt
:

The helicity is then approximately conserved even in an evolution involving 3D

reconnection because at high Rm the current layers are very thin, so that VR is very

small compared to the domain volume.

Although the total helicity in a volume is approximately conserved during

reconnection, it may be redistributed within a configuration. When the field is

modelled as being composed of discrete flux tubes this can be interpreted as a

change from mutual helicity to self helicity or vice versa. Alternatively, for

continuous fields the notion of a field line helicity (Antiochos 1987; Berger 1988)

can be useful in interpreting how the linkage of flux is changed during reconnection.

The field line helicity is defined as

A ¼
Z

FðxÞ
A � dl; ð30Þ

where dl is tangent to the field line FðxÞ. For a suitable choice of gauge, it measures

the net linkage of all field lines in the domain with the field line of interest, while a

flux-weighted integral of A over all field lines yields the helicity of the volume,

justifying the name (Berger 1988; Russell et al. 2015). Moreover, its distribution

uniquely describes the magnetic topology of the field (Yeates and Hornig 2013). It

has been used, for example, to characterise the structure and evolution of active

regions (Moraitis et al. 2019, 2021). Russell et al. (2015) investigated the way in

which the distribution of field line helicity can be changed by reconnection within

the volume, although this remains to be fully explored.

4.7 Techniques for modelling 3D reconnection

In three dimensions, reconnection may take place in a variety of different regimes

and a variety of different geometries, namely, at a null point (Sect. 10), at a

separator (Sect. 11) or at non-null regions such as a quasi-separator (Sect. 12) or a

braided field (Sect. 14.1). Which of these regimes occurs depends both on the

geometry (i.e., whether the magnetic configuration contains a null point, a separator,

a quasi-separator or a braid) and on the nature of the plasma flow. The properties of

these different regimes are being discovered by a combination of several
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complementary techniques that we describe here, namely, kinematic models that are

either ideal (Sect. 4.7.1) or resistive (Sect. 4.7.2) and numerical computations

(Sect. 4.7.3).

4.7.1 Kinematic ideal models

The full MHD equations for determining the plasma velocity (v) and magnetic field

(B) include the induction equation and the equation of motion, but in a kinematic

approach one neglects the equation of motion and considers the implications of just

the induction equation by either imposing v and determining B or imposing B and

solving for v. Lau and Finn (1990) and Priest and Titov (1996) began by exploring

the nature of the flow in the ideal region around a diffusion region during steady 3D

reconnection. They prescribed the form of the magnetic field (B) and solved the

kinematic equations for the plasma velocity (v) and electric field (E), namely,

Eþ v� B ¼ 0 ðaÞ and $� E ¼ 0: ðbÞ ð31Þ

First of all, Eq. (31b) implies that E ¼ $U and so the component of Eq. (31a)

perpendicular to B yields

B � $U ¼ 0; ð32Þ

which implies that U is constant along magnetic field lines. If the values of U are

imposed on a surface (S) surrounding the ideal region, then Eq. (32) may be inte-

grated along field lines (characteristics) to determine the value of U (and therefore

E) throughout the volume. A variety of different boundary conditions may be

imposed on the surface S, and so give rise to different solutions. Next, the com-

ponent of Eq. (31a) perpendicular to B determines the plasma velocity normal to B
everywhere as

v? ¼ $U� B

B2
: ð33Þ

This approach was used to show that current is likely to become focused along

either the spine or the fan of a null point or along a separator and so to lead to

different null-point reconnection regimes, as described in Sects. 10.1.1, 11.

4.7.2 Kinematic resistive modelling

However, the next step is to model what goes on inside a diffusion region. Hornig

and Priest (2003) developed a formalism for modelling kinematically an isolated 3D

diffusion region in which flux freezing breaks down, and they applied their

formalism to a case without null points, although it was later applied to null points

(Sect. 10.1.2) and separators. They solved

Eþ v� B ¼ gj; ð34Þ

where $� E ¼ 0, j ¼ $� B=l and $ � B ¼ 0. Their idea was to impose a suffi-

ciently simple magnetic field that both the mapping and the inverse mapping of the
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magnetic field can be found analytically. Then, after writing E ¼ $U, the integral of
the component of Eq. (34) parallel to B determines U everywhere as

U ¼
Z

g j � B
B

ds þ Ue ¼
Z

g j � B ds� þ Ue; ð35Þ

where Ue is the imposed value of U at one end of the field lines, s is the distance

along field lines, and s� is a stretched distance such that ds� ¼ ds=B. Then the flow

normal to the field lines is determined by the component of Eq. (34) perpendicular

to B as

v? ¼ ð$U� g jÞ � B

B2
: ð36Þ

Here we illustrate this approach by describing the solution of Hornig and Priest

(2003), who considered the simple QSL field

B ¼ B0

L
y x̂þ k2x ŷþ ẑ
� �

; ð37Þ

namely, a 2D X-point field in the xy-plane with a uniform field in the z-direction,

and a uniform current j ¼ ðk2 � 1ÞB0=L ẑ. The equations (Xðx0; s�Þ) of field lines

whose initial point is x0 follow from integrating dX=ds� ¼ B as

X ¼x0 coshðB0ks�=LÞ þ ðy0=kÞ sinhðB0ks�=LÞ;
Y ¼y0 coshðB0ks�=LÞ þ x0k sinhðB0ks�=LÞ;
Z ¼z0 þ B0s

�;

ð38Þ

while the inverse mapping is given by

X0 ¼x coshðB0ks�=LÞ � ðy=kÞ sinhðB0ks�=LÞ;
Y0 ¼y coshðB0ks�=LÞ � xk sinhðB0ks�=LÞ;
Z0 ¼z � B0s

�:

ð39Þ

In order to obtain a localised non-ideal term (gj), since j is constant, it is necessary
to localise the resistivity, and in order to obtain an analytical solution for U, they
chose the following form

gðx0; y0; s�Þ ¼ g0 exp �B2
0s�2 þ x20 þ y20

l2

� �

; ð40Þ

where z0 ¼ 0, so that x0; y0 are coordinates of field lines in the plane z ¼ 0. Thus, g
is positive with a maximum value of g0 at the origin, and it decreases exponentially

with distance from the origin. The diffusion region D has the shape of a sphere

distorted towards a tetrahedron (Fig. 23a).

Then Eq. (35) may be integrated to give
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Uðx0; y0; s�Þ ¼
ffiffiffi

p
p

B0 g0 l ðk2 � 1Þ erfðB0s
�=lÞ

2L expððx20 þ y20Þ=l2Þ þ Ueðx0; y0Þ; ð41Þ

where ðx0; y0; s�Þ is given in terms of (x, y, z) by Eq. (39) and v? follows from

Eq. (36). Furthermore, a component of velocity parallel to B can be added to make

vz ¼ 0, say. The freedom of being able to choose Ueðx0; y0Þ is linked with the

following splitting of Ohm’s law into non-ideal and ideal parts:

$Unid þ vnid � B ¼gj; ð42Þ

$Uid þ vid � B ¼0: ð43Þ

Depending on the choice of Ueðx0; y0Þ, we can consider pure solutions or composite
solutions.

For a pure solution, set Ueðx0; y0Þ � 0, so that v vanishes when z ¼ 0. In this

case, counter-rotating flows are produced in the ideal regions above and below the

plane z ¼ 0 (Fig. 23b). Such flows are confined to a region, a hyperbolic flux tube

(HFT) (Sect. 2.6.2), that contains only the field lines that thread the diffusion region

D, as indicated in Fig. 23a. The flows are circular close to z ¼ 0, but become highly

elongated at large distances from D. They are associated with flipping and with the

small change in magnetic helicity essential to 3D reconnection (Sect. 4.6.3).

The rate of reconnection of flux is calculated by evaluating the integral

dUmag

dt
¼
Z

Ekds ð44Þ

along a field line through the diffusion region (Schindler et al. 1991; Hesse et al.

2005). For this example this turns out to be 2Uð0; 0;1Þ, which has quite a different

interpretation from the normal 2D picture, where flux is cut and reconnected at one

Fig. 23 a The diffusion region D (shaded) at 2% of the maximum diffusivity, and the hyperbolic flux tube
that encloses it when k ¼ 2; L ¼ 10; l ¼ 1. b In the z ¼ 0-plane, the field lines and the difference

(win � wout) between the flux velocities of field lines anchored above and below D. Image reproduced
with permission from Hornig and Priest (2003), copyright by AIP
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location in the diffusion region (D), namely, an X-point, and there is a unique flux

velocity. Instead, in 3D, every field line in the HFT continually changes its con-

nection in D, and two flux-conserving velocities (win and wout) are needed, one of

which describes the motion of field lines attached to plasma elements above D,

while the other represents the velocity of field lines attached to plasma below it

(Sect. 4.4). Thus, for a given B, win satisfies

Ein þ win � B ¼ 0; where Ein ¼ $Uin; so that win
? ¼ $Uin � B

B2
;

while wout satisfies

Eout þ wout � B ¼ 0; where Eout ¼ $Uout; so that wout
? ¼ $Uout � B

B2
:

Outside D, win is just the same as v on one side of D, while wout is the same on the

other side, so for Uin we can just choose the asymptotic value of U from Eq. (41) on

one side, say, Uðx0; y0;�1Þ, and for Uout we choose the asymptotic value on the

other side, namely, Uðx0; y0;1Þ or

Uin ¼ �
ffiffiffi

p
p

B0g0lðk2 � 1Þ
2L expððx20 þ y20Þ=l2Þ ; Uout ¼

ffiffiffi

p
p

B0g0lðk2 � 1Þ
2L expððx20 þ y20Þ=l2Þ :

The rate of mismatching of flux in, say, the z ¼ 0 plane is then the difference

between win and wout there, namely,

Dw? ¼ wout
? � win

? ¼ ð$Uout � $UinÞ � B

B2
¼ 2

$Uout � B

B2
:

The corresponding vector field is shown in Fig. 23b. The resulting rate at which

magnetic flux crosses a radial line between the origin and the boundary of D is just

the potential difference across the line, namely,

DUDw ¼ 2Uout ¼ 2Uð0; 0;1Þ;

which is identical to the reconnection rate and so provides us with a physical

interpretation.

For a composite solution, any ideal flow may be added to the pure flow, and

particularly useful is a stagnation flow,

Uid ¼ �U0

x0 y0
l2

;

since it carries magnetic flux into the diffusion region (D), lets it reconnect, and then

removes it from D. The field line behaviour is then governed by a combination of

the external stagnation flow and the inherent counter-rotational flow associated with

the ‘‘pure’’ reconnection solution. As described by Hornig and Priest (2003), dif-

ferent field line behaviours are possible in different regimes. Field lines transported

into the non-ideal region tend to split in two (when followed from two plasma
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elements above and below the diffusion region), before exiting the diffusion region

connected to different partners, as illustrated in Figure 21(b,c).

These solutions may be regarded as either kinematic (i.e., satisfying just the

induction equation) or as fully dynamic in the limit of uniform density and slow

flow (since they also satisfy the equations $ � v ¼ 0 and $p ¼ j� B). This resistive
kinematic approach has also been used to discover different reconnection regimes

near null points, as described in Sect. 10.1.2.

4.7.3 Computational modelling

Although the analytical approach of kinematic modelling has been invaluable in

pointing the way and suggesting what kinds of 3D reconnection are likely,

computational experiments have been crucial in going beyond the limitations of the

kinematic approach by solving the full set of MHD equations and revealing many

new features. These experiments build on previous examples of 2D and 2.5D

modelling.

The phrase ‘‘2D reconnection’’ refers to a strictly two-dimensional field

[Bxðx; yÞ;Byðx; yÞ] that varies in two dimensions, whereas 2.5D has a field of the

form [Bxðx; yÞ;Byðx; yÞ;Bzðx; yÞ] with a guide field [Bzðx; yÞ], and ‘‘3D reconnec-

tion’’ refers to a fully 3D field [Bxðx; y; zÞ;Byðx; y; zÞ;Bzðx; y; zÞ]. Thus, a 2D field

should not be confused with a 2.5D field, which is topologically unstable in the

sense that a small general 3D perturbation will destroy its topological structure.

Many useful theories and simulations in 2D and 2.5D have helped clarify our

understanding of reconnection, but most examples in nature are three-dimensional,

and so the 2D and 2.5D understanding is likely to be only partial. For example,

when a 2.5D simulation models so-called ‘‘anti-parallel’’ reconnection, it is likely to

represent in reality a local snapshot of what in 3D would be null-point reconnection,

whereas so-called ‘‘component’’ reconnection should more properly be referred to

as a local snapshot of separator or quasi-separator reconnection. Numerical

experiments have shown that the current j naturally builds up at null points,

separators, quasi-separators and in braids—see Sect. 5—and so naturally leads to

reconnection at these locations. What’s more, dedicated simulations at each of these

structures has helped to reveal the rich behaviour of these different 3D reconnection

regimes. These simulations and reconnection regimes—as well as applications to

understanding observations from the Sun and beyond—are discussed in detail in

Sects. 10–15.

5 Formation of current sheets

Magnetic reconnection may occur in 3D fields wherever sufficiently intense current

concentrations form (property (3D:i) in Sect. 4.4). Thus, to understand where

reconnection takes place we must first determine where and how currents

accumulate. Typically, the current accumulates in narrow layers called current
sheets, across which there is a change in the tangential component of the magnetic

field. In this section, we treat such sheets as discontinuities. In practice, however,
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they are resolved by diffusion processes and so possess a small finite width, which is

modelled in the sections that follow on magnetic annihilation and reconnection. It

should also be noted that in this section we focus on slow formation of current

sheets through quasi-static states, but they may also form by a dynamic local

‘‘collapse’’ process as described by Forbes et al. (1982) (Sect. 6.3).

When a perturbed magnetic configuration evolves towards an equilibrium with

partial or no reconnection (due to time constraints or microscopic limitations), the

new equilibrium will often contain current sheets. Such sheets may later dissipate as

reconnection transfers magnetic flux from one topological region to another

(Sect. 7) or they may go unstable to tearing mode instability (Sect. 8). Here we

suppose for simplicity that no reconnection takes place and describe techniques to

model current sheet appearance. First of all, we focus on 2D current sheets, where

an elegant and powerful technique was discovered by Green (1965), in which the

sheets are treated as cuts in a complex plane when the surrounding field is potential.

Then we discuss what happens in 2.5D and 3D configurations.

5.1 Current sheets in 2D potential fields

Here we describe static current sheets in 2D potential fields. The results can be

applied to quasi-static formation or the evolution of such sheets through a series of

equilibria. They can also be modified to allow for reconnection of a given amount of

flux.

In 2D, a current-free (i.e., potential) magnetic field obeys

oBy

ox
� oBx

oy
¼ 0 and

oBx

ox
þ oBy

oy
¼ 0; ð45Þ

which are satisfied by the following combination of its components ðBxðx; yÞ,
Byðx; yÞÞ

By þ iBx ¼ f ðzÞ;

where z ¼ x þ iy is the complex variable and f(z) is any analytic function of z. Thus,
for example, a linear X-point field Bx ¼ y;By ¼ x (Fig. 24a) may be written as

By þ iBx ¼ x þ iy � z: ð46Þ

Then the question arises: if a motion of the sources of the magnetic field leads to the

formation of a series of equilibria with a current sheet growing from the X-point and

containing Y-points at its ends (z ¼ 	iL), as in Fig. 24b, what is the best way to

describe the equilibria? Green (1965) came up with an elegant answer, namely, to

write the field as

By þ iBx ¼ ðz2 þ L2Þ1=2; ð47Þ

with a cut in the complex plane from one end of the current sheet to the other. This

behaves like z at large distances, and the separatrix field lines through the Y-points

are inclined at an angle 2p=3.
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A more general solution with singularities at the ends of the sheet when a 6¼ L
was discovered by Somov and Syrovatsky (1976), namely,

By þ iBx ¼
z2 þ a2

ðz2 þ L2Þ1=2
; ð48Þ

where a2\L2 (Fig. 24c), and was later generalised further by Bungey and Priest

(1995).

Other extensions have generalised the above 2D models in a variety of ways.

Some of these are summarised briefly in the following, and in much more detail by,

e.g., Priest and Forbes (2000). First, a two-dipole field geometry external to the

sheet has been considered as a model for two bipolar regions on the Sun with either

a planar or curved current sheet (e.g., Sweet 1958a; Priest and Raadu 1975). Such

current sheets have been invoked in models of coronal loops (Low 1981, 1986) and

solar prominences (e.g., Kippenhahn and Schluter 1957; Malherbe and Priest 1983).

Priest et al. (1995) included time dependence in the model describing the nonlinear

evolution for the dynamic time-dependent formation of a current sheet by solving

the low-beta equation of motion and the ideal induction equation. Titov (1992)

developed a clever technique for computing 2D potential fields with multiple

current sheets by placing image sheets below the photosphere.

Furthermore, Priest and Syntelis (2021) have described a technique for dealing

with 2D sheets without resorting to complex variable theory, which is invaluable

because it may then be generalised to 3D. The approach involves constructing a

current sheet from an infinite set of line currents. This method is illustrated in the

following section for modelling an axisymmetric field at a separator ring. Finally,

models for 2D current sheets may be extended to the case of finite plasma pressure.

In this case the field will relax towards a force-free state in which the total pressure

ðp þ B2=ð2lÞÞ balances across the separatrices, leading to different geometries such

as cusp-shaped and curved separatrices (e.g., Bajer 1990; Bungey and Priest 1995).

(a) (b) (c)

Fig. 24 The magnetic field a near an X-type null point which evolves to a field with a current sheet
having at its ends either b Y-points or c reversed currents and singularities
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5.2 Lateral or shearing motion of 2.5D fields to form sheets at separators
and separatrices

When going beyond 2D potential fields to model magnetic fields that are 3D

potential or force-free or magnetohydrostatic, current sheets can no longer be

treated with complex variable theory and so other approaches are needed. By a

‘‘2.5D’’ field we mean a field such as (Bxðx; yÞ;Byðx; yÞ;Bzðx; yÞ) with all three

magnetic components that vary with only two variables (x, y).

5.2.1 Three-dimensional axisymmetry near a separator

The magnetic field of a 3D axisymmetric annular current sheet created between two

approaching dipoles was first analysed by Tur (1977) and Longcope and Cowley

(1996). Indeed, Longcope and Cowley (1996) considered the topological admis-

sibility of sequences of equilibria (as done for 2D X-points by Syrovatsky 1971),

and argued that equilibria containing tangential discontinuities at the separator

should result from certain perturbations. Building on their ideas, Priest and Syntelis

(2021) developed a model in which the magnetic field is written in terms of

cylindrical polar coordinates ðR;/; zÞ, as

ðBR;BzÞ ¼ ðz; rÞ þ ðbSRðR; zÞ; bSzðR; zÞÞ;

due to a ring of X-points near R ¼ R0 and the field ðbSR; bSzÞ of the current sheet

itself. The current J/̂ in the sheet is related to the R-component (BS) of the field at

the edge of the sheet by

lJðRÞ ¼ 2BSðRÞ:

The profile of BS and therefore of current J that makes the normal component

(BzðR0
0Þ) of magnetic field vanish at the current sheet is then given by

R ¼ � lim
z!0

bSzðR; zÞ ð49Þ

at the sheet, which is found by first calculating the field due to a current ring and

then summing over an infinite set of infinitesimal current rings to find the field of the

current sheet.

To lowest order in ðr2 þ z2Þ1=2=R0
0, the z-component of the magnetic field close to

a current ring is

Bz 
 � lI0
4p

2r

r2 þ z2
þ 1

R0
0

loge

ðz2 þ r2Þ1=2

8R0
0

( )

;

where r ¼ R � R0
0. The first term is the field due to a straight current, while the

second term gives the effect of the curvature of the current ring, which decreases the

field on the outside of the ring and increases it on the inside of the ring, as shown in

Fig. 25(a). After summing over a series of infinitesimal current rings to give a
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current sheet, the condition (Eq. 49) for the tangential field to vanish at the sheet

becomes

R ¼ 1

p
lim
z!0

Z L=2

�L=2

1
2
BSðr00Þ

2ðr � r00Þ
z2 þ ðr00 � rÞ2

þ 1

R0

loge

½z2 þ ðr00 � rÞ2Þ�1=2

8R0

( )

dr00:

This integral equation has been solved by Priest and Syntelis (2021) to give the

profile of BSðRÞ and applied to the problem of chromospheric and coronal heating

by photospheric flux cancellation. Longcope (1996) used the formation of current

sheets along separators as the basis for a model for reconnection, flaring and heating

in the corona.

5.2.2 Shearing of separatrices of a 2.5D field

Current sheets may also be created when a separatrix touches a boundary at a bald
patch (Fig. 26a) (Titov et al. 1993). Converging motions will give rise to a current

sheet extending upwards, as in Fig. 26b, but shearing motions produce a long

(a)

(b) (c) (d)

Fig. 25 a The magnetic field near part of a circular current loop of current I0. b–d The magnetic field near
an axisymmetric current sheet due to the sum of (b) a ring of nulls at radius R0 and c a current sheet of
length L or equivalently d a set of current rings. Image reproduced with permission from Priest and
Syntelis (2021), copyright by ESO
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Fig. 26 A simple current sheet (thick curve) is produced in (b) by the effect of converging motions on
(a) a quadrupolar field with no X-point, but the effect of (c) shearing motions is to create a current
sheet all along the separatrix. Similarly, if there is an X-point present, shearing motions also create (e) a
separatrix current sheet. Image reproduced with permission from Priest (2014), copyright by CUP

Fig. 27 Illustration of the Lagrangian relaxation computational approach, showing some representative
grid lines (grey) and magnetic field lines both prior to relaxation (left) and in the numerically obtained
equilibrium (right). The grid deforms to allow field lines to equilibrate the twist or stress along their
length. Image reproduced with permission from Pontin and Hornig (2020), copyright by the authors,
based on the simulations of Wilmot-Smith et al. (2009b)
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curved sheet stretching all along the separatrix (Fig. 26c) (Low and Wolfson 1988;

Vekstein et al. 1991; Amari and Aly 1990). This may be analysed by considering a

2.5D equilibrium field of the form ðBx;By;BzÞ ¼ ðoA=oy;�oA=ox;BzðAÞÞ, where
the force-free condition j� B ¼ 0 gives rise to the Grad–Shafranov equation for the

flux function (A), namely,

(a) (b)

(c)

Fig. 28 (a, b) Spine (red) and fan (blue) structure in the final equilibrium obtained through an ideal
relaxation simulation in which the spine footpoints are displaced, together with an isosurface (3D
contour) of the current density (grey). The two different images show two different angles and illustrate
the local collapse of the spine and fan. (c) Scaling of the peak current density Jmax and total current flux I
with the numerical resolution for the 3D null (marked ‘‘k ¼ 0:5’’) and for an equivalent simulation for a
2D null (marked ‘‘k ¼ 0’’). Modified from Pontin and Craig (2005) with permission, copyright by AIP
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r2A þ Bz
dBz

dA
¼ 0: ð50Þ

If a smooth footpoint displacement of a potential field of the form Bp ¼
ðoA=oy;�oA=oxÞ is imposed, the integral of the field-line equation becomes

BzðAÞ ¼ dðAÞ=VðAÞ; in terms of the difference d(A) in footpoint displacement out of

the plane and the differential flux volume VðAÞ ¼
R

ds=Bp. Although BzðAÞ is

constant along a given field line, its values on field lines above and below the

separatrix AOB may be quite different, which turns the whole separatrix into a

current sheet (Fig. 26c). Similarly, a 2D field with an X-point (Fig. 26d) is trans-

formed by shearing motions into two cusp points at the ends of a current sheet

extending all along the separatrices (Vekstein and Priest 1992, 1993) (Fig. 26e).

5.3 Magnetic relaxation

The preceding sections describe analytical models for current sheets in magnetic

fields with certain symmetries. A useful technique for producing magnetic equilibria

in more general geometries—often containing current sheets—is ‘‘magnetic

relaxation’’ (e.g., Sturrock and Woodbury 1967; Arnol’d 1974; Klimchuk et al.

1988). Conceptually, the idea is to begin with a magnetic configuration that is not in

equilibrium (and does not contain current sheets) and then to lower the total energy

and so move towards an equilibrium while maintaining the magnetic field line

topology (i.e., prohibiting reconnection). For example, Moffatt (1985) described the

formation of current sheets in a three-dimensional configuration consisting of two

linked flux tubes.

Computational implementations of ideal magnetic relaxation take advantage of

the fact that the magnetic field evolves like a line element in a flow and use a

Lagrangian computational mesh. In this way, the magnetic topology can be exactly

maintained, since the expression for B is derived directly from the numerical mesh

deformation (Craig and Sneyd 1986). Various different evolution equations can be

used (Candelaresi et al. 2015), but, since it is the final state that is of interest rather

than the evolution towards it, evolutions that minimise the magnetic energy in the

most efficient way are chosen in practice. A common choice is

q
ov

ot
¼ �$p þ j� B� Kv; ð51Þ

where K is a friction coefficient, with the relaxation being described as mag-

netofrictional (Chodura and Schlueter 1981; Craig and Sneyd 1986). This choice of

evolution equation has the great advantage that the total magnetic energy decreases

monotonically in time. Alternatively, the energy may be damped by a viscous term,

in which case the sum of the magnetic and kinetic energies decays monotonically

(Moffatt 1985). In either case, the magnetic energy tends to a finite limit, which is

non-zero if the initial topology is nontrivial in the sense that not all of the field lines

can shrink to a point without cutting other field lines (see, e.g., Fig. 27).

The final state of such a relaxation (with the lowest limit for the magnetic energy)

is determined by the magnetic field topology. Depending on the evolution equation
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used, the final state may be force-free (j� B ¼ 0) or magnetostatic (j� B ¼ $p)

and may possess current sheets, across which n � B ¼ 0 and the total pressure ðp þ
B2=ð2lÞÞ is continuous. This technique has been used to explore the properties of

current sheets at both 2D and 3D magnetic null points (Craig and Litvinenko 2005;

Pontin and Craig 2005), in response to the kink instability (Craig and Sneyd 1990),

and in various configurations conforming to the geometry of Parker’s braiding

model—see the following section for details. It is worth noting that the method can

fail if the computational grid becomes too distorted (Pontin et al. 2009), which has

been somewhat mitigated in a new implementation by Candelaresi et al. (2014).

5.4 Current sheets at 3D magnetic nulls

Much like 2D magnetic nulls, 3D nulls are potential sites for current sheet

formation. As in 2D (see Sect. 2.1), the Lorentz force at a 3D null tends to reinforce

any perturbation to an equilibrium field, and, when the linear field about the null is

considered in isolation, the current is shown to blow up in a finite time (Klapper

et al. 1996; Bulanov and Sakai 1997). As in 2D, the energy that drives the collapse

comes from the surrounding volume outside the modelled domain, so that the effect

of the external conditions is being neglected in such models.

Antiochos (1996) was the first to sketch the form of the magnetic field when a

discontinuity forms at a 3D null. The formation of such current sheets was first

demonstrated explicitly by Pontin and Craig (2005) using ideal relaxation

simulations (as in Sect. 5.3). They showed that any perturbation that disturbs the

locations on the boundary of the footpoints of the spine or fan from their equilibrium

positions leads to the formation of a current layer at the null in which the peak

current shows a power-law divergence with the numerical resolution (Fig. 28c)—

the expected signature of an underlying, unresolved current sheet. The divergence

identically mirrors the behaviour for a 2D null (dashed curve in the figure) while the

net flux of current in the sheet remains fixed with resolution in both cases.

The field line geometry takes the form of a local collapse of the spine towards the

fan, directly analogous to the closing up of the separatrices when current sheets

form at 2D nulls (Fig. 28a,b; see also Fuentes-Fernández and Parnell 2013).

Fuentes-Fernández and Parnell (2012) considered ideal relaxation of non-equilib-

rium fields containing spiral nulls. In all but the exactly axisymmetric case they

reported an infinite-time singularity of the current in a sheet that extends along the

spine and weak-field fan direction (the spine and fan remain perpendicular to one

another). More complex field geometries containing nulls have also been examined

in ideal relaxation experiments, with signatures of singular current structures present

at the nulls for a broad range of fields and perturbations (e.g., Pontin and Huang

2012; Craig and Pontin 2014; Candelaresi et al. 2015).

For current singularities at both 2D and 3D nulls, increasing the plasma pressure

is found to weaken the divergence of the current with numerical resolution, but not

to mitigate that divergence (Craig and Litvinenko 2005; Pontin and Craig 2005).

This is consistent with the fact that locally around the null—where the field is
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linear—it can be shown that the j� B force never takes the form of a gradient, and

therefore cannot be balanced locally by a pressure gradient (Parnell et al. 1997).

5.5 Line-tied magnetic fields without null points

5.5.1 Topological dissipation

As described in Sect. 5.1–5.3, when a magnetic field contains topologically distinct

flux systems, partitioned by separatrices, an ideal evolution from one smooth

equilibrium to another is not always possible and instead—in the absence of

reconnection—current sheets form at null points and along separatrices. However,

Parker (1972, 1979, 1989, 1994) went a step further by arguing that current sheets

might also form during the evolution of magnetic fields without any separatrices,

but with a complex winding of their magnetic field lines—and may therefore

possibly contribute to coronal heating (Fig. 29).

He suggested that such a configuration cannot, in general, adjust to a new smooth

force-free equilibrium in response to finite-amplitude footpoint motions, but should

instead evolve towards a configuration containing tangential discontinuities of B, or
current sheets. The formation of these current sheets and subsequent rapid

reconnection he called topological dissipation, since it is the field line topology

(winding or ‘‘braiding’’) that is responsible for the formation of the current sheets.

Relentless motions of the photospheric footpoints of coronal field lines implies that

the field is continually responding by reconnecting and converting magnetic energy

into heat, which offers a way to heat the solar corona, especially active regions.

Since it was proposed, this idea has stimulated substantial debate, with many

different approaches used to attempt to prove or disprove the hypothesis. This

became known as the ‘‘Parker problem’’. Here we briefly summarise relevant

results, and direct the reader to the review by Pontin and Hornig (2020) for more

details.

Fig. 29 The effect on a an initial field of b twisting and c braiding motions
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5.5.2 Arrays of flux tubes

If a set of flux tubes is closely packed together and each is twisted in the same

direction, then Parker (1979) realised that current sheets will form at the boundaries

of the tubes. He considered a magnetic field (Bx ¼ oA=oy;By ¼ �oA=ox;

Bz ¼ constant) in equilibrium such that

A ¼ K sin kxx sin kyy:

This rectangular array of twisted flux tubes has adjacent cells with opposite twist. If

instead all the cells have the same sense of twist, they are not in equilibrium and

form current sheets at their boundaries. A similar configuration was considered by

(a) (b) (c)

Fig. 30 The ideal relaxation of a braided field. Top: isosurface of the modulus jjj of the current density at
60% of maximum. Middle: jjj in the plane z ¼ 0. Bottom: log10ðQÞ in the plane z ¼ �24. For twist
parameter given by a k ¼ 0:5, b k ¼ 0:6, c k ¼ 0:7. Image modified with permission from Pontin and
Hornig (2015), copyright by AAS
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Longcope and Strauss (1994), who studied the coalescence instability (Finn and

Kaw 1977) between pairs of flux tubes with the same sense of twist. In the absence

of line-tying of these flux tubes, the current sheet that forms between the tubes is

singular. However, the line-tying provides an additional magnetic tension force that

halts the collapse when the current layer thickness is still finite.

Another candidate mechanism that has been proposed to explain current sheet

formation in the context of coronal heating and solar flares is the ideal kink

instability (Kruskal et al. 1958; Hood and Priest 1979). Again, in the absence of

line-tying, singular current sheets form, on resonant surfaces. In the line-tied case a

current layer still forms at the radius that corresponds to the resonant surface. The

thickness of this current layer scales inversely with the distance between the line-

tied boundaries, and the growth-rate of the instability is reduced as described by

Huang et al. (2010). However, the issue of current sheet formation in the nonlinear

phase of the instability is not yet fully resolved.

5.5.3 Magnetic braids

In the original paper, Parker (1972) considered infinitesimal departures from a

uniform field between parallel, perfectly conducting plates. He argued that, if the

pattern of small-scale variations is not uniform along the large-scale field, then the

field cannot be in magnetostatic equilibrium. In other words, equilibrium exists only

if the field variations consist of a simple twist extending from one footpoint to

another. However, van Ballegooijen (1985) pointed out an error in the calculation,

and indeed argued that a smooth equilibrium should always be accessible following
an infinitesimal perturbation to a uniform field (see also Sakurai and Levine 1981;

Zweibel and Li 1987). This is consistent with the paper by Bineau (1972) who

proved that smooth force-free fields (where j� B ¼ 0) exist in the vicinity of the

potential field (i.e., for small a, where r� B ¼ aB).
In spite of the above results, there have been numerous arguments put forward for

the formation of tangential discontinuities of B in response to finite-amplitude

perturbations. These include persuasive intuitive arguments based on the optical

analogy (e.g., Parker 1994), as well as studies of ‘‘topologically untwisted’’ fields by

Low (2006), Low and Flyer (2007), Janse and Low (2009). Nevertheless, none of

these studies explicitly demonstrates formation of tangential discontinuities, and

indeed counter-arguments have been made demonstrating that simple tangential

discontinuities (in the form of single smooth surfaces) cannot form in response to

smooth boundary motions (van Ballegooijen 1985; Longcope and Strauss 1994;

Cowley et al. 1997).

Computational approaches to the Parker problem typically involve ideal

relaxation simulations using the approach described in Sect. 5.3. In short, such

approaches have not found any conclusive evidence for the formation of current

sheets (e.g., Craig and Sneyd 2005; Wilmot-Smith et al. 2009b). What is, however,

clear is that, as the boundary perturbations are progressively increased, the

corresponding equilibrium in the domain contains current layers that are progres-

sively thinner and more intense (van Ballegooijen 1988a, b; Mikić et al. 1989;

Rappazzo and Parker 2013). To understand why this must generally be the case,
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consider the following intuitive argument (Pontin and Hornig 2015). In a force-free

field (with r� B ¼ aB), a is constant along magnetic field lines (since

B � ra ¼ 0). Thus, if the field line mapping between the two line-tied boundaries

contains small perpendicular length scales then so must a (assuming that it is not

constant but rather varies between field lines). Now, a ¼ j � B=B � B ¼ jk=jBj, or
jk ¼ ajBj, so that jk must have the same perpendicular length scales as a and the

field line mapping. (The modifying factor of the field strength is approximately

constant in the Parker problem geometry.) The same conclusion is reached for

magnetic fields close to force-free equilibrium by considering the correlation length

of a along field lines—see Pontin et al. (2016). This was demonstrated explicitly by

Pontin and Hornig (2015) who simulated the ideal relaxation of a set of braided

fields (following the earlier approach of Wilmot-Smith et al. 2009b). In their model,

the ‘‘twist parameter’’ k (see Fig. 30) determines the field complexity, with larger k
corresponding to ‘‘more braided’’ fields. This can be quantified using the squashing

factor Q (see Sect. 2.6), which exhibits progressively larger numbers of thinner

layers with higher values of Q as the field becomes more braided (see also Wilmot-

Smith et al. 2009a). As shown in Fig. 30, the equilibria for these magnetic braids

contain both QSLs and current layers whose thickness scales exponentially—with

the same exponent—with the twist parameter. The conclusion from these studies is

that continual braiding of the coronal field lines may not lead to tangential

discontinuities of B (singular current sheets), but nevertheless onset of reconnection

is inevitable as the current layers become exponentially thinner and more intense as

the field lines become more tangled.

5.6 Current sheet formation at hyperbolic flux tubes or quasi-separators

What kinds of motion encourage current sheets to form at a quasi-separator and the

region that surrounds it, namely, a hyperbolic flux tube (HFT)? Démoulin et al.

(1996a) conjectured that any footpoint motion would tend to do so, and this was

followed by a series of numerical experiments that confirmed formation of

concentrated currents for specific geometries (Inverarity and Titov 1997; Galsgaard

et al. 2003b; Aulanier et al. 2005; De Moortel and Galsgaard 2006a). Later, Titov

(2007) clarified the problem by showing how pinching motions are much more

effective at concentrating currents than rotating motions.

Like separators, HFTs (or quasi-separators) are favourable magnetic structures

for current sheet formation, because their field lines in a quadrupolar configuration

connect regions of strong and weak photospheric magnetic field, which provides a

favourable condition for pinching by a stagnation flow.

Consider a straightened-out HFT formed between four sunspots lying in two

planes. Shearing displacements will either turn the flux tube or twist it and will

produce at the midplane either a rotation or a stagnation flow. This will deform a

Lagrangian grid in two different ways (Fig. 31) (Titov et al. 2003). For the case of

‘‘twist’’, most of the grid distortion is in a narrow central region, and so the middle

of the HFT will pinch to a strong current layer.

The maximum current density (at the centre of the configuration) is
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j�z ¼ 2

l
h þ

Bk
2L

� �

sinh n: ð52Þ

where 2L is the distance between the planes, h and Bk are the initial values of the

transverse field gradient and longitudinal field at the centre, and n ¼ Vst=lsh is the

dimensionless displacement of each sunspot moving with velocity Vs and creating a

shear region of a half-width lsh. Thus, when n[ 1, a stagnation-point flow at the

centre of the HFT causes it to pinch and the current density to grow exponentially

with spot displacement.

At large n, the above kinematic estimate can be improved by relaxing the

unbalanced stress in the current layer and allowing it to compress in the transverse

direction to an approximately force-free state (Titov et al. 2003). The resulting

central current density is

j�z eq ’ j�z 1þ en 0:91
hlsh
Bk

þ 0:57
lsh
L

� �2
" #

; ð53Þ

which is larger than the kinematic value j�z by a factor that grows exponentially with

the displacement n and with decreasing Bk. Effenberger et al. (2011) used an

adaptive mesh code to study current accumulation in an HFT, observing extremely

high current densities on the scale of the computational grid. In the limit Bk ! 0 we

find j�z eq ! 1, in agreement with the analysis of current accumulation at null points

Fig. 31 Non-pinching (top) and pinching (bottom) deformations of an HFT in the midplane z ¼ 0
(dashed) due to turning and twisting shearing motions, respectively, applied to the HFT footpoints. Image
reproduced with permission from Titov (2007), copyright by CUP
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(Bulanov and Olshanetsky 1984; Priest and Titov 1996; Craig and Litvinenko

2005).

Interestingly, a strong current layer can form even in an initially uniform field, as

can be seen by putting h ¼ 0 in the above expressions (52) and (53). This is because

the pair of twisting and shearing footpoint motions interlocks the coronal field lines

and so forms an HFT even if none exists initially. Early numerical experiments on

Parker braiding confirmed such an effect (see Mikić et al. 1989; Galsgaard and

Nordlund 1996; Longbottom et al. 1998, and the preceding section).

6 Magnetic annihilation

6.1 A 1D current sheet with diffusion and advection

A closely related process to magnetic reconnection is magnetic annihilation, which
refers to the inwards transport and cancellation of straight, oppositely-directed field

Fig. 33 a Steady-state model for magnetic annihilation in which straight magnetic field lines (solid lines)
are carried in from both sides by a stagnation-point flow (red dashed). b The magnetic field B as a
function of distance x (see Eq. 61), with the approximations when x � l and x � l shown dashed

Fig. 32 The magnetic profile at three times (t ¼ 0, t1, t2) during its diffusion from an initial 1D step
function (see Eq. 58)
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lines in a current sheet (of infinite length). The variation of the magnetic field ðBÞ in
time is described by the induction equation

oB

ot
¼ $� ðv� BÞ þ gr2B; ð54Þ

due to the basic processes of advection of the magnetic field with the plasma and

diffusion through the plasma. The ratio of advection to diffusion (i.e., of the two

terms on the right-hand side of Eq. 54) for a length-scale l0 is the magnetic Reynolds

number Rm ¼ l0V0=g.
For a 2D steady state with flow v ¼ vxx̂þ vyŷ and magnetic field B ¼ Bxx̂þ Byŷ,

Eq. (54) integrates to Ohm’s Law

Eþ v� B ¼ g$� B; ð55Þ

where Faraday’s Law ð$� E ¼ 0Þ implies that the electric field E ¼ E ẑ is uniform.

In most parts of the interior and atmosphere of the Sun, the advection dominates, so

that the right-hand side is negligible. This holds, for instance, in the ideal region

around a diffusion region and outside shock waves.

For steady-state reconnection, the other main MHD equation is the equation of

motion under the influence of a pressure gradient and a j� B-force, namely,

qðv � $Þv ¼ �$ p þ B2

2l

	 


þ ðB � $ÞB
l

: ð56Þ

When advection is negligible (Rm � 1) and the magnetic field ðBðx; tÞŷÞ is one-

dimensional, Eq. (54) reduces to a 1D diffusion equation

oB

ot
¼ g

o2B

ox2
; ð57Þ

and so field variations on a scale l0 diffuse away in a time sd ¼ l20=g and with a

speed vd ¼ g=l0.
For an initial magnetic field B(x, 0) the solution is

Bðx; tÞ ¼
Z

Gðx � x0; tÞ Bðx0; 0Þ dx0

where Gðx � x0; tÞ ¼ ð4pgtÞ�1=2
exp½�ðx � x0Þ2=ð4gtÞ� is the Green’s function.

For example, if initially there is an infinitesimally thin current sheet at the origin,

so that the magnetic field is a step function ðB ¼ B0 for x[ 0 and B ¼ �B0 for

x\0), the solution becomes

Bðx; tÞ ¼ 2B0p
p

Z x=
pð4gtÞ

0

e�u2du; ð58Þ

and the steep magnetic gradient at x ¼ 0 spreads out in time, as shown in Fig. 32.

The width (4
ffiffiffiffi

gt
p

) of the sheet increases in time, and the field is said to be anni-

hilated, since the field strength at a fixed position decreases in time. During this
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process, the field lines diffuse inwards through the plasma and cancel at x ¼ 0,

while the magnetic energy is converted into heat by ohmic dissipation.

In the opposite limit (Rm � 1) when advection dominates over diffusion, the

magnetic field lines are frozen into the plasma. For example, the effect of a

stagnation-point flow vx ¼ �V0x=a, vy ¼ V0y=a on a 1D field ðBðx; tÞŷÞ is to carry

the field lines inwards from the sides and accumulate them near x ¼ 0. Here the

induction equation (54) becomes

oB

ot
� V0x

a

oB

ox
¼ V0B

a
; ð59Þ

which may be solved by the method of characteristics.

6.2 Stagnation-point flow model

As shown above, as the field lines in a current sheet diffuse inwards and cancel, the

sheet naturally tends to diffusively broaden. However, a steady state can be

maintained if this outwards diffusion is balanced by an inwards transport of the

magnetic field ðBðxÞŷÞ by a stagnation-point flow (vx ¼ �V0x=a; vy ¼ V0y=a),

where V0=a is constant (Fig. 33). When Rm � 1, an extremely thin current sheet is

created with a small width (l) and thus a large magnetic gradient ($B) and current

(j�B=ðllÞ) (Parker 1973; Sonnerup and Priest 1975).

In this case Ohm’s Law (55) with E ¼ const becomes

E � V0x

a
B ¼ g

dB

dx
; ð60Þ

whose solution is

B ¼ 2E0a

V0l
exp � x2

l2

� �

Z x=l

0

expðX2Þ dX; ð61Þ

where l2 ¼ V0=ð2gaÞ, as shown in Fig. 33. When x � l, the right side of Eq. (60) is
negligible, the field is frozen to the plasma and B 
 ðEaÞ=ðV0xÞ. On the other hand,

when x � l, the second term on the left is negligible, the field lines diffuse through

the plasma and B 
 Ex=g. This represents one of the few exact nonlinear solutions

of MHD, and it has been generalised to a 3D stagnation-point flow, with a field

ðBðxÞÞ that rotates as it is carried in (Sonnerup and Priest 1975).

6.3 Time-dependent current sheet

The purely one-dimensional behaviour of a current sheet involving a magnetic field

Bðx; tÞŷ, plasma flow vðx; tÞx̂, density (qðx; tÞ) and pressure (p(x, t)) has been

described by Priest and Raadu (1975) using self-similar solutions for highly

subsonic and sub-Alfvénic flows. Numerical computations have been carried out by

Forbes et al. (1982) for the evolution of a current sheet when the magnetic

diffusivity is suddenly enhanced.
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At small times (Fig. 34(left)), within the diffusion region one sees the outwards

propagation of a shock wave and an inflow of plasma, as well as a second shock that

overtakes the first shock, coalescing with it. At large distances from the diffusion

region (Fig. 34(right)), a magnetoacoustic wave pulse propagates outwards,

consisting of a rarefaction followed by a compression (see also Takeshige et al.

2015). It turns out that this 1D model describes well the time-dependent formation

of a current sheet by 2D null collapse, see Sect. 10.3.

6.4 Reconnective annihilation

The stagnation-point solution (Sect. 6.2), with inflow along the x-axis, namely,

Fig. 34 Evolution of a current sheet in response to a sudden increase in diffusivity: (left) the density at
small times when the shock is within the diffusion region and b1 ¼ 0:1 is the plasma beta at large
distances; (right) density ðqÞ, mass flux ðqvÞ and magnetic field (B) for b1 ¼ 0:2 at large times when the
waves are outside the diffusion region. Image reproduced with permission from Forbes et al. (1982),
copyright by CUP

Fig. 35 The Craig–Henton
reconnective annihilation model,
showing streamlines (dashed)
and magnetic field lines (solid)
for k ¼ 0:9. The one-
dimensional diffusion region
(shaded) extends to infinity in
the positive and negative y-
directions. Image reproduced
with permission from Priest
(2014), copyright by CUP
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vx ¼ �x; vy ¼ y; B ¼ ByðxÞ ŷ;

has been generalised by Craig and Henton (1995) (Fig. 35) by superposing a 1D

term ðGðxÞŷÞ and a magnetic field ðkvÞ that is parallel to a flow

vx ¼ �x; vy ¼ y � FðxÞ, to give

B ¼ kvþ GðxÞŷ; ð62Þ

where k is a constant and the functions F(x) and G(x) are determined by the

equations of induction and motion. The parameter k measures the departure of the

solution from simple magnetic annihilation, while the plasma velocity in this exact

solution of the incompressible MHD equations now consists of a stagnation-point

flow plus a shear flow.

The process is known as reconnective annihilation (or magnetic merging) since it
is closer in spirit to annihilation than to reconnection, with the 1D current sheet

extending to infinity along the y-axis and both advection and diffusion being one-

dimensional in nature. The width of the current sheet (like magnetic annihilation)

scales with magnetic diffusivity like g1=2.
Craig et al. (1995) and Craig and Fabling (1996) later extended the 2D solution

to 3D, with a background 3D magnetic null point and stagnation-point flow. The

authors present two solutions that involve current layers that are localised to either

the spine or the fan. These are constructed by combining straight field lines

(extending to infinity) with a background potential magnetic null point field using a

construction as in Eq. (62). In each case the straight field lines are in oppositely-

directed bundles localised to either the spine or fan, and form a tube of current

around the spine (‘‘spine reconnective annihilation’’) or a slab of current around the

fan (‘‘fan reconnective annihilation’’). The solutions containing a planar current

layer in the fan were demonstrated to be accessible through a dynamic evolution in

an incompressible plasma by Craig and Fabling (1998). However, a pressure

gradient is required within the current sheet, which is larger for thinner current

sheets, i.e., for smaller g. This pressure gradient is a consequence of the restrictive

but necessary choice of low-dimensionality disturbance fields: it is required to

balance the Lorentz force within the current layer. It turns out that in a compressible

plasma, such a pressure gradient cannot be maintained, and instead the magnetic

field collapses, with the current layer becoming fully localised at the null rather than

extending to infinity (Pontin et al. 2007a). By contrast, spine reconnective

annihilation solutions appear not to be dynamically accessible (Titov et al. 2004;

Pontin et al. 2007a).

7 Steady 2D reconnection models

In many applications reconnection is quasi-steady in the sense that it changes its

behaviour slowly over many Alfvén travel times. Furthermore, steady reconnection

is easier to study than time-dependent reconnection, so the emphasis in the early

history of the subject was on understanding the nature of steady 2D reconnection. In

particular, slow Sweet–Parker reconnection (Sect. 7.1) was followed by the fast
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Petschek mechanism (Sect. 7.2) and by other types of fast reconnection (such as the

Almost-Uniform family) that depend on the initial and boundary conditions

(Sect. 7.3).

Fast reconnection is now the standard explanation for rapid energy release in the

corona, but three possibilities arise, as mentioned in Sect. 1.1, namely, steady

Petschek or Almost-Uniform reconnection, collisionless reconnection modified by

the Hall effect, and impulsive bursty reconnection due to secondary tearing.

However, in each of these three cases roughly the same maximum mean rate of

reconnection is reached. See Sect. 9 for details of these three types of fast

reconnection, both collisional and collisionless.

7.1 Sweet–Parker mechanism

The aim of early reconnection theory was to find the steady rate of reconnection,

namely, the speed with which field lines may enter the reconnection site and have

their connections to plasma elements changed. The first model by Sweet (1958a, b)

and Parker (1957, 1963) modelled a diffusion layer of length (2L) stretching along

the whole interface between opposing magnetic fields.

Equating the first and third terms in Ohm’s law (54) gives the magnetic diffusion

time

sd ¼ L2
0

g
¼ 10�9 L2

0 T3=2;

with L0 in metres and T in degrees K. This is huge in practice: for instance, a typical

coronal length-scale (L ¼ 107 m) and temperature (T ¼ 106 K) yields a diffusion

time of sd ¼ 1014 sec. Releasing magnetic energy in a solar flare or coronal heating

event therefore needs the creation of intense current sheets with enormous magnetic

gradients and a tiny sheet thickness.

7.1.1 The basic Sweet–Parker model (1958)

Sweet and Parker gave an order-of-magnitude treatment for a current sheet or

diffusion region of length 2L and width 2l (Fig. 36), for which oppositely directed

magnetic fields 	Bi are carried in from both sides at a speed vi. In a steady state, this

inflow

fl

Fig. 36 The notation for Sweet–
Parker reconnection, with
magnetic field lines (black)
transported into a diffusion
region (shaded grey) by a
plasma flow (blue arrows)

123

Magnetic reconnection: MHD theory and modelling Page 65 of 202 1



will be the same as the diffusion speed (sd=l) with which the sheet tends to diffuse

outward, namely,

vi ¼
g
l
: ð63Þ

Furthermore, conservation of mass implies that the rates at which plasma enters

(at speed vi) and leaves (at speed vo) the sheet must be the same, so that, if the

density is uniform,

L vi ¼ l vo: ð64Þ

However, if the plasma is accelerated along the current sheet by the j� B-force, the
outflow speed is just the inflow Alfvén speed, namely,

vo ¼ vAi �
Bi
ffiffiffiffiffiffi

lq
p : ð65Þ

After eliminating the width (l) between Eqns. (63) and (64), the reconnection rate

becomes

vi ¼
vAi

Rmi
1=2

or, in dimensionless terms, Mi ¼
1

R
1=2
mi

; ð66Þ

where

Mi �
vi

vAi
and Rmi �

L vAi

g
ð67Þ

are the inflow Alfvén Mach number and magnetic Reynolds number, respectively.

According to the above equations, the plasma is ejected from a sheet of width

l ¼ L=Rmi
1=2 with a magnetic field strength Bo ¼ Bil=L ¼ Bi=Rmi

1=2: Since

Rmi � 1, we therefore find that, as well as vi � vAi, the sheet width is much

smaller than its length (l � L) and the outflow field is much smaller than the inflow

field (Bo � Bi).

The Sweet–Parker mechanism has a sheet length (L) equal to the global external

length-scale ðLeÞ and so Rmi becomes the global magnetic Reynolds number
Rme ¼ Le vAe=g. In practice Rme � 1, and so the reconnection rate is very small. In

the solar corona, for example, Rme is typically 108–1012, giving a reconnection rate

10�4–10�6 of the Alfvén speed, which is much too slow to account for, say, a solar

flare.

Priest (2014) describes three interesting aspects of Sweet–Parker reconnection.

The first is that a consideration of energetics implies that half the inflowing

magnetic energy is converted into thermal energy and half into kinetic energy, so

creating two hot fast jets of plasma with equipartition between thermal and kinetic

energy. The second aspect concerns the assumption that the plasma pressures at the

neutral point (pN ¼ pi þ B2
i =ð2lÞ) and outflow ðpoÞ are the same, so that the plasma

is accelerated from rest at the neutral point to vo ¼ vAi at the outflow, with pressure
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gradients along the sheet playing no role. However, when pressure gradients are

included, the reconnection rate (66) is modified to

Mi ¼
21=4 1þ 1

2
bið1� po=piÞ

� �1=4

p
Rmi

;

where bi ¼ 2lpi=B2
i . Thus, when the outflow pressure exceeds the neutral point

pressure ðpo [ pNÞ; the outflow slows ðvo\viÞ and the reconnection rate falls

ðMi\1=
p

RmiÞ: The third aspect concerns the effect of compressibility, which is to

increase the reconnection rate (Mi) by a factor ðqo=qiÞ
1=2

when qo [ qi.

7.2 Petschek mechanism

Petschek (1964) realised that reconnection could be much faster (in terms of the rate

at which magnetic flux is brought into the diffusion region) if the Sweet–Parker

diffusion region were much smaller and occupied only a small part (of length

L � Le) of the boundary (of length Le) between opposing fields. He also analysed

the external flow outside the diffusion region (Fig. 37a) and suggested that most of

the energy conversion takes place at four slow-mode MHD shock waves; indeed, 2
5

of the inflowing magnetic energy is converted to heat and 3
5
to kinetic energy.

Petschek’s maximum reconnection rate is typically a tenth or a hundredth of the

Alfvén speed.

At the inflow to the diffusion region, values such as vi and Bi are denoted by a

subscript i and their relationship to external values (such as ve and Be) at large

distances Le can be determined. Reconnection models then depend on the external
reconnection rate ðMe ¼ ve=vAeÞ and the external magnetic Reynolds number

ðRme ¼ LevAe=gÞ: Fast reconnection here refers to reconnection whose rate ðMeÞ is
much larger than the Sweet–Parker value (1=

ffiffiffiffiffiffiffiffi

Rme

p
).

The external region around the diffusion region is then analysed in order to

determine how Mi depends on Me. First of all, conservation of magnetic flux for a

steady state ðviBi ¼ veBeÞ may be written in dimensionless terms as

(a) (b)

Fig. 37 a For any fast reconnection regime, including Petschek’s mechanism: the magnetic field (Be) at
large distances Le is brought in by a flow ve towards a diffusion region (shaded) of dimensions 2l and 2L,
where the inflow field and flow are Bi and vi, respectively. The plasma is heated and accelerated by four
shock waves (red) and then expelled into two regions to left and right. b Notation for the analysis of the
upper inflow region
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Mi

Me
¼ B2

e

B2
i

: ð68Þ

Also, the Sweet–Parker relations (63) and (64) determine the dimensions of the

diffusion region in dimensionless terms as

L

Le
¼ 1

Rme

1

Me
1=2

1

Mi
3=2

; and
l

Le
¼ 1

Rme

1

Me
1=2

1

Mi
1=2

: ð69Þ

Thus, after a model of the external region has determined Bi=Be, Eq. (68) gives

Mi=Me while the diffusion region dimensions follow from Eq. (69) in terms of Me

and Rme alone. We first apply this approach to Petschek’s model of the external

region (Sect. 7.2.1), and then generalise it to a larger family of models known as

Almost-Uniform reconnection (Sect. 7.3).

7.2.1 Petschek’s model: almost-uniform, potential reconnection

In this context, the terms ‘‘potential’’, ‘‘nonpotential’’, ‘‘uniform’’ and ‘‘nonuni-

form’’ denote the magnetic field behaviour in the inflow region upstream of the

diffusion region. Petschek’s model is ‘‘almost-uniform’’ because the field in the

inflow region is a weakly curved perturbation to a uniform field ðBeÞ, and it is

‘‘potential’’ because there is no current in the inflow region. It possesses four slow-

mode shock waves that stand in the flow and accelerate plasma to the Alfvén speed

ðvAÞ parallel to the shock front (Fig. 37a). In the upper inflow region, the upstream

plasma is moving downwards at the same speed ðvsÞ as the shock is trying to

propagate upwards, namely, vs ¼ BN=
pðlqÞ, where BN is the normal field

component, and thus a steady state is maintained.

The magnetic field decreases from a uniform value ðBeÞ at large distances to Bi at

the inflow to the diffusion region, while the flow speed increases from ve to vi. The

shocks provide a normal field component ðBNÞ which causes a small distortion in

the inflow field from the uniform value ðBeÞ at large distances. The field is therefore

the sum of a uniform horizontal field ðBex̂Þ and the field obtained by solving

Laplace’s equation in the upper half plane with a normal component (BN) imposed

along the shock waves and vanishing at the diffusion region. To lowest order, the

shock inclination is neglected, apart from providing By ¼ 2BN on the x-axis between
L and Le and �2BN between �Le and �L (Fig. 37b). The resulting solution of

Laplace’s equation gives a field at the diffusion-region inflow of

Bi ¼ Be �
4BN

p
log

Le

L
; ð70Þ

or, after writing BN=
ffiffiffiffiffiffi

lq
p ¼ ve from the shock relations,

Bi ¼ Be 1� 4Me

p
log

Le

L

� �

: ð71Þ

Petschek found that the diffusion region size decreases and the shock angle

increases as the reconnection rate ðMeÞ increases. He suggested that the mechanism
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chokes itself off when Me is too large, and, by putting Bi ¼ 1
2

Be, he estimated a

maximum reconnection rate ðM�
e Þ of

M�
e 
 p

8 logRme
; ð72Þ

which in practice is much faster than Sweet–Parker and lies between 0.1 and 0.01.

7.2.2 Is fast Petschek reconnection possible with near-uniform resistivity?

When a spatially nonuniform resistivity is employed that is enhanced around the

X-point, then numerical MHD simulations can produce Petschek and other fast

regimes of reconnection. However, they do not produce a Petschek configuration

when the resistivity is spatially uniform (Scholer 1989; Biskamp 1986; Yan et al.

1992). This produced some doubts as to the validity of Petschek reconnection

(Biskamp 1993; Kulsrud 2001), but these have now been dispelled for three reasons:

(i) In analytical treatments of Petschek’s mechanism, it is of course impossible

to match the diffusion region and external region mathematically, since this

is a highly complex fully two-dimensional nonlinear set of resistive MHD

partial differential equations. But it is possible to match the resistive

internal region and ideal external region using average properties of the

diffusion region (Soward and Priest 1977; Priest and Forbes 1986).

(ii) In many examples of reconnection in the solar atmosphere, the physically

relevant case is that in which the diffusion region may well have an

enhanced resistivity due to for example current-induced microinstabilities,

although this does need to be established by a full analysis (Sect. 9.3).

(iii) Recent carefully designed numerical experiments (Baty et al.

2006, 2009b, a) have shown that it is possible to set up and maintain a

Petschek-like solution when a quasi-uniform resistivity is adopted, as

summarised below. These suggest that a truly uniform resistivity is likely to

be marginally stable and disrupted in practice by, for example, secondary

tearing.

First of all, Baty et al. (2006) developed a helpful procedure for setting up a genuine

Petschek solution with enhanced resistivity by overspecifying the boundary

conditions, as follows. The initial state of their simulations is a one-dimensional

current sheet with magnetic field

B ¼ B0 tanhðx=aÞ ŷ;

together with density and pressure profiles in static isothermal equilibrium. The

usual time-dependent resistive MHD equations are solved in the first quadrant

0 6 x 6 Lx, 0 6 y 6 Ly, with symmetry conditions along x ¼ 0 and y ¼ 0. Each

simulation has a resistivity profile
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gðxÞ ¼ ðg0 � g1Þ exp½�ðx=lxÞ2 � ðy=lyÞ2� þ g1: ð73Þ

Petschek reconnection is a particular steady-state reconnection solution (Priest and

Forbes 1986; Forbes and Priest 1987; Forbes 2001). It represents an undriven case in

which the characteristics propagate information away from the X-point rather than

towards it, and so it cannot easily be obtained by driving a flow with external

forcing, since that is much more likely in practice to lead to one of the other

reconnection regimes such as flux pileup (Priest and Forbes 1986). On the other

hand, using a locally enhanced resistivity with free inflow and outflow conditions

can produce a Petschek state (Scholer 1989).

What Baty et al. (2006) did was to use a much simpler procedure, namely, to

overspecify the system by using fixed boundary conditions at the inflow boundary

x ¼ Lx by imposing q, vx, vy, By and total energy. Free boundary conditions are

adopted at the outflow boundary y ¼ Ly. Then the system chooses its own inflow

velocity (ve) (and therefore reconnection rate Me) that is different from the value

vx ¼ v�e being imposed. In a narrow boundary layer near x ¼ Lx the velocity changes

from v�e to ve. The resulting magnetic field (Fig. 38a) has all the features of a

Petschek solution. Different solutions may be obtained by varying the value of ly

and they agree well with the analytical solutions of Priest and Forbes (1986) for

MeðMiÞ.
Baty et al. (2006) considered the effect of varying the parameter g1 (for fixed g0).

They concluded that a quasi-uniform resistivity profile with an extremely small

negative gradient that dominates the inevitable numerical contribution near the

X-point can produce a stable Petschek solution and that a truly uniform profile is

probably marginally stable. Petschek’s model and other fast reconnection regimes

are therefore valid when the resistivity is enhanced or close to uniform. Indeed, one

ripple of a resistivity fluctuation of small amplitude is sufficient to seed the Petschek

mode.

Fig. 38 a The magnetic field and current density structures for a numerical simulation of Petschek
reconnection. Image reproduced with permission from Baty et al. (2006), copyright by AIP. b Magnetic
field and current density structures for the final steady state with an asymmetric resistivity having a

uniform resistivity of g0 ¼ 10�3 in the lower half-plane. Image reproduced with permission from Baty
et al. (2009b), copyright by AIP
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Later, Baty et al. (2009b) carried out new numerical experiments using the same

setup as before but over a domain centred at the origin without symmetry conditions

on the axes. A uniform resistivity was adopted in the lower half-plane (y 6 0)

together with the resistivity profile from Eq. (73) in the upper half-plane (y > 0).

The result is to produce a Petschek solution in the whole domain even though the

resistivity is uniform in the lower half-plane and slightly nonuniform in the upper

half-plane, as shown in Fig. 38(b) for g0 ¼ 10�3 and g1 ¼ 3� 10�5. Thus, Petschek

reconnection with uniform resistivity in a half-plane is driven and maintained by

Petschek reconnection with nonuniform resistivity in the other half-plane.

Figure 38b presents the final steady state, in which the shocks in the lower half-

plane are thicker due to the higher resistivity there. In this state, the inflow profiles

lie between those associated with the large and small resistivities, as does the

current density profile, which possesses a maximum amplitude that is shifted from

the origin to a location in the upper half-plane. Furthermore, the X-point and

stagnation point no longer coincide since the pressure gradient no longer vanishes at

the X-point.

Subsequently, Baty et al. (2009a) were able to produce for the first time a fast

Petschek solution with uniform resistivity in the whole domain. It was achieved by

adopting a nonuniform viscosity profile and exhibited all the expected features of a

classical Petschek solution, with two pairs of standing slow-mode shock waves

attached to a central diffusion region and the inflowing plasma representing a weak

fast-mode expansion. The diffusion region has a two-scale structure with an inner

resistive region surrounded by a visco-resistive region.

7.2.3 Non-steady Petschek model

Semenov et al. (1983) and Heyn (1996) set up time-dependent solutions of Petschek

type initiated by a localised resistivity increase in a pre-existing current sheet

(Fig. 39a). Fast and slow magnetoacoustic waves are launched into the medium,

and, in the incompressible case, the fast-mode waves propagate outwards

instantaneously and set up an inflow towards the X-point. Unlike steady Petschek

reconnection, the inflow is not uniform to lowest order but decreases with distance

Fig. 39 Semenov’s time-dependent model of Petschek-type reconnection with a initial oppositely
directed magnetic field lines (solid) of a current sheet and b the evolution of the magnetic field and shocks
(dashed). Image reproduced with permission from Priest and Forbes (2000), copyright by CUP
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and vanishes at infinity. After reconnection stops, there is a switch-off phase with its

effect propagating outwards, which is absent from steady-state solutions.

Near the X-line the inflow is super-slow-magnetosonic, and so curved slow-mode

shock pairs form and enclose the rear of a tear-drop-shaped outflow (Fig. 39b). The

front of this region propagates along the x-axis at the ambient Alfvén speed vAe, and

so the external scale-length ðLe ¼ vAet) increases linearly with time, while near the

origin a steady-state Petschek solution is set up.

The MHD equations in the inflow region are linearised about the initial state

using a small parameter �ðtÞ ¼ E�ðtÞ=ðvAeBeÞ � 1; where E�ðtÞ is the electric field

at the X-line and Be is the ambient field. The inflow is current-free to first order in

�ðtÞ, as in steady-state Petschek theory. The flux function A(x, y, t) is to first order a

solution of Laplace’s equation ðr2A ¼ 0), and so the general solution in the inflow

region is Bx ¼ Be þ oA1=oy; By ¼ �oA1=ox; where

A1 ¼
y

2p

Z 1

�1

A1ðx0; 0; tÞ
ðx � x0Þ2 þ y2

dx0:

Here the function A1ðx0; 0; t0Þ is determined by the slow-mode jump conditions to be

A1ðx0; 0; t0Þ ¼ B0jx0jgðjx0j � vAet0Þ � B0

Z jx0j

0

gðn� vAet0Þdn;

where gðx � vAetÞ ¼ �ðt � x=vAeÞ ¼ �E�ðt � x=vAeÞ=ðB0vAeÞ is the normalised

reconnection rate (�), which depends on the time-variation of the electric field at the

X-line.

As in the steady Petschek analysis, the Sweet–Parker relations are invoked to find

the maximum rate of reconnection, which, when g is held constant after an initial

increase, becomes

(a)
(b)

Fig. 40 Notation for a the ideal inflow region of Almost-Uniform Reconnection, where subscripts e and i
refer to (external) values at (0; Le) and at the inflow to the diffusion region (shaded), respectively. b
Reconnection rate (Me ¼ ve=vAe) as a function of inflow Alfvén Mach number (Mi ¼ vi=vAiÞ for various
values of the parameter b. Image reproduced with permission from Priest and Forbes (2000), copyright
by CUP
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�ðtÞ ¼ p
4 ln½�2ðtÞRmeðtÞ�


 p
4 lnRmeðtÞ

;

where RmeðtÞ ¼ vAeLeðtÞ=gave ¼ ðv2Ae=gaveÞt and gave is the average diffusivity in the

diffusion region. Furthermore, the diffusion region dimensions

L ¼ LeðtÞ
RmeðtÞ �2ðtÞ

¼ gave

vAe

4 lnðv2Aet=gÞ
p

	 
2

l ¼ LeðtÞ�ðtÞ ¼
gave

vAe

4 lnðv2Aet=gÞ
p

grow logarithmically in time.

7.3 Other families of fast 2D reconnection

The form, value and number of the boundary conditions is of crucial importance

when solving partial differential equations, since often much physics is incorporated

in them. Petschek’s mechanism, which is almost-uniform and potential, has been

generalised in two distinct ways by adopting different boundary conditions to give

regimes of Almost-Uniform Reconnection, which is almost-uniform but nonpoten-

tial, and Nonuniform Reconnection, as reviewed in Priest and Forbes (2000).

Spontaneous reconnection that is initiated by some localised instability (such as

the tearing mode) and is not influenced by distant magnetic fields requires free

boundary conditions and tends to produce Potential Reconnection, which can be

either Almost-uniform or Non-uniform, depending on the initial state. However, in

contrast, Driven Reconnection depends on the nature of the driving and tends to give

rise to Non-potential Reconnection with waves of current stemming from the driven

boundaries.

Numerical experiments have confirmed that fast reconnection can indeed be

produced, provided a locally enhanced magnetic diffusivity is present in the

diffusion region, due to current-induced micro-instabilities (Priest and Forbes 2000;

Priest 2014). Thus, fast reconnection is a prime candidate for rapid release of

magnetic energy in the solar atmosphere. Collisionless and impulsive bursty

reconnection is summarised in Sect. 9.

The inflow region in Petschek’s mechanism has the character of a fast-mode

expansion, in which the pressure and field strength decrease and the flow converges

as the magnetic field approaches the diffusion region. Priest and Forbes (1986)

decided to explore different types of inflow, since, unlike Petschek’s mechanism,

some numerical reconnection experiments showed diverging flows and large

pressure gradients. They solve the steady, two-dimensional, ideal, incompressible

MHD equations to find the relation between the external and inflow Alfvén Mach

numbers ðMe ¼ ve=vAe and Mi ¼ vi=vAiÞ at the top and bottom of the box in

Fig. 40a, i.e., the global and local reconnection rates. Solutions are sought in powers

of the global reconnection rate ðMe � 1Þ that are a small perturbation to a uniform

field ðBe ¼ Be x̂Þ, namely, B ¼ Be þ Me B1 þ . . .; v ¼ Me v1 þ . . .; where

ðB1x;B1yÞ ¼ ðoA1=oy;�oA1=oxÞ.
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After calculating Bi=Be and substituting into Eq. (68) in place of Petschek’s

original expression (71), the graphs of Me against Mi confirm that there is indeed a

maximum reconnection rate ðMe
�Þ, as Petschek had suggested (Fig. 40b).

To lowest order in Me, the equation of motion becomes r2A1 ¼ �ðl=BeÞ
dp1=dy; with a family of solutions having a rich diversity of properties

A1 ¼ �
X

1

0

an

ðn þ 1
2
Þp b � cos n þ 1

2

� �

p
x

L

h in o

cosh n þ 1
2

� �

p 1� y

L

� �h i

;

which depend on a parameter b.
The reconnection rate ðMeÞ as a function of Mi and b for a given Rme is plotted in

Fig. 40b. The type and rate of reconnection depend on the parameter b and therefore

the inflow boundary conditions, since the horizontal flow at ðx; yÞ ¼ ðLe; LeÞ is

proportional to ðb � 2=pÞ. When b ¼ 0; Petschek’s solution is recovered (Fig. 41a).

Although it is one particular member of a much wider class, it is special in the sense

that it tends to occur for spontaneous rather than driven reconnection, since it is the

only regime for which the fast mode characteristics are propagating away from the

diffusion region. After calculating Bi=Be and substituting into Eq. (68) in place of

Petschek’s original expression (71), the graphs of Me against Mi confirm that there is

indeed a maximum reconnection rate ðMe
�Þ, as Petschek had suggested.

Other values of b represent reconnection that is driven in various ways. When

b\0, near the y-axis the flow converges and so compresses the plasma by a slow-

mode compression. When b[ 1, the flow diverges and so expands the plasma by a

slow-mode expansion; this type is known as the flux pile-up regime, since the field

strength increases as the diffusion region is approached (Fig. 41b). When 0\b\1 a

hybrid family of slow- and fast-mode expansions results. The central current sheet is

much longer for the flux pile-up regime than the Petschek regime.

When the diffusion region becomes too long, it may become unstable to the

secondary tearing or plasmoid instability (Sects. 8, 9.2) and a new regime of

impulsive bursty reconnection results (Biskamp 1986; Priest 1986; Lee and Fu

1986b; Loureiro et al. 2007; Bhattacharjee et al. 2009). The almost-uniform theory

has been compared with a variety of numerical experiments (Forbes and Priest

Fig. 41 Almost-Uniform reconnection, showing two cases of the magnetic field lines (solid) and
streamlines (dashed) in the upper half-plane. Image reproduced with permission from Priest and Forbes
(2000), copyright by CUP
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1987). It has also been generalised to give nonuniform regimes whose field lines

possess a large curvature in the inflow region (Priest and Lee 1990).

8 Unsteady reconnection by resistive instability

Furth et al. (1963) realised that an equilibrium current sheet or sheared magnetic

field can go unstable to resistive modes by reconnecting in a time-dependent way.

The theory for one of them, the tearing mode, is given in Sect. 8.1, followed by

extensions (Sect. 8.2), including cylindrical geometry, and nonlinear evolution

(Sect. 8.2.1). In addition, when the diffusion region of a steadily reconnecting field

becomes too long, it goes unstable to secondary tearing and an impulsive bursty
regime of reconnection ensues (Priest 1986; Lee and Fu 1986a; Biskamp 1986;

Forbes and Priest 1987); such secondary tearing has recently been studied

extensively (Sect. 8.3).

Consider a current sheet or a sheared magnetic field, whose one-dimensional field

is varying in the x-direction over a scale l with diffusion time sd ¼ l2=g and Alfvén

travel-time sA ¼ l=vA across the field, such that sd � sA. Furth et al. (1963)

discovered that, when diffusion couples to magnetic forces, it can drive three

resistive instabilities on time-scales sð1�kÞ
d skA, where 0\k\1, that are much faster

than diffusion alone (on a time sd). These instabilities create many small-scale

magnetic islands in 2D or flux ropes in 3D, which later diffuse away and which may

be important for coronal filamentation, diffusion and heating. The instabilities are

called gravitational modes, rippling modes and tearing modes, with growth-rates

xg, xr and xtmi, respectively.

Gravitational modes are driven by gradients in density ðq0ðxÞÞ, whereas rippling
modes come from gradients in diffusivity ðgðxÞÞ that may be caused by a

temperature gradient (Fig. 42a). Such modes have short wavelengths, of order the

transverse scale ðkl ’ 1Þ, and so they create fine-scale filamentary structure in

sheets and sheared fields with growth-rates

Fig. 42 Magnetic field lines and plasma velocity (solid arrows) for resistive instabilities of a small-
wavelength and b long-wavelength in a one-dimensional magnetic field (i.e., a current sheet or a sheared
field), with x (or r in a cylindrical geometry) as the coordinate across the field. Image reproduced with
permission from Priest and Forbes (2000), copyright by CUP
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xg ¼ ðklÞ2 s2A
sd s4G

 !1=3

; xr ¼
dg0
dx

l

g0

� �4ðklÞ2

s3ds
2
A

" #1=3

;

where sG ¼ ð�g=q0 dq0=dxÞ�1=2
is the gravitational time-scale.

The wavelength for tearing mode instability is very long, much greater than the

current sheet width ðkl � 1Þ, and so it can be more disruptive for a magnetic field

than the other two modes (Fig. 42b). The growth-rate here is x ¼ ½s3d s2A ðklÞ2��1=5

for ðsA=sdÞ1=4\kl\1: The longest wavelength has the fastest growth-rate, namely,

xtmi ¼
1

sd sA

� �1=2

:

Magnetic diffusion plays an important role only in a narrow region of width

�l ¼ ðklÞ�3=5ðsA=sdÞ�2=5l. A perturbation such as in Fig. 42b, to a one-dimensional

sheet with straight field lines, produces forces that make the perturbation grow. The

magnetic tension tends to pull out the new loops of field away from the X-points

along the sheet, while the magnetic pressure pushes plasma in from above and

below towards them. The magnetic tension force due to large-scale curvature of the

field lines produces a restoring force that is minimised for long wavelengths. The

analysis of this instability is as follows.

8.1 Linear analysis of tearing-mode instability

Resistive instabilities can occur in any sheared magnetic field, not just a neutral

current sheet, since the stability analysis is unaffected by the addition of a uniform

field normal to the plane of Fig. 42. Sheared fields are, in general, resistively

unstable at many thin sheaths throughout a structure. At any location the instabilities

have a vector wavenumber ðkÞ perpendicular to the equilibrium field ðB0Þ, so that

k � B0 ¼ 0 and the crests of the perturbation lie in the plane of Fig. 42. Suppose the

equilibrium plasma is at rest and the magnetic field has the form B0 ¼ B0yðxÞ ŷþ
B0zðxÞ ẑ; with field lines that lie in yz-planes but rotate with x.

When the diffusivity (g) is uniform and the plasma incompressible, the MHD

induction equation and the curl of the equation of motion become

oB

ot
¼$� ðv� BÞ þ gr2B; ð74Þ

q
d

dt
ð$� vÞ ¼$� ð$� BÞ � B

l

	 


: ð75Þ

Small perturbations are made in the form

v1ðxÞ exp½iðkyy þ kzzÞ þ xt�; B1ðxÞ exp½iðkyy þ kzzÞ þ xt�;

while $ � B ¼ 0 and $ � v ¼ 0 are used to eliminate v1y and B1y. Then, after

nondimensionalising the variables ( �B ¼ B=B0; �v1 ¼ �v1ikl2=g; �k ¼ kl;
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�x ¼ xl2=g; �x ¼ x=l), the x-component of Eq. (74) and z-component of Eq. (75)

become

�x �B1x ¼� �v1xf þ ð �B00
1x � �k2 �B1xÞ; ð76Þ

xð�v001x � �k2 �v1xÞ ¼R2
m
�k2f � �B1xf 00=f þ ð �B00

1x � �k2 �B1xÞ
� �

; ð77Þ

where a dash represents a derivative with respect to �x and f ¼ k � �B0=k.
When the magnetic Reynolds number is large (Rm ¼ lvA=g ¼ sd=sA � 1),

magnetic diffusion is negligible except in thin sheets (of width 2�l, say) where

k � B0 ¼ kf ¼ 0 and reconnection occurs. If the centre of the sheet is located at

x ¼ 0 and kz ¼ 0, then k � B0 ¼ 0 reduces to B0yðxÞ ¼ 0 or x ¼ 0. Solutions to

Eqns.(76) and (77) are then found in an outer region ðj�xj[ �Þ and an inner region

ðj�xj\�Þ and matched at the boundary ð�x ¼ �Þ between them.

In the outer region diffusion is negligible and Eqns.(76) and (77) reduce to

�x �B1x ¼� �v1x
�B0y þ ð �B00

1x � �k2 �B1xÞ;
0 ¼� �B1x

�B
00
0y=

�B0y þ ð �B00
1x � �k2 �B1xÞ;

ð78Þ

whose solution for �B1x depends on the equilibrium field �B0yð�xÞ. For example, a step-

profile ( �B0y ¼ 1 for �x[ 1; �x for j�xj\1; and � 1 for �x\� 1) leads to

�B1x ¼
a1 sinh �k�x þ b1 cosh �k�x �x\1;

a0 expð� �k�xÞ �x[ 1;




ð79Þ

for �x[ 0, where conditions at �x ¼ 1 determine the constants a1 and b1 for �x[ 0.

The corresponding solution for �x\0 has the same value of b1 but the opposite sign

(same magnitude) of a1, which leads to a jump in the value of �B
0
1x= �B1x, known as

delta prime, given by D0 ¼ ½ �B0
1x= �B1x�0þ0� ¼ 2a1

�k=b1:

The inner region, in which diffusion is important, has a width of order �l, where

�4 ¼ �x=ð4 �k2R2
mÞ. After defining inner variables X ¼ �x=�; V1x ¼ �v1xð4�= �xÞ;

Eqns.(76) and (77) reduce to

€�B1x ¼�2 �k2 �B1x þ �2 �xð �B1x þ 1
4
V1xXÞ; ð80Þ

€V1x ¼V1xð �k2�2 þ 1
4
X2Þ þ �B1xX; ð81Þ

where dots represent X-derivatives. For long wavelengths �k � 1, Eq. (80) implies
€�B1x � �2 �x �B1x, so that D0 ¼ 2ð �B0

1x=
�B1xÞx¼� ¼ 2½ _�B1x=ð� �B1xÞ�X¼1 � � �x.

If �B1x is assumed to be constant in the inner region (the so-called constant-psi

approximation), Eq. (80) can be solved analytically and implies D0 ¼ 3 � �x when
�k� � 1. Equating the two expressions for D0 enables the outer and inner regions to

be matched (Fig. 43) and gives a growth-rate of �x ¼ ½ð8RmÞ=ð9 �kÞ�2=5, which lies

between the diffusion ðxd ¼ g=l2Þ and Alfvén (xA ¼ vA=l) rates. Eqns. (80) and

(81) may also be solved when �k � 1 without assuming �B1x to be uniform in the

internal region. The resulting dispersion relation has a growth-rate for the fastest-
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growing mode of �xmax ’ 0:6R1=2
m and a corresponding wave-number of �kmax ’

1:4R�1=4
m : In other words, the growth time (sm ¼ ðsd sAÞ1=2) is the geometric mean

of the diffusion and Alfvén times, so that long narrow islands are formed.

8.2 Extensions to the simple tearing-mode analysis

The above theory for tearing-mode instability has been extended in many different

ways, which are reviewed in detail in Priest and Forbes (2000). These include the

effects of different initial equilibrium profiles, the addition of a flow or an extra

magnetic field component to the initial state, and a viscous force. Also, tearing may

be driven faster by fast magnetoacoustic waves or small-scale MHD turbulence.

Ideal and resistive instabilities of a curved magnetic flux tube (major radius R
and minor radius a � R) with both poloidal BpðrÞ and toroidal B/ðrÞ components

that vary with distance (r) from the axis, have been studied at length (e.g., Furth

et al. 1973; Bateman 1978; Wesson 1997). Resistive modes can allow the magnetic

field to slip through the plasma in a narrow layer around a resonant surface where

k � B ¼ 0. Radial perturbations of the form n ¼ nðrÞ exp½iðmh� n/Þ� are studied

and a key parameter is the amount [UTðrÞ ¼ 2pR Bp=ðr B/Þ] by which a field line is

twisted around the axis as it goes from one end of a flux tube to the other. A related

quantity is the safety factor qðrÞ ¼ 2p=UT , namely, the number of turns that a field

line makes around the major axis during one turn around the minor axis of a torus.

A flux tube has three ideal modes. m=1 kink modes arise when the twist is too

large and are driven by the current gradient. Internal interchange modes are driven

by a pressure gradient. A ballooning mode is driven by pressure gradients when the

large-scale curvature of a torus is included.

When resistivity is included, the kink mode becomes a tearing mode when

qa [m, with the resonant surface inside the tube and a growth-rate s�3=5
d s�2=5

A . Also,

an internal mode with m[ 1 becomes a resistive interchange mode, with a growth-

rate of s�1=3
d s�2=3

A , while increased pressure gradients produce resistive ballooning

modes (e.g., Strauss 1981). The m ¼ 1 internal resistive kink mode becomes

Fig. 43 The tearing mode instability produces the magnetic field ð �B1xÞ and velocity ð�v1xÞ profiles shown,
as functions of distance ð�x ¼ x=lÞ normal to a current sheet, where l is the half-width of the sheet and �l is
the half-width of the inner diffusive layer. Image reproduced with permission from Priest and Forbes
(2000), copyright by CUP
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unstable when q0\1. The effect of increasing the twist of a flux tube is therefore to

introduce the tearing-mode first and then later the ideal kink mode.

For a coronal loop or solar flare with a twist ðUT ¼ LBp=ðrB/ÞÞ, an important

feature is the presence of line-tying in the dense photosphere at the feet of the

coronal magnetic fields. For the kink instability in a flux tube of uniform twist, the

threshold for kink instability is UT ¼ 2:5p (Hood and Priest 1981). Its nonlinear

development can make the flux tube highly kinked, with many reconnecting current

sheets (see Sect. 14.2). However, the effect of a resistive kink instability with its

lower threshold for a coronal loop with line-tying has not yet been explored, as far

as we are aware.

8.2.1 Nonlinear evolution of tearing

The nonlinear development of tearing can proceed in different ways, depending on

the magnetic Reynolds number Rm, and the form of the equilibrium and boundary

conditions. It may just saturate nonlinearly or, especially in the solar atmosphere, it

may develop rapidly, as detailed in Priest and Forbes (2000). We just give a brief

summary here.

One possible pathway is for the instability at constant-psi to saturate nonlinearly

(Rutherford 1973) due to inwards diffusion from the external region to produce

wider magnetic islands and to slow the rate of energy release, eventually saturating

at an island width of order D0
1ð0Þl2 (White et al. 1977). Numerical confirmation for

m ¼ 2 has been presented (Park et al. 1984). However, m ¼ 1 tearing is very

different, since w is no longer constant in the island. A heuristic argument by

Kadomtsev (1975) suggested that reconnection continues to grow until the current

density flattens off inside the q ¼ 1 surface, which was confirmed in a numerical

study by Schnack and Killeen (1979) (Fig. 44). A large magnetic island grows

rapidly in the nonlinear phase and then slow reconnection eats it away and leads to a

new set of nested surfaces with one O-point.

Another pathway is nonlinear mode coupling of different tearing modes (Waddell

et al. 1976; Diamond et al. 1984), which can produce high-m turbulence that may

extend across a significant fraction of the minor radius.

A third pathway is for a chain of magnetic islands to undergo an ideal

coalescence instability (Finn and Kaw 1977; Longcope and Strauss 1993). The way

in which nonlinear coalescence depends on island amplitude (�) and Rm has been

Fig. 44 Magnetic flux surfaces
during the linear (t ¼ 10sA) and
nonlinear ðt ¼ 60sAÞ phases of
m ¼ 1 resistive kink instability.
Image reproduced with
permission from Priest and
Forbes (2000), copyright by
CUP, after Schnack and Killeen
(1979)
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studied by Pritchett and Wu (1979) and Biskamp (1982). In a numerical

investigation of coalescence, Bhattacharjee et al. (1983) found that the islands first

approach and form a current sheet, at which reconnection takes place, with the

instability saturating after typically 30 sA and leaving a single island oscillating in

response to its dynamic evolution.

A fourth pathway, especially at the extremely large values of Rm expected in the

solar atmosphere, is for a current sheet to grow so long that it goes unstable to

secondary tearing and enters a regime of impulsive bursty reconnection, as

described below in Sect. 8.3.

In a solar current sheet with a large Rm that is line-tied at one end to the

photosphere, tearing may develop at the neutral point closest to the surface, which

may well develop fast nonlinear Petschek reconnection and subsequently possibly

undergo secondary tearing and coalescence.

8.3 Fast impulsive bursty reconnection via the plasmoid instability

Reconnection in practice is not steady but is ‘‘impulsive and bursty’’, with

reconnection rapidly switching on and off or changing between fast and slow in a

quasi-periodic or random manner, as suggested by Priest (1986) and analysed by

Biskamp (1986); Lee and Fu (1986b); Loureiro et al. (2007); Bhattacharjee et al.

(2009). This may happen due to several scenarios, the first of which is the switching

on or off of a turbulent magnetic diffusivity (gturb) as the current density exceeds or

falls below the critical current (jcrit) for the onset of microinstabilities. Other

possibilities are that reconnection may switch on and off near a metastable state, as

seen in some numerical experiments (Baty et al. 2009a), or that the nonlinear

development of a resistive instability may lead to the formation, fragmentation and

coalescence of magnetic islands. Indeed, in recent years there has been a resurgence

of interest in this latter possibility, which we review in the remainder of this section.

In astrophysical plasmas, the extreme values of Rm mean that monolithic current

layers provide very slow reconnection rates, at odds with the rapid energy release

observed during, for example, solar flares. As described in Sect. 8.1, the tendency

for such layers to fragment into a ‘chain’ of magnetic islands or plasmoids was

established by Furth et al. (1963), although the growth-rate of the instability was

initially thought to be too slow to explain fast reconnection onset.

8.3.1 Plasmoid instability in 2D planar current sheets

Building on earlier work by Bulanov et al. (1979), Biskamp (1986) suggested that a

Sweet–Parker current sheet may be unstable for aspect ratios L=l[ 100 (see also

the discussion of Forbes and Priest 1987, and references therein). Our understanding

of the importance of tearing for the onset of fast reconnection was then

revolutionised by the discovery of what is now known as the ‘‘plasmoid instability’’,

starting with the work of Loureiro et al. (2007) (see also Tajima and Shibata 1997)

who made a stability analysis of a finite-length, Sweet–Parker current sheet (i.e., a

current sheet with aspect ratio l=L� S�1=2, where S ¼ LvA=g is the Lundquist
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number; see Sect. 7.1). They solved the reduced MHD equations, matching the

solutions in an ‘‘outer’’ ideal region and an ‘‘inner’’ region comprising the current

layer. They discovered that the instability growth-rate (c) for the fastest growing

mode (namely, cmaxsA � S1=4) increases with increasing S, where sA ¼ L=vA is the

Fig. 45 Time evolution of 2D plasmoid instability simulations, showing the component of the current
density out of the 2D plane (colour scale) and magnetic field lines (black), for a Lundquist number

6:28� 105. Image reproduced with permission from Bhattacharjee et al. (2009), copyright by AIP
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Alfvén time-scale. The corresponding wavenumber k of the fastest growing mode

scales as kmaxL� S3=8.

Following these initial analyses, the theory has been extended to include the

effects of plasma viscosity (Loureiro et al. 2013; Comisso et al. 2017), as well as

three-dimensional effects (Baalrud et al. 2012). The scalings have been subse-

quently confirmed in various computational simulations, primarily beginning from

1D initial states such as Harris sheet configurations (e.g., Bhattacharjee et al. 2009;

Samtaney et al. 2009; Loureiro et al. 2013). The critical current sheet aspect ratio

for onset of tearing has been confirmed in simulations to be of order 100 (e.g.,

Loureiro et al. 2005; Samtaney et al. 2009). The fact that the growth-rate scales

positively with the Lundquist number presents an issue in the limit S ! 1, which

has been considered by Pucci and Velli (2013) and Uzdensky and Loureiro (2016),

who made slightly different arguments regarding saturation of the growth-rate for

large S. An analogous instability with similar onset threshold values, for both S and

the current sheet aspect ratio, was discovered for a current sheet formed by the

collapse of a 3D null point by Wyper and Pontin (2014b).

The linear phase of the instability is characterised by the formation of plasmoids

in the current layer. Due to the large growth-rate at large S, simulations rapidly

access the nonlinear phase. It is in this nonlinear phase, when the plasmoids grow to

sizes larger than the current sheet width, that the reconnection process becomes

substantially affected by the plasmoid instability dynamics. Here the evolution

becomes highly dynamic and ‘‘bursty’’, involving, for example, the nonlinear

growth of plasmoids, their ejection from the current layer, coalescence of

plasmoids, and associated ‘‘secondary tearing’’ of the current sheets that mediate

this coalescence (see Fig. 45). This leads to a ‘‘fractal-like’’ structure for current

sheets on a hierarchy of length scales (Shibata and Tanuma 2001).

While the reconnection rate in the nonlinear phase is found to fluctuate greatly in

time, when these fluctuations are averaged, the overall reconnection rate

(determined in 2D by the electric field at the ‘‘dominant’’ X-point) becomes nearly

independent of the resistivity (e.g., Bhattacharjee et al. 2009; Loureiro et al. 2012).

It is argued that this is because the reconnection rate can be approximated by

applying the Sweet–Parker model to the smallest current sheets in the hierarchy, for

which the reconnection rate scales as
ffiffiffiffiffi

Sc

p
, where Sc is the critical Lundquist

number, and is thus independent of the global Lundquist number (Uzdensky et al.

2010).

The statistical properties of the hierarchy of plasmoids that forms after the

nonlinear stage has fully developed is important for describing the long-time

dynamics. As such, a number of studies have addressed this plasmoid ‘‘spectrum’’ in

some detail. Uzdensky et al. (2010) considered a typical plasmoid in some arbitrary

level of the current sheet hierarchy, formed away from the current sheet centre, and

ejected in the outflow while growing in size and flux due to the reconnection

process. They showed that the distribution function for plasmoids of flux W should

be f ðWÞ�W�2, while their size (w) distribution should be f ðwÞ�w�2. In numerical

simulations, the picture is found to be a little more complicated, with at least parts of

the distribution of plasmoid fluxes and sizes having an exponent closer to �1 than
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�2, and physical explanations have been proposed to account for these discrep-

ancies (Huang and Bhattacharjee 2012; Loureiro et al. 2012).

Also predicted by Uzdensky et al. (2010) is the formation of rare ‘‘monster

plasmoids’’, which are created when an island begins to grow by chance close to the

centre of a current layer; such plasmoids are not entrained in a strong current layer

outflow, and so are able to grow to ‘‘monster’’ sizes before being ejected from the

current layer to coalesce with plasmoids further up the hierarchy. The formation of

such monster plasmoids is confirmed in simulations (Loureiro et al. 2012; Nemati

et al. 2017), and it is proposed that they may be associated with large, violent bursts

during reconnection events.

8.3.2 Plasmoid instability in more complex geometries and in observations

The above analyses and simulations have focussed solely on the 2D case, while the

nonlinear evolution in 3D has been much less explored. In 3D, the range of current

sheet configurations that may be susceptible to a plasmoid-type instability is much

richer. The simplest way to extend into 3D is to include a field component in the

third dimension and to model a fully 3D domain. This was done by Huang and

Bhattacharjee (2016) who simulated the coalescence instability in 3D. They

observed that, following the initial tearing of the current sheet and formation of

plasmoid-like structures, the reconnection layer quickly transitioned to a turbulent

behaviour with fewer well-defined plasmoids (in cross-sections) than comparable

2D simulations—see Fig. 46.

This transition to turbulence is also present in the picture developed by Dahlburg

and Einaudi (2002); Dahlburg et al. (2005) who considered tearing in a sheared

magnetic field (though there are differences in the detailed interpretation). In their

simulations, the twisted flux tubes formed by the initial tearing undergo a

‘‘secondary instability’’—essentially an ideal kinking of those twisted flux tubes—

for sufficiently large shear across the current layer, leading subsequently to a

turbulent evolution. This secondary instability was proposed as an explanation for

the ‘‘switch-on’’ nature of coronal heating events in Parker’s braiding picture of

coronal heating.

More recently, this has been revisited by Leake et al. (2020) who undertook a set

of simulations for different current sheet lengths and magnetic shear angles. They

discovered two different regimes of behaviour, distinguished by the relative values

of the current sheet length Ls and the wavelength kf of the fastest growing parallel

mode (in the corresponding infinite system). For Ls [ kf , sub-harmonics of the

fastest-growing parallel modes are present, and the nonlinear interaction of these

sub-harmonics and the subsequent coalescence of 3D plasmoids dominates in the

nonlinear phase. By contrast, for Ls\kf , the fastest growing parallel mode has no

sub-harmonics, and rapid energy conversion only takes place when the magnetic

shear is large, in which case oblique modes grow large enough to interact

nonlinearly with the dominant parallel mode. There are discrepancies in the

interpretation of the nonlinear behaviour with those of Dahlburg and Einaudi

(2002); Dahlburg et al. (2005), and it is clear that further exploration is required.
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Moreover, in order to determine the relevance for energy release in coronal current

sheets, the stabilising effect of photospheric line-tying must in future be included.

A nonlinear tearing or plasmoid-type instability has also been discovered in a

current sheet formed by the collapse of a 3D magnetic null by Wyper and Pontin

(2014b, 2014a). The current sheet was formed by shear driving of the spine field

lines as shown in the upper panel of Fig. 47. Tearing onset was observed to occur

when the current sheet aspect ratio exceeds around 50, and the nonlinear dynamics

Fig. 46 Current density and magnetic field lines in a 3D MHD simulation of the plasmoid instability
during coalescence instability with an initially uniform guide field. Image reproduced with permission
from Huang and Bhattacharjee (2016), copyright by AAS
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involves the formation of a plethora of 3D nulls due to multiple bifurcations (see

Sect. 2.4) and accompanying twisted flux ropes. By contrast with plasmoids in 2D

these flux ropes are not enclosed by magnetic flux surfaces, and field lines

Fig. 47 Current density and magnetic field lines in a 3D MHD simulation of the plasmoid instability
when a 3D magnetic null point is subjected to continuous shearing motions on the spine boundaries,
which drives spine-fan reconnection (see Sect. 10.2.1). Image reproduced with permission from Wyper
and Pontin (2014a), copyright by AIP

Fig. 48 Plasmoids in simulations of reconnection in the low solar atmosphere. a, b Temperature in the 2D
MHD simulations of reconnection driven by a photospheric flow by Peter et al. (2019). In (a) the peak
temperature in the reconnection region as a function of time is plotted, illustrating the bursty nature of the
reconnection, while in (b) the temperature distribution is shown at the time illustrated by the blue vertical
line in (a), in which two large plasmoids are clearly visible in the current sheet. c Density distribution in
the 2.5D radiative MHD simulations of Rouppe van der Voort et al. (2017)
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intertwine between multiple flux ropes as the nonlinear phase develops (Fig. 47).

Since the magnetic shear angle goes from 180� at the null to small values further

from the null, a detailed understanding of the dynamics in terms of perturbation

modes is a formidable challenge.

Observations and simulations of dynamic events in various layers of the solar

atmosphere are providing evidence for the importance of the plasmoid instability for

energy release on the Sun. Rouppe van der Voort et al. (2017) present observations

of bursty energy release in UV bursts in the chromosphere. These are compared with

a reconnection event that was identified in a 2.5D radiative MHD simulation

spanning from the upper convection zone to the corona. In the simulation, a

localised flux emergence event drives the formation of a (curved) current sheet in

the chromosphere, within which a series of plasmoids is formed (Fig. 48c). On the

basis of synthesised spectral lines from the simulation the authors suggest

diagnostics for plasmoid-mediated reconnection in observations. Peter et al.

(2019) have developed a dedicated simulation for understanding UV bursts that

begins from a 2D null dome topology, with a shear flow applied on the lower

boundary leading to the collapse of the X-point and eventual formation of plasmoids

in the current layer (Fig. 48a, b). They have explored different atmospheric

stratifications, corresponding to different values of the plasma-b at the reconnection

site. It turns out that when b� 1 the reconnection is not efficient, with only small

increases in temperature and slow plasma flows being generated. For b � 1 an

energetic reconnection process is observed, and the authors extrapolate to predict a

maximum peak temperature that can be expected from such a process of around 0.2

MK. Plasmoid instability in the low solar atmosphere has also been modelled by

Guo et al. (2020), who compare synthetic emissions with IRIS data, and by Ni et al.

(2015); Ni and Lukin (2018), who consider the impact on the plasmoid instability of

various effects associated with partial ionisation such as ambipolar diffusion and

recombination.

Further observational evidence of bursty, plasmoid-mediated reconnection in

small-scale reconnection events on the Sun has been reported by, e.g. Innes et al.

(2015), while observed ‘blobs’ in jet/flare/CME current sheets have also been

interpreted as plasmoids (e.g., Lin et al. 2005; Takasao et al. 2011; Kumar et al.

2019). These have been complemented by 3D simulations of jets that exhibit tearing

and plasmoids in a current sheet formed about a coronal 3D null point (Moreno-

Insertis and Galsgaard 2013; Wyper et al. 2016). 2D and 2.5D models of plasmoids

in flare/CME current sheets include those by Bárta et al. (2011), Karpen et al.

(2012), Lynch et al. (2016) and Hosteaux et al. (2018). Finally, formation of 3D

flux ropes during impulsive, bursty reconnection in a current sheet in the laboratory

has been reported at the MRX (Magnetic Reconnection eXperiment) by Dorfman

et al. (2013).

To summarise, while there remain aspects of nonlinear MHD tearing that are

poorly understood—especially in 3D—it provides a viable route to fast reconnec-

tion, and one that is expected to be relevant to energy release in many solar

applications (Ji and Daughton 2011). It is also possible that MHD tearing creates a

hierarchy of current sheets that eventually accesses kinetic scales, at which point

additional physics beyond MHD is required to understand the details of
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reconnection at these smallest scales (Sect. 9). While not the focus of this article, it

is notable that fast reconnection mediated by the plasmoid instability has been

explored using Hall MHD (Shepherd and Cassak 2010) and full particle-in-cell

(e.g., Daughton et al. 2009b) approaches—see Sect. 9.2(ii)(c).

8.4 Response to a resistivity enhancement

Ugai has undertaken many experiments on the fast-reconnection response to a local

resistivity enhancement, both in 2D and 3D. These have been performed in

geomagnetic tail-like equilibria and in solar coronal arcade equilibria in order to

model both geomagnetic substorms and solar flares. In a 2D model, Ugai (1999)

allows the resistivity enhancement to depend on temperature. In an initial phase the

reconnection grows slowly, but, after plasma and flux have been ejected from near

the null point, this is followed by an explosive phase of much faster reconnection

due to a positive feedback between the resistivity enhancement and the reconnection

flow. The explosive phase sets up fast reconnection at the maximum reconnection

rate, with standing slow shocks attached to a localized diffusion region and

extending outwards in time. Ugai (2000) extended this analysis to the case in which

the fields on both sides of the current sheet are different, finding the growth of an

asymmetric plasmoid, predominantly in the region containing the weaker magnetic

field. Ugai and Kondoh (2001) consider the effect of resistivity onset threshold (Vc0)

and plasma beta (b). When Vc0 is large enough, fast reconnection is set up, but when

it is too small the diffusion region lengthens and reconnection becomes less

effective. Furthermore, it is only when b is small enough that fast reconnection is set

up.

Fig. 49 a Plasma flow vectors and ohmic heating in the x ¼ 0, y ¼ 0 and z ¼ 0 planes for fast 3D
reconnection in a coronal arcade initiated by a local enhancement of anomalous resistivity. x ¼ 0
represents the chromosphere in which the ohmic heating indicates the site of a flare ribbon, while z ¼ 0
shows a vertical cut through the coronal arcade. Distances are normalised with respect to the half-width of
the initial current sheet and time with respect to the corresponding Alfvén travel time. b The
corresponding magnetic field lines in the z ¼ 0 plane and the two main current channels, including the
current wedge (CW) that flows to the chromospheric ribbons and a second current channel (C1) that flows
from the fast shock downstream of the reconnection jet. Image reproduced with permission from Ugai
(2008), copyright by AIP

123

Magnetic reconnection: MHD theory and modelling Page 87 of 202 1



Ugai and Wang (1998) and Ugai et al. (2004) extended the spontaneous fast

reconnection model to three dimensions. Symmetry conditions were assumed on the

xy, yz and zx planes and free boundary conditions on the other boundaries of the first

quadrant. Qualitatively, the results are similar to those in 2D. 3D fast reconnection

evolves explosively as a nonlinear instability due to a positive feedback between the

anomalous resistivity and the reconnection flow. Slow shocks stand in the flow and

ahead of the fast reconnection jet. A large-scale 3D plasmoid swells and propagates

in the central current sheet, while a vortex flow is formed near the plasmoid side

boundary.

Ugai and Zheng (2005) continued their 3D reconnection study and found that fast

reconnection does not occur with classical resistivity, which decreases with

temperature like T3=2, but it does occur with an anomalous resistivity that increases

with current when a threshold is exceeded. Here, resistivity is enhanced in the shock

layer which thickens so that secondary tearing is more likely. When the anomalous

resistivity increases with the electron-ion drift velocity, fast reconnection evolves

rapidly and is sustained steadily. Ugai (2008) applied these ideas to a 3D model of a

two-ribbon solar flare, in which the down-flowing fast reconnection jet causes

impulsive chromospheric heating by a factor of 30 in two thin layers (or current

wedges) near the separatrices, which move apart in time (Fig. 49). This is

accompanied by chromospheric evaporation and expanding coronal loops.

9 Fast reconnection in a collisional or collisionless medium

Although this review deals mainly with a resistive collisional plasma, there have

been many important discoveries recently concerning fast collisionless reconnec-

tion, and so we give here a brief overview of fast reconnection, in both a resistive

plasma and a collisionless plasma. Apart from the plasmoid instability, we focus on

steady-state reconnection. The chapter begins with some general principles for

categorising reconnection (Sect. 9.1), which show that reconnection in two

dimensions is much more diverse than often realised, so that general statements

about reconnection need to have their domain of validity made clear. Then a

summary of the results is presented (Sect. 9.2), mainly for ‘almost-uniform’ or local

reconnection. Finally, the many unanswered questions that remain for two-

dimensional reconnection are described (Sect. 9.3). For reviews of this subject, we

have found Cassak et al. (2017) especially insightful, but see also Priest and Forbes

(2000); Bhattacharjee (2004); Birn and Priest (2007); Daughton et al. (2009a);

Yamada et al. (2010); Ji and Daughton (2011); Daughton and Roytershteyn (2012);

Priest (2014); Comisso and Bhattacharjee (2016)

The conclusion detailed below is that three scenarios have been proposed for fast

reconnection at a hundredth or a tenth of the Alfvén speed (vA), each of which is

likely to occur in the solar atmosphere under different circumstances, namely,

(a) Petschek reconnection when the plasma is collisional and the resistivity

enhanced,
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(b) Collisionless Hall reconnection when the current sheet width is of order the

ion inertial length (dðiÞ),
(c) Impulsive bursty or plasmoid reconnection when the current sheet goes

unstable to tearing.

The apparent existence of a universal rate of reconnection of ð0:01� 0:1ÞvA has

long been a puzzle, but we suggest that it arises because reconnection is usually

dominated by the ideal MHD processes taking place in the region around the central

current sheet (called the diffusion region) and depends only weakly on the

microphysics of the current sheet and its length (Priest et al. 2021).

9.1 Principles for categorising fast reconnection

The following distinctions are important for classifying magnetic reconnection.

They involve definitions which are common in a traditional solar MHD context, but

differ from some definitions that have been adopted more recently in the kinetic

plasma community.

(i) Local or global reconnection rate
Most of the plasma behaves in an ideal way, satisfying the ideal equations

of MHD, regardless of whether the plasma is resistive or collisionless. In

reconnection, one therefore considers an ideal region that surrounds a

diffusion region, in which ideal MHD breaks down and the magnetic fields

can slip through the plasma. In general, it is important to consider the

physics of what is happening in both the ideal region and the diffusion

region.

Regardless of whether the reconnection is resistive or collisionless, the first

major point to make is that there is a distinction between the local (or
small-scale or microscale) reconnection rate, namely, the speed vi with

which the plasma carries magnetic flux into the diffusion region, and the

global (or external or large-scale or macroscale) reconnection rate,
namely, the speed ve with which plasma carries magnetic flux in from large

distances towards the diffusion region, as indicated in Fig. 50a (e.g., Cassak

et al. 2017). These are normally written in terms of the Alfvén speeds vAi at

the inflow to the diffusion region and vAe at large distances to give

corresponding Alfvén Mach numbers

Mi ¼
vi

vAi
and Me ¼

ve

vAe
: ð82Þ

In addition, whereas the overall length-scale of the system being

considered is Le, say, the length of the diffusion region is L, which is

often much smaller than Le.

(ii) Slow or fast reconnection
Another important distinction is between slow reconnection at a rate very

much slower than the Alfvén speed (ve � vAe) and fast reconnection at an

appreciable fraction of the Alfvén speed, say, 0:01vAe\ve\vAe. Early in
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(a) (b)

(c) (d)

(e) (f)

Fig. 50 Different types of reconnection in which a mainly ideal region surrounds a central current sheet
or diffusion region (shaded), and separatrices (field lines extending out from the diffusion region) lie
upstream of slow-mode shocks (dashed): a distinguishing between local (vi) and global (ve) rates of
reconnection; b the Sweet–Parker model. Different initial conditions give c almost-uniform reconnection
or d non-uniform reconnection. Different boundary conditions give e convergent inflow with short central
current sheets or f divergent inflow with longer sheets
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the development of the theory, the aim was to find mechanisms for fast

reconnection, since they are needed to help explain a solar flare.

If the diffusion region stretches across the whole boundary of length Le

between opposing magnetic fields, and the plasma is resistive and steady

state, then Sweet–Parker reconnection occurs (Fig. 50b), with the whole

energy release in the diffusion region and a reconnection rate of

ve ¼
vAe

R
1=2
me

or Me ¼
1

R
1=2
me

; ð83Þ

where Rme ¼ LevAe=g is the magnetic Reynolds number based on the

external or global length-scale (Le) and the external or global Alfvén speed

(vAe ¼ Be=
ffiffiffiffiffiffiffiffi

lqe
p

) in terms of the external magnetic field (Be) and plasma

density (qe). It is also called the Lundquist number, designated by the

symbol S, which is sometimes used instead of the local magnetic Reynolds

number (Rmi ¼ LvAi=g). Note that there are various modifications to this

simple Sweet–Parker rate due to compressibility and different downstream

conditions (Sect. 7.1). Since typical values of Rme lie in the range

106 � 1012, Sweet–Parker reconnection is slow. The width (l) of the current
sheet for Sweet–Parker reconnection is

l ¼ Le

R
1=2
me

: ð84Þ

Other regimes of reconnection illustrated in Fig. 50 possess an ideal region

that surrounds the central current sheet. In the particular case when the

central sheet is resistive, i.e., it is a Sweet–Parker sheet, the local

reconnection rate at the sheet is given by Eq. (83) but with Le replaced by L
and external values by local inflow values, so that

vi ¼
vAi

R
1=2
mi

or Mi ¼
1

R
1=2
mi

and l � dSP ¼ L

R
1=2
mi

; ð85Þ

where Rmi ¼ LvAi=g.
Some of these other regimes are slow and others fast, but none should be

referred to as ‘‘Sweet–Parker’’ reconnection, since, most of the energy

release is often at slow-mode shock waves rather than the diffusion region,

and also, even if their reconnection rate is proportional to R�1=2
me , the

constant of proportionality may be larger than 1. For these regimes, the

values of Bi and L and therefore vi are no longer imposed, but are

determined in a coupled manner by the nature of the ideal MHD solution

surrounding the diffusion region. In turn, this solution to the set of MHD

partial differential equations depends (usually weakly) on L and also on

both the initial and boundary conditions, which affect profoundly the

behaviour of the MHD characteristics that carry information to and from
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the boundaries (Forbes and Priest 1987). In particular, the solution in the

ideal region depends on whether the reconnection is spontaneous or driven,

almost-uniform or non-uniform, and whether the inflow at large distances is

converging or diverging, as follows.

In the outflow region, it is the magnetic tension that accelerates the plasma

to Alfvénic speeds, but it should be noted that this acceleration is focused in

the two slow-mode shock waves that bound the outflowing jet and are

emitted from the ends of the diffusion region.

(iii) Spontaneous or driven
Magnetic reconnection may be either spontaneous or driven (sometimes

called ‘‘forced’’). ‘‘Spontaneous’’ refers to reconnection that is initiated

locally at a null point or in a current sheet or sheared magnetic field (or in

3D at a null point, a separator or a quasi-separator). It may occur due to a

resistive instability such as the tearing mode or when conditions for the

local onset of reconnection are reached, such as the resistivity suddenly

being switched on. One example would be due to tearing in a current sheet

that has formed in the preflare phase of an eruptive solar flare below a flux

rope that has started to erupt and is stretching out the magnetic flux that

arches over the flux rope. Another example would be in the geomagnetic

tail during a substorm. In these cases, reconnection is likely to develop into

a fast reconnection mode, with reconnection at the fastest allowed rate.

Alternatively, reconnection may be driven by motions of flux at large

distances towards, for example, a neutral point or separator. Such motions

may be the result of an ideal instability or may be part of the general

evolution of a magnetic field. This may be what happens when new flux

emerges from below the photosphere and interacts with the overlying

coronal field or when opposite photospheric flux fragments move towards

each other during flux cancellation and drive chromospheric or coronal

heating events. In these cases, reconnection will occur at the rate at which

the flux motions are driven—i.e., at any rate up to the maximum allowed

one.

(iv) Almost-uniform or nonuniform
It is important to note that the magnetic field at large distances from the

diffusion region for Petschek’s mechanism is not that of an X-point, but

rather it is a one-dimensional field, since Petschek theory assumes a small

perturbation about a simple current sheet. It is an example of an almost-
uniform regime of reconnection.

Since we are dealing with solutions of the nonlinear partial differential

equations of plasma physics, both the initial and boundary conditions are

crucial, as discussed in this and the next subsection. As far as the initial

conditions are concerned, the most popular choice is to start with a one-

dimensional current sheet having a unidirectional magnetic field,
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B0 ¼ B0xðyÞx̂, say, and current j ¼ j0ðyÞẑ, where j0 ¼ �l�1dB0x=dy from

Ampère’s law. Then reconnection can be initiated by a small magnetic or

plasma perturbation or an enhancement of resistivity. This often leads

ultimately to a steady state that is a perturbation to the initial field and tends

to a unidirectional field at large distances: it is known as a regime of

almost-uniform reconnection (e.g., Priest 2014) (Fig. 50c). This is relevant

for reconnection below a rising flux rope in a solar flare, provided a non-

reconnecting current sheet is formed and stretched out before reconnection

is initiated, although this seems unlikely since reconnection may start as

soon as the current sheet starts to form. It is also relevant for reconnection

in the geomagnetic tail.

By contrast, for so-called nonuniform reconnection (e.g., Priest 2014) the

magnetic field before the current sheet forms and at large distances from

the reconnecting current sheet is that of an X-type null point, behaving like

B0 ¼ yx̂� xŷ, say (Fig. 50d). This regime would be relevant in several

applications. One would be reconnection at a null point that forms below a

rising flux rope in a solar flare without an extended current sheet first

forming. Another would be during emerging or cancelling magnetic flux in

a chromospheric or coronal heating event. For example, the length (L) of a
reconnecting diffusion region together with its inflow velocity (vi) and

magnetic field (Bi) can be calculated in terms of the magnetic fluxes ð	FÞ
and plasma velocity (v0) with which two opposite-polarity photospheric

magnetic fragments approach and cancel in an overlying magnetic field

(B0) (Priest et al. 2018). Both almost-uniform and nonuniform reconnec-

tion could be either spontaneous or driven.

(v) Convergent or divergent driven flow
Boundary conditions also play an important role (Forbes and Priest 1987).

In particular, on the inflow boundary it is found that the orientation of the

plasma velocity vector affects the type of reconnection, in particular

whether the inflow is converging or diverging and by how much it is doing

so. If the inflow is converging, it tends to produce reconnection with

smaller diffusion regions (Fig. 50e), whereas, if it is diverging, the

diffusion regions tend to be much longer (Fig. 50f).

9.2 Fast reconnection: summary of results

In addition to the strength of the inflow and of the diffusion region, we are dealing

with at least a five-parameter analysis, namely, depending on whether the

reconnection is: spontaneous or driven; resistive or collisionless; local or global;

almost-uniform or nonuniform; and converging or diverging. In addition, there is

the question as to whether the system is steady or impulsive and bursty (due to

secondary tearing or plasmoid instability) and also whether there is a magnetic field

component (a ‘‘guide field’’) out of the plane. Finally, it should be stressed that we

are here talking just about 2D reconnection, but 3D reconnection may well give

quite different results.
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Much of what has been discovered so far concerns only spontaneous almost-

uniform reconnection or refers to the local rate of reconnection at an isolated

diffusion region, so other regimes in different parts of parameter space await a full

treatment.

Apart from the case when the diffusion region occupies the whole of the

boundary between opposing fields, such as in Sweet–Parker reconnection, the

diffusion region of length L and width l is immersed in an external region in most of

which ideal MHD holds. Slow-mode MHD shock waves stand in the flow and are

present because they are naturally generated by the presence of an obstacle (the

diffusion region) in the flow in exactly the same way that a hydrodynamic shock is

generated by a corner when a supersonic fluid flows round it. The shock turns the

magnetic field towards the normal to the shock front and accelerates the plasma as

magnetic energy is converted to plasma energy and heat. Most of the energy

conversion in such reconnection takes place at the slow shocks, and the steady

reconnection rate is then the value of ve, which is imposed from outside for driven

reconnection, but is determined by the solution itself for spontaneous reconnection.

Here the width (l) of the diffusion region is determined by the diffusion-region

physics and its length (L) by mass continuity. The inflow field (Bi) is determined

mainly by the nature of the inflow in the ideal region and weakly by the length (L) of
the diffusion region. Thus, the presence of the slow-mode shocks in the otherwise

ideal MHD region surrounding the diffusion region is a universal feature, regardless

of whether the diffusion region is resistive or collisionless, since ideal MHD holds

in both cases. As well as being a feature of early fast MHD reconnection models

(Petschek 1964; Priest and Forbes 1986), it has also been observed in many

numerical experiments, both MHD (e.g, Ugai and Tsuda 1977; Sato 1979; Biskamp

1986; Scholer 1989; Yan et al. 1992, 1993; Baty et al. 2009b) and large-domain

collisionless PIC simulations (e.g., Liu et al. 2012; Innocenti et al. 2015).

(i) Almost-uniform reconnection: resistive and collisionless
Suppose the field Be at large distances in the inflow is given. Then flux

conservation determines the relationship between the reconnection rate

ve and the inflow speed vi in a steady state by

viBi ¼ veBe; or in dimensionless variables Mi ¼ Me
B2

e

B2
i

:

ð86Þ

Furthermore, if the outflow speed from the diffusion region is the

Alfvén speed (vAi), mass continuity determines the sheet length when

the density is uniform as

L

l
¼ vAi

vi
or in dimensionless terms

L

Le
¼ 1

Mi

l

Le
: ð87Þ

(ii) Spontaneous almost-uniform and nonuniform reconnection
For spontaneous reconnection, the boundary conditions are free in

some sense and ve (or Me) is determined as the maximum allowable
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value for the solution.

For almost-uniform reconnection with a potential field in the ideal

region, the field (Bi) at the inflow to the diffusion region is given (Priest

2014) in the simplest first treatment by

Bi

Be
¼ 1� 4Me

p
loge

Le

L
: ð88Þ

The maximum reconnection rate (M�
e ) may then be estimated by

assuming that Bi has reduced to roughly 1
2
Be and so is given by

M�
e ¼ p

8 loge Le=L
: ð89Þ

Thus, regardless of whether the diffusion region is resistive or

collisionless, what matters is the length of the diffusion region at the

maximum rate. If Le=L ¼ 1012, then M�
e ¼ 0:014, whereas, if it is 106

or 103, then the maximum rate is 0.028 or 0.056, respectively, and if it

is 102 or 10, then the maximum rate is 0.085 or 0.17, respectively.

(iii)(a) Resistive diffusion region
For a resistive diffusion region, we have Petschek’s mechanism,

provided there is an enhanced resistivity in the diffusion region. An

enhanced resistivity may possibly be created by current-driven micro-

instabilities, such as ion-acoustic or lower hybrid drift instabilities

(e.g., Syrovatsky 1969; Smith and Priest 1972; Heyvaerts et al. 1977;

Huba et al. 1977; Ugai 1984; Strauss 1988) or by a lowering of the

temperature inside the diffusion region when cooling by radiation

dominates ohmic heating (Heyvaerts and Priest 1976; Heyvaerts et al.

1977). In this case, for almost-uniform reconnection, the local

reconnection rate is the Sweet–Parker rate Mi ¼ R
�1=2
mi , while the

maximum global rate is typically M�
e ¼ 0:01–0.1. Specifically, in this

case, the width of the sheet is l ¼ g=vi and so Eq. (87) implies that

Le

L
¼ RmeM

3=2
i M1=2

e : ð90Þ

The maximum rate is therefore

M�
e ¼ p

8 loge Rme
; ð91Þ

which gives M�
e ¼ 0:014, for Rme ¼ 1012, say, or M�

e ¼ 0:028, for

Rme ¼ 106.

On the other hand, if the Lundquist number Rme exceeds about 10
3 and

the resistivity is uniform, numerical experiments (Biskamp 1986;

Uzdensky and Kulsrud 2000) and theoretical considerations (Baty

et al. 2014) show that the diffusion region grows in length to a value L
that is a significant fraction (not yet properly determined) of Le. In

addition, the inflow becomes diverging rather than converging and so

123

Magnetic reconnection: MHD theory and modelling Page 95 of 202 1



we recover one of the flux pile-up regimes (Priest and Forbes 1986)

with a reconnection rate of roughly

Me ¼
1:4

R
1=2
me

; ð92Þ

somewhat faster than the Sweet–Parker rate.

In the alternative treatment of Priest and Forbes (1986), the magnetic

field in a box with free conditions on three sides and the shock and

diffusion region conditions on the fourth is calculated, and in particular

the relation between Bi and Be. Substituting it into Eq. (86) determines

the relationship between Mi and Me as

M1=2
e

M
1=2
i

¼ 1� 4Me

p
0:83� loge tan

p
4Mi

l

Le

� �	 


: ð93Þ

instead of Eq. (88). If Me is plotted as a function of Mi, the maximum

occurs when MeMi ¼ 1=64, and so, if for example the value of Mi at

this maximum rate is, say, 0.1, then the maximum reconnection rate

becomes M�
e ¼ 0:16:

Remaining questions about this topic are given in Sect. 9.3.1(i)

(iii)(b) Collisionless diffusion region
For collisionless Hall reconnection, the main focus has so far been on

the local reconnection rate, and so in this section the Lundquist number

(S) refers to the local magnetic Reynolds number (Rmi)—see Sect.

9.1(ii). Some results are for almost-uniform reconnection, when the

initial state is a one-dimensional current sheet, while others are for

nonuniform reconnection, when it has an X-point between two flux

rings. Here, after earlier studies (e.g., Drake and Kleva 1991; Aydemir

1992; Mandt et al. 1994; Kleva et al. 1995; Ma and Bhattacharjee

1996), Biskamp et al. (1997) clarified the nature of collisionless

reconnection between two flux bundles that are drawn together by the

magnetic tension of field lines that surround both bundles. They

discovered with a two-fluid code that the diffusion region has a two-

fold structure. There is an outer ion diffusion region where the

electrons remain frozen-in to the magnetic field, while the ions are

decoupled from the electrons and the magnetic field over a width equal

to the ion inertial length (or skin depth), namely,

l ¼ dðiÞ ¼ c

xðiÞ
p

� mðiÞ

lne2

� �1=2

; ð94Þ

where xp is the plasma frequency and is a natural frequency of

oscillation of charged particles. In addition, a much smaller electron

diffusion region of width equal to the electron inertial length (c=xðeÞ
p )

allows the electrons to slip through the magnetic field. (Note that we

are using superscripts (i) and (e) to represent ion and electron values,
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since the normal notation (subscripts i and e) is being used to denote

local inflow and external inflow values.) Although reconnection

requires electron inertia, the reconnection rate is controlled by ion

inertia and therefore the whistler mode.

This Hall reconnection occurs when the ion inertial length (dðiÞ)

exceeds the Sweet–Parker width (dSP ¼ LR
�1=2
mi from Eq.(86)). Its

behaviour was confirmed and investigated more thoroughly by Shay

et al. (1998) with a 2.5D hybrid code, including Hall dyamics and

electron inertia, in which the ions are modelled as particles and the

electrons as a fluid (Fig. 51). The ions are accelerated to the Alfvén

speed (vAi), while the electrons are ejected at a much higher speed but

eventually slow down and join the ions. The local reconnection rate is

of order

vi ¼
dðiÞ

L
vAi 
 0:1vAi; ð95Þ

and is controlled by the ions rather than the electrons. It is much faster

than the Sweet–Parker rate because the ions are not constrained to flow

Fig. 51 Details of collisionless reconnection between two colliding flux rings, showing the regions where
a the Hall current and b electron inertia is important. c The magnetic field lines in the xy-plane, together
with d the magnetic field component out of the plane. e The ion flows and f the electron flows, with
minimum and maximum values indicated. (From Shay et al. (1998) with permission, copyright AGU.)
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through the very narrow electron region where the frozen-in constraint

is broken.

Shay et al. (1999) used a hybrid code to consider a double current sheet

initially rather than a pair of flux rings. Reconnection was initiated by

perturbations in the form of magnetic islands. Fig. 52 shows a limited

area of length 50 ion inertial lengths (dðiÞ) about one of the X-points in

a run of length 205dðiÞ. The ions form a layer about 2dðiÞ wide and

stretching over the whole length in Fig. 52c, with wings which separate

at about 10dðiÞ from the X-line downstream of the separatrix and fan

outwards. On the other hand, the electrons form a tiny diffusion region

of width dðeÞ ¼ 0:2dðiÞ and length 2dðiÞ together with wings along the

separatrices. The out-of-plane magnetic field has a quadrupolar

structure due to Hall currents and whistler waves (Fig. 52e). The

reconnection rate is Mi ¼ 0:1, and they suggested that this is a

universal rate. Indeed, a comparison of different codes, called the GEM

challenge, in which the initial state was a one-dimensional current

sheet with an initial perturbation as a set of magnetic islands, led to the

conclusion that all models with a Hall effect, whether two-fluid, hybrid

or full particle, produce the same reconnection rate for the nonlinear

development of tearing (Birn et al. 2001).

Later, Shay et al. (2007) used a PIC code to study the electron

diffusion region in more detail for reconnection in an initially one-

dimensional current sheet. Reconnection approached a steady value of

Mi ¼ 0:14 with a steady diffusion region that did not form secondary

islands, unlike earlier simulations such as Daughton et al. (2006). The

ion diffusion region had a length of 7dðiÞ, and the surprising feature was
that a high-velocity jet of electrons was accelerated to the electron

Fig. 52 Collisionless reconnection in a current sheet, showing the in-plane a magnetic field lines and
b ion velocity, and the the out-of-plane c ion current, d electron current and e magnetic field. (From Shay
et al. (1999) with permission, copyright AGU.)

123

1 Page 98 of 202 D. I. Pontin, E. R. Priest



Alfvén speed in the electron diffusion region and extended to large

distances of several 10’s of dðiÞ, while the ions open out into the usual

wedge-shaped jet characteristic of Hall reconnection and accelerated

by the Hall effect (Fig. 53). Drake et al. (2008) stressed that the

electron jet becomes a smaller fraction of the outflowing electrons in

the bulk of the Hall jet with increasing distance downstream.

There is no theoretical model for this apparently universal local rate of

0.1 for collisionless reconnection, which depends purely on numerical

experiments (Comisso and Bhattacharjee 2016). Various mechanisms

have been proposed, such as Hall dissipation (Mandt et al. 1994;

Rogers et al. 2001; Drake et al. 2008; Cassak and Shay 2008), off-

diagonal pressure tensor terms (Hesse et al. 1999; Bessho and

Bhattacharjee 2007; Ng et al. 2011; Cassak et al. 2015), and Wiebel

instability (Swisdak et al. 2008). The same universal rate also occurs in

other scenarios: in the absence of the Hall effect, when a large out-of-

the-plane ‘‘guide field’’ is present (Liu et al. 2014; Cassak et al. 2015;

Stanier et al. 2015); for asymmetric fields (Cassak and Shay 2008); in

partially ionized plasmas (Jara-Almonte et al. 2019); and even in

relativistic reconnection or for an electron-positron plasma (Bessho and

Bhattacharjee 2005, 2012).

Extending these results to large domains, Shay et al. (2004) found that

a large-scale initial current sheets develops reconnnection at the same

local rate of 0.1 independent of the system size. Also, PIC and kinetic

Riemann simulations have shown that to each of the Petschek slow-

mode shocks is added a rotational discontinuity (which drives flows out

of the plane) (Liu et al. 2012; Zhang et al. 2019). A similar evolution

into a Petschek-type configuration was found by Comisso et al. (2013)

with a gyrofluid model.

Remaining questions about this topic are given in Sect. 9.3.1(iii)

Fig. 53 Collisionless reconnection with a PIC code in a region of length 200� 100dðiÞ, showing a

electron outflow velocity vðeÞx and b the momentum flux vectors in a region near the reconnection line.

(From Shay et al. (2007) with permission, copyright AGU.)
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(iii)(c) Impulsive bursty reconnection—plasmoid instability
When the diffusion region becomes too long, it can go unstable to

tearing and the reconnection becomes impulsive and bursty, as

described for a resistive plasma in Sect. 8.3, for which the linear

growth rate is S1=4vA=L and in the nonlinear regime the local

reconnection rate is Mi ¼ 0:01 (Biskamp 1986; Tajima and Shibata

1997; Loureiro et al. 2007; Bhattacharjee et al. 2009; Comisso and

Bhattacharjee 2016; Huang et al. 2010; Uzdensky et al. 2010).

Daughton et al. (2009c) considered a Sweet–Parker diffusion region of

length LSP containing N secondary islands, each of length LSP=N and

Fig. 54 Phase diagrams for the different regimes of reconnection, showing their dependency on the

aspect ratio (L=dðiÞ) of the current sheet and the Lundquist number (S): a in a Hall simulation of a neutral
current sheet with no guide field, with permission from Huang et al. (2011), copyright by AIP; b in a
collisional kinetic simulation of a current sheet with a strong guide field from Daughton and Roytershteyn
(2012), copyright by Springer
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width lSP=
ffiffiffiffi

N
p

. They suggested that, since the original Sweet–Parker

current sheet would have a local reconnection rate Mi ¼ 1
ffiffiffi

S
p

, when it

is unstable to plasmoid instability with N islands, the local reconnec-

tion rate would increase to Mi ¼ 1
ffiffiffiffiffiffi

NS
p

, and this was later confirmed

by numerical experiments (Cassak et al. 2009).

Similar results also arise for a collisionless plasma. Daughton et al.

(2006) used a PIC code with open boundaries to study spontaneous

reconnection in a current sheet initialised with a single X-point. The

electron diffusion region grew in length and periodically went

unstable to the formation and ejection of secondary islands (see also

Karimabadi et al. 2007; Shay et al. 2007).

Daughton et al. (2009a, 2009c) then used a fully kinetic code with a

Fokker-Planck collision operator to study the transition from colli-

sional to kinetic regimes. They found that the current sheet goes

unstable to the formation of plasmoids when the Lundquist number is

large enough (S[ 103), and there is an enhancement in the reconnec-

tion rate when the current sheet between two plasmoids becomes

collisionless—i.e., its thickness becomes smaller than the ion inertial

length (dðiÞ). Later, Stanier et al. (2019) repeated the analysis with a 3D
code, with similar results: in the nonlinear development of semi-

collisional plasmoid instability, flux ropes are advected and rotated by

reconnection outflow jets leading to a state in which super-Dreicer

fields produce a transition to kinetic reconnection in the thin current

sheets forming between the flux ropes.

Huang et al. (2011) conducted Hall simulations with system sizes up to

104 ion skin depths (dðiÞ) and constructed a phase diagram (Fig. 54a)

that shows how the presence of reconnection depends on the aspect

ratio (L=dðiÞ) of the current sheet and the Lundquist number (S). This
includes Hall reconnection, plasmoid reconnection at multiple X-

points, and reconnection at a single X-point (here called ‘‘Sweet–

Parker reconnection’’). The usual conditions for Hall reconnection are

that dðiÞ exceed the Sweet–Parker current sheet width (dSP ¼ S�1=2),

and for plasmoid instability that S exceeds a critical value Sc 
 104.

When both are satisfied, the secondary current sheets cascade down to

a width that may either exceed or reach the dðiÞ scale, so that

reconnection is either resistive or Hall, respectively.

Previously, with smaller system sizes, Daughton et al. (2009b) had

found a continual generation of copious plasmoids with a PIC code

when dðiÞ [ dSP, whereas Shepherd and Cassak (2010) had discovered

with a Hall code that, after the plasmoids had been expelled, it settles

down to a single stable X-point. Later, Daughton and Roytershteyn

(2012) repeated their earlier simulations but added a strong ‘‘guide

field’’ out of the plane, for which the condition for collisionless

behaviour is changed to dSP [ qs, where qs is the ion sound radius
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based on the total magnetic field (see also Stanier et al. 2017). This

confirmed the onset of plasmoid instability when S[ 104, as shown in

Fig. 55, where at early times a long current layer develops, which

subsequently goes unstable to the formation of plasmoids that induce a

transition to a collisionless regime. They also produced a phase

diagram (Fig. 54b): above the green line the current sheet is unstable to

plasmoid formation; in the white region between the green and blue

lines resistive MHD is valid; in the yellow region, plasmoid

development induces a transition to kinetic scales, whereas in the

purple regions the plasma is completely collisionless; below the red

line the electric field remains below the runaway limit and two-fluid

closures are valid.

From a 3D PIC simulation of double current sheet, Che et al. (2011)

found that 3D reconnection is faster than 2D reconnection due to the

onset of turbulence in the form of a complex web of filaments. With a

guide field Liu et al. (2013) discovered that the dominant instability is

collisionless tearing: in the nonlinear regime a turbulent state develops

with oblique flux ropes, multiple electron diffusion regions and flow

vortices (Daughton et al. 2014).

Fig. 55 Evolution of the out-of-plane current density (in colour) superimposed on the in-plane magnetic
field lines during a collisional kinetic simulation. Image reproduced with permission from Daughton and
Roytershteyn (2012), copyright by Springer
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When plasmoids are much larger than kinetic scales, the plasmoid flux

ropes can bounce off one another or pile up and lower the reconnection

rate (Karimabadi et al. 2011; Ng et al. 2015; Stanier et al. 2015), since

the time-scale for interaction can be shorter than the reconnection time.

Innocenti et al. (2015) found with a PIC simulation that a series of

plasmoids at early times are replaced by a single plasmoid. It has

Petschek shocks extending from it with a compound structure

consisting of a slow shock and a rotational discontinuity (Fig. 56).

Several authors have modelled collisionless reconnection at the

magnetopause with fully kinetic 3D codes. Nakamura et al. (2017)

showed how Kelvin-Helmholtz instability can drive reconnection.

Roytershteyn et al. (2012); Le et al. (2017, 2018) found enhanced

transport of particles across separatrices due to lower hybrid drift

turbulence. Furthermore, Egedal et al. (2019) modelled spacecraft data

from NASA’s Magnetospheric Multiscale (MMS) mission of an

Fig. 56 A large-domain PIC simulation of collisionless reconnection, showing switch-off shocks after
plasmoid instability has left a single large island in the centre of the sheet. a The magnetic field lines
(black) and current (coloured). b A zoom of the left-hand outflow region, showing electron (white) and
ion (purple) flow lines, together with two slow shocks in the outer part of the exhaust and two rotational
discontinuities in the inner part. (Image reproduced with permission from Innocenti et al. (2015),
copyright by AAS.)
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electron diffusion region in the geomagnetic tail. They compared with

2.5D kinetic simulations and deduced that the off-diagonal electron

pressure tensor was responsible for breaking the frozen-in condition for

electrons.

Remaining questions about this topic are given in Sect. 9.3.1(iv)

(iv) Driven almost-uniform reconnection
As described in Sect. 7.3, driven reconnection gives rise to a whole

family of almost-uniform regimes in which the inflow may be either

converging or diverging, and the strength of the convergence or

divergence may vary, depending on the inclination of the flow velocity

on the inflow boundary. There is a continuum of solutions for the

relation between the global (Me) and local (Mi) reconnection rates,

depending on how the reconnection is driven, as shown in Fig. 40b.

Indeed, in some cases Me [Mi (especially converging flows) and in

others Me\Mi (especially diverging flows and flux pileup solutions).

The above description refers to a resistive diffusion region, and so it

needs to be investigated in detail for both collisionless and impulsive

bursty regimes. For a converging flow the maximum local rate of

reconnection is likely to be 0.1 (when l=L ¼ 0:1) in both resistive and

collisionless regimes, and so the maximum global rate is likely to be

Me ¼ 0:1. For a diverging flow, on the other hand the maximum global

rate is likely to be Me ¼ S�1=2 for a resistive plasma, but 0.1 for a

collisionless plasma.

Questions that need to be addressed here are set out in Sect. 9.3.2(i).

9.3 Questions to be addressed in future for 2D reconnection

9.3.1 Spontaneous almost-uniform reconnection

For spontaneous uniform reconnection several questions remain, depending on the

nature of the diffusion region.

(i) Enhanced resistivity
For a resistive diffusion region, the key need in future is to investigate

thoroughly whether or not the resistivity is enhanced in solar applications

such as solar flares and coronal heating. For example, are current-induced

micro-instabilities taking place, what is their nature and what is the

resulting value of the anomalous resistivity? Does the enhanced resistivity

remain enhanced or does it switch on and off? Also, the thermodynamics of

a reconnecting current sheet needs to be re-evaluated in view of the fact

that a simple such analysis by Heyvaerts and Priest (1976); Heyvaerts et al.

(1977) suggested that in some situations the enhanced density in such a

sheet can make the radiation dominate the ohmic heating and so raise the

classical magnetic diffusivity (which is proportional to T�3=2).

For both neutral sheet and guide-field reconnection, what is the role of

plasma instabilities in the out-of-plane direction in altering the dynamical
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evolution of the reconnecting layer and localising the diffusion region? The

role of current-induced microinstabilities in producing a turbulent diffu-

sivity and the effect of intense electron streaming, velocity shear,

anisotropy and density gradients remain to be studied (e.g., Daughton

et al. 2006).

An in-depth understanding of the nature of the behaviour of the MHD

characteristics during spontaneous reconnection would be of value. It is

thought that the slow-mode characteristics in the ideal inflow region are

propagating information outwards from the diffusion region, but what

about the fast-mode characteristics and their effect on the ‘‘free’’ boundary

conditions at large distances? By contrast, in driven reconnection, both

slow-mode and fast-mode characteristics are likely to propagate informa-

tion inwards from the boundaries.

(ii) Uniform resistivity
When the resistivity remains uniform, so that the diffusion region grows in

length, what is the ultimate length compared with the box size? What are

the resulting details of the ideal region flow and what is the global

reconnection rate (Me)?

(iii) Collisionless reconnection
For Hall reconnection, the local reconnection rate is fast, but how is the

diffusion region connected to the global environment? In other words, what

is the nature of the global flow in the ideal region and what is the resulting

global reconnection rate (Me)? Since the local rate is Mi 
 0:1, we expect

the magnetic field in the ideal region to be roughly uniform and the global

rate to be Me 
 0:1. But do numerical solutions bear that out?

(iv) Impulsive bursty reconnection
When the diffusion region is full of plasmoids, what is its length, the nature

of the flow in the ideal region and the global reconnection rate (Me)? Since

the local rate is Mi 
 0:01, we expect the magnetic field in the ideal region

to decrease as the diffusion region is approached, similar to Petschek’s

mechanism, and the global rate to be Me 
 0:1. Is it possible to model this

in terms an anomalous or eddy resistivity (e.g., Strauss 1988), and, if so,

what are its value and its effects?

9.3.2 Driven or nonuniform reconnection

(i) Driven reconnection
For almost-uniform resistive driven reconnection, the theory is valid only

when the Alfvén Mach number is much smaller than unity, and so it needs to

be investigated numerically in order to be confident about the results as Mi

or Me approach unity. For both Hall reconnection and impulsive bursty

reconnection, driven reconnection needs to be investigated thoroughly,

paying careful attention to different initial and boundary conditions and the

differences between local and global reconnection rates.

One important question here concerns the way in which the driving

123

Magnetic reconnection: MHD theory and modelling Page 105 of 202 1



boundary conditions interact with diffusion region physics to determine both

the resulting diffusion region length and the nature of the inflow in the ideal

region. Coupled with this is a determination of the maximum allowable

global reconnection rate as the imposed value of Me is increased.

Determining the details of the solution for given applications is also of great

interest, such as flare reconnection driven by an erupting flux rope, or

coronal heating driven by flux cancellation (when motions of photospheric

flux fragments drives reconnection in the overlying atmosphere).

(ii) Nonuniform reconnection
For nonuniform reconnection, very little is known about either spontaneous

or driven reconnection. The local solutions at the diffusion region are likely

to remain the same as for almost-uniform reconnection, but what about the

behaviour of the ideal region? A simple approximate solution exists for

resistive spontaneous reconnection, but it needs to be checked numerically,

in order to determine the global rate of reconnection with confidence.

9.3.3 Other major questions

(i) Theory for ideal region coupled with the diffusion region
Can a theory for the ideal region outside the diffusion region be developed,

both for spontaneous and driven reconnection, along the lines of the

original theory for almost-uniform theory (Priest and Forbes 1986) and

nonuniform reconnection (Priest and Lee 1990)? What are the most

appropriate boundary conditions? Can this be matched or patched to

theories for collisionless and impulsive bursty diffusion regions in a similar

way to a resistive region (Priest and Forbes 2000)? It is only if such a

theory can be developed that we can be confident of extrapolating beyond

the limited parameter range of current simulations to solar values (Priest

et al. 2021).

Another way of addressing this question is to ask how the local

reconnection picture fits into global large-scale physics (e.g., Cassak et al.

2017)? Can a theory be set up for bridging macroscales and microscales in

the corona (e.g., Simakov et al. 2006; Liu et al. 2017)?

(ii) Three dimensions
Extending our understanding from two to three dimensions is only in its

infancy and is heavily constrained by a much smaller range of parameters

for numerical computations. This makes the need for in-depth theoretical

understanding even higher. Especially complex is the effect of plasmoid

instability, since the plasmoids correspond to magnetic flux ropes which

may interact in highly complex ways (e.g., Daughton et al. 2014).

Furthermore, the development of plasma instabilities in 3D may affect

the nature of reconnection and the onset of microturbulence (e.g., Daughton

and Roytershteyn 2012).

(iii) The 0.1 reconnection rate
It has been argued that Mi ¼ 0:1 is a universal local rate of reconnection,
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regardless of the nature of the diffusion region. Is this indeed the case? If so

what is the theoretical reason? What is the resulting global reconnection

rate (Me)? Is it the same or different? Why is the local rate for plasmoid

reconnection only 0.01 (e.g., Cassak et al. 2017)?

(iv) Reconnection onset
Are there conditions for the onset of reconnection or will it occur as soon as

a current sheet forms? Can energy be stored in a preflare configuration only

as long as there are no current sheets present or can it continue to be stored

until a current sheet reaches a threshold? When photospheric fragments

approach one another, does reconnection in the overlying magnetic field

occur as soon as a null point or separator forms, or can energy be stored in

the field while a current sheet is forming?

(v) Partial ionisation
Plasma in the lower solar atmosphere is partially ionised, so that the

additional effect of ambipolar diffusion is present due to the friction

between neutrals and ionised particles. Although ambipolar diffusion

naturally leads to the formation of current sheets, it cannot by itself allow

reconnection since it vanishes when B ¼ 0 (Zweibel 1994; Brandenburg

and Zweibel 1994, 1995; Zweibel and Yamada 2009). It has been included

in current MHD codes for the low-temperature solar plasmas (Leake and

Arber 2006; Arber et al. 2007; Khomenko and Collados Vera 2012;

Martı́nez-Sykora et al. 2012; Nóbrega-Siverio et al. 2020b, a), but a full

account of its effect on reconnection has not yet been given.

(vi) Magnetic turbulence
The detailed nature of turbulence created by reconnection and its effect on

reconnection and energy conversion needs further study in a wide variety of

situations (see Sect. 16).

(vii) Nonthermal particle acceleration
The origin of particle acceleration in solar flares is not yet well understood,

including the role of direct electric fields, shock waves of different types,

and turbulence (see Sect. 17).

10 Magnetic reconnection at a three-dimensional null point

The focus of this review switches in the following sections to reconnection in fully

3D geometries. As mentioned in Sect. 4, in three dimensions magnetic reconnection

is not restricted to occur only at null points (as in 2D), but it may in principle occur

anywhere. What is required for reconnection is a concentration of parallel electric

field, which in turn corresponds to an intense current concentration. In Sect. 5 we

have described how such intense currents may form in 3D either at magnetic null

points, along separators, or in the absence of nulls or separators, such as, for

example, at a quasi-separator or hyperbolic flux tube (HFT). The details of the

reconnection process turn out to be quite different in these different cases, and so we

treat them here in turn in the following sections. First of all, in this section, we

address reconnection at 3D null points. We begin by discussing ideal and resistive
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kinematic modelling (Sect. 10.1), and then describe the reconnection regimes that

have been discovered at a 3D null point (Sect. 10.2).

10.1 Results of early kinematic modelling

10.1.1 Ideal kinematic modelling for spine and fan reconnection

The pioneering work for the study of 3D null point reconnection was undertaken by

Lau and Finn (1990) and Priest and Titov (1996). They employed steady-state,

kinematic, ideal models (see Sect. 4.7.1), solving the kinematic equations for v and

E (Eqns. 31–33) with B given by

ðBx;By;BzÞ ¼
B0

L0

ðx; y;�2zÞ:

By imposing different boundary conditions, Priest and Titov (1996) found that two

principal characteristic behaviours are possible. In the first, a plasma flow crosses

the fan plane and in the second it crosses the spine (see Sect. 2.2). When a plasma

flow across the fan is imposed, the solution exhibits singularities in E and v at the

spine. For example, for a smooth boundary flow across the fan purely in the z-
direction and an electric field of the form E/ ¼ veB0 sin/, the velocity is

v?R ¼ 2E/L2
0z=B0

RðR2 þ 4z2Þ ; v?z ¼
E/L2

0z=B0

R2 þ 4z2
;

with v?R singular at the spine (R ¼ 0). It was suggested that a similar evolution with

the full dynamics included might lead to a strong current along the spine. Field lines

traced from footpoints transported in the ideal flow across the fan are seen to jump

from one spine direction to the other as the footpoint crosses the fan, with this

behaviour being termed spine reconnection by Priest and Titov (1996).

By contrast, when a continuous plasma flow is imposed across the spine, E and v
are found to exhibit singularities in the fan plane. Following field lines in that flow,

only those that happen to pass exactly through the spine show a discontinuous jump,

while all other field lines flip rapidly around in the fan. Again, it was speculated that

dynamics would lead to a strong current localised to the fan, with the process termed

fan reconnection (Priest and Titov 1996).

10.1.2 Resistive kinematic modelling

Priest and Titov (1996) were unable to resolve the singularities in their models with

a finite resistivity, and it was later discovered that such isolated spine and fan

reconnection modes seldom occur in practice. This was first realised through

resistive kinematic modelling by Pontin et al. (2004, 2005), using the approach

described in Sect. 4.7.2. They considered an isolated diffusion region centred on the

null point, since this is the critical property of 3D reconnection (Sect 4). The

equations to be solved are Eqns. (34)–(36), and, as with the solution described in

Sect. 4.7.2, a localised resistivity is specified. It turns out that the properties of the
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reconnection process depend critically on the orientation of the current density

vector at the null.

When the current is non-zero at the null and oriented parallel to the fan surface,

Pontin et al. (2005) found that the plasma must flow across both the spine and fan of

the null-point. This transports flux both through and around the spine line, and

across the fan surface (see Fig. 57), and it is therefore a combination of the ‘spine’

and ‘fan’ modes of Priest and Titov (1996). The reconnection rate—calculated as a

maximal integrated Ek along fan field lines—measures the rate of transport of

magnetic flux across the separatrix (fan) surface, much as in 2D X-point

reconnection. Pontin et al. (2005) showed that the individual spine and fan

reconnection modes can only be decoupled when the current is zero at the null point

itself. However, this is unlikely in a full dynamic evolution, in which current tends

Fig. 57 Resistive, kinematic, spine-fan reconnection based on the solution of Pontin et al. (2005).
Evolution of two arbitrarily chosen flux tubes in the magnetic field B ¼ ðx; y � jz;�2zÞ, which has
current directed parallel to the fan plane (with j ¼ 1). A localised diffusion region is present around the
null point, shown by the shaded surface in (a). Flux tubes are traced at each instant from a set of plasma
elements—marked by black diamonds—that move with time at the flow velocity v in the ideal region (v
is shown by the red arrows in (d)). Field lines traced through and beyond the diffusion region are rendered
transparent. For a related movie see Supplementary Information
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to accumulate at the null, as evidenced by the results described in Sect. 5.4 on null

collapse, and the dynamic simulations described in Sect. 10.2.

By contrast, when the current at the null is parallel to the spine, then the field line

connectivity change takes the form of a counter-rotational slippage, driven by

rotational flows centred on the spine (Pontin et al. 2004; Wyper and Jain 2010)—see

Figs. 58, 59. In this case there is no flux transport across either the spine or fan. The

reconnection rate in this case (the integral of Ek along the spine) quantifies this

slippage by measuring the difference between the rates of flux transport through the

surfaces marked ‘A’ and ‘B’ in Fig. 59b.

In the kinematic models described in this section the solution is obtained by a

method similar to that described in Sect. 4.7.1., namely, the non-ideal region is

Fig. 58 Resistive, kinematic, torsional, null-point reconnection based on the solution of Pontin et al.
(2004). Evolution of two arbitrarily chosen flux tubes in the magnetic field B ¼ ðR; jR=2;�2zÞ in
cylindrical polar coordinates, which has current (j ¼ 1) directed parallel to the spine. A localised
diffusion region is present around the null point, shown by the shaded surface in the first frame. Flux
tubes are traced at each instant from a set of plasma elements—marked by black diamonds—which move
with time at the flow velocity v in the ideal region. Field lines traced through and beyond the diffusion
region are rendered transparent. For a related movie see Supplementary Information
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localised artificially by prescribing a localised resistivity. The next natural step in

the investigation of 3D null-point reconnection is to examine the self-consistent

formation of localised non-ideal regions at the null through the dynamic formation

of localised current concentrations. This has been investigated through a series of

numerical MHD simulations, which have led to the discovery of the various modes

of 3D null point reconnection described in Sect. 10.2.

10.2 Reconnection regimes at a 3D null point

The above-described models are all steady-state and kinematic, while simulations

have revealed how the current layers required for 3D reconnection form

dynamically. Early work by Rickard and Titov (1996), Galsgaard et al. (2003a)

and Pontin and Galsgaard (2007) demonstrated that rotational perturbations (centred

on the spine) lead to accumulation of currents along either the spine or fan of the

null point. By contrast, perturbations that break the cylindrical symmetry tend to be

refracted and lead to the accumulation of currents and free energy in the vicinity of

the null. This behaviour is consistent with the propagation of Alfvén and

magnetoacoustic waves around 2D nulls as reviewed by McLaughlin et al. (2011).

Complementary to these investigations of propagation of impulsive disturbances

towards nulls are studies that investigate the long-time behaviour when systematic

flows perturb the magnetic field. Such studies were discussed in Sect. 5.4, where it

was described how boundary motions that displace the spine or fan footprints lead to

a local collapse of the spine and fan towards one another in the vicinity of the null

(since the Lorentz force acts to increase the applied displacement, just as at a 2D

null), and the concomitant formation of an intense current sheet centred on the null

(Pontin and Craig 2005). The implications of these different current density

structures for the nature of the reconnection that ensues are explored in the

following subsections.

Fig. 59 a Rotational slippage of fields entering through the top of the diffusion region on a curved flux
surface, showing as solid curves the locations of the plasma elements at t ¼ t1, t ¼ t2, t ¼ t3, that initially
(t ¼ t0) lay on one field line. b The reconnection rate measures a rotational mismatching of flux threading
the diffusion region, namely the difference between the rates of flux transport through surfaces A and B
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10.2.1 Spine-fan reconnection

The most common form of reconnection to occur at a 3D null point is spine-fan
reconnection. As we shall see below, the other modes of 3D null-point reconnection

require a more organised form of driving flow, while spine-fan reconnection occurs

whenever a perturbation displaces the locations of the spine and fan. This mode of

reconnection was first studied in detail by Pontin et al. (2007a), who performed a

systematic shearing of the spine (or fan) footpoints in a closed domain. As described

fl

(a)

(b) (c)

Fig. 60 Spine-fan reconnection. a Cartoon illustrating the qualitative structure of the magnetic field lines,
current localisation (shaded) and plasma flow [modified from Pontin (2011), copyright by COSPAR]. b, c
Two visualisations of spine-fan reconnection during impulsive 3D null collapse [reproduced from the
simulations of Thurgood et al. (2017)]. b Magnetic field lines and contours of the current density
component jy. c Magnetic field lines in the ‘‘plane of collapse’’ (red in the inflow regions, blue in the

outflow) together with plasma density (shaded) and plasma flow vectors in a plane containing the current
sheet, illustrating the outflow jet. The yellow surface is the boundary of the fast outflow jet: within the
yellow surface the flow speed exceeds the fast magnetosonic speed
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above, such a shear disturbance causes the spine and fan to collapse, with a current

layer forming at the null as the shear stress accumulates in the weak-field region.

Tracing plasma elements moving in the ideal region, plasma—and thus magnetic

flux—are found to be transported both across the fan and across or around the spine.

As per the kinematic model of Pontin et al. (2005) discussed above, the rate of flux

transport across the fan (separatrix) surface is quantified in 3D as usual by the

maximal integral of Ek through the current layer, which occurs along a fan field line

by symmetry.

The transfer of flux across both the spine and fan led Priest and Pontin (2009) to

suggest the name spine-fan reconnection, and this behaviour distinguishes this type

of reconnection from the other null point reconnection modes discussed below.

Also, the current concentration is in the form of a localised sheet that is inclined at

an intermediate angle between the spine and fan in such a way that the current sheet

contains part of both the spine and the fan (see Fig. 60).

The direction in which the perturbation is applied determines the ‘‘plane of

collapse’’, i.e., the plane in which the angle between the spine and fan is minimised,

see Fig. 60a. In this plane of collapse, an inflow-outflow pattern is set up, with the

current concentration, projected field lines, and plasma flow resembling closely the

appearance of 2D X-point reconnection. Note, however, that the current layer and

outflow jets have a fully three-dimensional character: moving away from the plane

of collapse the magnetic field strength increases and the current weakens. While the

expanding field lines in the fan plane cause the outflow jet to broaden moderately as

it expands away from the null, the outflows remain fairly well collimated—see

Fig. 60c. Note that Galsgaard and Pontin (2011a) have demonstrated that the plane

of collapse may not be truly planar if the initial null point is not rotationally

symmetric and the driving is not aligned with the strong or weak field eigenvectors

in the fan (see Sect. 2.2).

While the qualitative properties of spine-fan reconnection described above are

well understood, the quantitative properties are less well explored. Priest and Pontin

(2009) analysed the case where the boundary driving is applied for a fixed period of

time before being ‘switched off’, focusing on the scaling of the current sheet

properties with resistivity and driving velocity. They found, for example, that the

peak current has a power-law dependence on resistivity. These results were

extended to the case of continual boundary driving by Galsgaard and Pontin

(2011b), who sought to explore the properties of the asymptotic state. Scalings in

the asymptotic state of the reconnection rate, peak current and peak outflow velocity

with both the driving velocity (vdrive) and g are shown in Fig. 61. Clearly the

reconnection rate decreases as both g and vdrive are decreased. The lines of best fit

indicate scalings of � g0:25 and � vdrive
0:65, respectively. Note that corrections have

been made to account for the numerical resistivity (triangle in frame (a)). The

reconnection rate is then found to be faster than Sweet–Parker but slower than

Petschek, within the limits of the restricted values of g accessible. Neither the peak

current or peak velocity in the outflow jet is found to match a power-law scaling

with vdrive (Fig. 61d, f). On the other hand, the peak current does show an

approximate power-law scaling with g, although this scaling is different for different
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vdrive. Notably, the scaling Jmax � g�0:6–g�0:8 is comparable to the Jmax predicted by

the incompressible fan reconnective annihilation solution of Craig and Fabling

(1998). Finally, as expected, the outflow jet velocity shows a scaling that mirrors the

reconnection rate, namely, vmax � g�0:25.

The geometry of the field around a null point, where the field in the reconnection

inflow regions will typically increase linearly away from the null, means that a truly

(a)

(c) (d)

(e) (f)

(b)

Fig. 61 Current sheet scalings during quasi-steady spine-fan reconnection. a, b Scaling of the

reconnection rate with resistivity, g, (at vdrive ¼ 0:05) and the driving velocity vdrive, (at g ¼ 10�3)
together with lines of best fit. c Scaling of the peak current with g for vdrive ¼ 0:1 (crosses, dashed line)

and vdrive ¼ 0:05 (diamonds, solid line). d Scaling of the peak current with driving velocity for g ¼ 10�3.

e, f Scaling of the maximum velocity in the outflow jet with g and vdrive (for vdrive ¼ 0:05 and g ¼ 10�3,
respectively). In (a, c, e) the triangles and asterisk represent values for which the effects of numerical
dissipation have been approximated to correct the value of g from the one explicitly specified. Image
reproduced with permission from Galsgaard and Pontin (2011b), copyright by ESO
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steady asymptotic state is unlikely to ever be reached. In any case, at values of the

magnetic Reynolds number appropriate for the solar corona, continued driving is

likely to cause the length of the current sheet to expand until the onset criterion for

secondary tearing (or plasmoid) instability (Sects. 8.1–8.3) is reached, as observed

by Wyper and Pontin (2014b).

Finally, it is worth noting the relation between spine-fan reconnection and the

reconnective annihilation solutions discussed in Sect. 6.4. Pontin et al. (2007b)

performed shear boundary driving at the spine footpoints in a series of simulations

approaching the incompressible limit. They found that local null collapse is

inhibited, with a current sheet instead forming all across the fan, and plasma flows

and field line evolution reminiscent of the incompressible solutions of Craig et al.

(1995). This implies that fan reconnection can be recovered as the incompressible

limit of spine-fan reconnection. On the other hand, the same authors were unable to

retrieve any behaviour resembling pure spine reconnection by shearing the fan

surface. This suggests that such spine solutions are not recoverable in a dynamic

evolution, or in other words are dynamically inaccessible, unlike the fan solutions

(for further discussion, see Craig and Fabling 1998; Titov et al. 2004).

10.2.2 Torsional spine reconnection

In this and the following section, we describe two modes of reconnection that take

place when the locations of the spine and fan are not disturbed. Both are induced

when the equilibrium is perturbed by a rotational driving flow, with the axis of

Fig. 62 Schematics of torsional spine and torsional fan reconnection at an isolated null. a Torsional spine
reconnection. Black and grey lines are magnetic field lines, the shaded surface is a current density
isosurface, the grey arrows indicate the direction of the current flow, while the black arrows indicate the
driving plasma velocity. b Torsional fan reconnection, with the same notation. Images modified with
permission from Pontin (2011), copyright by COSPAR
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rotation coinciding with the spine line. First, when the rotational driving disturbs the

field lines in the fan, the perturbation travels like a torsional Alfvén wave that

approaches the spine. There is a corresponding accumulation of current in a tube

around the spine whose radius decreases and intensity increases—as the field lines

become increasingly tightly wound around the spine—until diffusion becomes

important (Rickard and Titov 1996; Pontin and Galsgaard 2007). This configuration

is illustrated in Fig. 62a. Once the current becomes sufficiently intense for the

reconnection to take place, field lines experience a rotational slippage inside this

current tube, which acts to decrease the stress induced by the twisting of the field

lines. This is very different from the behaviour during the spine reconnection model

of Priest and Titov (1996), and so it has been dubbed torsional spine reconnection
(Priest and Pontin 2009).

The relative counter-rotation between selected bundles of field lines is illustrated

in Fig. 58. This is detailed for a particular field line in Fig. 59a. Here the shaded

cylinder represents the diffusion region, while solid lines represent field lines traced

from a pair of plasma elements in the ideal region, on either side of the diffusion

region. At t ¼ t0 the two field lines coincide so that the plasma elements are

connected. At later times (t1, t2 and t3) the plasma elements above and below (and

their corresponding field lines) have rotated by different angles around the spine,

and the field line connectivity has changed.

The kinematic solution of Priest and Pontin (2009) reproduces the qualitative

behaviour observed in the simulations. In both the kinematic solution and early

simulations, the magnetic field and driving were rotationally symmetric (indepen-

dent of /). When this rotational symmetry is broken, the qualitative behaviour of

the system is retained, although the current layer is no longer circular in cross

section. Specifically, the varying Alfvén speed in the fan plane means that the

disturbance reaches the spine earlier in the strong-field direction, and the cross-

section of the current concentration around the spine can be highly elliptical (Pontin

et al. 2011a).

10.2.3 Torsional fan reconnection

If the external rotational flow acts in the vicinity of the spine (with the spine being

the axis of rotation), then a magnetic disturbance propagates towards the fan plane.

Here the hyperbolic field structure causes length scales perpendicular to the fan to

decrease, creating a current front as the disturbance approaches the fan (Galsgaard

et al. 2003b; Pontin and Galsgaard 2007). Moreover, a mis-match between the field

lines on either side of the fan can be generated, depending on the relative rotations

about either spine direction. The result is a current layer across the fan plane, within

which again rotational slippage occurs, characteristic of torsional fan reconnection,
62(b), a kinematic model for which is presented by Priest and Pontin (2009).

In the early simulations of Galsgaard et al. (2003b) it was already clear that,

when the rotational disturbance propagates towards the fan, the current is

maximised at some distance from the null, owing to the hyperbolic field structure.

This creates a current disc with a hole, as shown in Fig. 63. When the background

null point magnetic field is not perfectly symmetric, the symmetry of the current
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distribution is quickly lost, with the current instead being most intense in the weak

field direction of the fan. This can be understood intuitively from the fact that the

field lines must slip fastest in the weak field directions to maintain continuity of flux.

If the rotational flows associated with torsional fan reconnection do not exactly

match on either side of the fan surface then the fan may host not only a current sheet

but also a vortex sheet, associated with the mis-match of the rotational flows.

Depending on parameters, such as the relative thicknesses of the current sheet and

vortex sheet, this layer can be susceptible to tearing and/or Kelvin–Helmholtz

instabilities (Einaudi and Rubini 1986; Wyper and Pontin 2013). Figure 63

illustrates the breakup of the current sheet in response to Kelvin–Helmholtz

instability in the simulations of Wyper and Pontin (2013). During the nonlinear

phase of the instability the flux evolution becomes much more complicated than

before. Now, there is not only the rotational slippage associated with torsional fan

reconnection, but also a transfer back and forth of flux across the fan surface. This

flux transfer across the fan plane occurs in the many, thin, twisted flux tubes that are

formed during the nonlinear evolution, leading to an increase in the net reconnection

rate. The effects of different viscosity models and different relative values for the

resistivity and viscosity have been explored by Quinn et al. (2021).

Fig. 63 Above: Distribution of the magnitudes of current density and vorticity in the fan plane in the
simulations of Wyper and Pontin (2013), prior to instability of the current-vortex sheet. The fan plane is
x ¼ 0, the spine lies along the x-axis, and the null is at the origin. Below: After instability, in the same
plane, current density and the normal component of the velocity. Clearly evident are the filaments and
rolls generated during the instability, including some that branch outwards from the null. Note that the
images in the top and bottom rows use slightly different plasma parameters. (Modified from Wyper and
Pontin (2013), copyright by AIP.)

123

Magnetic reconnection: MHD theory and modelling Page 117 of 202 1



10.3 Time-dependent effects in spine-fan reconnection

As discussed above in Sect. 8.3, even under steady driving, spine-fan reconnection

may become spontaneously bursty and time-dependent, in response to onset of

plasmoid instability in the current layer. Another way in which the reconnection can

be inherently time-dependent is through ‘reconnection reversals’, where the null

point collapse reverses cyclically. In other words, the plane of collapse remains the

same (Fig. 60a), but the orientation of the spine-fan collapse (orientation of the

current vector at the null) reverses every half period. This may occur when the

reconnection is driven by an impulsive external perturbation.

Such reconnection reversals were first observed for 2D X-points, in geometries

for which the reversals were induced by the reflection of waves from the domain

boundaries (Craig and McClymont 1991; Hassam 1992; McClymont and Craig

1996). However, subsequently it was realised that the reconnection reversals can be

initiated self-consistently in the absence of reflections from boundaries through the

mechanism described below. This was first observed for 2D X-point reconnection

(McLaughlin et al. 2009, 2012) and then for 3D spine-fan reconnection (Thurgood

et al. 2017), and the process has become known as oscillatory reconnection.
The phenomenon of oscillatory reconnection involves a number of key processes.

First, the nonlinear evolution (assuming a perturbation of sufficient amplitude) of

the wavefront approaching the null leads to a collapse of the null’s spine and fan

towards one another. This implosion drives the formation of a layer of hot, dense

plasma co-spatial with the current layer. The implosion eventually stalls as either

resistive or adiabatic heating creates a sufficiently strong outwards pressure (‘‘back

pressure’’) to halt the collapse (here an overshoot occurs leading to a net-outwards

force and the launching of an outgoing wave, see Forbes et al. 1982; Thurgood et al.

2018a, b). The structure following this initial implosion is shown in Fig. 60c.

Shortly afterwards, reverse current structures appear at the outflow ends of the

current sheet (sometimes called deflection currents as they are associated with a

fast-mode termination shock in the outflow region, see Forbes and Priest 1983;

Forbes 1986). In the same location hot, dense plasma collects, and the associated

pressure force chokes off the outflow. The reverse currents then propagate in toward

the null point (see Fig. 64a) shortening the current sheet and prising the spine and

fan field lines apart. This results in a shortening and widening of the current sheet

(and corresponding decrease in the current density) until the opposite polarity

currents merge at the null, forming a current sheet with long axis approximately

perpendicular to the initial current sheet in the plane of collapse (Thurgood et al.

2017). This repeats cyclically, with each subsequent implosion having less energy

than the last due to local dissipation and the outwards transport of energy by

outgoing waves. The resulting oscillatory spine-fan reconnection results in flux

being transported backwards and forward through the spine and fan (Fig. 64b).

Oscillatory reconnection periodically launches various types of wave outwards

from the reconnection site, and has been proposed as a mechanism for explaining

‘‘quasi-periodic pulsations’’ in solar flares (McLaughlin et al. 2018). What is still

required in order to relate the theory and simulation results to observations is to

understand how the period of the oscillation is influenced by various plasma
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parameters, and therefore what periodicities can be expected at coronal parameters.

Despite initial studies by Thurgood et al. (2019) this remains an open problem.

10.4 3D null point reconnection in models and observations of the solar
corona

The evidence from observations and models of coronal magnetic fields is that

different modes of 3D magnetic reconnection (at 3D nulls, separators, QSLs and

Fig. 64 Oscillatory reconnection simulations. a The current component (jy) perpendicular to the plane of

collapse in the plane of collapse (y ¼ 0), illustrating the first current reversal. b Selected field lines traced
from the ideal region, illustrating the cyclic nature of the spine-fan reconnection. Image reproduced with
permission from Thurgood et al. (2017), copyright by AAS
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otherwise) are important for understanding the dynamics of different phenomena in

the solar atmosphere. In this section we highlight a few examples that demonstrate

the importance of 3D null-point reconnection in the corona.

For solar flares, often separator or quasi-separator reconnection is involved (as in

the new paradigm for solar flares, Sect. 13). However, sometimes the flare energy

release site is found on the basis of magnetic field extrapolations to be located at a

coronal null point (e.g., Fletcher et al. 2001b; Luoni et al. 2007). Moreover, the

spine and fan structures can be directly related to observed emission features,

indicating that the volume around the null is involved in the energy conversion (e.g.,

Fig. 65 Observation of a circular ribbon flare and an associated simulation. a Observed circular flare
ribbon and kernels superimposed on magnetogram, together with field lines from a potential field
extrapolation outlining the null. b, c Snapshots from a simulation starting from that potential field and
applying boundary driving that mimicks the observed magnetogram evolution. b The collapse of the null
during the simulation. c The reconnection of selected field lines from inside to outside the separatrix
dome. Image reproduced with permission from Masson et al. (2009), copyright by AAS
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Sun et al. 2013; Yang et al. 2015). These flares are often observed to exhibit

circular flare ribbons, as well as bright ‘‘kernels’’. The circular flare ribbon is formed

at the footprint of the null point separatrix dome (see e.g., Figs. 9, 65a), while the

kernels are associated with the footpoints of the spine field lines, and are generically

observed as elongated ribbons due to the generic asymmetry of the field about the

null (Masson et al. 2009; Pontin et al. 2016). By employing boundary flows that

mimicked the observed photospheric magnetic field evolution, Masson et al. (2009)

demonstrated that the circular ribbon flare they described was likely associated with

Fig. 66 Simulation of a coronal eruption by magnetic breakout. a Initial configuration showing the
photospheric polarity distribution, polarity inversion lines, and local magnetic field structure around the
null. b Frames showing selected field lines during the simulation. Field lines are colour-coded depending
on their connectivity. Image reproduced with permission from Lynch et al. (2008), copyright by AAS
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spine-fan reconnection and a transfer of flux into and out of the null dome (Fig. 65b,

c).

Magnetic nulls have also been implicated in coronal eruptions. One of the leading

candidate mechanisms for explaining such eruptions, which requires the presence of

a null point topology, is magnetic breakout, first proposed by Antiochos et al.

(1999). The mechanism involves a quadrupolar flux distribution with an overlying

null point topology. During the breakout process, low-lying sheared flux (blue in

Fig. 66) expands towards the null, reconnecting with the overlying flux (red) and

thereby adding flux to two adjacent flux systems (green) within the quadrupolar

topology. The removal of the overlying (or ‘‘strapping’’) flux allows for a more

rapid expansion, creating a runaway process and the low-lying, sheared (stressed)

flux erupts outwards. A number of observations have reported evidence supporting

the breakout mechanism (e.g., Kumar et al. 2021), while studies employing

magnetic field extrapolations showed that some erupting active regions support the

required type of null point topology while others do not (e.g., Ugarte-Urra et al.

2007). A statistical study by Barnes (2007) revealed that active regions supporting

magnetic nulls are more likely to produce eruptions.

The overwhelming majority of models for coronal jets involve null point

reconnection in a dome-type topology (Fig. 9). For example, in the models of Török

et al. (2009) and Moreno-Insertis and Galsgaard (2013) flux emergence from

beneath the photosphere leads to the appearance of a coronal null from below the

photosphere (whose separatrix encloses the emerging minority polarity) with the

continued emergence of flux stressing the field beneath the dome leading to null

collapse, spine-fan reconnection, and plasma outflow along newly opened field

lines. A closely related jet model was first proposed by Pariat et al. (2009), and

more recently developed further by Wyper and DeVore (2016); Wyper et al. (2016).

This model supposes the pre-existence of a null point dome topology, with the field

beneath the dome being stressed not by flux emergence but by boundary motions

that twist or shear the enclosed flux, creating a filament channel or twisted flux rope

beneath the dome. An instability in the system leads to spine-fan null point

reconnection, with the twist or stress being transferred to open field lines and

driving the jet.

The jet models involve reconnection in a dome topology between magnetic flux

from inside and outside the dome. If the null dome is embedded in an ‘‘open field’’

region on the Sun (e.g., a polar coronal hole), then this reconnection is between open

and closed magnetic flux, often termed interchange reconnection (see Sect. 15.2).

This interchange process for an isolated null dome was studied in detail by

Edmondson et al. (2010), who noted that the footprint of the null dome must be

either entirely in the open field or entirely in the closed field, since topological

arguments imply that all fan field lines must have the same connectivity as the

(outer) spine field line. When the photospheric motions induce the parasitic polarity

to move relative to the surrounding majority polarities, magnetic flux is reconnected

into the dome on its ‘‘leading’’ side and out through the dome on the ‘‘trailing’’ side

with the characteristic field line flipping of spine-fan reconnection (Fig. 57), as

described by Pontin et al. (2013). Interchange reconnection was studied in a more

complex geometry involving multiple null points and separators with a separatrix
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curtain by Scott et al. (2021) as a model for the dynamic formation of

pseudostreamers.

11 Separator reconnection

As described in Sect. 2.3, the fan of a null point consists of a surface of magnetic

field lines that link to the null, and so, when two null points are present, the generic

(i.e., topologically stable) configuration is one in which their two fans intersect in a

special magnetic field line, called a separator, which links the two null points

(Fig. 6). Such a separator is a natural location for the growth of a strong current, and

so for the occurrence of a common type of reconnection, known as separator
reconnection. Often, in a plane across the separator, the flow and field resemble

those of classical two-dimensional reconnection, but the three-dimensional aspects

add many new features.

An early ideal, kinematic solution (see Sect. 4.7.1) was presented by Priest and

Titov (1996) who considered the field

ðBx;By;BzÞ ¼ ½xðz � 3Þ; yðz þ 3Þ; 1� z2�;

which has two null points at z ¼ ð0; 0;	1Þ and the z-axis as a separator. Suppose

this configuration is bounded by a cuboid of size 2� 2� 4, centred at the origin,

and prescribe on the sides y ¼ 	1 a horizontal flow in the x-direction with vz ¼ 0,

which drives reconnection at both nulls. The field lines are given by

xðz � 1Þ�1ðz þ 1Þ2 ¼ C; yðz � 1Þ2ðz þ 1Þ�1 ¼ K; ð96Þ

where each field line has a different value for the constants C and K. For instance, a
field line through the footpoint ðx0; 1; z0Þ has

C ¼ x0ðz0 þ 1Þ2

z0 � 1
; K ¼ ðz0 � 1Þ2

z0 þ 1
: ð97Þ

If vz vanishes on y ¼ 1, then ExBy ¼ EyBx; which implies a form for the potential of

U ¼ f ½1
2
x20 þ ðz0 þ 1Þ1=2ðz0 � 3Þ9=2ðz0 � 1Þ�4�; where x0ðC;KÞ; z0ðC;KÞ are given

by Eq. (97) and f is an arbitrary function.

11.1 Skeletons from photospheric magnetograms

The results from an early potential field extrapolation of a local photospheric

magnetogram from SOHO/MDI are shown in Fig. 67, revealing the presence of

many null points produced by the highly fragmented and mixed-polarity nature of

the magnetic flux protruding through the solar surface, known as the magnetic
carpet (Schrijver et al. 1998).

Subsequently, the global coronal topology was calculated by Platten et al. (2014)

(Fig. 68). As a lower boundary condition they used SOLIS synoptic magnetograms

for a global potential field using a maximum harmonic number of l ¼ 301. This

revealed 1964 nulls and 1946 separators at solar minimum, but 1131 nulls and 808
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separators at solar maximum. During solar minimum one sees vast areas of the

photosphere with small-scale mixed polarity that produce a highly complex network

of nulls and separatrices (Fig. 68e).

If much higher-resolution extrapolations using magnetograms from SDO or the

SUNRISE balloon were constructed, both local and global skeletons would certainly

reveal even greater complexity, containing many more nulls and separators.

Moreover, when dynamic configurations rather than equilibria are analysed, they

tend to contain even greater topological complexity, as exemplified below.

11.2 Numerical experiments on separator reconnection

Numerical experiments complement analytical theory by allowing more realistic

modelling and suggesting new theoretical ideas. 2D experiments are important in

complementing 3D experiments, since they can be run at much higher values of the

magnetic Reynolds number, but 3D experiments reveal many new features and

richer behaviour that are not accessible in 2D or 2.5D.

Separator reconnection has been observed in many 3D MHD simulations. Here

we just mention a few such examples that studied the separator reconnection process

in detail. In particular, Galsgaard and Nordlund (1997) conducted a pioneering

numerical experiment on the complex behaviour of a magnetic field containing

eight null points (see below), while Parnell and colleagues determined how the

coronal magnetic field reconnects above moving photospheric sources of magnetic

field (Sect. 14.4.1). Furthermore, Longcope has discovered how separator current

sheets form and dissipate (Longcope and Cowley 1996; Longcope 2001) and how

this is likely to work during coronal heating (Priest et al. 2005). The ideas have been

applied to the evolution and brightening of an active region (Longcope et al. 2005)

and to solar flares (Sects. 11.3, 13).

The experiment by Galsgaard and Nordlund (1997) studied the evolution of a

periodic force-free equilibrium with eight null points (Fig. 69a). Footpoint shearing

was applied to two of the side boundaries, with periodic conditions on the remaining

boundaries. During the evolution, the null points collapse to current sheets, which

develop in weak-field tunnels along the separators joining nearby null points

Fig. 67 Local skeleton for the
magnetic carpet based on a
SOHO/MDI photospheric
magnetogram together with a
potential field extrapolation. The
following topological features
are present: positive nulls (red
dots), negative nulls (blue dots)
and separators (green curves).
Image reproduced with
permission from Parnell et al.
(2011), copyright by Springer
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(Fig. 69b). Then separator reconnection takes place, with Alfvénic jets of plasma

ejected from the sides of the sheets, accelerated by Lorentz and pressure gradient

forces. Eventually, most of the magnetic connections between the two boundaries

are destroyed and arcade-like structures remain, with small-scale current sheets

continually forming and dissipating the energy supplied by boundary driving in a

statistically steady manner.

Fig. 68 Global magnetic skeleton using a synoptic photospheric magnetogram and a potential field
extrapolation at a solar minimum and b solar maximum. The following topological features are present:
positive nulls (red dots) with spines (purple) and separatrices (thin pink lines); negative nulls (blue dots)
with spines (orange), separatrices (thin blue lines); and separators (green curves). The separatrices meet
the source surface (r ¼ 2:5R
) in thick pink and blue curves, while the base of the heliospheric current
sheet is indicated by thick green lines, with thin green lines extending down from them to map out the
heliospheric current-sheet curtains dividing open and closed fields. (c, d) give cuts at a radius r ¼ 2:5R
,
while (e, f) show cuts at r ¼ 1:005R
 together with the null points. Image reproduced with permission
from Parnell et al. (2015), copyright by Royal Society
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11.3 Separators and solar flares

Applications of separator reconnection to coronal heating are described in Sect.

14.4. Here we describe their role in solar flares and in Sect. 13 in the new 3D

paradigm for solar flares that has been emerging.

For many solar flares, separator reconnection is a natural explanation (Longcope

and Silva 1998), in which energy is stored and liberated by separator reconnection

that spreads through the domains of an active region (Longcope and Beveridge

2007; Kazachenko et al. 2010). Here we describe some aspects of modelling, which

have played a key role in the development of a new ‘‘standard model’’ for solar

flares in three dimensions (Sect. 13).

Longcope et al. (2007) predicted the flare energy release for several active

regions, which compared favourably with observations. In practice, the coronal

magnetic field is likely to evolve in time through a series of nonlinear force-free

equilibria with current sheets along separators, but these are difficult to calculate,

and so Longcope (2001) developed a simpler Minimum Current Corona (MCC)
model. In this model, the photospheric magnetic field is divided into positive (Pi)

and negative (Nj) unipolar flux patches, and the flux in the domain joining each

patch Pi to every other patch Nj is evaluated. The configuration’s skeleton is made

up of separatrices, which bound the domains and intersect in separators.

Reconnection between domains would in reality conserve the total magnetic

helicity and create a force-free field in each domain, but, the MCC model assumes

for simplicity that the field evolves through a series of flux-constrained equilibria,
which possess the minimum energy that preserves the domain fluxes and which has

current sheets along the separators. Separator reconnection then releases the free

energy and transfers flux between domains as the field reduces to a potential one.

A particular active region (Longcope et al. 2007) was partitioned into 28

domains, whose initial skeleton is shown in Fig. 70 and contains 29 nulls and 32

separators. The changes in domain flux by a series of separator reconnections were

deduced, which allowed reconnection to spread through the region. The currents

lying along each separator were calculated from the flux changes. The released

Fig. 69 a An initial magnetic field with eight null points. b The response to boundary motions is
reconnection at the separator joining two of the nulls. For a related movie see Supplementary Information.
Image reproduced with permission from Galsgaard and Nordlund (1997), copyright by AGU
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energy here amounted to 8� 1031 ergs, or 6% of the active-region energy, and the

resulting flare ribbons lay along a series of spines joining a set of nulls. The same

idea was used by Titov et al. (2012) to understand how a sequence of flares and

CMEs is triggered.

In 2D models of a solar flare, reconnection creates a closed field line or magnetic

island, but, in 3D models, reconnection at a series of locations instead forms a

twisted flux rope and a coronal arcade of flare loops, as indicated in Fig. 70.

However, two important questions about the three-dimensional aspects of a flare

are: how do two bright flare knots grow during the rise phase into flare ribbons

(Fletcher et al. 2004), while a single loop joining the knots develops into a flare

arcade? And what is the nature and magnitude of the resulting twist in the erupting

flux rope? These have been addressed in a model for zipper reconnection (Priest and

Longcope 2017). The core of this is the zippette process (Fig. 71a, b) in which two

untwisted flux tubes (XþX� and YþY�) overlie an initial flux rope (ZþZ�), which
then, provided it is energetically favourable, reconnect below ZþZ� to create an

underlying flux tube (U) from Yþ to X� together with a twisted flux rope (R) from

Xþ to Y� that wraps around ZþZ�. This process affects a conversion of magnetic

shear at the polarity inversion line to twist in the overlying flux rope, as described

by, e.g., van Ballegooijen and Martens (1989).

Then, the idea during zipper reconnection is that, before the flare the magnetic

configuration in an active region consists of an arcade of coronal loops (AþA�,
BþB�, CþC�, DþD�) overlying a filament or prominence ZþZ�, whose magnetic

field is a flux tube that may be untwisted or only weakly twisted (Fig. 71c,i). Here

the initiation of the flare, when it is energetically favourable, is due to reconnection

starting at one point in the arcade. Thus, during the rise phase, zippette reconnection

takes place first of all between, say, AþA� and BþB� to produce a flux rope AþB�,
a flare loop BþA� and brightening at the feet AþBþ and A� B�. Next, the

reconnection spreads along the polarity inversion line, gradually filling up the flare

arcade and the flare ribbons (Fig. 71c,ii).

Fig. 70 a The skeleton footprint for an active region, showing: positive (?) and negative (�) sources;
positive ($) and negative (D) null points; spines (solid); fan footprints (dashed); separators (thick curves);
and domains where flux is being gained (dark) or lost (light). b A 3D cartoon for the creation during a
flare by reconnection at many locations above a polarity inversion line of a twisted flux rope together with
an underlying 3D arcade of flare loops. Images reproduced with permission from Longcope et al. (2007),
copyright by Springer
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First of all, AþB� reconnects with CþC� to create the twisted rope AþC�
(Fig. 71c,iii), and later AþC� reconnects with DþD� to create AþD�, and so on.

Eventually (Fig. 71c,iv), the ribbons and arcade of hot loops have been created,

together with a highly twisted flux rope, the core of which is the initial prominence

field ZþZ� but whose main part is AþD�. After the flare ribbons have formed

during the rise phase by zipper reconnection, the ribbons move apart during the

main phase by a reconnection process (see Sect. 13) whose location increases in

height.

The mechanism by which twist is increased during the 3D reconnection of two

magnetic flux tubes, as well as its distribution within the tubes was then analysed in

detail (Priest and Longcope 2020). One constraint on this process is provided by the

conservation of total magnetic helicity (i.e., mutual helicity plus self-helicity),

where mutual helicity can be converted to self-helicity and so create twist. Both a

local and a global contribution to this process are present: the local effect is the way

twist is added to the tubes by the above helicity equipartition; but there is an

additional global effect, namely, that the location and orientation of the flux tube

feet tend to add different extra self-helicities to the two flux tubes.

(a) (b)

(c)

Fig. 71 The creation of twist by the zippette process, namely, reconnection of two coronal loops
(XþX�,YþY�) overlying a prominence flux tube (ZþZ�) (a) to create a twisted flux rope XþY�, whose
core is ZþZ� (b). c A zipper model for the creation of flare ribbons and the build-up of twist in an
erupting flux rope, by a series of zippette processes. Images reproduced with permission from Priest and
Longcope (2017)
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12 Quasi-separator (or HFT) reconnection

12.1 Basic theory of quasi-separator or HFT reconnection

As described in Sect. 2.6, a region in a magnetic configuration where the gradient of

the footpoint mapping is large but not infinite is called a quasi-separatrix layer

(QSL) (Priest and Démoulin 1995; Démoulin et al. 1996a; Titov et al. 2002); it is

located where the squashing factor (Q) is finite but much larger than unity

(Sect. 2.6.1). QSLs intersect in quasi-separators, which are surrounded by

hyperbolic flux tubes (HFT’s) (Sect. 2.6.2). Two examples have been proposed

by Titov (2007) of simple configurations that contain QSLs and have been used for

modelling flares (Sect. 2.6.2).

Current sheets tend to form in QSLs and in particular at quasi-separators, and so

reconnection is likely to take place at them. Indeed, Démoulin et al. (1996a)

demonstrated that, when a coronal quasi-separator is present, most smooth motions

of the photospheric footpoints will create current sheets, while Titov et al. (2003)

proved that a stagnation-point flow at a quasi-separator generates strong currents.

This was confirmed by Aulanier et al. (2005) and others with resistive MHD

simulations.

When no nulls or separators are present, quasi-separators are preferential

locations for reconnection. Thus, in order to study quasi-separator reconnection, it is

important first to carefully ensure that no nulls or separators are present. Note that

the squashing degree Q, which is used to find QSL locations (Titov et al. 2002;

Pariat and Démoulin 2012), does not distinguish between separators and quasi-

separators.

Once a QSL has been located, kinematic reconnection may be used satisfying

Eq. (31) to deduce the potential (U) and field-line velocity Eq. (33). Thus, suppose

field-line velocity components v?1x and v?1y are prescribed at a point (x1; y1; 1) on

the top side ðz ¼ 1Þ of a cube (see Fig. 72). Then the potential Uðx1; y1Þ throughout
the cube may be calculated, from which follow the electric field E and plasma

velocity v?. On the base ðz ¼ 0Þ of the cube, the resulting electric field components

have the form

Ex0 ¼ �oU
ox1

ox1
ox0

� oU
oy1

oy1
ox0

; Ey0 ¼ �oU
ox1

ox1
oy0

� oU
oy1

oy1
oy0

:

These depend on the imposed electric field ðEx1 ¼ �oU=ox1; Ey1 ¼ �oU=oy1) at

the top boundary, but also on the gradients of the mapping functions ðx1ðx0; y0Þ and
y1ðx0; y0ÞÞ. This implies that E0 becomes large where the mapping gradients are

large—i.e., in quasi-separatrix layers,—and is the key reason why quasi-separators

are important locations of reconnection (Priest and Démoulin 1995; Démoulin et al.

1996a; Titov 2007).

As an example, suppose that the magnetic field inside the cube is B ¼
ðBx;By;BzÞ ¼ ðx; y; lÞ with l constant (see Fig. 72). Suppose flows with v?1x ¼
0; v?1y ¼ v0 x1 are prescribed on the top ðz ¼ 1Þ of the cube and v?1x ¼ 0; v?1y ¼
1
2
v0 on the side ðx ¼ 1

2
Þ. The resulting flow on the base ðz ¼ 0Þ along y ¼ 0 is then
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v?y0 ¼
v0x0=�

2 if jx0j\
1

2
�;

v0=ð4x0Þ if x0 [
1

2
�;

8

>

>

>

<

>

>

>

:

(where � ¼ expð�1=lÞ � 1) which has a maximum of v0=ð2�Þ at x0 ¼ 1
2
�. If this

exceeds the Alfvén speed, then the approximation of an ideal flow will break down

and diffusive layers will tend to form about x0 ¼ 	1
2
�, where the field lines are likely

to slip and flip rapidly through the plasma at speeds quicker than the plasma (Priest

and Forbes 1992; Priest and Démoulin 1995). Such flipping is also present in null-

point and separator reconnection, and so physically the behaviour of quasi-separator

and separator reconnection are very similar. This philosophy has been used in

models for solar flares with twisted flux tubes (Démoulin et al. 1996a, 1997a).

Another example is the magnetic flux tube configuration with components Bx ¼
�ðz � aÞ2 þ b2ð1� y2=c2Þ;By ¼ d;Bz ¼ x; where a, b, c, d are constants, as

described by Démoulin et al. (1996b). Three kinds of field line are present,

namely, below the flux tube, within it and above it, as well as quasi-separatrix

layers, with ends that curl up and increase in complexity as the twist increases.

Aulanier et al. (2006) and Pariat et al. (2006) refer to quasi-separator reconnec-

tion as slip-running reconnection, in view of the magnetic flipping process (Priest

and Forbes 1992) that is a common feature of all three-dimensional reconnection.

They use the term slip-running rather than slipping or flipping in order to emphasise

that, when the flux velocity is large enough (i.e., w[ vA), the system is likely to

generate fast jets of plasma. This flipping or slipping or slip-running can be seen in

several movies of the process (Fig. 75).

12.1.1 Slip-squashing factors as a measure of 3D reconnection

Titov et al. (2009) used a time-sequence of magnetic fields and their tangential

boundary flows to develop a powerful method for describing reconnection in three-

dimensional configurations. The idea is to extend the concept of a squashing factor

(Q) to analyze ideal or nonideal evolution. They define two ‘‘slip-squashing

Fig. 72 A magnetic field
consisting of an X-type field in
the xy-plane together with a
uniform field in the z-direction.
Quasi-separatrix layers (shaded)
are revealed by the large
displacement on the bottom of
the cube produced by a small
footpoint displacement on the
top of the cube. Image
reproduced with permission
from Priest (2014), copyright by
CUP
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factors’’, namely, a slip-forth squashing factor (Qsf ) whose large value identifies

flux tubes that are about to be reconnected and a slip-back squashing factor (Qsb) for

those that have just been reconnected over a given period of time. The areas swept

by such reconnection fronts correspond to the footprints of reconnecting flux tubes.

The rate of change of reconnected magnetic flux is proportional to the voltage

drop along field lines (Schindler et al. 1988), but Titov et al. (2009) realised that

this can be found at each time from only the initial magnetic field and the boundary

flows. They applied it to ideal flows and also to nonideal flows with a slippage

between boundary plasma elements and magnetic footpoints. For 2D configurations

Forbes and Priest (1984b) had noticed that the electric field at the reconnection site

can be found from the speed with which the photosphere is swept by a separatrix

field line, and what Titov et al. (2009) did was essentially to generalise this

principle to 3D and to QSLs.

Suppose the magnetic field lines have start and end locations at boundary points

with coordinates ðu1; u2Þ and ðw1;w2Þ. The corresponding mapping is given by a

function ðW1ðu1; u2Þ;W2ðu1; u2ÞÞ with Jacobian matrix

D ¼ oWi

ou j

	 


: ð98Þ

(a) Ideal evolution
For an ideal evolution, the initial magnetic connection of plasma elements is

conserved, and so the field-line mapping Pie
t at any time t can be written as:

Pie
t ¼ Ft �P0 � F�t; ð99Þ

where Ft and F�t are tangential boundary flows, forward and backward in time,

respectively.

Fig. 73 Illustration of the slip-squashing factor. a For ideal evolution, the field-line mapping Pie
t at any

time t may be expressed in terms of the initial field-line mapping P0 and the forward and backward
boundary flows Ft and F�t . b For non-ideal evolution, these are replaced by slip-forth and c slip-back
mappings acting on the footpoints of field lines. The field lines and trajectories of the footpoints are
shown by solid and dashed curves, respectively. Image reproduced with permission from Titov et al.
(2009); copyright by AAS
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This implies that, for a footpoint P of a given field line, the other footpoint
~P � Pie

t ðPÞ can be found by first tracing the trajectory of P backward in time to find

its initial location P0, then following the field line of the initial configuration to ~P0,

and finally tracing the trajectory from ~P0 forward in time to ~P (as shown in

Fig. 73a).

The Jacobian matrix Die of the composite ‘‘ideal’’ mapping (99) is the product of

the Jacobian matrices of the three individual mappings (Wiðw0Þ,Wpðu0Þ, WsðuÞ),
namely

Die ¼
oWi

owp
0

	 
��

|fflfflfflffl{zfflfflfflffl}

M��

oWp
0

ous
0

	 
�

|fflfflfflffl{zfflfflfflffl}

D�
0

oUs
0

ou j

	 


|fflfflffl{zfflfflffl}

M�1

;

which enables the corresponding squashing factor Qie to be written

Qie ¼
trðDT

ie G��� Die G�1Þ
jdetðDT

ie G��� Die G�1Þj1=2

in terms of the matrix

G ¼ oR

oui
� oR
ou j

	 


ð100Þ

associated with the footpoint motion, where double and triple asterisks denote

double and triple pullbacks referred to conjugate footpoints. For details, see Titov

et al. (2009).

This three-part calculation of the Jacobian matrix and squashing degree may at

first seem complex, but it has the key advantage over the normal method (Eq. 98)

that the magnetic field data is used only for the initial state, without calculating the

evolution of the new magnetic configuration in time.

(b) Nonideal evolution
When the evolution is nonideal, the footpoints slip relative to their motion in the

ideal MHD mapping. The resulting behaviour may be described in terms of a slip-
forth mapping for a slippage (St) forward in time from 0 and t (Fig. 73b)

St ¼ Pie
0 �P0;

and a slip-back mapping, describing a slippage (S�t) backward in time from t to 0

(Fig. 73c)

S�t ¼ Pie
t �Pt:

The slip-forth mapping St highlights differences in magnetic connectivity between

the non-ideal and ideal configurations for the initial observer, whereas the slip-back

mapping S�t does so for the final observer. The footpoint slippage in a time t is
determined simply by the magnetic field at the initial or final time and the footpoint

displacements. Furthermore, the resulting squashing factors allow us to identify
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reconnecting magnetic flux tubes in any evolving configuration, even if its evolution

involves a substantial resistive diffusion.

The corresponding Jacobian matrices may be determined and the resulting

squashing factors are

Qsf ¼
g���g�

0

g��g����
0

� �1=2
B���

n B�
n0

B��
n Bn0

�

�

�

�

�

�

�

�

tr DT
sf G����

0 Dsf G�1
0

� �

det M�1��� M�ð Þ

for the slip-forth mapping and

Qsb ¼
g���
0 g�

g��
0 g����

� �1=2
B���

n0 B�
n

B��
n0Bn

�

�

�

�

�

�

�

�

tr DT
sb G���� Dsb G�1

� �

det M��� M�1�ð Þ :

for the slip-back mapping.

Titov et al. (2009) applied the theory to two examples. The first was the rise of a

flux rope without null points and the second was reconnection in a sheared force-

free field, which forms flux tubes with narrow, ribbon-like footprints. The theory has

advantages over general magnetic reconnection (GMR) theory (Schindler et al.

1988; Hesse et al. 2005), since it treats regions with small or large amounts of

reconnected flux on an equal footing and also discriminates between reconnection

and simple diffusion much better.

12.2 Quasi-separator reconnection in solar flares

Investigating the role of quasi-separator reconnection in eruptive and confined flares

has been pioneered by Démoulin and colleagues, with both observations and

numerical simulations. For example, Démoulin et al. (1997a) compared observed

solar flares with calculated QSLs and found that chromospheric knots and ribbons

often lie along the QSLs. Also, Démoulin et al. (1996b) showed analytically that

QSLs tend to wrap around flux ropes and represent a boundary between different

classes of field line (Fig. 74). Their intersection with the lower boundary forms a

shape that is typical of observed flare ribbons (Chandra et al. 2009).

Comparisons of QSL locations with Ha flare brightenings have been performed

using both linear (Démoulin et al. 1997a; Schmieder et al. 1997; Bagalá et al. 2000;

Mandrini et al. 2006; Chandra et al. 2011) and nonlinear (Savcheva et al.

2012, 2015; Zhao et al. 2016; Su et al. 2018) force-free extrapolations. The

intersections of QSLs with the photosphere are often double J-shaped and match

well the locations of chromospheric flare ribbons, and the 3D structure of QSLs

surrounds a flux rope and resembles an S-shaped sigmoid.

Flipping or slipping of field lines takes place in all 3D reconnection models. It

has been clearly demonstrated in, for example, a 3D numerical resistive experiment

on quasi-separator reconnection (Aulanier et al. 2006), as shown in Fig. 75. The

distant footpoints of red and black field lines are held fixed, and it can be seen that

the near red footpoints flip from right to left, while the black footpoints flip from left

to right. A similar process occurs with cyan and green field lines.
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Janvier et al. (2013) have simulated a solar flare driven by the eruption of a flux

rope containing a QSL (Fig. 76). The slippage speed of the footpoints is

proportional to the strength of the QSL. Such simulations and observations led

Aulanier and colleagues (Aulanier et al. 2012, 2013; Kliem et al. 2013; Janvier

et al. 2014) to propose some 3D additions (see Sect. 13) to the standard 2D CSHKP

flare model (Fig. 77). During the expansion of the flux rope, high current surfaces

are formed along the separatrices or QSLs of the flux rope which form a cusp-

shaped HFT, while their footprints produce flare ribbons that have a double J shape.

Reconnection within the current layers creates flipping within the flare ribbons

(Savcheva et al. 2012; Zhao et al. 2016).

Separator and quasi-separator models of flares both imply flipping or slipping of

loop footpoints in both directions along flare ribbons. One direction towards the

ribbon hook builds up the twist in the erupting flux rope, while the opposite

direction gives rise to slippage of flare loops. Many observations of these features

have now been made, especially with SDO. Aulanier et al. (2007) observed fast

Fig. 74 A model of a twisted flux rope, indicating field lines at its edge (solid) and near its central part
(dash-dotted), together with a small underlying arcade (dotted). Also shown are the QSL footprints
forming two elongated strips either side of the polarity inversion line and a zoom of the hook-shaped part
which encloses the footpoints of the flux rope. Image reproduced with permission from Démoulin et al.
(1996b), copyright by AGU

Fig. 75 The flipping or slipping of field lines in a numerical simulation of quasi-separator reconnection.
Positive (negative) polarity magnetic fields are indicated by pink (blue) contours. Four sets of magnetic
field lines (red, black, cyan and green lines) are integrated from fixed footpoints and their conjugate
footpoints gradually flip or slip along arc-shaped trajectories. For related movies see Supplementary
Information. Image reproduced with permission from Aulanier et al. (2006), copyright by Springer
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bidirectional slippage of coronal loops. Dudı́k et al. (2014) reported slipping speeds

along ribbons of several tens of km s�1. Li and Zhang (2014) found one end of an

eruptive flux rope was fixed, while the other end showed a slippage along a hook-

shaped flare ribbon. Li and Zhang (2015) compared observations from SDO and

IRIS and found small-scale bright knots moving along flare ribbons in quasi-

periodic patterns with a period 3–6 minutes, together with slippage of the flare loops

along the ribbon at a speed of 20–110 km s�1. Dudı́k et al. (2016) observed flare

loops slipping in opposite directions at speeds of 20–40 km s�1, but even faster

velocities (400–450 km s�1) have sometimes been seen (Zheng et al. 2016; Lörinčı́k

et al. 2019a). In addition, Jing et al. (2017) saw ribbon slippage in a long-duration

flare over a long distance (� 60 Mm).

In eruptive flares, the 3D reconnection geometries are more complex than in 2D.

During the rise, the flare ribbons are formed by sequential brightening along the

polarity inversion line before they begin to move apart during the main phase

(Fletcher 2009; Li and Zhang 2014; Li et al. 2016; Chen et al. 2019a; Lörinčı́k et al.

2019b; Zemanová et al. 2019; Dudı́k et al. 2019; Aulanier and Dudı́k 2019). This

process of ribbon formation has been modelled by Priest and Longcope (2017) in

terms of zipper reconnection (Sect. 11.3).

In confined solar flares, both separator and quasi-separator reconnection have

been shown to play a role (Li et al. 2019, 2020), through, for example, the

observation of bi-directional slippage along the ribbons (Li et al. 2018). Further-

more, both separators and quasi-separators may be important for coronal heating

(Wang et al. 2000; Fletcher et al. 2001a; Schrijver et al. 2010). For example, a

study by Schrijver et al. (2010) compared bright loops fanning out from active

regions with maps of the squashing degree (Q), which suggest magnetic energy

release at separators or quasi-separators.

(a) Oblique view (b) Vertical cut

Fig. 76 A numerical simulation of an erupting flux rope, showing a the isosurface of a current sheet
underlying the flux rope, and b a vertical section through the electric current. Images reproduced with
permission from (a) Kliem et al. (2013), copyright by AAS; and (b) Janvier et al. (2013), copyright by
ESO
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13 New 3D paradigm for solar flares

For many years the CSHKP ‘‘standard model’’ for solar flares (Carmichael 1964;

Sturrock 1966; Hirayama 1974; Kopp and Pneuman 1976) has been based on an

essentially two-dimensional understanding of magnetic topology and the reconnec-

tion process. More recently, modelling of flares in 3D geometries and the associated

properties of the 3D reconnection processes has led to a substantial refinement of

these ideas, leading to a ‘‘standard model in 3D’’ or a ‘‘new paradigm’’ for solar

flares. This new picture has emerged through a range of observational, theoretical

and computational studies [see e.g., Sects. 10.4, 11.3, 12.2 and, for a more complete

review Janvier (2017)] and has been synthesised into a complete picture in a series

of papers by Aulanier and colleagues (Aulanier et al. 2012, 2013; Janvier et al.

2013, 2014), and by Li et al. (2021).

In some cases the flare is eruptive, and in others the overlying magnetic field is

strong enough to inhibit the eruption and produce a confined fare. In some cases the

Fig. 77 A cartoon for a 3D model of eruptive flares, showing a QSL (grey) wrapping around an erupting
flux rope, together with the outer envelope of the flux rope (blue and yellow) and flare loops that are
newly formed by reconnection (green and orange). Image reproduced with permission from Janvier et al.
(2014), copyright by AAS
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basic magnetic configuration is bipolar and in others it is multipolar. In the latter

case, the basic process of eruption may be similar to the former case but the

resulting field more complex, or the multipolar nature may be crucial to some

aspects of the flare process, as in the breakout model (e.g., Antiochos et al. 1999).

Whether the boundary conditions for modelling are assumed to be smooth or

source-like does not greatly effect the resulting flare process, since in the former

case quasi-separators are more common, but the resulting reconnection is very

similar to the separator reconnection that is more common in the latter case.

The basic picture of the new 3D paradigm for flares is described below. The first

two properties are taken over from the standard 2D paradigm, while later properties

come from detailed comparisons of observed flares with flare models involving

separator reconnection or quasi-separator reconnection. The properties apply

equally to both scenarios. By contrast, flares involving 3D null-point reconnection

exhibit circular ribbons, so that certain properties, such as (viii) are less relevant.

(i) A magnetic flux rope erupts and drives the formation of a current sheet below

the flux rope; the eruption itself is probably caused by magnetic nonequilibrium or

instability, although there remains some debate about this (e.g., Aulanier 2013), in

particular whether the cause is an ideal process such as torus or kink instability (e.g.,

Kliem and Török 2006) or whether reconnection itself is integral to the early stages

of the eruption (e.g., Antiochos et al. 1999);

(ii) Magnetic field reconnects at the current sheet, creating an arcade of flare

loops with chromospheric ribbons at their feet; the arcade rises and the ribbons

separate as the height of the reconnection location increases;

(iii) At low spatial and temporal resolution, the reconnection may appear quasi-

steady and laminar, but, at high resolution, it is often impulsive and bursty in time

and fragmented in space (e.g., Karpen et al. 2012; Naus et al. 2021); for example,

during the main phase, supra-arcade downflows are often present (McKenzie and

Savage 2009; Longcope et al. 2009, 2018);

(iv) Since reconnection starts at one location in the current sheet, it first creates

two kernels of chromospheric emission; then, during the flare rise phase,

reconnection spreads along the sheet above the polarity inversion line; this

gradually energises the whole coronal arcade and forms the flare ribbons by zipper

reconnection (Priest and Longcope 2017); then, during the main phase, the ribbons

move apart;

(v) Some of the twist in an erupting flux rope may have been present before the

eruption, but most of it is created during the process of 3D reconnection due to the

conversion of mutual magnetic helicity into self-helicity (Wright and Berger 1989;

Priest and Longcope 2020), or in other words conversion of magnetic shear at the

polarity inversion line to twist in the overlying flux rope (van Ballegooijen and

Martens 1989);

(vi) Two main types of 3D reconnection may occur during flares, namely, null-

point reconnection, which tends to create flare ribbons that are roughly circular in

shape (see Sect. 10.4), and separator (or quasi-separator) reconnection, which

creates ribbons that are roughly straight or S-shaped;

(vii) Active regions can possess a topology (or quasi-topology) that is highly

complex and split into many different domains (or quasi-domains) bounded by
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separatrix (or quasi-separatrix) surfaces. Magnetic reconnection between different

domains (or quasi-domains) occurs at separators (or quasi-separators), which allows

the energy release to spread from one domain (or quasi-domain) to another; the flare

ribbons follow a sequence of spines (or quasi-spines) (Longcope and Beveridge

2007; Kazachenko et al. 2012); similarly, a series of coronal eruptions may be

understood as a series of separator (or quasi-separator) reconnections between

different regions (Titov et al. 2012);

(viii) Flare ribbons can possess hook-like ends (see Fig. 74 and Démoulin et al.

1996b; Li and Zhang 2014), which represent the ends of flux ropes that are bounded

by quasi-separatrix (or separatrix) surfaces (Janvier et al. 2014);

(ix) Flipping or slipping of magnetic fields is a property of all 3D reconnection

mechanisms (see Sect. 4.4 for the general result and Sects. 10–12 for explicit

descriptions) and can be observed in the behaviour of flare loops and their footpoints

(Mandrini et al. 1991; Dudı́k et al. 2016).

14 Chromospheric and coronal heating by reconnection

In this section, we discuss models for explaining chromospheric and coronal heating

by reconnection in braided (Sect. 14.1) or kink-unstable twisted fields (Sect. 14.2),

by flux tube tectonics at separatrices or QSLs (Sect. 14.3), and, finally, by separators

and flux cancellation (Sect. 14.4).

14.1 Reconnection in braided magnetic fields

Reconnection in braided magnetic fields has been studied in detail for some time in

the context of the coronal heating model proposed by Parker (1972). A detailed

review is provided by Pontin and Hornig (2020), and we limit ourselves to a brief

discussion here. In this context a magnetic braid is a field in which all field lines

connect two simply-connected polarity regions on the boundary (often opposite,

plane-parallel boundaries) without nulls points or separatrices. Usually we have in

mind some configuration in which the field lines are tangled around one another in

some non-trivial way. Quantifying this tangling requires a measure of the mutual

winding of field lines around one another (e.g., the winding number Prior and Yeates
2014; Candelaresi et al. 2018) or the rate of separation of neighbouring trajectories,

such as the finite-time topological entropy (e.g., Budišić and Thiffeault 2015;

Candelaresi et al. 2017, and references therein). The former is related to the field

line helicity (see Sect. 4.6.4), which can be obtained from the winding number by

weighting it with respect to the magnetic flux (in an appropriate gauge). Broadly

speaking, larger values of the winding number with variations over shorter length

scales correspond to high braid complexity. The complexity can also be revealed

qualitatively by visualising gradients of the field line mapping, e.g., by plotting Q,

as in the lower panels of Fig. 30.
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14.1.1 Flux braiding simulations: continuous driving

In one class of model, the two opposite magnetic polarity regions on the boundaries

are subjected to driving flows that are applied continually. Different driving flows

that mimic, in some sense, observed photospheric flows have been employed,

ranging from shearing flows to arrays of vortices. In all such simulations, thin

ribbons of current rapidly form (for the reasons discussed in Sect. 5.5.3) and then

dissipate throughout the domain. These current ribbons are always elongated in the

direction along the field—see Fig. 78.

Fig. 78 Illustrations of the statistically steady state attained in three flux braiding simulations. a Current
isosurfaces and magnetic field lines in the simulation of Galsgaard and Nordlund (1996) (for a unit cube).
b Current isosurfaces in the simulation of Ng et al. (2012). c Current isosurfaces (left) and magnetic field
lines (right) in the simulation of Rappazzo et al. (2007, 2008). Images are reproduced with permission
from the corresponding papers, copyright by AGU and AAS
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Within the current ribbons that form throughout the domain, magnetic

reconnection takes place. The net effect of these reconnection processes is to

relieve the stress that is added to the system by the driving flows. Qualitatively, the

driving flows tend to increase the field line tangling (see above), while the

reconnection tends to reduce the tangling. Eventually, a statistically steady state is

reached in which (for example) the magnetic and kinetic energies fluctuate about

some mean value, and the aim of many such studies is to examine the properties of

this steady state.

A handful of flux braiding simulation studies solve the full MHD equations (e.g.,

Galsgaard and Nordlund 1996; Dahlburg et al. 2012; Ritchie et al. 2016), while

many others solve the reduced MHD equations (e.g., Longcope and Strauss 1994;

Dmitruk and Gómez 1999; Ng et al. 2012; Rappazzo et al. 2007, 2008) or make

other simplifications such as assuming a constant density (e.g., Hendrix and

Van Hoven 1996). While the different approaches yield some detailed differences,

the broad understanding gained from these simulations can be summarised as

follows. First, an anisotropic turbulent cascade develops (the anisotropy being

introduced by the dominant field component along the loop). The properties of the

turbulence—for example the scaling exponents in the inertial range—depend on

various properties of the system, including but not limited to the length of the

‘‘loop’’ and the axial field strength (e.g., Dmitruk and Gómez 1999; Rappazzo et al.

2007, 2008). While the magnetic energy in the domain is dominated by the axial

field, a ‘‘free’’ magnetic energy builds up associated with the field line tangling (i.e.,

the free magnetic energy is the energy in excess of the initial potential field energy).

In the statistically-steady state this free magnetic energy is greater by a factor of 10–

40 than the kinetic energy (e.g., Rappazzo et al. 2007; Ng et al. 2012; Ritchie et al.

2016). However, the free magnetic energy is also found to scale with Rm, as well as

with the driving speed (e.g., Galsgaard and Nordlund 1996).

Crucial for understanding the implications for coronal heating is to determine the

way in which the energy dissipation scales with various parameters, notably Rm,

which is many orders of magnitude larger in the corona than in the simulations.

Based on a dimensional analysis, Rappazzo et al. (2007, 2008) argue that the

dissipation should scale with

f ¼ l?vA

Luph
; ð101Þ

and, on the basis of a phenomenological model of the turbulence, they propose a

coronal heating dissipation rate with the following scaling

�� l2?qvAu2
ph

l?vA

Luph

� �a=ðaþ1Þ
; ð102Þ

where a is the scaling index for the turbulence model, l? and L are the loop diameter

and length, respectively, and uph and vA are the driving speed and Alfvén speed in

the loop, respectively. a is found to be a 
 �5=3 for weak axial magnetic fields and

large L, whereas a\� 5=3 for strong axial magnetic fields and small L. Like
Galsgaard and Nordlund (1996), they argue that the energy dissipation is likely to be
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independent of Rm for Rm � 103. Also, Ng et al. (2012) argue that this should be the

case if the energy dissipation time-scale is larger than the correlation time of the

driving flow.

The specific geometrical pattern of the driving flow has minimal effect on the

energy dissipation (Rappazzo et al. 2010). However, global properties of the driving

such as the helicity injection rate or correlation/turnover time may affect the

characteristics of the energy release events. Both Ritchie et al. (2016) and Knizhnik

et al. (2019) show that, when the net helicity injection is non-zero, large-scale twist

builds up in the domain. In the simulations of Ritchie et al. (2016), this leads to

intermittent large energy release events that are probably due to a generalised kink

instability.

In considering the implications for heating the corona, it is important to note that

much of the complexity of the coronal field is absent from the models so far. In

particular, on the Sun magnetic flux does not penetrate through the photosphere in a

homogeneous field (as in the models) but in concentrated flux fragments, and this

may contribute substantially to chromospheric and coronal heating, making it highly

inhomogeneous in space and time (Priest et al. 2002). Furthermore, Klimchuk and

Antiochos (2021) argue that the heating of the corona in response to braiding-type

motions should not be considered as a traditional turbulent cascade. Instead they

argue that the coronal field evolves largely quasi-statically, with occasional bursts of

energy conversion taking place in myriad small current sheets that form and

dissipate throughout the volume in response to processes distinct from a turbulent

inertial range.

14.1.2 Flux braiding simulations: relaxation approach

The studies described in the previous section attain a statistical balance between

energy injection by boundary motions and energy dissipation (mediated by

reconnection). However, there is a large disparity between the plasma properties

in the corona and in the simulations (especially Rm), so that any conclusions rely on

the uncertain extrapolation of parameter space. A complementary approach is to

separate the field line braiding process from the energy release allowing a deeper

understanding of each process.

As described in Sect. 5.5.3, various ideal MHD flux braiding studies revealed the

exponential thinning of current sheets as boundary driving proceeds, in the absence

of reconnection. On the basis of one such study, Pontin and Hornig (2015) estimated

the degree of tangling required to initiate reconnection in these current sheets at

coronal parameters (appealing, for example, to the onset criterion for nonlinear

tearing).

The details of the flux evolution during a resistive MHD relaxation process—

commencing from an initially braided magnetic field—were studied in a series of

papers by Wilmot-Smith et al. (2010, 2011) and Pontin et al. (2011b). In these

simulations, the magnetic field is line-tied at the boundaries, where the flow is set to

zero. The field and plasma evolution proceed via a decaying turbulent cascade (with

a power-law slope close to �5=3; Pontin et al. 2016) with many current sheets
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forming and dissipating, until the system attains a new equilibrium (see also

Rappazzo and Parker 2013). The final equilibrium has a much simpler field line

topology, with tangling of field lines absent, but instead a large-scale twist remains

in the field (see Fig. 79). The presence of this large-scale twist is inconsistent with

the relaxation hypothesis of Taylor (1974), in which the only constraint on a

turbulent relaxation is the total magnetic helicity. This implies that the total helicity

(which is zero by symmetry for the braids considered) cannot be used to predict the

final state, and has led to the discovery of additional topological constraints, such as

the topological degree of the braid (Yeates et al. 2010, 2015) and the field line

helicity spectrum (Russell et al. 2015) (see Sect. 4.6.4). Indeed, in Fig. 79 the final

state has two twisted flux tubes which are predicted by conservation of the

topological degree and field line helicity but not by conservation of helicity alone.

To determine the global reconnection rate during the simulations, Pontin et al.

(2011b) identified the local reconnection rate associated with each current layer

(maximal integrated Ek along field lines threading each current layer, see Eq. 44).

The net effect of all of these reconnection events is that field lines traced from either

end of the domain are seen to ‘‘wander’’ across the opposite boundary (see Fig. 79

and associated animation)—recall that the plasma velocity is zero on the

boundaries, so this motion is entirely associated with the flipping of field lines in

3D reconnection. Explicitly, the red and orange field lines are traced from fixed

points anchored in the plasma on the upper boundary, with their motion on the lower

boundary exhibiting the flipping field line velocity (say win, see Sect. 4.7.2) created

by the multiple reconnection events within the loop. Conversely, the green and

(a) (b) (c)

Fig. 79 Magnetic field lines and currents during the resistive relaxation (turbulent decay) of a magnetic
braid. Shown at each time are magnetic field lines traced from two fixed rings of points on the line-tied
boundaries (red and orange from z ¼ 24, green and black from z ¼ �24), a current isosurface (at 50% of

the spatial maximum at that time), and the distribution of aH ¼ j � B=B2 on z ¼ �24. At the initial and
final times the currents are on large spatial scales, while at t ¼ 50 many individual current layers are
present. The simplification in the field line structure (‘‘unbraiding’’) can be seen qualitatively from the

field lines, and also by examining aH (which is constant along field lines in a force-free equilibrium,
which the initial and final states at t ¼ 0 and t ¼ 290 approximate). For related movies see Supplementary
Information. Image reproduced with permission from Pontin et al. (2016), copyright by AIP
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black (yellow in the animation) field lines are anchored in the plasma on the lower

boundary, and flip at the virtual velocity wout on the upper boundary.

It is noteworthy that the net flux reconnected during the evolution (found by

integrating the reconnection rate over time) is found to be larger than the total flux

associated with the field line tangling at t ¼ 0. This indicates that each flux bundle is

reconnected multiple times in order for the global field to unbraid (cf. the multiply

reconnected flux in the fly-by experiments described in Sect. 14.4.1). Simulations

with different values of Rm reveal that the number of current layers, total relaxation

time, and total flux reconnected all increase with Rm. The peak reconnection rate in

any one current layer is smaller for larger Rm, but there are more individual current

layers formed, and the global reconnection rate depends at most weakly on Rm.

14.2 Reconnection following a kink instability

Reconnection in or between loops in the corona may be initiated by an ideal

instability. In the case of the coalescence instability the reconnection occurs in a

pre-existing HFT (hyperbolic flux tube). By contrast, in the kink instability there is

no special feature in the field line mapping prior to reconnection. The detailed

evolution following a kink instability in a resistive plasma was explored by

Browning et al. (2008). They described the fragmentation of the initial helical

current sheet, leading to the formation of many current sheets located at different

radii from the loop axis, and consequently a relatively uniform heating of the loop

plasma. The reconnection of field lines at many locations in the loop results in the

same qualitative behaviour as in the braid relaxation simulations discussed in the

previous section, with field lines traced from one end of the loop appearing to

wander across the opposite boundary.

These results have been extended to consider multiple adjacent twisted flux

tubes, both for initially twisted loops (Hood et al. 2016) and for the case where the

twist is injected by discrete vortical driving flows on the boundaries (Reid et al.

2018). It turns out that the onset of the kink instability in one loop can add twist to a

second adjacent loop (previously stable to the kink mode) in such a way as to induce

instability in the second loop. The ensuing evolution takes the form of an avalanche,
as each instability triggers adjacent flux tubes, and has been proposed as a

mechanism for producing ‘‘nanoflare storms’’ (Klimchuk 2015). Later in the

evolution, the field lines from the individual tubes are found to have been efficiently

mixed together by the numerous reconnection events, as shown in Fig. 80.

14.3 Reconnection and nanoflare heating by flux tube tectonics

14.3.1 Flux tube tectonics: concepts

A popular model for explaining the hot corona is that of nanoflares created by

Parker braiding (Parker 1972) (Sect. 14.1), in which an initially uniform magnetic

field is braided by complex footpoint motions, so that the corona is filled with

myriads of tiny current sheets that are continually being created and dissipated by

reconnection.
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The Flux Tube Tectonics Model (Priest et al. 2002) is a development of Parker’s

nanoflare heating ideas, based on the discovery of the magnetic carpet (Schrijver
et al. 1998), namely, the fact that the photospheric magnetic sources of chromo-

spheric and coronal magnetic field are not smoothly varying structures over large

scales (as in Parker’s model), but are instead intense flux tubes in the form of highly

concentrated and localised magnetic fragments (Figs. 67, 68, 81). This realisation

that very strong magnetic field protrudes through the photosphere into the

chromosphere and corona at many tiny locations makes the chromospheric and

coronal magnetic field much more complex than in Parker’s original model

(Fig. 82a,b), since it contains myriads of null points, separators and quasi-

separators, at which current sheets can form and reconnection take place

(Fig. 82c,d) (Priest et al. 2005; De Moortel and Galsgaard 2006b). Furthermore,

in the tectonics model, complex braiding flows are not necessary, since even the

simplest photospheric motions lead to current sheet formation.

In a first step, Priest et al. (2002) considered tiny footpoint sources localised in

the boundaries of supergranules. In the Quiet Sun, such magnetic flux begins in

ephemeral regions, which fragment, move to the boundaries and junctions of

Fig. 80 Illustration of the field line evolution in the kink instability simulations. Initially only the central
tube is kink-unstable. The top two images show a 3D view at early and late times, with the darker field
lines traced from the same plasma elements on the far boundary at each time, while the lighter field lines
are traced from the near boundary. The lower panel shows the evolution of the field-line intersections at
z ¼ �L that are anchored in the footprints of the three flux tubes at z ¼ L (with colours as shown in the
left-hand frame). Their motion outside their respective dashed circles illustrates the flipping field line
motion, say win. If the field lines had instead been traced from z ¼ �L, then the feet at z ¼ L would have
shown flipping at wout. Image reproduced with permission from Reid et al. (2018), copyright by ESO
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supergranule cells (the network), merge and cancel over a time of 10–40 hours

(Fig. 81). Since the network flux is highly concentrated in units of 1017 Mx or

smaller, the highly fragmented photospheric magnetic fields produce myriads of

separatrix surfaces in the chromosphere and corona. Furthermore, the relative

motions of the photospheric sources will cause the field lines to slip (hence

‘‘tectonics’’) and form current sheets on those surfaces.

In a second step, it was realised that the tiny footpoint sources are much more

common and are located in and around most granules. Smitha et al. (2017)

discovered from SUNRISE observations that, in the Quiet Sun, magnetic flux is

emerging and cancelling at a rate of 1100 Mx cm�2 day�1, namely, a factor of 10

higher than realised before (Sect. 14.4.2). Most of the flux is emerging in granules

with fluxes of only 1015 Mx, much smaller than the ephemeral regions considered

by Priest et al. (2002), and so the resulting chromospheric and coronal field is very

much more complex than thought before, with many more separatrices, which

makes flux tube tectonics even more effective.

Fig. 82a shows magnetic field lines (viewed from the side) calculated from an

observed magnetogram, illustrating that most of the field lines close low down in the

atmosphere. However, this was based on a SoHO magnetogram, and so magne-

tograms with much higher resolution that are now available (such as SUNRISE or

DKIST) will lead to even greater complexity, with probably many more field lines

closing low down. Figure 82b is an artist’s impression of the complexity of

chromospheric and coronal loops, with each magnetic source connecting to many

different loops. Figure 82c is a schematic from the side of many separatrices (thick

curves) separating the flux from different photospheric magnetic fragments, while

Fig. 82d illustrates the fact that even the finest coronal loop currently visible will

reach down to the photosphere in many, many feet, so that the interior of the loop

will consist of a web of separatrices separating the magnetic flux from each tiny

photospheric source.

The basic units of magnetic flux in the photosphere are likely to be tiny intense

flux tubes with fields of 500–1200 G, diameters of 100 km or less and fluxes of

1015–1017 Mx. An X-ray bright point therefore has hundreds or thousands of

(a) (b) (c)

Fig. 81 Scenario for the flux in the magnetic carpet that comes from ephemeral regions: a an ephemeral

region is born in a supergranule cell of diameter 15–30 Mm, with a flux of 3� 1019 Mx; b each polarity

moves towards the boundary at 0.5 km s�1 and fragments into 10 network elements; c the elements move

along the boundary at 0.1 km s�1 and eventually cancel. Image reproduced with permission from Priest
(2014), copyright by CUP
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photospheric sources, and each fine coronal loop seen with, say, TRACE is likely to

comprise 10–100 much finer, unresolved loops (Fig. 82d).

Priest et al. (2002) considered the effect of simple motions on a simple array of

flux tubes, anchored in discrete sources. They showed how smooth shearing motions

form current sheets and estimated the heating (Fig. 83). In their model the coronal

field is initially potential, with lateral motions of the sources producing opposite

signs of the horizontal field on either side of the coronal separatrix surfaces

(explicitly, opposite signs of By in the example of Fig. 83). The resulting current is

singular on the separatrix. In this model the dissipation of current along a separatrix

leads to fairly uniform heating along each flux tube, so that each (sub-resolution)

coronal flux tube would be heated uniformly. However, at least 95% of the flux

closes low down and only 5% forms large-scale connections (Fig. 82a) (Close et al.

Fig. 82 a Side view of a typical magnetic carpet field calculated from an observed photospheric
magnetogram. Image reproduced with permission from Close et al. (2003), copyright by Springer. b A
schematic of chromospheric and coronal loops, whose photospheric magnetic flux elements (dashed
ovals) are in general connected to a range of neighbours, although in reality each loop will join to many
more neighbours than shown here. c A schematic of a chromospheric or coronal loop from the side, which
consists of many parts, each joining to a separate source and separated from one another by separatrix
surfaces (thick curves). d Single coronal loops connect down to the photosphere in many tiny sources
separated by a web of separatrix surfaces at which current sheets form and dissipate. Image reproduced
with permission from Priest (2014), copyright by CUP
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2003), so the magnetic carpet will be heated more effectively than the large-scale

corona. This implies that unresolved coronal loops would possess enhanced heating

near their feet in the carpet, whereas the upper parts of the loops would be heated

uniformly but less strongly.

The flux tube tectonics model needs to be developed in several ways to make it

more realistic, although the basic principles are unlikely to change. First of all,

starting with asymmetrically placed sources would enable each source to be

connected to several others and would create many more separatrices. Furthermore,

it is important to replace the two parallel photospheric planes by one plane with a

realistic complex initial distribution of sources and realistic photospheric flows.

Simulations of a simple configuration of two flux tubes anchored at either end in

discrete sources have been undertaken by De Moortel and Galsgaard (2006a).

Current sheets form as expected along the separators, or when a weak background

field is superposed, the quasi-separators. These sheets become highly fragmented

and heat the plasma extremely efficiently. This was followed by another experiment

that compares the effect of large-scale rotation of the flux tube with small-scale

spinning (De Moortel and Galsgaard 2006b). With no background field, the heating

due to both types of motion is similar, in agreement with the theory of Priest et al.

(2005), but, when a background field is added, the small-scale spinning is more

efficient.

14.3.2 Large-scale coronal heating simulations

Around the time that the flux tube tectonics model was introduced, the first large-

scale coronal heating simulations were undertaken. These models aimed to

reproduce the observed structure of the corona by computationally solving the

full set of MHD equations including an energy equation that accounts for thermal

conduction and radiative losses. Some approaches of this type use a parameterised

heating function, but in most cases the heating is directly by ohmic (and possibly

Fig. 83 Representations of
coronal loops having
concentrated magnetic sources
(asterisks) in planes z ¼ 	L,
from the flux tube tectonics
model of Priest et al. (2002).
Null points are indicated by
filled circles and separatrices by
dashed lines. Image reproduced
with permission from Priest
(2014), copyright by CUP
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viscous) dissipation. For a comprehensive review of the successes and caveats of

these models, see Peter (2015).

The first models of this type were presented by Gudiksen and Nordlund

(2002, 2005a, b) (see Fig. 84). The initial condition comprises a gravitationally

stratified atmosphere and an initial potential magnetic field extrapolated from a

SOHO/MDI magnetogram. This initial equilibrium is then disturbed by a driving

flow on the lower (photospheric) boundary that is designed to mimic some

properties of the incompressible component of photospheric granulation. In these

simulations a loop-dominated corona was formed, with synthetic emission patterns

with an appearance (on large scales) that matches the observations (see Fig. 84).

Given that the spatial and temporal scales that can be resolved in the simulations are

large, it can be concluded that the heating responsible for these few-million-degree

loops is of DC-type heating, i.e. of the type envisaged in the tectonics and braiding

mechanisms.

Due to the computational limits on numerical resolution, loop structures formed

in these models tend to be created by Ohmic dissipation of one (or a small number

of related) current concentration(s). It is expected that at higher resolution these

would resolve into many localised current ribbons and therefore heated strands. In

order to investigate the nature of the energy release events in studies of this type,

Kanella and Gudiksen (2018) modelled a continually evolving region of the quiet

Sun, employing an intensive and sophisticated algorithm to pick out individual

Fig. 84 Hot corona produced by
‘DC’ heating in large-scale
MHD simulations. Simulated
TRACE 171 (a) and 195
(b) images, together with a
simulated magnetogram (c),
showing three identified bright
loops. Image reproduced with
permission from Gudiksen and
Nordlund (2005b), copyright by
AAS
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(ohmic) heating events in space and time. These simulations (using the Bifrost code)

model the region from the upper convection zone up to 14.3 Mm above the

photosphere. A horizontal field is injected from the bottom of the simulation domain

which is brought up to the solar surface by the convection and helps to maintain the

‘‘salt and pepper’’ quiet Sun photospheric flux distribution. Heating events are then

identified in the part of the domain above 3.28 Mm above the photosphere (this is

the height at which T 
 1 MK). The individually identified heating events are found

to have a power law distribution in both energy and duration. The vast majority of

the events ([ 93%) are found to be of ‘‘pico’’ size, having total energy release less

than 1024 ergs (1017 J), and so smaller than the typical size of a nanoflare proposed

by Parker (1988). However, in an earlier study Bingert and Peter (2013) found that

the energy flux into the coronal plasma peaks for event energies around 1017 J.

Additionally, in studies that analyse the height distribution of the temperature and

energy deposition—see for example Hansteen et al. (2010), Bingert and Peter

(2011)—the energy input per particle (defined as the energy input divided by the

mass density) peaks somewhere near the transition region, consistent with

observations.

Warnecke and Peter (2019) undertook a ‘‘data-driven’’ approach to a coronal

heating simulation. They simulated the emission from an active region, with the aim

of determining whether the observed emission patterns could be reproduced. They

began from a potential magnetic field extrapolated from an SDO/HMI line-of-sight

magnetogram, and updated the boundary values for the vertical magnetic field using

a time sequence of these observed magnetograms. An additional photospheric flow

was used to drive a granulation-type pattern, as in the simulations by Gudiksen and

Nordlund (2002, 2005a, b). A comparison between the observed and simulated

emission patterns is shown in Fig. 85, with a relatively good match being obtained.

Fig. 85 Comparison of observed emission and synthesised emission from the study of Warnecke and
Peter (2019). Note that the peak count value in the observations (corresponding to 1.00) is 3500 DN/pixel,
which is a factor of six higher than in the model. The inset in the right-hand image shows a bright,
relatively short-lived, low-lying loop
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Loop structures are visible in many of the same locations, super-imposed upon a

diffuse background emission. There are some marked discrepancies as well, for

example the simulated emission exhibits an absence of small-scale structure in the

active region core, which the authors attribute to a lack of resolution of the

magnetogram data used. In addition, the simulations under-estimate the shear of the

loops on the active region scale, which may be improved by making use of the

observed horizontal components of the magnetic field. The fact that the observed

coronal emission is so well reproduced by such simulations driven by footpoint

shuffling is a strong indication that the braiding/flux-tube tectonics model is a key

part of active-region heating.

The large-scale MHD simulations discussed above are able to reproduce quite

closely the energy fluxes and temperatures required to maintain a hot corona. This

might be surprising, given that the simulations drastically under-resolve the

photospheric field and flows, and the coronal resistivity is many orders of magnitude

larger than the true value. Since small spatial and temporal scales are missing from

the modelling, the heating is of a ‘DC’ type consistent with the tectonics and

Fig. 86 Initial configuration for a flyby numerical experiment showing a the view from above and b the
magnetic skeleton. c Time evolution showing the interaction of the red and blue separatrix surfaces at
yellow separator field lines. For related movies see Supplementary Information. Images reproduced with
permission from Parnell and Haynes (2009), copyright by Springer

123

1 Page 150 of 202 D. I. Pontin, E. R. Priest



braiding pictures—albeit the loops are produced by Ohmic heating in one or a

handful of current layers, which would likely be resolved into many current layers

on smaller spatial and temporal scales were the resolution increased. It is possible

that ‘AC’ or wave heating would also contribute if smaller spatio-temporal scales

were included. However, it is worth noting that, while the overall heating rates are

reproduced in these models, many more detailed features of the observations are

not: for example the non-thermal broadening of synthesised spectral lines is much

smaller than typically observed. It was recently demonstrated by Pontin et al. (2020)

that turbulent heating induced by small-scale braiding within the loops—absent in

the large-scale simulations—reproduces the principal observed spectral properties

of loops, and is thus a candidate to account for this discrepancy.

For the above simulations, it would be interesting to analyse carefully the quasi-

skeleton and skeleton, and to determine what type of 3D reconnection is involved in

the heating events. Finally, it is worth noting that both the braiding and tectonics

pictures exclude flux emergence and cancellation for simplicity. Recent startling

observations of magnetic flux cancellation in the photosphere show that flux

cancellation is very much more frequent than thought before and is present over the

whole solar disc. This presents the possibility that flux cancellation may be an

important component in heating many chromospheric and coronal structures, as

summarised in Sect. 14.4.2.

14.4 Separators and chromospheric or coronal heating

The suggestion that the solar atmosphere is filled with thousands of current sheets

that are continually being created and reconnected to produce nanoflares was put

forward by Parker (1972) and has usually been modelled in terms of braiding an

initially uniform magnetic field by footpoint motions (see Sect. 14.1).

Later, however, the flux tube tectonics model (Priest et al. 2002) (Sect. 14.3) was
proposed as a modern development of Parker’s nanoflare heating ideas. It

incorporates the fact that the photospheric magnetic sources of chromospheric

and coronal magnetic field are highly concentrated and localised magnetic

fragments (Figs. 67,68), which makes the chromospheric and coronal magnetic

field quite different from Parker’s original model. Thus, Parker’s model requires

complex braiding motions to create current sheets, but for flux tube tectonics simple

observed motions will create myriads of dissipating current sheets throughout the

chromosphere and corona at separators, quasi-separators and null points in ways that

are probably more effective than with Parker braiding.

Many of the consequences of this new approach still need to be worked out. One

that has been considered is that, as neighbouring magnetic fragments in the

photosphere move past one another, their chromospheric and coronal fields

reconnect (Sect. 14.4.1). Another, from recent observations, is that flux cancellation

is much more common than previously realised and that this may be driving heating

of the overlying atmosphere (Sect. 14.4.2).
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14.4.1 ‘‘Flyby’’ of magnetic flux fragments

A natural way for flux tube tectonics to heat the corona has been modelled

numerically by Galsgaard et al. (2000), Parnell and Galsgaard (2004), Parnell et al.

(2010), namely, a so-called flyby, the elementary interaction between two

photospheric magnetic fragments. This drives reconnection at a collection of

coronal separators when the source separation is small enough. The initial setup

(Fig. 86a) consists of two opposite-polarity photospheric flux sources (P1 moving to

the right and N1 moving to the left) in an overlying uniform field that is

perpendicular to the motion of the sources. Initially, the two sources are not

magnetically connected, as can be seen from the magnetic skeleton, namely, the

web of separatrix surfaces that separate the corona into its topologically distinct

parts (Fig. 86b). Two photospheric null points possess fans that form open

separatrix surfaces extending along the direction of the overlying field. The blue

separatrix encloses all the flux from the positive source extending out through one

side boundary, and the red surface encloses flux from the negative source extending

out through the opposite boundary. These fluxes are called open, whereas the flux

that later links one source to the other is designated closed.
The subsequent evolution of the skeleton (Fig. 86c) shows how the two

separatrices intersect in several reconnecting separators that vary in number as the

simulation progresses. Furthermore, plots of the current reveal that the new flux tube

is twisted and contains a twisted current sheet at its core. The twist is a consequence

of magnetic helicity conservation. The unexpected topological complexity of the

interaction is revealed when a vertical section through the skeleton of Fig. 86c is

taken (Fig. 87) (Haynes et al. 2007). The magnetic field evolves through a sequence

of 6 different topologies, with the number of coronal separators changing from 0 to

Fig. 87 The evolution of a vertical section across the skeleton at the mid-plane y ¼ 0:5 of the flyby
simulation. ‘‘Open’’ refers to flux that links one of the sources with a side boundary of the numerical box,
while ‘‘Closed’’ denotes flux that joins the two sources. For a related movie see Supplementary
Information. Image reproduced with permission from Priest (2014), copyright by CUP
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2 to 1 to 5 to 3 and finally to 1. The dissipation mechanism is separator reconnection

at multiple separator current sheets.

As mentioned above, the two separatrix surfaces are at first completely separate.

Then they touch and a so-called global double-separator bifurcation takes place.

This creates a new coronal domain containing magnetic flux that joins the

photospheric fragments and is bounded by separatrix surfaces that intersect in a pair

of new separators (Fig. 87b). The lower separator moves down through the lower

boundary, leaving one separator (Fig. 87c), where reconnection has the effect of

building up the closed flux that links the two sources. Next, the separatrix surface

bounding the closed flux touches and then intersects the side separatrices in another

bifurcation that creates two new separators on one side and two more on the other

(Fig. 87d). The lower two separators move down through the lower boundary to

leave behind three separators. Reconnection at the two lateral locations re-opens the

flux, so that eventually the two sources become disconnected again.

Parnell et al. (2010) discovered that, when the separator current is strong enough,

the magnetic field near the separator becomes that of a twisted flux rope, so that the

field component in transverse planes changes from X-type to O-type (Fig. 88), a

property that can vary spatially as one moves along a separator. At the same time,

the parallel electric field and current vary along a separator, with the reconnection

regions located between counter-rotating flow regions (see Sect. 4.7.2 and Hornig

and Priest 2003).

Parnell et al. (2008) reaffirmed the importance of the skeleton for understanding

the nature of 3D reconnection. They analysed in detail the flux evolution during a

phase of the flyby simulations with three reconnection sites, one of which closes the

flux (converts open flux to closed), while the other two reopen it. They observed

recursive reconnection, with flux closing and reopening simultaneously, so that the

same flux may be closed and opened several times (Fig. 89). This increases the

global rate of reconnection and enables heating to continue longer and over a larger

area than the single-separator case.

The plasma heating in a particular flyby event depends on the magnetic flux of

the fragments, their speed and direction of movement, and the strength of the

overlying magnetic field. The effect of decreasing the resistivity is to increase both

the duration of the interaction and the ohmic heating (Parnell and Haynes 2009).

Recursive reconnection is also possible when several separators link the same two

Fig. 88 Cartoons of the magnetic field lines around a separator with a structure that is a hyberbolic with
X-type field lines in planes perpendicular to the separator and b elliptic with O-type field lines. Image
reproduced with permission from Parnell et al. (2010), copyright by AGU
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null points, so that the nulls are multiply connected (Parnell 2007), which can occur

in potential, force-free and non-force-free fields. In addition, recursive reconnection

involves a greater spread of energy, repeated heating of the plasma and a longer

duration of heating. Multiply reconnected magnetic flux has also been found in

simulations of braided fields (see Sect. 14.1).

14.4.2 Heating driven by photospheric flux cancellation

Photospheric flux cancellation was earlier thought to occur only occasionally—

mainly at the boundaries of supergranule cells, where the magnetic flux in the

magnetic carpet, after emerging as ephemeral regions and fragmenting, is

reprocessed by cancellation and submergence (Schrijver et al. 1998; Parnell

2001) (Fig. 81). It was also thought that occasionally such flux cancellation drives

reconnection in the corona to produce X-ray bright points (Priest et al. 1994; Parnell

and Priest 1995). Furthermore, photospheric reconnection was thought sometimes to

produce Ellerman bombs as transient brightenings in the wings of Ha near sunspots,

although later Rouppe van der Voort et al. (2016), using the Swedish Solar

Telescope (SST), discovered Ellerman bombs are sometimes also present in the

quiet Sun. However, a recent landmark discovery has been the realisation that flux

cancellation is very much more common than thought before (Smitha et al. 2017;

Joshi et al. 2020), and may well be responsible for chromospheric and coronal

heating (Priest et al. 2018).

The key discovery from SUNRISE balloon observations (Solanki et al. 2010) is

that the photospheric magnetic field is much more complex than realised before,

with quiet-Sun flux emerging and cancelling at a rate that is a factor of ten higher

than before, namely, 1100 Mx cm�2 day�1 (Smitha et al. 2017). An image of the

corona (Fig. 90a) and the underlying magnetogram from SDO/HMI (Fig. 90b),

suggest that coronal loop feet are unipolar. However, the corresponding much

higher-resolution SUNRISE magnetogram (Fig. 90c) reveals instead many tiny

regions of cancelling flux of mixed polarity.

Fig. 89 A sketch of a vertical cross-section of the skeleton during recursive reconnection, in which fluxes
can pass through the separators X1, X2 and X3 several times. Arrows indicate the directions of flux transfer
between different lobes, in which the rates of change (a1, a2, a3) are written in terms of the reopened
fluxes (/1,/4) and open fluxes (/2,/3). Image reproduced with permission from Parnell et al. (2008),
copyright by AAS
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Several observational consequences of this ubiquitous flux cancellation have

been discovered. Firstly, more observations with the SST have been undertaken. At

a spatial resolution of 0.1 arcsec, Joshi et al. (2020) discovered that quiet-Sun

Ellerman bombs produced by flux cancellation are ubiquitous and uniformly

distributed across the quiet Sun, predominantly occurring in intergranular lanes.

Typically, half a million are present at any one time. Also, simultaneous SST and

IRIS observations in emerging flux regions (Rouppe van der Voort et al. 2017; Ortiz

et al. 2020; Vissers et al. 2019) showed that in the chromosphere and transition

region above an Ellerman bomb there are UV bursts that indicate heating, as well as

acceleration of jets and sometimes small rapidly moving brightenings suggestive of

plasmoids.

Secondly, observations at coronal temperatures from AIA on SDO have revealed

new features. Chitta et al. (2019) found, by comparing with Swedish Solar

Telescope observations, that coronal loops in active regions have flux cancellation

at the feet of the loops. The observations and 3D radiative MHD simulations with

the MURAM code suggest that often opposite-polarity magnetic field brought up by

tiny transient flux emergence in granules cancels with the surrounding plage field.

Chitta et al. (2020) then focused on coronal loops in the cores of active regions that

are heated to 5 MK, and found that at least one footpoint of such loops is located in

a region of mixed magnetic polarity; indeed, when simultaneous IRIS observations

are available there is spectroscopic evidence of reconnection there.

The initial discovery by Smitha et al. (2017) led Priest et al. (2018) to propose a

flux cancellation model for heating, in which nanoflares are created by photospheric

flux cancellation driving reconnection in the overlying atmosphere (Fig. 91). In

their simple model, they suppose two opposite-polarity magnetic fragments of flux

	F approach one another in an overlying horizontal field B0 and eventually cancel

(Fig. 91). At first, when the half-distance d between them is large, no flux joins one

fragment to the other, but, as soon as d\d0, where

Fig. 90 a A coronal image of an active region from the SDO/Atmospheric Imaging Assembly (AIA) 171
Å filter in a 150� 150 arcsec field of view. The white box encloses footpoints of several coronal loops.
b The underlying magnetic field from an SDO/HMI photospheric magnetogram for the white box region
of panel (a). c The corresponding SUNRISE/IMaX observations for the same region. Image reproduced
with permission from Priest et al. (2018), copyright by AAS
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d0 ¼
F

pB0

� �1=2

ð103Þ

is the interaction distance (Longcope 1998), reconnection begins at a separator.

The energy release occurs in a first phase as the separator rises to a maximum

height that depends on d0 and then falls to the photosphere. It continues in a second

phase as the fragments cancel. The maximum height of energy release can be

located in the chromosphere, transition region or corona, depending on the

parameter values, and in both cases energy is released as the heat and kinetic energy

of hot fast jets, as well as fast particles.

The inflow speed (vi) and magnetic field (Bi) at a current sheet of length L were

calculated in terms of the approach speed (v0) of the fragments, their fluxes (F) and
the overlying field (B0). For observed values of these parameters, the energy release

in the model is found to be sufficient to heat the chromosphere and corona. More

recently, the model has been extended by analysing reconnection at a 3D separator

current sheet (Priest and Syntelis 2021), and by numerical simulations (Syntelis

et al. 2019; Syntelis and Priest 2020).

Fig. 91 The flux cancellation model of Priest and Syntelis (2021) for chromospheric and coronal heating,
in which two photospheric flux sources (	F) a distance 2d apart approach at speed v0x̂ in an overlying

field B0x̂. The magnetic topology when a d [ d0 � ½F=ðpB0Þ�1=2, b d ¼ d0, a separator S is formed, c
d\d0 and reconnection is driven at the separator S. d The current sheet of length L, with plasma inflow vi

and magnetic field Bi, at which the energy is converted. Image reproduced with permission, copyright by
ESO
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15 Other examples of reconnection at work in the Sun
and Magnetosphere

Here we describe briefly some other examples of the key role of magnetic

reconnection, namely, of isolated tubes and their role in flux emergence

(Sect. 15.1.2), in the formation of the slow solar wind (Sect. 15.2) and in the

Earth’s magnetosphere (Sect. 15.3)

15.1 Reconnection of isolated flux tubes

The preceding sections describe modes of 3D reconnection at different features of a

space-filling 3D magnetic field. In certain applications it is relevant to consider the

magnetic field as being localised into isolated magnetic flux tubes (outside which

the magnetic field is approximately zero). We describe such models here, first for

reconnection between two such isolated tubes, and then reconnection driven by the

emergence of a flux tube through the photosphere.

15.1.1 Reconnection of colliding isolated flux tubes

Linton and colleagues have studied numerically the collision and interaction of two

isolated magnetic flux tubes (Dahlburg et al. 1997; Linton et al. 2001; Linton and

Fig. 92 The reconnection of two untwisted flux tubes in a stagnation-point flow, with the colour
indicating the value of jk=j0, where j0 ¼ B0=ð4lRÞ: a initial field, b reconnection beginning near the

centre, c reconnection continuing at two new locations to the lower left and upper right, d–f later
evolution of the two slanting reconnected tubes. For related movies see Supplementary Information.
Image reproduced with permission from Linton and Priest (2003), copyright by AAS
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Priest 2003; Linton and Antiochos 2005; Linton 2007). Initially, the tubes are

surrounded by field-free plasma and have a variety of twists and relative inclination

angles, and are carried towards one another by a stagnation-point flow.

Linton and Priest (2003) considered two perpendicular untwisted flux tubes that

are forced together by a stagnation-point flow inside a periodic simulation domain

with a maximum velocity amplitude v0 ¼ vA=30 (in terms of the initial Alfvèn speed

(vA) on the axis of the tube). In terms of vA and the tube radius (R), the viscous

Reynolds number is Re ¼ vAR=ðpmÞ ¼ 560 and the magnetic Reynolds number

Rm ¼ vAR=ðpgÞ ¼ 5600.

They followed the evolution with a 3D visco-resistive pseudo-spectral MHD

code (Dahlburg and Antiochos 1995), as shown in Fig. 92. In this figure, only field

lines that connect to the top and bottom boundaries are shown. Fig. 92a shows the

initial magnetic field, which in Fig. 92b is flattened out by the stagnation-point flow

into a thin flux sheet, near whose centre reconnection starts. In Fig. 92c two new

reconnection locations have been created by tearing instability either side of the

original location. These locations show up as regions of strong parallel electric field

(a signature of 3D reconnection—see Sect.4), shaded pink. Finally, in Fig. 92d–f

two slanting tubes that have been created by the reconnection are pulled together by

magnetic tension and coalesce to produce a single twisted flux tube. Roughly a third

of the total flux has reconnected, while two-thirds has been carried to the sides by

the flow, to produce purely vertical field lines.

Linton (2007) extended these studies by considering the approach of twisted flux

tubes (Fig. 93). The presence of twist has three effects: the stagnation-point flow no

Fig. 93 Slingshot reconnection of slightly twisted (U ¼ 1) flux tubes to form two slanted tubes with half
their initial twist. Image reproduced with permission from Linton (2007), copyright by CUP
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longer spreads out and flattens the flux tubes, since the tension force associated with

the twist binds them together; tearing no longer takes place and so reconnection

occurs at only one location; and the twist keeps the tubes coherent so that all their

flux reconnects.

They found that the nature of the reconnection depends on the twists in the two

tubes and the angle h ¼ Np=4 at which they collide (Fig. 94). They studied like-

twisted and oppositely twisted flux tubes with N varying between N ¼ 0 and N ¼ 7.

They discovered four different types of interaction when the twist is large. The tubes

either bounce elastically off one another without reconnecting; or they undergo

classical slingshot reconnection; or they pass through each other (in so-called tunnel
reconnection) (Dahlburg et al. 1997); or they combine together to form a single flux

tube (merge reconnection).
Slingshot reconnection (Fig. 92) occurs when the angle of inclination lies

between p=2 and 3p=2 provided the tubes are oppositely twisted. When the tubes

are anti-parallel (h ¼ p), nearly all the magnetic energy is released, whereas when

they are only slightly inclined, the tubes bounce with little reconnection and little

energy release. At other angles, slingshot reconnection is highly energetic and

releases over half of the magnetic energy, with the energy release being due to both

shortening of the axial field lines and cancelling of opposite twists (Linton et al.

2001; Ozaki and Sato 1997). For like-twisted tubes, much less energy is released

during reconnection, and merge, bounce or tunnel reconnection occur depending on

N (Fig. 95). Interactions of parallel, like-twisted flux tubes exhibit such reconnec-

tion, as has been found in numerical experiments (Lau and Finn 1996; Kondrashov

et al. 1999; Linton et al. 2001) and also laboratory experiments (Yamada et al.

1990).

Fig. 94 Energy diagram for flux tubes whose twist is oppositely (left) or like (right) directed, with a twist
of U ¼ 10. The distance from the origin is the energy divided by the initial magnetic energy, while the
azimuthal coordinate is the inclination (h ¼ Np=4) of the two tubes, labeled with the value of N. Twice
the peak kinetic energy is the solid curve, and the final magnetic energy (when tvA=R ¼ 150) is the dashed
curve. Image reproduced with permission from Linton et al. (2001), copyright by AAS
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15.1.2 Reconnection driven by flux emergence

The emergence of magnetic flux from below the photosphere has long been known

to be a trigger of dynamic phenomena in the chromosphere and corona. Typical

models of this process involve a coherent, subsurface magnetic flux tube that breaks

through the photosphere. Numerous detailed reviews of this phenomenon exist,

including Cheung and Isobe (2014), and so we only touch briefly on a few aspects

specific to the associated reconnection here.

There are many unknowns related to the process of flux emergence, such as the

properties of the sub-surface magnetic flux structures, whether they remain coherent

as they rise through the convection zone, and how much of the flux breaks through

the surface compared to what is trapped below (Stein 2012; Cheung and Isobe

2014). Isolated rising flux tubes may be shredded as they rise through the convection

zone; a coherent twist may permit a flux tube to retain its identity, but there remains

debate about whether a threshold for this twist exists, and whether such a twist is

consistent with observations.

It is very likely that sub-photospheric reconnection plays a role in configuring the

flux that eventually emerges into the corona, though direct evidence is scarce. Such

sub-photospheric reconnection was noted in simulations by Tortosa-Andreu and

Moreno-Insertis (2009). Recently Baker et al. (2020) have proposed that sub-

photospheric reconnection of flux bundles may influence the composition of the

coronal plasma.

Once a portion of a flux tube breaks through the photosphere, it will come into

contact with pre-existing field in the atmosphere, and the resulting dynamics

depends on the relative orientations of the emerging and pre-existing fields.

Heyvaerts et al. (1977) were the first to propose flux emergence as a possible trigger

for solar flares, while Forbes and Priest (1984a) and Shibata et al. (1992)

demonstrated that flux emergence can drive reconnection with a pre-existing

Fig. 95 Left: Merge reconnection of like-twisted flux tubes at an inclination of h ¼ p=4 and with a large
twist (U ¼ 10). Right: tunnel reconnection of like-twisted tubes at an inclination of h ¼ 6p=4 and a twist
of U ¼ 5:5, showing (b)–(d) a slingshot reconnection, and (e)–(f) a rebound and second reconnection.
Images reproduced with permission from [left] Linton et al. (2001), and from [right] Linton and
Antiochos (2005); copyright by AAS
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horizontal field in the corona in 2D MHD simulations. Similar simulations in 3D

indicate that, when the angle between the emerging field and the horizontal field

of the corona is sufficiently large, reconnection ensues producing hot jets of

plasma (Archontis et al. 2005). MacTaggart and Haynes (2013) analysed the

magnetic topology of this interaction, identifying the presence of separator

reconnection.

Another class of simulations takes the pre-existing coronal field to be inclined at a

uniform angle. Yokoyama and Shibata (1995, 1996) demonstrated that reconnection

between the oblique and emerging fields drives both hot and cool jets upwards along

the oblique field direction (Fig. 96a). Similar simulations in 3D show that the

reconnection takes place at a 3D null point that sits above the emerging minority

polarity, with the jet flowing outwards along the null point’s spine (Fig. 96b)

(Moreno-Insertis and Galsgaard 2013). Still more complex and realistic coronal fields

have been considered such as potential or force-free arcades (MacTaggart 2011;

Kusano et al. 2012). In particular Kusano et al. (2012) performed a series of

simulations varying the angle of the emerging flux relative to the force-free arcade,

identifying the range of parameters for which an eruption is triggered. A large number

of works have studied the potential link between flux emergence and flux rope

eruptions (e.g., Manchester et al. 2004; Fan and Gibson 2004; Leake et al. 2014). In

some models the emerging flux rope itself erupts, while more commonly the flux

emergence drives coronal reconnection leading to the formation of a coronal flux rope

which subsequently erupts. Theoretical, computational and observational approaches

to understanding the link between flux emergence and dynamic atmospheric

phenomena involving reconnection are reviewed in more detail by Cheung and

Isobe (2014), Green et al. (2018) and Archontis and Syntelis (2019).

Fig. 96 MHD simulations of flux emergence into a pre-existing inclined coronal field, triggering
reconnection between the emerging and overlying flux. a 2D simulations of Yokoyama and Shibata
(1996) with the shading showing current density, solid lines magnetic field lines and arrows the plasma
flow. b Flux systems formed in the 3D simulation of Moreno-Insertis and Galsgaard (2013), where the red
isosurface shows the high-temperature region around the collapsed null point, extending outwards along
the open spine as a hot jet
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15.2 Interchange reconnection and the slow solar wind

Section 14 dealt with models for heating the closed corona by reconnection.

Reconnection between open and closed magnetic field lines—called interchange
reconnection (Crooker et al. 2002)—is also a leading candidate for explaining the

origin and structure of the slow solar wind. This is summarised briefly here, while

more complete reviews can be found in Abbo et al. (2016); Viall and Borovsky

(2020). Note that further examples of interchange reconnection, e.g., in models of

coronal jets, are discussed in Sect. 10.4.

While it is well established that the fast, steady wind emanates from coronal

holes, the origin of the slow solar wind (SSW) remains unexplained. Any model

must account for the SSW’s relatively low speed, strong and continuous variability,

distinct difference in composition from the fast wind, and broad observed latitudinal

extent (up to 60� at solar minimum). The strongly fluctuating speed, density, and

elemental and ion-charge-state abundances are hard to reconcile with direct

acceleration of plasma along open magnetic field lines; indeed, the composition of

the SSW suggests that the plasma has some component that originates in the closed

magnetic field regions of the corona (Zhao et al. 2017). However, plasma cannot

normally move from a closed to an open magnetic field line. This apparent paradox

can be resolved through interchange reconnection, which allows closed-field plasma

to escape along newly opened magnetic field lines. First proposed by Fisk et al.

(1998), this idea gained wider attention with the development of a new model for

the Sun’s global magnetic field proposed by Antiochos et al. (2011). They

demonstrated that when the full complexity of the coronal magnetic field is

included, the separatrices and quasi-separatrix layers—collectively called the S-
Web—associated with the boundary between open and closed magnetic flux in the

corona, map out an extended latitudinal band around the heliospheric current sheet,

consistent with observations of the SSW (see also Sect. 2.7). This provides a

resolution to the apparent contradiction that plasma with closed-corona properties is

observed at high latitudes. Further evidence for the association between S-Web

structures dividing open and closed flux and SSW production comes from

observations of SSW at pseudo-streamers (Owens et al. 2013) and upflows at the

edges of active regions (Brooks et al. 2015; Macneil et al. 2019). Coronal magnetic

field extrapolations often reveal the presence of the separatrices and QSLs of the

S-Web in close proximity to these upflows (e.g., Del Zanna et al. 2011; van Driel-

Gesztelyi et al. 2012; Mandrini et al. 2015).

Interchange reconnection (see Sect. 2.7) between closed and open field lines by

definition requires some form of separatrix surface (that separates the open flux

from the closed), and thus typically involves null points or separators. The open-

closed boundary turns out to be composed of a range of different such separatrices

associated with bald patches and coronal nulls and separators in various different

configurations including multi-null systems with series of separatrix curtains (see

the discussion of Sect. 2 and Titov et al. 2011; Platten et al. 2014; Scott et al.

2018, 2019). The full complexity of this bounding surface and its implications

remain to be explored. As pointed out by Rappazzo et al. (2012) and by Pontin and

Wyper (2015), a combination of turbulence and current layer fragmentation means
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that the interchange reconnection process itself will further increase the topological

complexity beyond that present in the equilibrium field.

As discussed earlier in Sect. 10.4, interchange reconnection in a dome topology

with single and multiple nulls can release plasma onto open field lines. Such

reconnection occurs throughout coronal holes where regions of minority polarity are

enclosed beneath separatrix domes. The size of the minority (or parasitic) polarity

region determines the height of the associated null, and therefore of the

reconnection. Jets and plumes are commonly observed, and the associated outflows

may lead to observed fluctuations, including ‘‘micro-streams’’ in the solar wind

(e.g., Neugebauer 2012; Raouafi et al. 2016, and references therein). The production

of solar energetic particles through such events is well documented—see Sect. 17. It

is also proposed that interchange reconnection events might be the source of

magnetic field ‘‘switchbacks’’ found in the solar wind and recently discovered to be

ubiquitous in the data from Parker Solar Probe (see Owens et al. 2020, and

references therein). Indeed, it has been suggested that the strongly curved magnetic

field line geometry in the vicinity of the null point at which the interchange

reconnection takes place may be critical in forming the radial magnetic field

reversal associated with the switchback (e.g., Fisk and Kasper 2020). At the time of

writing, the origin of switchbacks is a very active topic of investigation due to the

new data being obtained from Parker Solar Probe and Solar Orbiter, and so further

progress in the coming years is anticipated.

While many simulation studies have addressed interchange reconnection in the

local vicinity of a separatrix dome (see Sect. 10.4), simulating interchange

reconnection on a larger scale to include the boundaries of coronal holes is

substantially more challenging computationally. Interchange reconnection in a

global coronal geometry has been simulated by Higginson et al. (2017a, 2017b).

They considered the displacement of the base of the global helmet streamer by a

large-scale vortical flow, both for a spherically symmetric initial coronal field and a

coronal field involving a narrow corridor of open flux (forming a HFT). They

tracked the magnetic field line connectivity and observed episodes of interchange

reconnection (Fig. 97) and opening and closing of flux (as the helmet streamer expands

or contracts), as well as reconnection occurring purely in the open field region. In the

latter case, field lines are shown to slip along the ‘‘S-Web’’ arc over time (Higginson

et al. 2017b), a signature of 3D non-null reconnection in the open field of the associated

HFT (Antiochos et al. 2011; Scott et al. 2018). This expected field line slippage along

the S-Web arc (open separatrix or quasi-separatrix curtain) was also described by

Masson et al. (2014) for a pseudo-streamer topology. They compared EUV emissions at

a pseudo-streamer with a static magnetic field extrapolation and some simulations in a

separatrix dome topology, and concluded that interchange reconnection plays a

determining role in pseudo-streamer emission patterns.

Moreover, Higginson and Lynch (2018) describe the 3D plasmoid structures

formed during ‘‘pinch-off’’ reconnection in the heliospheric current sheet, which

occurs between open field lines and can create disconnected magnetic flux. That is,

the reconnection involves purely open field lines, which is the complement of the

work described earlier in this section, as well as in Sect. 12, on reconnection in the

absence of null points in which all the participating magnetic flux is closed
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(anchored at both ends to the Sun’s surface). These studies have been extended to

include interchange reconnection at pseudo-streamers by Scott et al. (2021) and

Aslanyan et al. (2021). In particular Aslanyan et al. (2021) drove both the helmet

streamer and pseudo-streamer boundaries of a coronal hole with a driving pattern

representative of the Sun’s supergranulation. They described how the photospheric

driving leads to the formation of filaments of newly-opened flux in the

supergranular lanes due to interchange reconnection, leaving an imprint of the

supergranulation in the heliosphere, previously reported in observations by

Borovsky (2008, 2016).

15.3 3D reconnection in the Earth’s magnetosphere

Reconnection is a crucial ingredient of magnetospheric dynamics, as described in

the ‘‘open’’ model of the magnetosphere first proposed by Dungey (1961). In this

model the magnetosphere is open in the sense that a finite amount of flux connects

the Earth to interplanetary space. Reconnection occurs on the day-side between the

interplanetary magnetic field (IMF) and Earth’s magnetic field, leading predom-

inantly to magnetic energy storage. There is a quasi-continuous reconnection

process when the orientation of the IMF is favourable (with a strong southward

component), as well as bursty flux transfer events. On the night-side, reconnection in
the magnetotail releases the stored magnetic energy, most notably during substorms.
Traditionally, reconnection in the magnetosphere has been interpreted in terms of

2D models. A 3D understanding has not been developed as fully as in the solar

context, most likely in large part because of the in situ nature of the observations,

Fig. 97 Illustration of interchange reconnection in the simulations of Higginson et al. (2017a),
reproduced with permission, copyright by AAS. Vortical driving of the footprint of the global helmet
streamer leads the red field line to open up between the two times (while a counterpart field line is closed)
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which make an appreciation of the full 3D topology impossible without recourse to

computational models.

The categorisation of reconnection has been based on 2.5D rather than 3D

concepts, which is potentially misleading since a 2.5D magnetic field is often

topologically unstable. The standard categorisation includes anti-parallel merging
and component merging, depending on whether a non-zero magnetic field

component exists in the plane perpendicular to a so-called X-line. In this context

an X-line is a line along which any perpendicular cut exhibits an X-type hyperbolic

field. However, as pointed out by, for example, Priest and Forbes (1989), in general

in a 3D hyperbolic field, the X-lines are non-unique, since there is a continuum of

X-lines, depending on the orientation of the perpendicular cut, implying that such

definitions are fraught with ambiguities. Thus, in practice, antiparallel merging is

likely to refer to null-point reconnection, whereas component merging could refer to

either separator reconnection or quasi-separator reconnection. Furthermore, the term

‘‘X-line’’ is best avoided, since it could be mistaken with an X-type null line,

namely, a continuum stack of 2D X-points on top of each other to form a line of

X-type null points, which is topologically unstable (see Sect. 2.4).

Following the development of fully 3D models of the magnetosphere, it was

realised that magnetospheric cusp regions are in fact the locations of 3D magnetic

nulls (or perhaps more generically clusters of 3D nulls), and that the separatrix (fan)

surfaces of these nulls intersect along one or more separator lines at the dayside

magnetopause (sometime called null-null lines in the literature)—see Fig. 98 and

Dorelli et al. (2007). A number of studies have demonstrated that reconnection is

typically observed along these separators in global magnetospheric simulations

(Dorelli et al. 2007; Glocer et al. 2016). Observationally such reconnection would

be classed as component merging. Dorelli et al. (2007) also identify reconnection at

the null point clusters in the cusps, which would be classed as anti-parallel merging.

The topology of flux transfer events turns out to be highly complex and is yet to

be fully explored. Dorelli and Bhattacharjee (2009) demonstrated the existence of

multiple separator lines in a simulated flux transfer event (see also Fedder et al.

2002). Other 3D models have interpreted FTEs in terms of ‘‘interlaced’’ magnetic

Fig. 98 Magnetic skeleton
during a global MHD simulation
of the magnetosphere. Red and
blue spheres are A-type
(negative) and B-type (positive)
nulls, respectively, and
separators are marked in yellow.
Bundles of red and blue field
lines pass close to the nulls of
the corresponding colour and
outline the spine and fan (R)
surfaces of the nulls. Image
reproduced with permission
from Dorelli et al. (2007),
copyright by AGU
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flux tubes (e.g., Kacem et al. 2018). An interesting open question is whether

separators are the initial sites of the reconnection process in the FTE, or whether

their formation is a secondary effect.

In recent years the presence of magnetic nulls has been inferred using spacecraft

data (both Cluster and the Magnetospheric Multiscale Mission) from the magne-

totail (e.g., Xiao et al. 2006; He et al. 2008a; Deng et al. 2009; Guo et al. 2016),

magnetopause (Xiao et al. 2007; Fu et al. 2019), magnetosheath (Wendel and

Adrian 2013; Chen et al. 2017), and bow shock (Chen et al. 2019b). Different

techniques have been employed for identifying the null points and reconstructing

the local 3D topology using the data (for a comparison see Olshevsky et al. 2020).

The presence of separators is usually inferred in observations by separately

identifying nearby magnetic nulls whose fan surfaces are oriented in such a way that

they will intersect. This is because most methods reconstruct only the linear field

structure around the null (though see Liu et al. 2019). Some methods though choose

to fit a restricted field geometry with higher-order terms allowing for a separator

joining a null pair to appear in the reconstructed field, as shown for example in

Fig. 99.

In many cases, the magnetic nulls and separators identified in the field

reconstructions are found to be collocated with signatures of ongoing reconnection.

For example, Deng et al. (2009) identified whistler waves and electron beams in the

vicinity of a null pair, while Wendel and Adrian (2013) compared the current

distribution with the reconstructed field to infer ongoing torsional spine and

torsional fan reconnection (see Sect. 10.2). The majority of the nulls identified turn

out to be spiral nulls (see Fig. 4). These spiral nulls are found to be associated with

twisted flux ropes and signatures of energy dissipation (Deng et al. 2009; Guo et al.

2016, 2019), and the flux ropes are important sites for particle acceleration in kinetic

simulations (Zhou et al. 2018). A possible explanation for the production of these

Fig. 99 Reconstructed magnetic field configuration based on Cluster data from the magnetotail. Orange
and red spheres are A-type (negative) and B-type (positive) nulls, respectively, and the pink curve is the
separator. Magnetic field lines are coloured by the local field strength, while the positions of the four
Cluster spacecraft are shown with the cubes. Image reproduced with permission from He et al. (2008b),
copyright by AGU
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spiral nulls and flux ropes is current sheet tearing as described by Wyper and Pontin

(2014b) and shown in Fig. 47. We expect that future observational and theoretical

developments will shed further light on the role of null points and separators in

energy dissipation in the magnetosphere.

16 Reconnection and turbulence

Given the extreme values of the magnetic Reynolds number in astrophysical

plasmas, the phenomena of reconnection and turbulence are inextricably linked. We

saw in Sect. 8.3 how an initially laminar current layer can undergo nonlinear

tearing, leading to a turbulent evolution (e.g., Loureiro and Boldyrev 2020).

Furthermore, a smooth initial field with braided magnetic field lines was shown to

develop a turbulent cascade of many inter-related reconnection events

(Sect. 14.1.2). We briefly describe some aspects of the relation between reconnec-

tion and turbulence here. Further details on aspects of the problem are reviewed by

Lazarian et al. (2020).

16.1 Breakdown of the frozen flux theorem

Boozer (2012) developed a description for stochastic magnetic field lines,

describing how the cross-section of an infinitesimal flux tube deforms into a

network of thin filaments as one follows the field lines (see also Rechester and

Rosenbluth 1978). He argues that a breakdown in ideal motion will be triggered

when the field-line separation becomes sufficiently large that the filaments of the

deformed flux tubes reach kinetic length scales. These ideas were developed further

by Boozer (2019), who used a Lagrangian description for field line evolution. He

considered the case of a magnetic field with stochastic field lines and a small but

non-vanishing non-ideal term. He demonstrated that the deviation of the field line

evolution from exactly ideal motion grows exponentially with the characteristic

field line separation. In this picture, fast scaling in the breakdown of ideal evolution

with g is mediated not by a (parallel) current density that grows to ensure gjk is

large, but by field line exponentiation. Specifically, ideal evolution tends to produce

an exponentially increasing field line separation (along field lines), and this leads to

an exponential increase in sensitivity (in the departure of the local field vector from

the ideally evolving value) to small non-ideal effects. By drawing a parallel with

thermal equilibration in a gas, Boozer (2021) argued that the exponential separation

of field lines implies that a current density of order lnðRmÞ (rather than Rm) is

required for reconnection to be dynamically significant.

These results offer an alternative perspective that is nevertheless consistent in

two respects with our understanding of reconnection in braided fields described

above: first, reconnection onset occurs for a sufficiently tangled field (as in

Sect. 5.5.3); and second, once a burst of reconnection-mediated heating is triggered,

the global reconnection rate for that heating burst is almost independent of the

dissipation, this being due to an increase in the number of reconnection locations

123

Magnetic reconnection: MHD theory and modelling Page 167 of 202 1



with increasing Rm (see Sect. 14.1.2), rather than a local increase in the current

density.

A related perspective has been developed by Eyink and collaborators. Our

understanding of reconnection concepts is built on the foundations of Alfvén’s flux

freezing theorem for ideal MHD (Sect. 3.1). In most reconnection models,

reconnection occurs when flux freezing breaks down in a localised layer of intense

current density. However, Eyink (2009) and Eyink et al. (2011) have proposed an

alternative scenario due to the breakdown of flux freezing in a turbulent plasma.

They showed that a stochastic version of the frozen flux theorem can be derived, by

considering stochastic Lagrangian trajectories of fluid particles. They argue that, if

all solution fields of the equations remain smooth in the limit Rm ! 1, then these

stochastic trajectories collapse to the unique deterministic trajectory, and magnetic

flux is frozen to the fluid in the deterministic sense. On the other hand, Chaves et al.

(2003) have argued that the solution fields should be rough in the limit Rm ! 1, so

that, in turbulent plasmas with high Rm, flux freezing does not strictly hold. Instead,

it is valid only in a statistical sense, namely, that the magnetic flux through a surface

at a given time is the average of the magnetic fluxes through an ensemble of

surfaces traced backward in time in the stochastic flow.

This stems from the idea that in a turbulent flow particles separate at a super-

ballistic rate; so-called Richardson two-particle diffusion (Richardson 1926). In this

picture, fluid particles ‘forget’ their initial position, and their trajectories are

intrinsically random. The (Lagrangian) dynamics of the plasma elements (particles)

are said to exhibit ‘‘spontaneous stochasticity’’ (Eyink et al. 2011). As a result, we

must modify the concept of a magnetic field line being frozen to a unique plasma

element: the stochasticity of the flow means that infinitely many particle trajectories

bring infinitely many field lines to a given point at a given time (Figs. 100, 101).

The result is that magnetic field line topology conservation (and the frozen-flux

theorem) breaks down in a strict, deterministic sense—without having to appeal to

resistive diffusion.

The extension of the ideas of magnetic flux conservation and field-line

conservation (Sect. 3) to the picture of a plasma with stochastic field lines is

Fig. 100 Illustration of stochastic flux freezing, in which three different stochastic trajectories are traced
back in time to t0 from ðx; tÞ. The three field vectors at t ¼ t0 are transported along the stochastic
trajectories, such that Bðx; tÞ is the average of the transported field vectors. Image reproduced with
permission from Eyink et al. (2013), copyright by Springer
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discussed explicitly by Eyink (2015), who develops a ‘‘turbulent generalisation’’ of

general magnetic reconnection. On the basis of an Ohm’s law

Eþ v� B ¼ N ð104Þ

he defines a ‘‘slip velocity source’’ R ¼ �ðr � NÞ?=jBj with the corresponding

field line slip velocity

Fig. 101 a Realisation of stochastic flux freezing as per Fig. 100 in 3D MHD turbulence simulations. All
of the plotted stochastic trajectories arrive at the same space-time point, and are coloured red–green–blue
from early to late time. b Errors in flux transport of the magnetic field vector along the single black
‘‘deterministic’’ trajectory in (a), versus averages over different sized ensembles of stochastic trajectories
(numbers as per the legend). Image reproduced with permission from Eyink et al. (2013), copyright by
Springer
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Dw? ¼ B̂� ðrV � NÞ
jBj ; ð105Þ

where V is a Hamiltonian for the evolution of Euler potentials in the ideal limit

(denoted by �w in Hesse and Schindler 1988). Consistent with the derivations

discussed in Sect. 3.2, field line conservation now requires R ¼ 0, while R 6¼ 0

implies a change of field line connectivity. Now, they argue that for turbulent eddies

of length scale ‘ and below, jr � NT
‘ j � jdvð‘Þ � dBð‘Þj with dvð‘Þ and dBð‘Þ being

variations in v and B over length-scale ‘. Now, for decreasing ‘ in the inertial range,

this term grows, and typically dominates the effect of the ‘‘true’’ non-idealness. The

‘‘coarse-grained’’ (or low-pass filtered) magnetic field �B‘ experiences a connectivity

change not due to r� �N‘ but due to the turbulence-induced slippage term

ðr � NT
‘ Þ?=j �B‘j. The reader is referred to Eyink (2015) for full details. The study

Fig. 102 Left: The upper plot shows a schematic of a Sweet–Parker current layer with laminar fields, as
described in Sect. 7.1. The lower plot shows an equivalent current layer in a field characterised by
stochastic field line wandering induced by turbulent fluctuations. In the inset is a small, localised
reconnection region, many of which are assumed to be present within the large-scale structure, such that
the net reconnection rate is independent of resistivity. Right: current density in the 3D MHD simulations
of Kowal et al. (2009) showing reconnection in the absence (above) and presence (below) of turbulent
fluctuations. Image reproduced with permission from Kowal et al. (2009), copyright by AAS
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goes on to discuss the relevance for interpreting observables associated with tur-

bulence in the solar wind. The impact of stochastic field line wandering on

observables associated with magnetic reconnection has been addressed for tokamak

plasmas by Firpo et al. (2016).

16.2 The rate of reconnection in a turbulent plasma

The effect of turbulent fluctuations on the rate of reconnection was considered in the

groundbreaking study by Lazarian and Vishniac (1999), wherein they envisaged

such fluctuations modifying the reconnection properties of a global-scale current

layer (Fig. 102). Conceptually, what they showed is that the presence of the

turbulent fluctuations removes the restriction of the narrow outflow channel in the

Sweet–Parker model (which in Sweet–Parker limits the inflow speed and thus the

reconnection rate, due to mass conservation). Rather than a laminar, collimated

reconnection exhaust, the width d of the outflow jet is limited by the field line

wandering, not by the value of the resistivity. Many localised reconnection events

occur within the large-scale layer that replaces the single, monolithic reconnection

site (Fig. 102). In this way, the global reconnection rate is argued to be determined

not by any detailed microphysics (such as resistivity) but instead by the degree of

field line stochasticity, itself a property of the turbulent cascade. The authors discuss

scalings based on different turbulence models, with the slowest possible reconnec-

tion rate being

Mi �R�3=16
m ; ð106Þ

which is substantially faster than the Sweet–Parker scaling of R�1=2
m described in

Sect. 7.1. It was subsequently demonstrated by Eyink et al. (2011) that the pre-

dictions of Lazarian and Vishniac (1999) can also be derived within a stochastic flux

freezing framework in the presence of a large-scale field reversal (Sect. 16.1).

The theory developed by Lazarian and Vishniac (1999) was tested in numerical

simulations of MHD turbulence by Kowal et al. (2009), which involved simulating

an initial system-scale Harris sheet equilibrium with the addition of a perturbation to

initialise the reconnection and turbulent fluctuations. The current distribution in the

presence and absence of turbulent fluctuations is shown in the right panel of

Fig. 102. It is clear that in the presence of turbulent fluctuations the ‘‘reconnection

layer’’ is substantially broadened, and reconnection occurs at many localised sites

throughout the layer. They confirm the prediction that the rate of reconnection is

essentially independent of resistivity and scales with the injected turbulent power.

Here we have only scratched the surface of the intimate connection between

reconnection and turbulence. This will be an important topic for development in

future. In particular, at present there remains debate on how to synthesise this

picture with the developing understanding of nonlinear tearing (Sect. 8.3). In

addition, there is a need to form a bridge with the understanding developed for

globally 3D geometries (Sects. 10–14). In 3D, particularly in the absence of null

points, the interpretation of the reconnection rate is not so straightforward as a

simple inflow speed, even in the case of a single, isolated reconnection process (e.g.,
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Sects. 4.7.2, 10–13). Wyper and Hesse (2015) developed a framework for

quantifying the rate of reconnection in 3D when many, inter-related reconnection

events occur within the same volume. In this extension of general magnetic
reconnection (Sect. 4.5), they describe how the collective rate at which the

connectivity changes can be quantified in two ways. The first is a total rate, which

measures the true rate at which new connections are formed, and the second is a net

rate which measures the net change of connection seen by the global field (external

to the volume of interest) due to the influence of many non-ideal regions.

17 Non-thermal particle acceleration during reconnection

The concept of reconnection was first introduced as a way to explain non-thermal

particle acceleration in solar flares, and indeed, since then, reconnection has become

a leading candidate for explaining non-thermal particle acceleration for many

astrophysical plasmas. It is known that a substantial fraction of the energy released

during reconnection may often be released in the form of non-thermal particles,

although the fraction is likely to depend on many factors such as the local and global

geometries and the plasma parameters. Several acceleration mechanisms associated

with reconnection exist, and the relative contribution of each in different scenarios

remains to be determined. A vast literature on the topic exists, which we do not

attempt to review here. Rather we make note of a few important concepts and results

as they relate to the MHD description of reconnection discussed in this review, and

refer the reader to more complete reviews of particle acceleration in solar flares

(Zharkova et al. 2011; Gordovskyy et al. 2019; Kontar et al. 2019) and more

broadly in astrophysics (Marcowith et al. 2020).

Within the framework of MHD modelling, particle acceleration can be studied

using the ‘‘test particle’’ approach, in which individual particle trajectories are

traced through the (evolving) electromagnetic fields from the MHD solution or

simulation. Often the particle gyro-motion around the field lines is averaged out by

using the guiding centre approximation (Northrop 1961), which substantially

reduces the computation time. This is a good approximation unless the field is weak

(such as close to a null point) or the parallel electric field is large—in which case the

full Lorentz equation of motion must be used—or a significant percentage of the

particles making up the plasma is accelerated when a full kinetic treatment is

needed. The test particles are treated as independent of one another so that collisions

are excluded, although some studies have sought to include scattering, for example

due to Coulomb collisions (e.g., Borissov et al. 2017). While the test particle

approach has severe limitations, a number of important insights can be drawn.

The primary limitation of the test particle approach is the absence of feedback

between the particles and the electromagnetic field. If the number of particles

accelerated is small then the test particle approach remains reasonable. However, if

a large number of particles is accelerated (as in, e.g., a large solar flare) then the

magnetic field induced by the flow of particles (current) may be sufficiently large

that it would modify significantly the magnetic field from what MHD gives, at

which point self-consistency is lost. Additionally, if substantial numbers of protons

123

1 Page 172 of 202 D. I. Pontin, E. R. Priest



and electrons are accelerated in opposite directions then charge separation would set

up an electric field that is absent from an MHD description. As a result of these

limitations, a complementary approach is to employ a kinetic simulation method

such as particle-in-cell (PIC). This solves the self-consistency problem, but it comes

at a high computational expense, which severely limits the scale of the domain that

can be considered (usually the global geometry is excluded so that only the near

vicinity of the reconnection site is modelled). Other compromises may also be made

such as in the value of the electron-to-proton mass ratio. As a result, hybrid fluid-

kinetic models have been developed that seek a compromise between the benefits of

the MHD and kinetic descriptions. For much more detail, see the reviews by

Zharkova et al. (2011), Gordovskyy et al. (2019), Marcowith et al. (2020).

In the classical 2D reconnection picture, one fundamental process is direct

particle acceleration along the current sheet by the reconnection electric field, which

may occur until the particles escape from the current sheet (Speiser 1965;

Litvinenko 1996). Depending on the global geometry, acceleration can also occur at

shocks that are associated with the reconnection process, including standing shocks

such as those described in Sect. 7.2 and ‘‘termination shocks’’ that form ahead of a

reconnection outflow jet where it encounters the ambient plasma. Additionally,

stochastic acceleration may occur due to turbulence in the outflow region. These

latter effects only partly mitigate the issue of accelerating a sufficient number of

particles though a single, small diffusion region. However, it may be possible to

alleviate these concerns by appealing to a fragmented or turbulent reconnection

process (Sects. 8.4, 16), which both increases the overall volume of the non-ideal

region and allows for the possibility of particles encountering multiple acceleration

sites (for a detailed discussion see, e.g., Cargill et al. 2012; Kowal et al. 2012).

There has been particular recent focus on particles being accelerated in contracting

and colliding magnetic islands or flux ropes (e.g., Drake et al. 2006; Arnold et al.

2021).

3D modelling of particle acceleration in coronal geometries has so far relied

predominantly on the MHD plus test particles approach. Implementation of test

particles into 3D MHD simulations is nevertheless useful for understanding the

geometry of particle trajectories and the expected particle deposition patterns. In

such modelling, particles are generally found to follow the topological structures of

the magnetic field at which the reconnection is taking place, such as QSLs or the

spine and fan field lines of magnetic nulls. This has been used to help explain flare

ribbon geometry in different 3D magnetic topologies (e.g., Démoulin et al. 1997a;

Masson et al. 2009; Rosdahl and Galsgaard 2010; Baumann et al. 2013; Janvier

et al. 2013; Savcheva et al. 2015). In addition, Masson et al. (2013, 2019) have

discussed the importance of interchange reconnection (Sect. 15.2) for facilitating

the escape of solar energetic particles from the corona into the heliosphere. As one

further example, particle acceleration at the many reconnection sites that form

following the onset of kink instability has been studied as a model for particle

acceleration within coronal loops (e.g., Pinto et al. 2016).
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18 Summary and outlook

Magnetic reconnection theory has come a long way since the early work in the

middle of the last century. Early efforts, aimed initially at explaining energy release

in solar flares, focussed on 2D, steady-state, resistive MHD modelling (Sect. 6, 7).

More recently the field has developed in two principal directions, the first being to

understand the mechanism that permits a rapid energy conversion (high reconnec-

tion rate) in different plasmas. Such studies have been primarily restricted to two

dimensions—due to the computational expense and challenges for interpretation in

three dimensions—and have focussed either on detailed micro-physics (largely

outside the scope of this review—see Sect. 9), or time-dependent effects such as

impulsive bursty reconnection due to, e.g., the plasmoid instability (Sect. 8). The

result is that rapid reconnection at a tenth or a hundredth of the Alfén speed is likely

in three cases (Sect. 9), namely: by Petschek or almost uniform reconnection

(Sect. 7) when the resistivity is enhanced; by Hall effects; or by impulsive bursty

reconnection.

The second main focus of the development of reconnection theory has been the

exploration of the rich properties of 3D reconnection, relevant for astrophysical

systems such as the Sun which do not have special symmetries. We now know that

many fundamental properties of reconnection are very different in 3D from 2D

(Sect. 4). For example, in 3D, reconnection is not restricted to null points, and

indeed does not occur at a point (as in 2D) but throughout a finite diffusion region.

As a consequence, all 3D reconnection is characterised by field line flipping (or

slipping or slip-running), and by a non-one-to-one rejoining of field line pairs.

With reconnection in 3D not restricted to occur at null points, it is critical to

understand where and how intense current concentrations can form in complex 3D

magnetic fields, in order to determine where reconnection will take place. It

transpires that there are several magnetic features that are preferential sites for

current sheet formation (Sect. 5), including: magnetic null points; separators; quasi-

separators (or hyperbolic flux tubes), together with their associated separatrix

surfaces and QSLs; and magnetic braids. While reconnection processes within

current layers at each of these features share the key properties of 3D reconnection

described above, there are also some important differences, and so a framework for

understanding 3D reconnection modes at null points (Sect. 10), separators

(Sect. 11), quasi-separators or HFTs (Sect. 12), and braids (Sect. 14.1) has been

developed.

In solar physics, reconnection is a key component for understanding several of

the biggest unsolved problems in the field, such as the origin of the Sun’s field (the

dynamo problem), the origin of solar flares and eruptions, heating of the solar

corona and formation of the (slow) solar wind. Reconnection now seems certain to

contribute substantially to coronal heating. Several mechanisms have been

identified, including Parker braiding (Sect. 14.1), flux tube tectonics (Sect. 14.3)

and flux cancellation (Sect. 14.4.2). All of these mechanisms are likely play some

role, though their relative magnitudes in different parts of the solar atmosphere

remain to be determined.
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Solar flares and eruptions continue to be a key motivation in driving forward our

understanding of reconnection. Recent 3D modelling has led to a new paradigm for

flares, incorporating 3D reconnection theory (Sect. 13). Observational evidence

suggests that flares may be triggered either at separators or quasi-separators (two-

ribbon flares) or at null points (circular ribbon flares). Reconnection at these 3D

magnetic structures also drives smaller-scale dynamic events in the corona such as

jets and X-ray bright points (Sects. 10.4, 14.4.2), and releases plasma onto open

field lines to contribute to the solar wind (Sect. 15.2).

Great advances have been made in our understanding of magnetic reconnection.

However, there remain many open questions to be addressed in future. Here we list

some of the most pressing. The first two of these can be summarised under the

theme of ‘‘cross-scale coupling’’.

Current sheet formation in complex 3D magnetic fields: How do the global

plasma dynamics determine where current sheets form in complex 3D magnetic

fields? Consequently, which 3D reconnection regimes—described in Sects. 10–

12—are most prevalent?

Relation between the MHD scale and kinetic scale: How is the magnetic field

topology at large scales (external to the current sheet) coupled with the micro-

physics in the diffusion region? What is the role of the large-scale structure in

determining the kinetic physics. Conversely, what detailed mechanisms are at play

in the electron dissipation region, and how does the micro-scale physics feed back

onto the macro-scale dynamics?

Quantitative properties in 3D: What are the quantitative properties of each of the

3D reconnection regimes described in Sects. 10–12? It is critical to understand how

the different plasma, flow and field parameters combine to influence, for example,

the diffusion region dimensions, and the resulting reconnection rate.

Reconnection in a fragmented dissipation region: At large Rm, the dissipation

region tends to break up, producing an array of inter-related reconnection processes.

How do we interpret and understand the reconnection rate and energy conversion in

such a state? What is the relation between reconnection and turbulence?

Observational signatures: What are the different observational signatures for

each of the 3D reconnection regimes described in Sects. 10–12? For all but the

largest reconnection events on the Sun, the dynamics in the vicinity of the current

layer itself will not be spatially resolved for the foreseeable future, so of particular

interest are secondary effects that can be observed at larger scales, such as bulk

flows of plasma in outflow jets as well as non-thermal particle acceleration spectra,

in order to allow diagnosis via, e.g., spectroscopic measurements.

Energy conversion: In 3D reconnection in the various different regimes, what

determines the rate of energy conversion, into which forms, and what is the

mechanism by which the energy is ultimately dissipated?

Progress in answering these questions will require a combination of the

development of fundamental theory, large-scale numerical simulations, and new

observations with cutting edge instruments.
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Kacem I, Jacquey C, Génot V, Lavraud B, Vernisse Y, Marchaudon A, Le Contel O, Breuillard H, Phan

TD, Hasegawa H, Oka M, Trattner KJ, Farrugia CJ, Paulson K, Eastwood JP, Fuselier SA, Turner D,

Eriksson S, Wilder F, Russell CT, Øieroset M, Burch J, Graham DB, Sauvaud JA, Avanov L,

Chandler M, Coffey V, Dorelli J, Gershman DJ, Giles BL, Moore TE, Saito Y, Chen LJ, Penou E

(2018) Magnetic reconnection at a thin current sheet separating two interlaced flux tubes at the

Earth’s magnetopause. J Geophys Res 123(3):1779–1793. https://doi.org/10.1002/2017JA024537

Kadomtsev BB (1975) Disruptive instability in tokamaks. Sov J Plasma Phys 1:389–391

Kanella C, Gudiksen BV (2018) Investigating 4D coronal heating events in magnetohydrodynamic

simulations. Astron Astrophys 617:A50. https://doi.org/10.1051/0004-6361/201732494. arXiv:1806.

04495 [astro-ph.SR]

Karimabadi H, Daughton W, Scudder J (2007) Multi-scale structure of the electron diffusion region.

Geophys Res Lett 34(13):L13104. https://doi.org/10.1029/2007GL030306

Karimabadi H, Dorelli J, Roytershteyn V, Daughton W, Chacón L (2011) Flux pileup in collisionless

magnetic reconnection: bursty interaction of large flux ropes. Phys Rev Lett 107(2):025002. https://

doi.org/10.1103/PhysRevLett.107.025002

Karpen JT, Antiochos SK, DeVore CR (2012) The mechanisms for the onset and explosive eruption of

coronal mass ejections and eruptive flares. Astrophys J 760(1):81. https://doi.org/10.1088/0004-

637X/760/1/81

Kazachenko MD, Canfield RC, Longcope DW, Qiu J (2010) Sunspot rotation, flare energetics, and flux

rope helicity: the Halloween flare on 2003 October 28. Astrophys J 722:1539–1546

Kazachenko MD, Canfield RC, Longcope DW, Qiu J (2012) Predictions of energy and helicity in four

major eruptive solar flares. Sol Phys 277:165–183

Khomenko E, Collados Vera M (2012) Heating of the magnetized solar chromosphere by partial

ionization effects. Astrophys J 747:87

Kippenhahn R, Schluter A (1957) Eine Theorie der Solaren Filamente. Z Astrophys 43:36–62

Klapper I, Rado A, Tabor M (1996) A Lagrangian study of dynamics and singularity formation at

magnetic null points in ideal three-dimensional magnetohydrodynamics. Phys Plasmas

3(11):4281–4283. https://doi.org/10.1063/1.871559

Kleva RG, Drake JF, Waelbroeck FL (1995) Fast reconnection in high temperature plasmas. Phys

Plasmas 2(1):23–34. https://doi.org/10.1063/1.871095

Kliem B, Török T (2006) Torus instability. Phys Rev Lett 96(25):255002. https://doi.org/10.1103/

PhysRevLett.96.255002

123

1 Page 186 of 202 D. I. Pontin, E. R. Priest

https://doi.org/10.1029/97JA01674
https://doi.org/10.1029/97JA01674
https://doi.org/10.1017/S0022377817000034
https://doi.org/10.1051/0004-6361/201321164
https://doi.org/10.1051/0004-6361/201321164
http://arxiv.org/abs/1305.4053
https://doi.org/10.1088/0004-637X/788/1/60
https://doi.org/10.1088/0004-637X/788/1/60
http://arxiv.org/abs/1402.2010
https://doi.org/10.1103/PhysRevLett.122.015101
https://doi.org/10.1103/PhysRevLett.122.015101
https://doi.org/10.1063/1.3647505
https://doi.org/10.3847/2041-8213/aa774d
http://arxiv.org/abs/1706.01355
https://doi.org/10.1051/0004-6361/202038769
https://doi.org/10.1051/0004-6361/202038769
http://arxiv.org/abs/2006.14975
https://doi.org/10.1002/2017JA024537
https://doi.org/10.1051/0004-6361/201732494
http://arxiv.org/abs/1806.04495
http://arxiv.org/abs/1806.04495
https://doi.org/10.1029/2007GL030306
https://doi.org/10.1103/PhysRevLett.107.025002
https://doi.org/10.1103/PhysRevLett.107.025002
https://doi.org/10.1088/0004-637X/760/1/81
https://doi.org/10.1088/0004-637X/760/1/81
https://doi.org/10.1063/1.871559
https://doi.org/10.1063/1.871095
https://doi.org/10.1103/PhysRevLett.96.255002
https://doi.org/10.1103/PhysRevLett.96.255002


Kliem B, Su YN, van Ballegooijen AA, DeLuca EE (2013) Magnetohydrodynamic modeling of the solar

eruption on 2010 April 8. Astrophys J 779(2):129. https://doi.org/10.1088/0004-637X/779/2/129.

arXiv:1304.6981 [astro-ph.SR]

Klimchuk JA (2015) Key aspects of coronal heating. Philos Trans R Soc Lond Ser A

373(2042):20140256–20140256. https://doi.org/10.1098/rsta.2014.0256

Klimchuk JA, Antiochos SK (2021) How turbulent is the magnetically closed corona? Front Astron Space

Sci 8:83. https://doi.org/10.3389/fspas.2021.662861

Klimchuk JA, Sturrock PA, Yang WH (1988) Coronal magnetic fields produced by photospheric shear.

Astrophys J 335:456–467. https://doi.org/10.1086/166939

Knizhnik KJ, Antiochos SK, Klimchuk JA, DeVore CR (2019) The role of magnetic helicity in coronal

heating. Astrophys J 883(1):26. https://doi.org/10.3847/1538-4357/ab3afd

Kondrashov D, Feynman J, Liewer PC, Ruzmaikin A (1999) Three-dimensional magnetohydrodynamic

simulations of the interaction of magnetic flux tubes. Astrophys J 519:884–898. https://doi.org/10.

1086/307383

Kontar EP, Jeffrey NLS, Emslie AG (2019) Determination of the total accelerated electron rate and power

using solar flare hard X-ray spectra. Astrophys J 871(2):225. https://doi.org/10.3847/1538-4357/

aafad3. arXiv:1812.09474 [astro-ph.SR]

Kopp RA, Pneuman GW (1976) Magnetic reconnection in the corona and the loop prominence

phenomenon. Sol Phys 50(1):85–98. https://doi.org/10.1007/BF00206193

Kowal G, Lazarian A, Vishniac ET, Otmianowska-Mazur K (2009) Numerical tests of fast reconnection

in weakly stochastic magnetic fields. Astrophys J 700:63–85. https://doi.org/10.1088/0004-637X/

700/1/63

Kowal G, de Gouveia Dal Pino EM, Lazarian A (2012) Particle acceleration in turbulence and weakly

stochastic reconnection. Phys Rev Lett 108(24):241102. https://doi.org/10.1103/PhysRevLett.108.

241102

Kruskal MD, Johnson JL, Gottlieb MB, Goldman LM (1958) Hydromagnetic instability in a stellarator.

Phys Fluids 1:421–429. https://doi.org/10.1063/1.1724359

Kulsrud RM (2001) Magnetic reconnection: Sweet-Parker versus Petschek. Earth Planets Space

53:417–422. https://doi.org/10.1186/BF03353251

Kumar P, Karpen JT, Antiochos SK, Wyper PF, DeVore CR (2019) First detection of plasmoids from

breakout reconnection on the sun. Astrophys J 885(1):L15. https://doi.org/10.3847/2041-8213/

ab45f9

Kumar P, Karpen JT, Antiochos SK, Wyper PF, DeVore CR, Lynch BJ (2021) From pseudostreamer jets

to coronal mass ejections: observations of the breakout continuum. Astrophys J 907(1):41. https://

doi.org/10.3847/1538-4357/abca8b

Kusano K, Bamba Y, Yamamoto TT, Iida Y, Toriumi S, Asai A (2012) Magnetic field structures

triggering solar flares and coronal mass ejections. Astrophys J 760(1):31. https://doi.org/10.1088/

0004-637X/760/1/31

Lau YT, Finn JM (1990) Three-dimensional kinematic reconnection in the presence of field nulls and

closed field lines. Astrophys J 350:672–691. https://doi.org/10.1086/168419

Lau YT, Finn JM (1996) Magnetic reconnection and the topology of interacting twisted flux tubes. Phys

Plasmas 3(11):3983. https://doi.org/10.1063/1.871571

Lazarian A, Vishniac ET (1999) Reconnection in a weakly stochastic field. Astrophys J 517:700–718.

https://doi.org/10.1086/307233

Lazarian A, Eyink GL, Jafari A, Kowal G, Li H, Xu S, Vishniac ET (2020) 3D turbulent reconnection:

theory, tests, and astrophysical implications. Phys Plasmas 27(1):012305. https://doi.org/10.1063/1.

5110603

Le A, Daughton W, Chen LJ, Egedal J (2017) Enhanced electron mixing and heating in 3-D asymmetric

reconnection at the Earth’s magnetopause. Geophys Res Lett 44(5):2096–2104. https://doi.org/10.

1002/2017GL072522. arXiv:1703.10246 [physics.plasm-ph]

Le A, Daughton W, Ohia O, Chen LJ, Liu YH, Wang S, Nystrom WD, Bird R (2018) Drift turbulence,

particle transport, and anomalous dissipation at the reconnecting magnetopause. Phys Plasmas

25(6):062103. https://doi.org/10.1063/1.5027086. arXiv:1802.10205 [physics.plasm-ph]

Leake JE, Arber TD (2006) The emergence of magnetic flux through a partially ionised solar atmosphere.

Astron Astrophys 450:805–818

Leake JE, Linton MG, Antiochos SK (2014) Simulations of emerging magnetic flux. II. The formation of

unstable coronal flux ropes and the initiation of coronal mass ejections. Astrophys J 787(1):46.

https://doi.org/10.1088/0004-637X/787/1/46

123

Magnetic reconnection: MHD theory and modelling Page 187 of 202 1

https://doi.org/10.1088/0004-637X/779/2/129
http://arxiv.org/abs/1304.6981
https://doi.org/10.1098/rsta.2014.0256
https://doi.org/10.3389/fspas.2021.662861
https://doi.org/10.1086/166939
https://doi.org/10.3847/1538-4357/ab3afd
https://doi.org/10.1086/307383
https://doi.org/10.1086/307383
https://doi.org/10.3847/1538-4357/aafad3
https://doi.org/10.3847/1538-4357/aafad3
http://arxiv.org/abs/1812.09474
https://doi.org/10.1007/BF00206193
https://doi.org/10.1088/0004-637X/700/1/63
https://doi.org/10.1088/0004-637X/700/1/63
https://doi.org/10.1103/PhysRevLett.108.241102
https://doi.org/10.1103/PhysRevLett.108.241102
https://doi.org/10.1063/1.1724359
https://doi.org/10.1186/BF03353251
https://doi.org/10.3847/2041-8213/ab45f9
https://doi.org/10.3847/2041-8213/ab45f9
https://doi.org/10.3847/1538-4357/abca8b
https://doi.org/10.3847/1538-4357/abca8b
https://doi.org/10.1088/0004-637X/760/1/31
https://doi.org/10.1088/0004-637X/760/1/31
https://doi.org/10.1086/168419
https://doi.org/10.1063/1.871571
https://doi.org/10.1086/307233
https://doi.org/10.1063/1.5110603
https://doi.org/10.1063/1.5110603
https://doi.org/10.1002/2017GL072522
https://doi.org/10.1002/2017GL072522
http://arxiv.org/abs/1703.10246
https://doi.org/10.1063/1.5027086
http://arxiv.org/abs/1802.10205
https://doi.org/10.1088/0004-637X/787/1/46


Leake JE, Daldorff LKS, Klimchuk JA (2020) The onset of 3D magnetic reconnection and heating in the

solar corona. Astrophys J 891(1):62. https://doi.org/10.3847/1538-4357/ab7193

Lee DT, Brown DS (2020) Topology of coronal magnetic fields: extending the magnetic skeleton using

null-like points. Sol Phys 295(12):168. https://doi.org/10.1007/s11207-020-01729-6. arXiv:2011.

10272 [astro-ph.SR]

Lee LC, Fu Z (1986a) Multiple X-line reconnection. I. A criterion for the transition from a single X-line

to a multiple X-line reconnection. J Geophys Res 91:6807–6815. https://doi.org/10.1029/

JA091iA06p06807

Lee LC, Fu ZF (1986b) A simulation study of magnetic reconnection: transition from a fast mode to a

slow mode expansion. J Geophys Res 91:4551–4556. https://doi.org/10.1029/JA091iA04p04551

Li T, Zhang J (2014) Slipping magnetic reconnection triggering a solar eruption of a triangle-shaped flag

flux rope. Astrophys J Lett 791(1):L13. https://doi.org/10.1088/2041-8205/791/1/L13. arXiv:1407.

4180 [astro-ph.SR]

Li T, Zhang J (2015) Quasi-periodic slipping magnetic reconnection during an X-class solar flare

observed by the Solar Dynamics Observatory and Interface Region Imaging Spectrograph.

Astrophys J Letts 804(1):L8. https://doi.org/10.1088/2041-8205/804/1/L8. arXiv:1504.01111 [astro-

ph.SR]

Li T, Yang K, Hou Y, Zhang J (2016) Slipping magnetic reconnection of flux-rope structures as a

precursor to an eruptive X-class solar flare. Astrophys J 830(2):152. https://doi.org/10.3847/0004-

637X/830/2/152. arXiv:1608.02057 [astro-ph.SR]

Li T, Hou Y, Yang S, Zhang J (2018) Three-dimensional magnetic reconnection triggering an X-class

confined flare in active region 12192. Astrophys J 869(2):172. https://doi.org/10.3847/1538-4357/

aaefee. arXiv:1811.03302 [astro-ph.SR]

Li T, Liu L, Hou Y, Zhang J (2019) Two types of confined solar flare. Astrophys J 881(2):151. https://doi.

org/10.3847/1538-4357/ab3121

Li T, Hou Y, Yang S, Zhang J, Liu L, Veronig AM (2020) Magnetic flux of active regions determining

the eruptive character of large solar flares. Astrophys J 900(2):128. https://doi.org/10.3847/1538-

4357/aba6ef. arXiv:2007.08127 [astro-ph.SR]

Li T, Priest ER, Guo R (2021) Three-dimensional magnetic reconnection in astrophysical plasmas. Proc R

Soc A 477:20200949. https://doi.org/10.1098/rspa.2020.0949

Lin J, Ko YK, Sui L, Raymond JC, Stenborg GA, Jiang Y, Zhao S, Mancuso S (2005) Direct observations

of the magnetic reconnection site of an eruption on 2003 November 18. Astrophys J

622(2):1251–1264. https://doi.org/10.1086/428110

Linton M (2007) Three-dimensional flux-tube reconnection. In: Birn J, Priest ER (eds) Reconnection of

magnetic fields: MHD and collisionless theory and observations. Cambridge University Press,

Cambridge, pp 74–86

Linton MG, Antiochos SK (2005) Magnetic flux tube reconnection: tunneling versus slingshot. Astrophys

J 625:506–521. https://doi.org/10.1086/429585

Linton MG, Priest ER (2003) Three-dimensional reconnection of untwisted magnetic flux tubes.

Astrophys J 595:1259–1276. https://doi.org/10.1086/377439

Linton MG, Dahlburg RB, Antiochos SK (2001) Reconnection of twisted flux tubes as a function of

contact angle. Astrophys J 553:905–921. https://doi.org/10.1086/320974

Litvinenko YE (1996) Particle acceleration in reconnecting current sheets with a nonzero magnetic field.

Astrophys J 462:997. https://doi.org/10.1086/177213

Liu YH, Drake JF, Swisdak M (2012) The structure of the magnetic reconnection exhaust boundary. Phys

Plasmas 19(2):022110–022110. https://doi.org/10.1063/1.3685755. arXiv:1111.7039 [physics.-

plasm-ph]

Liu YH, Daughton W, Karimabadi H, Li H, Roytershteyn V (2013) Bifurcated structure of the electron

diffusion region in three-dimensional magnetic reconnection. Phys Rev Lett 110(26):265004.

https://doi.org/10.1103/PhysRevLett.110.265004

Liu YH, Daughton W, Karimabadi H, Li H, Peter Gary S (2014) Do dispersive waves play a role in

collisionless magnetic reconnection? Phys Plasmas 21(2):022113. https://doi.org/10.1063/1.

4865579

Liu YH, Hesse M, Guo F, Daughton W, Li H, Cassak PA, Shay MA (2017) Why does steady-state

magnetic reconnection have a maximum local rate of order 0.1? Phys Rev Lett 118(8):085101.

https://doi.org/10.1103/PhysRevLett.118.085101. arXiv:1611.07859 [physics.plasm-ph]

123

1 Page 188 of 202 D. I. Pontin, E. R. Priest

https://doi.org/10.3847/1538-4357/ab7193
https://doi.org/10.1007/s11207-020-01729-6
http://arxiv.org/abs/2011.10272
http://arxiv.org/abs/2011.10272
https://doi.org/10.1029/JA091iA06p06807
https://doi.org/10.1029/JA091iA06p06807
https://doi.org/10.1029/JA091iA04p04551
https://doi.org/10.1088/2041-8205/791/1/L13
http://arxiv.org/abs/1407.4180
http://arxiv.org/abs/1407.4180
https://doi.org/10.1088/2041-8205/804/1/L8
http://arxiv.org/abs/1504.01111
https://doi.org/10.3847/0004-637X/830/2/152
https://doi.org/10.3847/0004-637X/830/2/152
http://arxiv.org/abs/1608.02057
https://doi.org/10.3847/1538-4357/aaefee
https://doi.org/10.3847/1538-4357/aaefee
http://arxiv.org/abs/1811.03302
https://doi.org/10.3847/1538-4357/ab3121
https://doi.org/10.3847/1538-4357/ab3121
https://doi.org/10.3847/1538-4357/aba6ef
https://doi.org/10.3847/1538-4357/aba6ef
http://arxiv.org/abs/2007.08127
https://doi.org/10.1098/rspa.2020.0949
https://doi.org/10.1086/428110
https://doi.org/10.1086/429585
https://doi.org/10.1086/377439
https://doi.org/10.1086/320974
https://doi.org/10.1086/177213
https://doi.org/10.1063/1.3685755
http://arxiv.org/abs/1111.7039
https://doi.org/10.1103/PhysRevLett.110.265004
https://doi.org/10.1063/1.4865579
https://doi.org/10.1063/1.4865579
https://doi.org/10.1103/PhysRevLett.118.085101
http://arxiv.org/abs/1611.07859


Liu YY, Fu HS, Olshevsky V, Pontin DI, Liu CM, Wang Z, Chen G, Dai L, Retino A (2019) SOTE: a

nonlinear method for magnetic topology reconstruction in space plasmas. Astrophys J Suppl Ser

244(2):31. https://doi.org/10.3847/1538-4365/ab391a

Longbottom AW, Rickard GJ, Craig IJD, Sneyd AD (1998) Magnetic flux braiding: force-free equilibria

and current sheets. Astrophys J 500:471–482. https://doi.org/10.1086/305694

Longcope DW (1996) Topology and current ribbons: a model for current, reconnection and flaring in a

complex, evolving corona. Sol Phys 169:91–121. https://doi.org/10.1007/BF00153836

Longcope DW (1998) A model for current sheets and reconnection in X-ray bright points. Astrophys J

507:433–442. https://doi.org/10.1086/306319

Longcope DW (2001) Separator current sheets: generic features in minimum-energy magnetic fields

subject to flux constraints. Phys Plasmas 8:5277–5289. https://doi.org/10.1063/1.1418431

Longcope DW (2005) Topological methods for the analysis of solar magnetic fields. Living Rev Sol Phys

2:7. https://doi.org/10.12942/lrsp-2005-7

Longcope DW, Beveridge C (2007) A quantitative, topological model of reconnection and flux rope

formation in a two-ribbon flare. Astrophys J 669:621–635. https://doi.org/10.1086/521521

Longcope DW, Cowley SC (1996) Current sheet formation along three-dimensional magnetic separators.

Phys Plasmas 3:2885–2897

Longcope DW, Parnell CE (2009) The number of magnetic null points in the quiet-Sun corona. Sol Phys

254:51–75. https://doi.org/10.1007/s11207-008-9281-x

Longcope DW, Silva AVR (1998) A current ribbon model for energy storage and release with application

to the flare 1992 Jan. 7. Sol Phys 179:349–377. https://doi.org/10.1023/A:1005071122577

Longcope DW, Strauss HR (1993) The coalescence instability and the development of current sheets in

two-dimensional magnetohydrodynamics. Phys Fluids B 5:2858–2869

Longcope DW, Strauss HR (1994) The form of ideal current layers in line-tied magnetic fields. Astrophys

J 437:851–859. https://doi.org/10.1086/175045

Longcope DW, Brown DS, Priest ER (2003) On the distribution of magnetic null points above the solar

photosphere. Phys Plasmas 10:3321–3334. https://doi.org/10.1063/1.1590983

Longcope DW, McKenzie D, Cirtain J, Scott J (2005) Observations of separator reconnection to an

emerging active region. Astrophys J 630:596–614. https://doi.org/10.1086/432039

Longcope DW, Beveridge C, Qiu J, Ravindra B, Barnes G, Dasso S (2007) Modeling and measuring the

flux reconnected and ejected by the two-ribbon flare/ CME event on 7 November 2004. Sol Phys

244:45–73. https://doi.org/10.1007/s11207-007-0330-7

Longcope DW, Guidoni SE, Linton MG (2009) Gas-dynamic shock heating of post-flare loops due to

retraction following localized, impulsive reconnection. Astrophys J Lett 690:L18–L22

Longcope D, Unverferth J, Klein C, McCarthy M, Priest E (2018) Evidence for downflows in the narrow

plasma sheet of 2017 September 10 and their significance for flare reconnection. Astrophys J

868(2):148. https://doi.org/10.3847/1538-4357/aaeac4
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Schmieder B, Démoulin P, Fletcher L, López Fuentes M, Mandrini C, Mason H, Young P, Nitta N (2001)

CDS UV brightenings explained by quasi-separatrices and bald patches in an S-shaped active

region. In: Brekke P, Fleck B, Gurman JB (ed) Recent Insights into the Physics of the Sun and

Heliosphere: highlights from SOHO and Other Space Missions. vol 203. ASP Conf. Ser., San

Francisco, p 314

Schnack DD, Killeen J (1979) Nonlinear saturation of the tearing mode in a reversed-field pinch. Nucl

Fusion 19:877–887

Scholer M (1989) Undriven magnetic reconnection in an isolated current sheet. J Geophys Res

94:8805–8812. https://doi.org/10.1029/JA094iA07p08805

Schrijver CJ, Title AM (2002) The topology of a mixed-polarity potential field, and inferences for the

heating of the quiet solar corona. Sol Phys 207:223–240. https://doi.org/10.1023/A:1016295516408

Schrijver CJ, Title AM, Harvey KL, Sheeley NR, Wang YM, van den Oord GHJ, Shine RA, Tarbell TD,

Hurlburt NE (1998) Large-scale coronal heating by the small-scale magnetic field of the Sun. Nature

394:152–154

Schrijver CJ, DeRosa ML, Title AM (2010) Magnetic field topology and the thermal structure of the

corona over solar active regions. Astrophys J 719(2):1083–1096. https://doi.org/10.1088/0004-

637X/719/2/1083

Scott RB, Pontin DI, Yeates AR, Wyper PF, Higginson AK (2018) Magnetic structures at the boundary of

the closed corona: interpretation of S-web arcs. Astrophys J 869(1):60. https://doi.org/10.3847/1538-

4357/aaed2b

Scott RB, Pontin DI, Wyper PF (2019) Magnetic structures at the boundary of the closed corona: a semi-

automated study of S-web morphology. Astrophys J 882(2):125. https://doi.org/10.3847/1538-4357/

ab364a

Scott RB, Pontin DI, Antiochos SK, DeVore CR, Wyper PF (2021) The dynamic formation of

pseudostreamers. Astrophys J 913(1):64. https://doi.org/10.3847/1538-4357/abec4f

Seehafer N (1986) On the magnetic field line topology in solar active regions. Sol Phys 105:223–235.

https://doi.org/10.1007/BF00172044

Semenov VS, Kubyshkin IV, Heyn MF (1983) Asymptotic solution for field-line reconnection.

Compressible case of Petschek’s model. J Plasma Phys 30:303–320. https://doi.org/10.1017/

S0022377800001203

Shay MA, Drake JF, Denton RE, Biskamp D (1998) Structure of the dissipation region during

collisionless magnetic reconnection. J Geophys Res 103(A5):9165–9176. https://doi.org/10.1029/

97JA03528

Shay MA, Drake JF, Rogers BN, Denton RE (1999) The scaling of collisionless, magnetic reconnection

for large systems. Geophys Res Lett 26:2163–2166. https://doi.org/10.1029/1999GL900481

Shay MA, Drake JF, Swisdak M, Rogers BN (2004) The scaling of embedded collisionless reconnection.

Phys Plasmas 11(5):2199–2213. https://doi.org/10.1063/1.1705650

123

1 Page 196 of 202 D. I. Pontin, E. R. Priest

https://doi.org/10.1103/PhysRevLett.103.105004
https://doi.org/10.1103/PhysRevLett.103.105004
https://doi.org/10.1029/JA084iA12p07177
https://doi.org/10.1088/0004-637X/750/1/15
https://doi.org/10.1088/0004-637X/810/2/96
http://arxiv.org/abs/1506.03452
https://doi.org/10.1029/JA093iA06p05547
https://doi.org/10.1086/170586
https://doi.org/10.1029/JA094iA07p08805
https://doi.org/10.1023/A:1016295516408
https://doi.org/10.1088/0004-637X/719/2/1083
https://doi.org/10.1088/0004-637X/719/2/1083
https://doi.org/10.3847/1538-4357/aaed2b
https://doi.org/10.3847/1538-4357/aaed2b
https://doi.org/10.3847/1538-4357/ab364a
https://doi.org/10.3847/1538-4357/ab364a
https://doi.org/10.3847/1538-4357/abec4f
https://doi.org/10.1007/BF00172044
https://doi.org/10.1017/S0022377800001203
https://doi.org/10.1017/S0022377800001203
https://doi.org/10.1029/97JA03528
https://doi.org/10.1029/97JA03528
https://doi.org/10.1029/1999GL900481
https://doi.org/10.1063/1.1705650


Shay MA, Drake JF, Swisdak M (2007) Two-scale structure of the electron dissipation region during

collisionless magnetic reconnection. Phys Rev Lett 99(15):155002. https://doi.org/10.1103/

PhysRevLett.99.155002. arXiv:0704.0818 [physics.plasm-ph]

Shepherd LS, Cassak PA (2010) Comparison of secondary islands in collisional reconnection to Hall

reconnection. Phys Rev Lett 105:015004. https://doi.org/10.1103/PhysRevLett.105.015004

Shibata K, Tanuma S (2001) Plasmoid-induced-reconnection and fractal reconnection. Earth Planets

Space 53:473–482. https://doi.org/10.1186/BF03353258

Shibata K, Nozawa S, Matsumoto R (1992) Magnetic reconnection associated with emerging magnetic

flux. Publ Astron Soc Jpn 44:265–272

Simakov AN, Chacón L, Knoll DA (2006) Semi-analytical model for flux-pileup-limited, dynamically

reconnecting systems in resistive magnetohydrodynamics. Phys Plasmas 13(8):082103. https://doi.

org/10.1063/1.2244531

Smith DF, Priest ER (1972) Current limitation in solar flares. Astrophys J 176:487. https://doi.org/10.

1086/151651

Smitha HN, Anusha LS, Solanki SK, Riethmüller TL (2017) Estimation of the magnetic flux emergence

rate in the quiet Sun from Sunrise data. Astrophys J Suppl 229:17. https://doi.org/10.3847/1538-

4365/229/1/17. arXiv:1611.06432 [astro-ph.SR]

Solanki SK, Barthol P, Danilovic S, Feller A, Gandorfer A, Hirzberger J, Riethmüller TL, Schüssler M,

Bonet JA, Martı́nez Pillet V, del Toro Iniesta JC, Domingo V, Palacios J, Knölker M, Bello
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Titov VS, Forbes TG, Priest ER, Mikić Z, Linker JA (2009) Slip-squashing factors as a measure of three-

dimensional magnetic reconnection. Astrophys J 693:1029–1044. https://doi.org/10.1088/0004-

637X/693/1/1029.0807.2892

123

1 Page 198 of 202 D. I. Pontin, E. R. Priest

https://doi.org/10.1146/annurev.aa.07.090169.001053
https://doi.org/10.1146/annurev.aa.07.090169.001053
https://doi.org/10.1086/588088
http://arxiv.org/abs/0803.3415
http://arxiv.org/abs/0803.3415
https://doi.org/10.3847/1538-4357/ab6ffc
https://doi.org/10.3847/1538-4357/ab6ffc
https://doi.org/10.3847/1538-4357/aafaf8
https://doi.org/10.3847/1538-4357/aafaf8
http://arxiv.org/abs/1901.02798
https://doi.org/10.1088/2041-8205/745/1/l6
https://doi.org/10.1088/2041-8205/745/1/l6
https://doi.org/10.1088/0004-637X/807/2/159
https://doi.org/10.3847/1538-4357/aa6f06
http://arxiv.org/abs/1609.00724
https://doi.org/10.1103/PhysRevLett.33.1139
https://doi.org/10.3847/1538-4357/aa79fa
https://doi.org/10.3847/1538-4357/aab0a0
https://doi.org/10.3847/1538-4357/aab0a0
https://doi.org/10.1063/1.5035489
https://doi.org/10.1051/0004-6361/201834369
https://doi.org/10.1007/BF00159161
https://doi.org/10.1086/512671
https://doi.org/10.1080/03091929308203614
https://doi.org/10.1080/03091929308203614
https://doi.org/10.1029/2001JA000278
https://doi.org/10.1086/344799
https://doi.org/10.1063/1.1789159
https://doi.org/10.1088/0004-637X/693/1/1029.0807.2892
https://doi.org/10.1088/0004-637X/693/1/1029.0807.2892
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