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We study magic angle graphene in the presence of both strain and particle-hole symmetry breaking due
to nonlocal interlayer tunneling. We perform a self-consistent Hartree-Fock study that incorporates these
effects alongside realistic interaction and substrate potentials and explore a comprehensive set of competing
orders including those that break translational symmetry at arbitrary wave vectors. We find that at all
nonzero integer fillings very small strains, comparable to those measured in scanning tunneling
experiments, stabilize a fundamentally new type of time-reversal-symmetric and spatially nonuniform
order. This order, which we dub the “incommensurate Kekulé spiral” (IKS) order, spontaneously breaks
both the emergent valley-charge conservation and moiré translation symmetries but preserves a modified
translation symmetry T̂ 0—which simultaneously shifts the spatial coordinates and rotates the Uð1Þ angle
which characterizes the spontaneous intervalley coherence. We discuss the phenomenological and
microscopic properties of this order. We argue that our findings are consistent with all experimental
observations reported so far, suggesting a unified explanation of the global phase diagram in terms of the
IKS order.
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I. INTRODUCTION

The discovery of superconductivity proximate to corre-
lated insulating behavior in a variety of graphene moiré
heterostructures [1–4] has triggered intensive efforts to
explore the phase structure of these highly tunable two-
dimensional materials. In the best-studied example, twisted
bilayer graphene (TBG) tuned to a “magic angle” of
approximately 1°, the enhancement of correlations is
associated to the formation of extremely narrow bands
due to the reconstruction of the electronic dispersion by the
moiré superlattice. As noted by Bistritzer and MacDonald
(BM) [5], this can be elegantly captured within a continuum
model [6–8] where Dirac cones contributed by isolated
graphene layers are coupled by interlayer tunneling modu-
lated at the moiré scale. The BM model serves as a starting
point for most theoretical studies of TBG. On combining
the degeneracies corresponding to spin and microscopic
valley indices with the Dirac structure enforced by exact
and approximate symmetries of the moiré band structure,

the model reveals that the striking effects reported in
experiments occur when the Fermi energy is tuned to lie
within an octet of nearly flat bands that straddle charge
neutrality. The phase structure of TBG then turns on the
question of how electron correlations and other perturba-
tions such as strain and substrate effects lift the approxi-
mate degeneracy within this subspace to select between a
variety of competing ground states.
At first sight, the phase diagram of TBG resembles that

of the cuprate high-temperature superconductors, with
electrostatic gating playing the role of chemical doping.
This prompted initial attempts to model correlation effects
within a single-band Hubbard model for electronic states
localized to a triangular moiré superlattice. Although this
approach has proven fruitful in studying moiré hetero-
structures of MoS2 and other transition-metal dichalcoge-
nides [9], its applicability to TBG is limited by the “fragile
topology” of the BM bands [10,11]. The latter requires that
the simplest tight-binding model that faithfully captures the
symmetries of TBG involves a pair of crystallographically
inequivalent Wannier orbitals centered on sites of a honey-
comb lattice but with their charge densities peaked on a
triangular lattice formed by the centers of its hexagons
[10,12,13]. A corollary of this Wannier representation is
that it implies a higher degree of itineracy than can be
captured via a minimal honeycomb lattice Hubbard model
with on-site repulsion and nearest-neighbor hopping.
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The utility of a Hubbard description is further challenged
by the early experimental observation of a quantized
anomalous Hall (QAH) resistance in TBG samples aligned
with a hexagonal boron nitride (h-BN) substrate, at an
electron density corresponding to filling seven of the eight
bands [14]. (In the convention where ν ¼ 0 represents the
filling at neutrality, this corresponds to ν ¼ þ3.) Since this
occurs in the absence of an external magnetic field, it
indicates the spontaneous breaking of time-reversal sym-
metry (TRS). One explanation of this phenomenon invokes
a compelling analogy to the other paradigmatic setting for
strong correlations: the celebrated Landau levels (LLs) of
an electron in a magnetic field. The TBG flat bands are
endowed with nontrivial topology encoded in the winding
of their Bloch functions across the moiré Brillouin zone
(mBZ); the inclusion of substrate potential triggers the
opening of gaps between the moiré Dirac points (by
breaking one of the protecting symmetries) and assigns
nonzero Chern numbers to the bands, making them
topologically equivalent to LLs. The absence of explicit
TRS breaking is reflected in the assignment of equal and
opposite Chern numbers to different valleys, which are
exchanged by TRS. At ν ¼ 3, electrons in the two
remaining unfilled bands spontaneously polarize into one
of the two valleys. This allows them to minimize their
interaction energy by virtue of Pauli exclusion, leading to
an insulator that spontaneously breaks TRS, with a quan-
tized Hall resistivity of ρxy ¼ h=e2 protected by the charge
gap. Recently, a similar QAH state was also observed at
ν ¼ 1 [15]. While the formation of such orbital Chern
insulator states can, in principle, be captured within a
Hubbard description [16], its close parallels to quantum
Hall ferromagnetism (QHFM) [17–19] has motivated a
distinct perspective, where TBG is viewed as a generalized
multicomponent quantum Hall system. This naturally
explains both the observed QAH response as well the
propensity for insulating states at commensurate filling and
motivates a sigma model description based on a hierarchy
of perturbations around a “hidden” limit with Uð4Þ ×Uð4Þ
symmetry [20–22]. The QHFM picture receives further
experimental support by the observed stabilization of QAH
insulators [23] with Chern numbers C ¼ �3;�2;�1 at
ν ¼ �1;�2;�3 on applying a small out-of-plane magnetic
field, even in the absence of substrate alignment [15,24–
27]. However, the TBG bands nevertheless retain features
absent in LLs. For instance, their dispersion (though small)
remains nonzero and is enhanced when particle-hole
symmetry-breaking effects are incorporated—especially
in the electron-doped regime—or upon inclusion of strain.
Such effects are likely important in giving an accurate
description of experimental samples. As a case in point,
even at commensurate fillings some experiments [28]
report gapless states or insulators with Chern numbers
distinct from those of the noninteracting bands [15,29,30].
This suggests that departures from the flat band or QHFM

limit are non-negligible and that the competition between
itineracy and localization characteristic of Hubbard physics
remains relevant to TBG.
Given its enticing position at the intersection of two

dominant themes of strong correlations, it is natural to
conjecture that orders that are “natural” from both per-
spectives could be particularly robust candidate ground
states in TBG. One example (and our focus here) is
furnished by states with broken translation symmetry,
which emerge in relatively well-understood limits of both
the Hubbard and quantum Hall settings. The formation of
charge and/or spin stripe order is believed to be a near-
universal consequence of hole doping the cuprates away
from commensurate filling: While purely on-site Hubbard
repulsion favors phase separation, the inevitably present
further-neighbor interactions frustrate this in favor of
spatially ordered phases [31–43]. For similar energetic
reasons, a variety of stripe and bubble phases are known to
be competitive ground states in high Landau levels [44–
47]: Phase separation is driven by exchange physics and
frustrated by Hartree contributions. As noted above, any
Hubbard description of TBG must involve substantial
further-neighbor interactions. Meanwhile, corrections to
the flat band limit—particularly from strain and particle-
hole symmetry breaking—can significantly modify the
Hartree potential, penalizing full occupation of the mBZ.
Since exchange interactions still favor insulating behavior,
one resolution is to reconstruct the bands via finite-wave-
vector ordering. Thus, from both points of view, it appears
that conditions in TBG might favor translational-
symmetry-breaking states over their competitors. Despite
this, relatively little work focuses on this possibility, with
rare exceptions [16,22,30,48–53], of which we highlight a
few. References [16,51] identify a unidirectional charge
density wave order that doubles the moiré unit cell in an
interaction-only model with spin and valley degeneracy
suppressed, but this does not appear to be energetically
competitive with translationally invariant states in more
realistic situations. More recently, a different period-
doubling stripe order stabilized by Hartree effects was
invoked to explain the occurrence of commensurate-filling
insulators whose Chern numbers depart from those
expected from the naive QHFM picture [30] (although
we suggest an alternative and possibly more natural
translation-breaking order at these fillings below).
Reference [50] focuses on the Dirac cones and classifies
the possible flavor-breaking orders that can be connected to
superconductivity via Wess-Zumino-Witten terms. Among
the candidate normal-state orders are moiré density waves
which couple the different minivalleys of TBG (see also
Ref. [54] for similar discussion in twisted trilayer graphene)
and, hence, break translation symmetry, but no microscopic
studies have yet been performed to determine their ener-
getic competitiveness. The nature of translation symmetry
breaking differs from that in the state described in the
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subsequent sections, which retains the modified translation
symmetry T̂ 0. Hence, it is not associated with charge or spin
modulations between moiré AA regions, unlike the moiré
density waves. Reference [55] studies a valley spiral state
in magnetically encapsulated TBG. This is a similar state to
our proposed one, albeit the physical origin and the
parameter space within which that state exists are quite
different. [56] For completeness, we note that translational
symmetry breaking has recently been observed in closely
related twisted monolayer-bilayer graphene moiré hetero-
structures [57] and was proposed theoretically to explain
insulating states observed in twisted bilayer WSe2 [58].
But, despite these previous works, to date there has been no
systematic analysis of translational symmetry breaking in
realistic TBG systems, and so the extent to which such
symmetry breaking is a common phenomenon across the
wide range of parameters relevant to experimental samples
remains unclear.
In this work, we explore translational-symmetry-breaking

order at commensurate integer fillings in TBG. Our analysis
incorporates three experimentally important deviations from
the Bistritzer-MacDonald limit—particle-hole symmetry
breaking from nonlocal tunneling perturbations, a substrate
potential, and uniaxial strain [59]—and also studies differ-
ent interaction strengths and twist angles. In the balance of
this introduction, we provide a digest of our main results,
which also serves to signpost the organization of the
remainder of this paper.

A. Summary of results

Our central finding, obtained from extensive Hartree-
Fock simulations (discussed in Sec. II), is that, for modest
(as little as 0.2%) uniaxial strain and largely independent of
all other parameters, the ground state of TBG at all nonzero
integer fillings ν ¼ �1;�2;�3 is a time-reversal invariant
state that breaks superlattice translational symmetry [60] by
modulating intervalley coherence at an incommensurate
wave vector q. Since the intervalley coherence corresponds
to a Kekulé pattern at the microscopic graphene scale, one
can view this order as a Kekulé pattern that rotates at the
moiré scale with period 2π=jqj [Fig. 1]. We therefore dub
this the “incommensurate Kekulé spiral” (IKS) order. The
IKS state is insulating at ν ¼ �2;�3 but does not show a
charge gap at ν ¼ �1. In contrast to its ubiquity at nonzero
integer fillings, the IKS order is absent at charge neutrality,
where we instead find the ground state for comparable
strain to be a nematic semimetal, as identified in previous
work [61]. An overview of all the phases found in Hartree-
Fock is given in Fig. 2.
Modulations in the valley coherence are fundamental to

the IKS state, which, hence, relies on the interplay between
the moiré pattern and graphene-scale physics. This makes
its properties and phenomenology distinct both from the
previously studied period-2 stripe states in TBG [30] and
from various stripe orders in other correlated systems.

It also differs in a few important ways from other proposed
states with spatially modulated valley coherence in either
TBG, twisted bilayer WSe2, or twisted monolayer-bilayer
graphene [48,49,58,62]. First, IKS order generally occurs at
an incommensurate wave vector, unlike the moiré density
waves in Ref. [50]. Second, it does not rely on the presence
of higher-order van Hove singularities or Fermi-surface
nesting and, thus, has valley coherence over almost the
entire mBZ. Third, the IKS state apparently requires a
small, but nonzero, amount of strain to be stabilized against
competing q ¼ 0 orders. And finally, the IKS state is time-
reversal symmetric, unlike the state discussed for twisted
monolayer-bilayer graphene in Ref. [62].
Although the IKS order parameter breaks the moiré

translation T̂ai and Uð1ÞV valley symmetries, it preserves
T̂ 0
ai ¼ T̂aie

iq·aiτz=2 (where ai are moiré lattice vectors and τμ
denote a set of Pauli matrices acting in valley space).
Performing a valley-dependent gauge transformation,
therefore, yields eigenstates that satisfy a generalized
Bloch theorem. This transformation, which amounts to
shifting the dispersion in the valleys by �q=2 in the mBZ,
allows us to label electronic states in the IKS state by an
analog of the crystal momentum associated with T̂ 0

ai (rather
than T̂ai), without folding the mBZ. This shifted-mBZ
perspective yields a simple yet quantitatively accurate
ansatz for the HF projector in the IKS state, which, in
turn, allows us to link the origin of the order to features of
the interaction-renormalized BM bands. We can also use
the preservation of T̂ 0

ai to derive a modified Lieb-Schulz-
Mattis theorem that forces gapped IKS order to appear only
at integer fillings unless it triggers subsidiary topological or
symmetry-breaking order. This explains why, despite
involving a modulation that is incommensurate with the
moiré lattice, the IKS insulator is tied to densities that are
commensurate with it.
As we show below, the precise magnitude and direction

of the spiral wave vector q are controlled by details of the
dispersion of the interaction-renormalized bands in the
mBZ. The former is roughly 1=3 of the width of the mBZ,
while the latter is approximately aligned along a moiré
crystallographic axis, but the energy cost for varying away
from these values (the “stiffness” of the IKS order) is quite
small. In a sense, one can view this softness as being partly
responsible for the robustness of the IKS state, since it
allows the ordered state to respond to variations in external
parameters such as substrate potential, twist angle, or
interaction strength by adjusting q while keeping its other
properties essentially unchanged.
The above results are obtained in Sec. III by focusing

initially on fillings ν ¼ �2 where the IKS order is
especially simple to describe. We broaden the scope of
our analysis in Sec. IV to also consider ν ¼ �1 and
ν ¼ �3, which differ primarily in the spin structure and
the stability of IKS order against competing phases.
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Interestingly, the time-reversal-symmetric IKS order pro-
vides a way to obtain insulating states with zero Chern
number at the odd integer fillings. Such states are difficult
to obtain within the QHFM formalism and are observed
experimentally in Refs. [3,15]. In Sec. V, we show that the
ν ¼ −3 state provides a “basis spiral” that serves as a
building block for IKS states at other fillings, in a manner
that we make quantitatively precise.
We derive a Landau-Ginzburg theory of IKS order in

Sec. VI and use this to link the circular (elliptical) nature of
the spiral order in valley coherence to the absence (pres-
ence) of subsidiary charge density modulations. We also
consider the response of the IKS state to quenched disorder
(Sec. VII) and thermal fluctuations (Sec. VIII). A key point
is that, although disorder on the microscopic graphene scale
can couple to the Kekulé distortion as a random field, this is
suppressed in powers of the ratio of the graphene and moiré
lattice constants, scaling as θ4 for small twist angles θ.
Consequently, the dominant disorder fluctuations are those
that occur on the moiré scale. This justifies our assignment
of a definite Kekulé order to each AA-stacking region that
defines a superlattice “site.” Thermal effects are more
delicate, owing to a rich set of symmetries broken by
the IKS state: namely, valley-Uð1Þ, superlattice translation,
and threefold rotation. Since the superlattice translation is
broken solely by valley-Uð1Þ charged operators, long-
range order in both is absent at any temperature T > 0
and is replaced by algebraic correlations, which, in turn,
become exponential decay above a Berezinskii-Kosterlitz-
Thouless transition temperature TBKT at which vortices in
the valley order proliferate. In contrast, the rotational
symmetry breaking persists as true long-range T > 0 order,
so that (ignoring explicit symmetry breaking from strain)
the finite-temperature IKS state has a nematic order up to a
finite Ising transition at TN . Depending on the ratio of TN to
TBKT, we can have a variety of different thermal melting
scenarios based on which order is lost first, though the
precise details are subtle and may depend on the ability of
the superlattice to pin q to a commensurate value (which is
likely weak). The relevant scales for TN and TBKT are
similar, are set by the IKS stiffness, and are approximately
7 K, which is comparable with the experimental temper-
ature scales at which gapped insulators are observed.
We emphasize (Sec. IX) that our results closely match

current experiments: most notably, through the absence of
spin polarization in the ν ¼ �2 IKS, the relatively greater
robustness (as measured by the charge gap) of insulating
states on the electron-doped side (ν > 0), and the ability of
the IKS to “reset” the Chern number to zero at odd integer
fillings. The IKS order is a nematic at finite temperature.
Thus, we expect the orientational symmetry-breaking
effects of strain to be heavily enhanced in the IKS state,
making it a natural proximate order to the reported nematic
superconductors near ν ¼ −2;−3. A subset of experiments
find correlated insulators at all integer fillings except at

neutrality, where they see evidence of a gapless state, and
ν ¼ �1, where weak insulating peaks have been observed
[4]. This is readily reconciled with our results—since (see
Fig. 2) we find IKS order for all integer ν except ν ¼ 0—if
we assume that the relevant experimental samples are
subject to a small amount of heterostrain. (This is a
relatively mild assumption given the weak strain needed
to stabilize the IKS state and the ν ¼ 0 nematic semimetal.)
Direct verification of IKS order is a more challenging goal.
Owing to the unusual nature of IKS states, the translational
symmetry breaking is invisible to valley-diagonal observ-
ables, and a Landau-Ginzburg analysis reveals that the
circular spiral order does not trigger a parasitic charge-
density wave order. Nevertheless, since intervalley coher-
ence necessarily triggers spatial order on the graphene
scale, the associated Kekulé distortion should be apparent,
e.g., in the locally AA regions of the superlattice, but will be
modulated at the moiré scale. This order can, in principle,
be detected via scanning probes, though the sensitivity
required may be difficult to achieve in the very near term.
We close with a discussion of future directions motivated
by this work, in Sec. X. We provide details of numerical
simulations and additional analysis in five technical
Appendixes in Supplemental Material [63].

II. MODEL AND NUMERICAL TECHNIQUES

In this section, we discuss the interacting Bistritzer-
MacDonald (BM) model in the presence of strain, substrate
potential, and nonlocal tunneling (NLT) and describe our
HF calculations. Further details can be found in the
Appendixes [63].
We begin with the standard single-particle BM model [5]

describing the band structure of two graphene layers l ¼ 1, 2
stacked with a relative twist θ near the magic angle. For
concreteness, we orient the coordinate system such that
the untwisted monolayer Dirac points lie at k ¼ �KDx̂.
The interlayer coupling, which is modulated by the moiré
pattern, is parametrized by sublattice-dependent hopping
constants wAA ¼ 82.5 meV and wAB ¼ 110 meV. The
presence of different coupling constants arises from corru-
gation effects [64,65] that increase the interlayer spacing in
AA-stacking regions compared to AB (Bernal) regions.
Throughout this work, we fix θ ¼ 1.08°, unless stated

otherwise. Including both spins and valleys (with corre-
sponding Pauli matrices sμ and τμ, respectively), the BM
Hamiltonian has eight central bands near the neutrality
point with narrow bandwidth approximately 5 meV and
large gaps approximately 30 meV to the remote bands
[Fig. 1(b)]. The central band wave functions are concen-
trated at the AA-stacked regions [Fig. 1(a)], which form the
moiré lattice. The model possesses (spinless) TRS T̂ ¼ τxK̂
(where K̂ denotes complex conjugation) and enjoys
emergent D6 and valley-charge conservation [Uð1ÞV] sym-
metries and an approximate particle-hole symmetry (PHS)
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[10,11,66]. A related antiunitary symmetry T̂ 0 ¼ τyK̂ can
be defined, which is a signature of the Kramers intervalley
coherent (KIVC) phase [20] to be reviewed below.
The relevant spatial symmetries of the single-valley BM
Hamiltonian are Ĉ2zT̂ , Ĉ3z, and M̂, where the latter
corresponds to an in-plane twofold rotation around the x
axis which interchanges the two layers. Spin-orbit coupling
is neglected, resulting in a total Uð2ÞK ×Uð2ÞK0 flavor
symmetry.

A. Chern basis and effect of a substrate potential

The central bands bear a remarkable resemblance to zero
Landau levels in opposite fields (an analogy which is
sharpened in the chiral limitwAA ¼ 0 [67]). For a given spin
or valley, we can take advantage of the weak dispersion to
rotate the pair of central BM bands into a C ¼ �1
Chern basis by diagonalizing the sublattice operator σz

[20]. Each band carries substantial sublattice polarization
(tending to �1 in the chiral limit), and, hence, we use σ to
also refer to this basis. The Chern number of each of the
degenerate bands is tied to its valley according to C ¼ σzτz
[10,20,68]. (Note that the “Chern basis” defined by a
definite value of C does not coincide with the eigenbasis of
the single-particle dispersion in the absence of a substrate
potential.)
Alignment of TBG with the h-BN substrate directly

couples to the Chern basis via a sublattice mass ∼σz with
strengthΔ ≃ 10–20 meV [69–71] (we ignore the additional
moiré potential coming from the mismatch between the
graphene and h-BN lattice constants, although it has
recently been argued to be important for explaining some
of the experimental features [72,73]) and violates Ĉ2z and
M̂. The breaking of Ĉ2zT̂ gaps the Dirac points [Fig. 1(c)],
resulting in the formation of Chern bands. Polarization
into a subset of these Chern bands (akin to quantum Hall

(a) (b) (d)

(c)

FIG. 1. (a) Real-space picture of an IKS state with q ¼ G1=3. The color plot on the superlattice scale shows the charge density, with
dark spots corresponding to AA regions. Black arrows represent the complex IVC order parameter ∼hτxσxi þ ihτyσxi. For each of the

three inequivalent AA regions, the expectation value of c†AcB þ c†BcA on the microscopic graphene bonds is shown. Blue (red) dots
correspond to positive (negative) expectation values, and the center of the AA region is marked with a black cross. The different
inequivalent AA regions have different approximate

ffiffiffi
3

p
×

ffiffiffi
3

p
Kekulé-like patterns on the graphene scale. (b) The red (black) line shows

BM band structure along a cut in the mBZ for valleyK (K0). (c) The presence of nonlocal tunneling, strain, and substrate potential breaks
various symmetries and affects the dispersion. (d) If these single-particle perturbations are weak, the interacting model has an
approximate Uð4ÞC¼1 × Uð4ÞC¼−1 symmetry. Dashed and dotted lines indicate the channel of intervalley coherence that generically
occurs for Uð1ÞV-breaking phases. τx;y denotes any valley-off-diagonal components.

FIG. 2. Summary of phases found in self-consistent Hartree-Fock at all integer fillings ν for different heterostrains and substrate
potentials Δ, with nonlocal tunneling included. Color plot diagnoses IVC order [dark blue indicates unbroken Uð1ÞV symmetry].
Dashed red lines indicate approximate phase boundaries, and hatched areas denote absence of a charge gap. Properties of each phase are
tabulated in Table I. The phase diagrams here are presented in greater detail in Figs. 3 and 6. (IKS, incommensurate Kekulé spiral; QAH,
quantized anomalous Hall state; KIVC, Kramers intervalley coherent state; VH, valley Hall state; IVC, intervalley coherence; SM,
semimetal.).
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ferromagnetism) is believed to explain the observation of
the anomalous Hall (AH) effect at ν ¼ þ3 in aligned
samples [14,29]. The substrate-reconstructed central bands
are also used as a starting point for constructing more exotic
correlated states [74–79].

B. Strain effects

Uniaxial strain of strength ϵ ¼ 0.1%–0.7% is observed
in many TBG samples using STM or STS [80–82]. At
charge neutrality, this small strain is believed to be an
important driving force behind the weakening of sym-
metry-broken insulators found in numerics at zero strain in
favor of semimetallic phases [51,61,83]. In the context of
van der Waals homobilayers, it is useful to distinguish
between homostrain, where strain is applied identically to
both layers, and heterostrain, where the layers are strained
independently. Since homostrain, to first order, does not
account for the experimentally observed distortion of the
moiré lattice and has a substantially smaller impact on the
electronic structure [84], we focus on heterostrain [61,85],
which is also believed to be experimentally relevant. The
moiré lattice vectors a1;2 are deformed depending on the
value of the strain ratio ϵ and strain angle φ with respect to
the x axis. The orthogonal direction is also stretched or
compressed due to the Poisson ratio ≃0.16 [86]. To first
order in ϵ and θ, the twist angle is unaffected. The BM
model is modified by taking into account the deformed
superlattice basis vectors, as well as adding an effective
layer-dependent vector potential Al (similar to the orbital
effect of an in-plane magnetic field [87]). Strain preserves
Ĉ2z but breaks Ĉ3z and M̂. Hence, the Dirac points remain
intact but are unpinned from the KM and K0

M points and
migrate toward the mBZ center [85]. The Dirac points also
separate in energy, leading to Fermi pockets at charge
neutrality, and the overall bandwidth of the central bands
increases dramatically [see Fig. 1(c)].

C. Nonlocal tunneling and breaking
of particle-hole symmetry

The standard BM Hamiltonian obeys PHS very well—
the only violations come from small twists in the Dirac
cone kinetic terms which are suppressed in θ [11,66].
However, many experiments show pronounced electron-
hole asymmetry [2,3,14,29,30,88,89], with stronger super-
conductors on the hole side and more robust insulators on
the electron side. We model this PHS breaking by aug-
menting the BMmodel with a nonlocal interlayer tunneling
term [65,90–92]. Consistent with density functional theory
calculations, the effect of this term is to make the
conduction bands more dispersive than the valence bands
[65,90] [Fig. 1(c)]. We use the form of NLT motivated in
Ref. [90] and choose values λ2 ¼ 2λ1 ¼ 0.18 eV Å, λ3 ¼ 0
(see Supplemental Appendix A for definitions and a
discussion on combining NLT and strain [63]).

D. Hartree-Fock procedure

We perform self-consistent HF calculations on the single-
particle Hamiltonian with dual-gate screened Coulomb
interactions VðqÞ ¼ ðe2=2ϵ0ϵrqÞ tanhqd, where the screen-
ing length d ¼ 25 nm and relative permittivity ϵr ¼ 10. We
neglect terms which scatter electrons between the valleys, as
they are suppressed for small θ. Along with electron-phonon
scattering, such “intervalley Hund’s couplings” would
weakly break the Uð2ÞK ×Uð2ÞK0 symmetry [20]. In order
to avoid double-counting interaction effects, we subtract off a
density matrix corresponding to decoupled graphene layers
at charge neutrality [20,93]. The results shown the main text
are obtained by considering only the central bands as active,
with the remote valence (conduction) bands frozen to be
filled (empty). However, we check that increasing the
number of active bands does not lead to a qualitative change
in the results and mainly leads to a decrease in the band gap
and a slight shift in the phase boundaries. For more details
on the effects of adding more active bands, we refer to
Appendix D [63].
In our numerical simulations, we consider completely

general moiré translation symmetry-breaking Slater deter-
minants with single-particle density matrices of the general
form

hĉ†kτasĉk0τ0a0s0 i ¼ Pkτas;k0τ0a0s0 ; ð1Þ

satisfying TrP ¼ ðνþ 4ÞN1N2, where N ¼ N1N2 is the
number of moiré unit cells and a and a0 are BM band
indices. We use periodic boundary conditions in both
directions, which leads to discrete values for the allowed
momenta, viz. k;k0 ¼ ðn1=N1ÞG1 þ ðn2=N2ÞG2, with Gi
the moiré reciprocal lattice vectors.
For most calculations, we enforce collinearity of the

spins and accelerate convergence using the optimal damp-
ing algorithm [94,95]. All the states found in our HF
simulations (discussed in detail in the following sections)
contain at most a single wave-vector modulation, meaning
that Pkτas;k0τ0a0s0 ≠ 0 only for k0 ¼ k;kþ q;k − q. As
detailed below, whenever translational symmetry breaking
occurs, we find that the finite-q component of the projector
P is entirely off diagonal in valley space.

III. SPIN-UNPOLARIZED KEKULÉ
SPIRALS AT ν = � 2

We now explore how the trio of realistic modifications to
the BMmodel introduced above—namely, substrate effects,
strain, and particle-hole symmetry breaking—stabilize
phases that compete with those previously proposed for
the idealized situation where these modifications are absent
[20,22,51,83,91,93,96–104]. In this section,we first focus on
fillings ν ¼ �2, as the phenomenology of the translational-
symmetry-breaking states is especially clear here.
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A. Numerical Hartree-Fock results

Figure 3(a) presents the HF phase diagrams at ν ¼ �2 in
the presence of NLTas a function of both strain and substrate
potential. The color scale diagnoses the magnitude ofUð1ÞV
breaking. Without symmetry-breaking perturbations, the
lowest energy state is the T̂ 0-symmetric KIVC state [20]
(see also Ref. [98]). It consists of a filled intervalley coherent
(IVC) band in each Chern sector and can be succinctly
described by ordering of τx;yσy, where τx;y denotes any off-
diagonal component in valley space [Fig. 1(d)]. The absence
of coherence between opposite Chern sectors sidesteps the
energy penalty induced by vortices in the order parameter
that would be topologically required for other IVC candi-
dates [70]. At Uð2ÞK ×Uð2ÞK0 level, there is a manifold of
degenerate states with different spin polarizations (with
maximum 2μB spin moment per moiré cell), but intervalley
Hund’s perturbations will lift this degeneracy.
At a finite substrate potential strength, the optimal state

becomes a sublattice-polarized Uð1ÞV-symmetric ferro-
magnet, which can be either the QAH state ∼σzτz or the
valley Hall state (VH) ∼σz. These are exactly degenerate at
HF level, since the VH state is obtained by applying T̂ on
one spin component of the QAH state.

Along the strain axis, we find a first-order transition to a
novel phase, which we dub the incommensurate Kekulé
spiral (IKS) state, at an experimentally relevant strain ratio
of ϵ ∼ 0.1%–0.2% [Fig. 3(b)]. The main characteristic of
the IKS state is the breaking of moiré translation symmetry
at a single wave vector q. The translation breaking occurs
entirely in the intervalley channel and is clearly identified in
HF by the nonvanishing of the following density matrix
elements in the sublattice-polarized basis:

hĉ†kþq;τ¼þ;σ ĉk;τ0¼−;σ0 i ∼ fσ;σ0 ðkÞ; ð2Þ

where spin labels are omitted. Importantly, the IVC occurs
at a single q, leading to a circular intervalley coherent
spiral of definite handedness, as there is no symmetry
relating the spiral we find in HF to the analogous spiral at
−q [Fig. 3(c)]. The IKS state also preserves TRS T̂ and has
zero total spin and valley polarization (Table I). Since the
spins within each valley are also unpolarized, inclusion of
intervalley Hund’s coupling does not lead to qualitative
changes.
The IKS order persists for fairly large substrate potential

strengths. This is expected, since the intervalley coherence
is flexible enough to polarize onto one sublattice, as

(a)

(c) (d)

(b)

FIG. 3. (a) ν ¼ �2 strain-substrate HF phase diagram (enlarged view of panels from Fig. 2). Strain is along the x axis (φ ¼ 0°), and
translational symmetry breaking is restricted to q ¼ G1=3. The color plot diagnoses IVC order by taking the Frobenius norm of the
difference of the density matrix after acting with eð2πi=3Þτz . Dashed red lines indicate approximate phase boundaries. Particle-hole
breaking is introduced via nonlocal tunneling (NLT). System size is 12 × 12, and only central bands are active. (b) Phase transition
between KIVC and IKS states along the strain axis of (a) at ν ¼ −2. In the IKS phase, combined UVð1Þ rotation by 2π=3 and real-space
translation by a1 is a symmetry. (c) IKS energy relative to the lowest translation-symmetric state for different strains and spiral wave
vectors q along G1. NLT is not included. (d) Relative energies of IKS states for different strain angles φ (blue axis) and enforced
symmetry-breaking wave vectors q [see Eq. (2)]. Red stars denote q’s corresponding to period tripling along the moiré axes, and white
circles denote minimum energy wave vectors q0. Non-IKS states that converge to higher energies are discarded. Strain is 0.2%, and NLT
is not included. Data points are transformed to fit on a hexagonal mBZ.
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evidenced from the fairly constant magnitude of IVC
throughout the phase. On the other hand, the KIVC is
progressively weakened under increasing sublattice poten-
tial and gives way to Uð1ÞV-preserving ferromagnets, since
its mechanism relies on intersublattice coherence [20]. The
strong PHS-breaking effect of NLT manifests in the shifted
phase boundaries between ν ¼ −2 and þ2. Furthermore,
the zero-substrate band gaps (of the order of 10 meV) of
both the KIVC and IKS phases are larger on the electron
side than the hole side by 10%–30%, which is consistent
with the experimental trend of more robust insulators at
positive fillings.
The numerical phase diagram in Fig. 3(a) is constructed

by restricting to a strain angle φ ¼ 0 and period-tripling
order along G1 ¼ jG1jx̂. However, when we relax this
requirement, we find that the IKS phase actually consists of
a family of spirals which differ only in their ordering wave
vector q and are close in energy. Figure 3(c) plots the IKS
energy relative to the best translation-symmetric state, as a
function of q1 (q2 is fixed to 0, so translation symmetry is
maintained along a2). The ideal wave vector q0 is slightly
greater than 1=3 of the mBZ and evolves weakly with strain
magnitude. Hence, the spiral ordering generically occurs at
an incommensurate q0 [see also Fig. 6(b)].
Figure 3(d), where we fully relax the constraints on the

wave vector q in our HF calculations, reveals that the
dispersion about q0 is very soft in both directions. Note that
we check that, even without enforcing a particular q, the HF
still converges only to a single-q state. We find the energy
density of the IKS state to have a term of the form
ðρs=2Þðq − q0Þ2, from which we estimate the wave-vector
stiffness to be ρs ∼ 0.4 meV, without strong spatial
anisotropy. In Fig. 3(d), we show that, as the strain angle

φ rotates, q0 also changes but appears to have roughly
constant magnitude and predominantly lies near a moiré
crystallographic axis. Figures 3(c) and 3(d) are computed
without NLT; including NLT does not affect the qualitative
features of these plots.
Before concluding the discussion of our numerical HF

results, we want to point out the following subtlety. In the
absence of Ĉ3z symmetry (which is broken by strain), the Γ
point of the single-valley BM model is no longer a high-
symmetry point. From this, one might conclude that the
choice of Γ in one of the two valleys becomes arbitrary (the
Γ point in the other valley is still fixed by either Ĉ2z or T̂ ).
Making a different choice for Γ does not go without
consequences for the IKS state, as this changes the wave
vector q at which the intervalley coherence occurs. For
commensurate twist angles, however, there is a preferred Γ
point in the mBZ even in the absence of Ĉ3z—namely, it is
the point that should fold on top of the Γ point of the
monolayer graphene BZ (which is fixed by Ĉ2z or T̂ ). From
this it is clear that the wave vector q is well defined for
commensurate twist angles and that the corresponding
superlattice translation symmetry is unambiguously bro-
ken. In our numerical simulations at incommensurate twist
angles, we always use the same choice for the mBZ Γ point
as in the commensurate twist angle case, such that the
location of the mBZ Γ point varies continuously as a
function of θ. However, for incommensurate twist angles, a
different choice for Γ is possible, in principle, and, thus, the
wave vector q of the IKS state becomes “gauge dependent.”
This is consistent with the fact that, for incommensurate
twist angles, there is strictly speaking no superlattice
translation symmetry.

TABLE I. Symmetries and order parameters of HF phases at integer fillings ν. Spin (valley) polarization indicates
the number imbalance of ↑ vs ↓ (K vs K0) electrons per moiré unit cell. The spin quantization axis is arbitrary due to
SUð2ÞS symmetry, and an asterisk indicates a degenerate manifold obtained by performing a valley-dependent spin
rotation. τμ are Pauli matrices in valley space, and K̂ is complex conjugation. IKS phases break a subset of moiré
translations T̂ai but preserve the combined valley-rotationþ translation symmetry T̂ai e

iq·aiτz=2, where q is the IKS
wave vector.

Phase jνj Spin polarization Valley polarization Uð1ÞV T̂ ¼ τxK̂ T̂ 0 ¼ τyK̂ T̂ai T̂ai e
iq·aiτz=2 jCj

IKS 1 * 0 ✗ ✓ ✗ ✗ ✓ 0
2 0 0 ✗ ✓ ✗ ✗ ✓ 0
3 * 0 ✗ ✓ ✗ ✗ ✓ 0

QAH 1 1 1 ✓ ✗ ✗ ✓ 1
2 0 2 ✓ ✗ ✗ ✓ 2
3 1 1 ✓ ✗ ✗ ✓ 1

KIVC 0 0 0 ✗ ✗ ✓ ✓ 0
2 * 0 ✗ ✗ ✓ ✓ 0

VH 0 0 0 ✓ ✓ ✓ ✓ 0
2 * 0 ✓ ✓ ✓ ✓ 0

QAHþ IVC 1 1 1 ✗ ✗ ✗ ✓ 1
SM 0 0 0 ✓ ✓ ✓ ✓ 0
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B. Generalized Bloch and Lieb-Schulz-Mattis
theorems for IKS states

A defining property of the IKS state, which has circular
IVC spiral order, is that it is invariant under the combina-
tion of a translation along superlattice vector ai and a
valley-Uð1Þ rotation which shifts the IVC angle by ai · q.
Let us therefore define modified translation operators
T̂ 0
ai ≡ T̂aie

iai·qτz=2. Because the IKS state preserves T̂ 0
ai , a

generalized Bloch theorem applies which states that the
single-particle wave functions should satisfy

ψ k̃ðrþ aiÞ ¼ eik̃·aie−iai·qτz=2ψ k̃ðrÞ: ð3Þ

Here, k̃ is a new “momentum” label restricted to the first
mBZ, which differs from the conventional crystal momen-
tum. In particular, k̃ labels real, physical momenta k̃þ
τzq=2 in the two valleys τz ¼ �. From Eq. (3), it follows
that we can write the single-particle wave functions as

ψ k̃ðrÞ ¼ eir·ðk̃−τzq=2Þuk̃ðrÞ; ð4Þ

where uk̃ðrÞ is the periodic part satisfying uk̃ðrþ aiÞ ¼
uk̃ðrÞ. As a result, we can define a Hartree-Fock band
structure in the mBZ for general IKS states, even if the
order wave vector q is incommensurate with the moiré
lattice. We note that a similar observation has previously
been made for incommensurate circular spin spiral states
[105,106].
Another, but closely related, consequence of the T̂ 0

ai
symmetry is that the IKS state can have only a nonzero
energy gap (ignoring the Goldstone modes) at integer
fillings—unless it breaks additional symmetries or devel-
ops nontrivial topological order. To see why this is the case,
first add a small perturbation of the form

V̂ ¼ h
Z

d2r½cosðq · rþ αÞψ̂†ðrÞτxσxψ̂ðrÞ

þ sinðq · rþ αÞψ̂†ðrÞτyσxψ̂ðrÞ� ð5Þ

to the Hamiltonian. This perturbation preserves T̂ 0
ai but

explicitly breaks the valley-Uð1Þ symmetry. As a result, the
Goldstone mode of the IKS state acquires a small gap
ΔG ∝ jhj. Next, we invoke a generalized Lieb-Schulz-
Mattis (LSM) theorem which states that the IKS state with
gapped Goldstone modes can have a unique ground state on
the cylinder geometry which is separated by a nonzero
energy gap from all other states in the spectrum only if the
charge per unit cell is integer. To show that such a
generalized LSM theorem indeed holds, one can simply
use the standard adiabatic flux-insertion argument put
forward by Oshikawa [107,108]. The redefinition of the
translation symmetry operator by multiplying it with
eiai·qτz=2 does not change this argument, as the additional
factor commutes with the electric-charge Uð1Þ symmetry.

[109] In general, one expects that the gapless states which
occur at noninteger fillings (excluding topological order
and additional symmetry breaking) will have a vanishing
charge gap, meaning that it is possible to create well-
separated particle-hole pairs with arbitrarily small energy.

C. Structure and energetics of the IKS state

Microscopically, the T̂ -invariant IVC order of the IKS
state induces a Kekulé-like pattern on the graphene scale
(Fig. 1), with orientation determined by the local IVC angle
θIVC. Since the symmetry breaking occurs predominantly
within the central bands (see Appendix D, specifically
Fig. D. 3), the Kekulé or

ffiffiffi
3

p
×

ffiffiffi
3

p
pattern, which triples the

graphene unit cell, is strongest in the AA regions where the
flat band wave functions are spatially localized. However,
the finite-q character of the IKS state means that the
microscopic Kekulé-like patterns differ between different
AA regions, as dictated by the combined moiré lattice
translation and valley-Uð1Þ rotation symmetry T̂ai

0 noted
above [Fig. 3(b)]. For q ¼ G1=3, the system forms stripes
along the a2 direction where the graphene-scale Kekulé
pattern is the same. Since the translation-breaking order is
purely IVC, with no −q or higher harmonic components,
there is no additional charge reconstruction at the moiré
scale (see Sec. VI).
Further insight into the properties of the IKS state can be

gained by analyzing its momentum-resolved single-particle
density matrix in more detail. Figure 4(b) plots the strength
of the IVC in momentum space, showing that it is close to
the maximum value 1=

ffiffiffi
2

p
throughout most of the mBZ.

The exceptions are at two lobes in the mBZ, where the
electron populationsNτðkÞ in the two valleys [Fig. 4(a)] are
close to 0 or 2. The total occupation at each k is 2,
consistent with an insulating state. The strong momentum
dependence of the IKS state sets it apart from previously
studied mean-field phases [20]. From our numerics, we find
that the same coherence structure is repeated for both spin
species. Therefore, henceforth we consider spin to simply
be a spectator degree of freedom, an assumption which is
further validated by the basis spiral analysis in Sec. IV.
The locations of IVC depletion provide strong clues as to

the mechanism underlying IKS formation. In Fig. 4(c), we
calculate for each valley the HF spectrum of the lower band
of the self-consistent symmetry-preserving semimetal
(SM). This captures the major momentum-dependent
effects that strain and interactions have on the band
structure. The dispersions of the two valleys are related
by TRS. All Dirac points lie above EF at ν ¼ −2. Near ΓM,
there is a region of very high energy (red) that coincides
with one of the Dirac points. There is also a region of low
energy (dark blue) lying in some other region of the mBZ.
Because of TRS, the low- and high-energy lobes (indicated
by hatched and dotted regions, respectively) in the two
valleys are related by k → −k.
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We now sketch an intuitive picture for how these
dispersion features influence the parameters of the IKS
order. Figures 4(d) and 4(e) demonstrate that coupling the
two valleys at a finite q can pairwise align a high-energy
lobe with a corresponding low-energy lobe in the other
valley. In these momentum regions, the system chooses to
polarize into the energetically favorable valley [Fig. 4(a)].
Elsewhere, substantial valley hybridization is induced. In
this way, the IKS state is able to maximize IVC while
respecting the prominent characteristics of the band
dispersion. Each k̃ is equally populated, allowing for an
insulating state. Note that attempting to induce IVC at
q ¼ 0 instead runs into issues—a large portion (approxi-
mately 4× lobe area) of the mBZ would be unable to
participate in the IVC, since the lobes have small overlap.
Furthermore, the total electron occupations would vary as a
function of k̃, meaning the state cannot be insulating.
This perspective naturally explains the strong k depend-

ence of IVC and the slow variation of the IKS energy with
q. The somewhat diffuse features of Fig. 4(c) mean that, for
nearby q, the locations and shapes of the lobes change only
slightly, leading to a small and roughly isotropic wave-
vector stiffness. A simple estimate for the ideal wave vector
q0 can be made by connecting the minimum energy
momentum in valley K0 with the maximum energy peak
in valley K. The predicted q0 is broadly consistent with HF
results of the IKS state for a range of strain angles φ
(for details, see Appendix D, in particular, Fig. D. 7 [63]).

We emphasize that this scenario opens a gap at EF but,
unlike most of the translation-invariant insulators, does not
rely on gapping out the Dirac points, which remain high in
energy above EF. Instead, the k-dependent IVC hybridizes
the two valleys at finite q and pulls the occupied band
below the rest of the states [Fig. 5(a)].
We can construct a simple ansatz for the IKS projector in

the absence of substrate alignment, which matches the HF
numerics extremely well. With σ denoting the sublattice-
polarized basis, we define two mutually commuting SUð2Þ
Lie algebras γ ¼ ðσx; τzσy; τzσzÞ and η ¼ ðτxσx; τyσx; τzÞ,
in terms of whichC ¼ γz [21]. We partially fix the gauge by
requiring that Ĉ2z acts as τxσx and T̂ as τxK̂—the

FIG. 4. mBZ-resolved properties of the IKS state at ν ¼ −2. (a) Valley populations of the IKS state. (b) Frobenius norm of the IVC at
wave vector q ¼ G1=3. System size is 48 × 16, strain is 0.2%, substrate is Δ ¼ 0 meV, and NLT is not included. (c) Dispersions of the
lower band for the metastable symmetry-preserving self-consistent SM. Hatched (dotted) lobes, situated near low- (high-) energy
regions, will be predominantly filled (empty) in the IKS state. Black lines indicate the Fermi surface, and black stars mark Dirac point
locations. (d),(e) Schematic construction of the IKS state—a relative momentum boost of the valleys by q allows the lobes to overlap
each other. Regions not within the lobes participate strongly in IVC. (f) HF spectrum for the same density matrix used in (c) except that
exchange is neglected. (g) ν ¼ þ2 HF phase diagram in the strain-twist angle plane and the strain-relative permittivity plane. System
size is 12 × 12.

(a) (b)

FIG. 5. (a) Band structure of the IKS state at ν ¼ −2, with color
indicating the valley polarization of the HF orbitals.) b) z
component of the vector mðekÞ in the parametrization of
Eq. (6). Dashed lines indicate mBZ path in (a). In both plots,ek refers to the valley-dependent boosted momentum ekþ τzq=2.
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remaining gauge freedom acts as eiφkτzσz . The spin-singlet
IKS state at ν ¼ −2 can then be parametrized by the
projector

Pν¼−2ðk̃Þ ¼
1

4
ð1þ nk̃ · γÞð1þmk̃ · ηÞ; ð6Þ

where k̃ labels the eigenvalues of T̂ 0
ai as discussed in the

previous subsection, the gauge-variant nk̃ is entirely in the
x–y plane, and an identity matrix in spin space is implicit.
Across most of the mBZ, the vector mk̃ lies in plane with a
constant angle that can be changed by a global Uð1ÞV
rotation. At the lobes, mk̃ orients toward the poles,
reflecting the valley polarization in these momentum
regions (recall that ηz ¼ τz) [Fig. 5(b)]. Since γx and γy
in Eq. (6) anticommute with the Chern number γz, there is
both inter-Chern and intra-Chern IVC in the IKS state with
equal magnitude. This implies that the IVC significantly
entangles bands with opposite Chern number, in contrast to
the usual Uð4Þ ×Uð4Þ ferromagnets found in previous
mean-field studies [20]. Importantly, this distinguishes the
type of IVC order found here from the uniform T IVC state
of Ref. [20] (which also preserves TRS at even integer
fillings). In terms of symmetries, the only difference
between the T IVC and IKS states is that the former is
translationally invariant and cannot be made spin singlet by
opposite spin rotations in the two valleys. Both states can
be made Ĉ2zT̂ symmetric by a suitable global valley-Uð1Þ
rotation. The IKS projector at ν ¼ þ2 can be found by
particle-hole conjugation.
The construction outlined above, involving the nesting of

features of a parent symmetry-preserving band structure, is
suggestive of a weak-coupling instability. However, the
Uð1ÞV-breaking coherence occurs nearly everywhere in
the mBZ, instead of just the lobe boundaries. Furthermore,
the Fermi surfaces of the SM or the noninteracting BM
model generically bear little relation to the momentum
structure in the IKS state. Indeed, both strain and inter-
actions play a vital role in renormalizing the central bands
and setting the stage for symmetry-breaking phases—the
noninteracting BM bands have a total bandwidth of
approximately 5 meV, which broadens to approximately
15 meV in the presence of strain (breaking Ĉ3z and shifting
the Dirac points up or down), and finally ≳50 meV with
the inclusion of interactions. Strengthening the Coulomb
interaction (by reducing ϵr) favors the strong-coupling
states [Fig. 4(g)]. Strain, thus, effectively tunes the system
from strong coupling, where Chern-diagonal ferromagnetic
states dominate, to intermediate coupling, where other
phases (such as the IKS order) emerge that violate the
Uð4Þ ×Uð4Þ hierarchy. In the language of Ref. [98], strain
does not significantly impact the quality of the “flat-metric
condition” (see Appendix D, in particular, Fig. D. 17 [63]),
which is used to prove that the uniform Uð4Þ ×Uð4Þ
ferromagnet is an exact ground state of the pure interaction

Hamiltonian at all integer ν. Instead, strain substantially
increases the dispersion, thereby undermining the validity
of the perturbative analysis about the ferromagnetic states
and allowing for alternative states such as the IKS to come
in. On the other hand, twist angle, which weakly influences
the noninteracting central band dispersion, does not have a
significant impact on the phase diagram [Fig. 4(g)].
This strong- to weak-coupling crossover can also be

viewed through the lens of direct versus exchange energy
[110]. The intra-Chern states at small strain are stabilized
by exchange, in analogy with quantum Hall ferromagnet-
ism. At larger strains, including just the Hartree piece of the
interaction already recreates the key features of the band
renormalization, as shown in Fig. 4(f). As verified in Sec. IV,
the IKS state is more competitive farther away from charge
neutrality, in harmony with the larger Hartree peak (dip)
expected for increasing hole (electron) doping [30]. All
particles will feel this increased Hartree potential, while
exchange effects are applicable only between electrons of the
same flavor. We caution though that this direct-exchange
dichotomy is not so clear cut in practice—separation of the
IKS energy into its components reveals that both Hartree and
Fock contributions change significantly with comparable
magnitude as a function of q. Also, exchange does signifi-
cantly perturb the band structure of the self-consistent SM,
and its inclusion is necessary to obtain reasonable predictions
for q0. This implies that a proper treatment of both terms is
required to adequately capture the physics of TBG for
realistic parameters (further details in Appendix D, in
particular, Figs. D. 8 and D. 11 [63]).

IV. FERROMAGNETIC KEKULÉ SPIRALS AT
ν= � 1 AND ν= � 3

We now turn to other nonzero fillings, focusing on the
same departures from the idealized BM model, fixing NLT
as above but exploring the phase structure in the strain-
substrate plane. As we show, IKS order appears to be a
ubiquitous feature for relatively modest strain and largely
independently of substrate strength.
For ν ¼ �3, a significantly smaller strain ðϵ ∼

0.02%–0.05%Þ is able to destabilize the QAH state
found upon adding interactions to the unperturbed BM
Hamiltonian [Fig. 6(a)]. Depending on details of the system
parameters, it is possible to nucleate an intervening spin-
valley polarized nematic semimetal (see Appendix D and, in
particular, Fig. D. 2 [63]). At zero substrate potential and
strain, an alternative period-doubling stripe which preserves
Ĉ2zT̂ and Uð1ÞV has also been proposed [51]. With the
parameters used in the main text, we find a direct transition
from the QAH to an IKS state under increasing strain. The
IKS state at ν ¼ �3 has the same symmetry properties as
the one at ν ¼ �2, except that it can carry a spin polarization
at Uð2ÞK ×Uð2ÞK0 level (of maximum 1μB per moiré cell).
For (anti)ferromagnetic Hund’s coupling, the spin moments
carried by the two valleys (anti)align. The dispersion curve in
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Fig. 6(b) is also similar [compare Fig. 3(c)], but it has a
deeperminimumand, hence, a larger IVCstiffness, due to the
increased renormalization of the bands.
Given the tiny strains required for the IKS to beat the

QAH at ν ¼ �3, a natural question that arises is whether
the IKS can, in principle, be the ground state at zero strain.
We emphasize that there is no fundamental reason that
prohibits this scenario from occurring; for strong enough
perturbations about the Uð4Þ ×Uð4Þ limit, the strong-
coupling insulators can be superseded by states outside
the QHFM paradigm. While our Hartree-Fock calculations
suggest this is not the case for our choice of parameters, the
fact that the IKS can be obtained self-consistently without
strain (see Appendix D, in particular, Fig. D. 14 [63], which
shows that energy cost is less than 1 meV per unit cell) is a
strong indication that the IKS remains a highly competitive
state. Altering details of the model Hamiltonian or choos-
ing different parameters (e.g., increasing the relative
permittivity) may well tilt the balance in favor of IKS.
At ν ¼ �1, the weak substrate potential region of the

Uð1ÞV-symmetric QAH phase has nonzero IVC order
[15,97,98] [Fig. 6(c)]. The transition from the QAH and
QAHþ IVC states to the IKS state now occurs at a larger
strain (ϵ ∼ 0.15%–0.2%). The effect of intervalley Hund’s
terms is similar to that at ν ¼ �3, i.e., a net spin
polarization of (0) 1 for (anti)ferromagnetic coupling. In
contrast to the other integer fillings, at ν ¼ �1, the IKS
state never develops a charge gap. For completeness, in
Fig. 6(d), we also present the phase diagram at ν ¼ 0,
which shows no indications of translation symmetry break-
ing. The KIVC gives way to a symmetric SM at finite strain
[61] and a VH insulator at finite substrate.

All numerically obtained IKS states preserve spinless
TRS T , implying that the Chern number C vanishes. This
fact is remarkable for the odd fillings, since conventional
spin-valley polarized ferromagnets can accommodate only
phases with odd C. However, recent experiments show the
existence of even-C gapped phases extending down to zero
magnetic field at odd fillings [30]. One possible route to
achieving this is by folding the mBZ in half and forming
period-2 charge order, as theoretically argued by some
authors [30]. Each Chern band (a finite sublattice splitting
was considered) splits into a jCj ¼ 1 and 0 miniband, and a
variety of different C states can be obtained by selectively
polarizing these. Our work proposes a fundamentally
distinct scenario, relying instead on IVC to produce the
requisite C ¼ 0 bands and on moiré translation breaking to
minimize the energy. The IKS order is agnostic to the
presence of substrate alignment and is a natural robust
insulating candidate for experiments where strain is often
an external confounding factor. Furthermore, as explained in
detail in the next section, translation-breaking phases with
nonzeroChernnumber canbeobtainedby “stacking” a phase
with IKS order with other translation-symmetric phases to
achieve the requisite band filling. Characterizations of the
moiré charge order or strain in the sample of Ref. [30] would
help determine which theoretical scenario is operative there.

V. RELATIONSHIP BETWEEN IKS STATES AT
DIFFERENT FILLINGS

Since the IKS states have similar properties at all
nonzero integer fillings, we expect them to be closely
related. To make the connection explicit, we consider the

(a) (b)

(c) (d)

FIG. 6. (a) ν ¼ �3 strain-substrate HF phase diagram using the same parameters as Fig. 3 (enlarged view from Fig. 2). (b) Dispersion
relation of the IKS state at filling ν ¼ þ3 for different system sizes (with Δ ¼ 0 meV, ϵ ¼ 0.15%, and no NLT). ΔE is the energy of the
IKS solution at a given wave vector qx̂ compared to the energy of the translationally invariant (q ¼ 0) QAH state. (c),(d) The same as
(a) except at ν ¼ �1 and ν ¼ 0 (ϵr ¼ 15), again reproducing Fig. 2. Hatched regions denote absence of a charge gap.
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jνj ¼ 3 IKS state as a “basis spiral.” We start with the
ν ¼ −3 IKS state with spin polarization enforced for
simplicity. In order to construct a ν ¼ −2 IKS, we take
two copies of the ν ¼ −3 basis spiral in order to obtain a
spin-unpolarized IKS. The same construction is possible at
positive filling by particle-hole conjugation. The notion of
the jνj ¼ 2 stripe as two copies of the jνj ¼ 3 stripe is
consistent with the relative scale of the Uð1ÞV-breaking
order parameter in Fig. 3(a) being

ffiffiffi
2

p
times that in Fig. 6(a).

For the ν ¼ −1 IKS state, we note that the translational
symmetry breaking is entirely in one spin sector, whereas
the other spin sector has the same symmetries as the VH
state at ν ¼ −2. This motivates the following construction:
We start with the spin-polarized VH state at ν ¼ −2 and
add to it the ν ¼ −3 IKS state in the opposite spin sector.
Consistent with this fact, the Uð1ÞV-breaking order param-
eter has the same magnitude in the IKS phases at jνj ¼ 1
and 3.
We show in Fig. 7 that the trial states for the ν ¼ −2 IKS

state based on this construction have energies that are very
close to the self-consistent HF solution at those fillings. We
also find that HF simulations using these trial states as
initial inputs converge very quickly to the self-consistent
IKS ground state at that filling, demonstrating that the trial
states have the correct correlations. For ν ¼ −1, the trial
state energies are not as close to those of the self-consistent
HF IKS state due to the fact the IKS state is not insulating at
this filling (see Appendix D [63]).

VI. LANDAU-GINZBURG ANALYSIS

In this section, we explore the interplay between Kekulé
spiral states and charge order, by generalizing the Landau-
Ginzburg analysis of Ref. [111]. This has two primary
motivations. First, charge order can be detected in a
larger variety of experimental probes: For instance, high-
resolution scanning single-electron transistors (SETs) can
detect charge modulation, as can scanning tunneling
microscopy (STM) measurements (which can also directly
access the moiré-scale-modulated Kekulé distortion char-
acteristic of the IKS state). Second, charge order is more

readily pinned by external potentials, and so an IKS state
with a subsidiary charge order is likely to respond more
strongly to quenched disorder and also to experience
stronger commensuration effects.
Our Landau-Ginzburg construction involves the follow-

ing order parameters: [112]

Ixq ¼ 1

N

X
k

hψ̂†
kþqτxσxψ̂ki; ð7Þ

Iyq ¼ 1

N

X
k

hψ̂†
kþqτyσxψ̂ki; ð8Þ

ρq ¼ 1

N

X
k

hψ̂†
kþqψ̂ki; ð9Þ

where N is the number of moiré unit cells and ψ̂†
k;τ;σ creates

an electron in one of the active Chern bands with Chern
number C ¼ τzσz. We also partially fix the gauge by
requiring that Ĉ2zT̂ acts as σxK and T̂ as τxK. The
notation I refers to either “IVC” or “isospin.”
Under the symmetries of strained TBG, the order

parameters transform as

Uð1ÞV∶ Iq → RðϕÞIq;
ρq → ρq; ð10Þ

Ĉ2z∶ Iq →

�
1

−1

�
I�q;

ρq → ρ�q; ð11Þ

T̂ ∶ Iq → Iq;

ρq → ρq; ð12Þ

where Iq ¼ ðIxq; IyqÞ, RðϕÞ is a 2 × 2 rotation matrix, and
we use that I−q ¼ I�q and ρ−q ¼ ρ�q. Note that both Ĉ2z and

T̂ act differently on the isospin vector I than on conven-
tional spin-1=2 degrees of freedom. An interesting conse-
quence of these unusual symmetry actions is that the
bilinear iϵijIiqI

j�
q with ϵij ¼ −ϵji and ϵxy ¼ 1 respects

all symmetries of strained TBG, including superlattice
translations.
As a disclaimer, we point out that the Landau-Ginzburg

free energy we study below is not invariant under threefold
rotations. One justification is that strain breaks Ĉ3z.
However, since the strain is very small, a threefold rota-
tionally symmetric functional (plus small anisotropies)
should actually still be an appropriate starting point.
Instead, a better justification for a “unidirectional” free
energy is that we are interested only in unidirectional
physics here. In other words, we can think of our free
energy functional as descending from a parent functional

FIG. 7. Comparison of the energies of the translationally
invariant state, the IKS state, and the IKS trial state at
ν ¼ −2. The IKS trial state is obtained by taking two copies
of the IKS HF solution at ν ¼ −3. System size is 12 × 12,
Δ ¼ 0 meV, and NLT is included.
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which is Ĉ3 symmetric but which breaks the threefold
rotation symmetry spontaneously. The free energy we write
down is then obtained by expanding the parent functional
around one of the three valleys.
A Landau-Ginzburg free energy consistent with all the

above considerations is given by

F ¼ 1

2
rρjρj2 þUρjρj4 þ

1

2
rIjIj2 þUIjIj4

þ i
2
rxϵijIiIj� − UxðiϵijIiIj�Þ2

þ λ1½ðI · IÞρ� þ ðI · IÞ�ρ� þ λ2jIj2jρj2
þ λ3jIj2ðiϵijIiIj�Þ þ λ4jρj2ðiϵijIiIj�Þ; ð13Þ

where I≡ Iq and ρ≡ ρ2q. The terms with coefficients rx,
λ3, and λ4 are not present in the analysis of Ref. [111]. We
now argue that, despite the presence of these additional
terms, the physical conclusions of Ref. [111] survive. From
now on, we normalize the order parameters such that Uρ ¼
UI ¼ 1 and require that Ux < 1 in order for the free energy
to be bounded from below. We also consider the case with
λ2 ¼ λ3 ¼ λ4 ¼ 0, as these terms only quantitatively
change the physics we want to discuss here.
As a first step, we choose a coordinate system such that

the order parameters can be written as

I ¼ jIjðcos αê1 þ i sin αê2Þ; ð14Þ

ρ ¼jρjeiθ; ð15Þ

where êi are two orthogonal unit vectors and 0 ≤ α ≤ π=4.
If α ¼ 0, then the IVC order is collinear, whereas if
α ¼ π=4, the Kekulé spiral is perfectly circular, which is
what we find in HF simulations. For intermediate values of
α, the Kekulé spiral has a nonzero eccentricity tan α. Using
the above expressions for the order parameters, the free
energy can be written as

F ¼ 1

2
rρjρj2 þ jρj4 þ 1

2
rIjIj2 þ jIj4

þ 1

2
rxjIj2 sin 2α −UxjIj4 sin2 2α

þ 2λ1jIj2jρj cos 2α cos θ: ð16Þ

Next, we minimize F with respect to θ in the presence of
nonzero jIj. From this, we find that θ is either 0 or π, with
the optimal value being determined by the sign of λ1. Note
that, for θ ¼ 0 or π, the charge order preserves the Ĉ2z
symmetry (as does the circular Kekulé spiral state).
Now, fromminimizing F with respect to α, it follows that

α ¼ π=4 only if jρj ¼ 0. Minimizing F with respect to jρj
gives us the reverse implication: If F is minimized for
jρj ¼ 0, then this implies that α ¼ π=4 (and also that
rρ > 0). Combining the above implications, we conclude

that there is no charge order if and only if the IKS state is
perfectly circular. This interplay between charge order and
eccentricity suggests interesting possibilities to experimen-
tally detect the IKS order. For example, let us consider a
situation where the TBG sample is strained in a direction
orthogonal to the spiral wave vector q. Via the distortion of
the graphene bond hoppings, this introduces some nonzero
eccentricity for the IKS state and, thus, charge order with
half the period of the Kekulé spiral. Conversely, if nonzero
charge order is induced via an inhomogeneous electrostatic
potential with wave vector 2q, then the IKS state responds
by changing the amplitude of the Kekulé pattern differently
in inequivalent AA regions.
Minimizing F exactly with respect to α is cumbersome,

requiring us to minimize the expression:

1

2
rx sin 2α − UxjIj2 sin2 2α − 2jλ1jjρj cos 2α: ð17Þ

Since we are interested in only the parameter regime close
to where the circular spiral state is lowest in energy, let us
set 2α ¼ ðπ=2Þ þ δ and expand in powers of δ. Keeping
terms to second order in δ, Eq. (17) becomes

1

2
rx

�
1 −

1

2
δ2
�
−UxjIj2ð1 − δ2Þ þ 2jλ1jjρjδ: ð18Þ

Minimizing this expression with respect to δ, we find

δ ¼ jλ1j
UxjIj2 − rx=4

jρj; ð19Þ

whence we can write the free energy as

F ¼ 1

2

�
rρ −

4jλ1j2jIj2
UxjIj2 − rx=4

�����ρj2 þ jρj4 þ � � � ; ð20Þ

where the dots stand for terms which do not involve the
charge density (note that if one keeps higher orders of δ,
then the coefficient of jρj4 also receives a correction). It is
now clear that there is a second-order phase transition to a
phase with nonzero charge order when

rρ ¼
4jλ1j2jIj2

UxjIj2 − rx=4
: ð21Þ

As discussed above, in the charge ordered phase the Kekulé
spiral necessarily becomes an elliptical spiral. It, thus,
follows that by tuning a single parameter it is possible to go
from the circular Kekulé spiral phase to an elliptical Kekulé
spiral phase via a second-order phase transition. As a
direction for future work, it would be interesting to identify
experimental knobs that can drive such a transition.
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VII. QUENCHED DISORDER

For the KIVC state, which occurs at very small strain,
quenched disorder is relatively innocuous. The reason is
that this state breaks the physical time-reversal symmetry,
while physical impurities in graphene are time-reversal
symmetric, which implies that they cannot couple as
random-field disorder to the KIVC order. The IKS state,
on the other hand, preserves time-reversal symmetry and is
consequently less protected against disorder. For example,
because the IKS state has a Kekulé pattern on every AA
region, graphene-scale bond disorder couples to the IVC
order as a random field.
Motivated by this observation, we now investigate the

effect of bond disorder on the graphene scale in more
microscopic detail (we focus on bond disorder for con-
creteness—the analysis for graphene-scale potential

disorder is similar). In particular, we consider the following
disorder Hamiltonian:

Hdis ¼
X
R

X
j¼1;2;3

δtðRþ δj=2Þðc†R;AcRþδj;B þ H:c:Þ; ð22Þ

where R runs over the positions of the A sites and δ1, δ2,
and δ3 connect each A site to its three neighboring B sites.
In the BM basis, the disorder Hamiltonian becomes

Hdis ¼
1

A

X
k∈mBZ

X
q

ψ†
kþqGqðkÞψk; ð23Þ

where A is the area of the sample and

½GqðkÞ�ðτ0;n0Þ;ðτ;nÞ ¼ huðkþ qÞτ0;n0 jFqðkÞjuðkÞτ;ni; ð24Þ

½FqðkÞ�ðτ0;l0;σ0;G0Þ;ðτ;l;σ;GÞ ¼ δl0;lδG;G0

�
δtðqττ0 ÞfðkþGþ qττ0=2Þ

δt�ðqττ0 Þf�ðkþGþ qτ0τ=2Þ

�
σ0;σ

: ð25Þ

Here, τ, l, and σ, respectively, denote valley, layer, and
sublattice, juðkÞτ;ni is the periodic part of the BM Bloch
states, G are moiré reciprocal lattice vectors, and K is the
position of the Dirac point corresponding to the τ ¼ þ
valley in the graphene Brillouin zone. We also define qτ0τ ¼
qþ ðτ0 − τÞK and fðkÞ ¼ P

j¼1;2;3 e
iδj·k. Note that at this

point we perform an exact unitary transformation, so n and
n0 run over all the BM bands and not only over the
active bands.

Our HF simulations indicate that all IVC order is carried
by the active bands, indicating the subspace relevant to
studying the order parameter. Let us therefore perform a
Schrieffer-Wolff transformation to obtain the effect of
Hdis on this subspace. We define Gij

q ðkÞ≡ PiGqðkÞPj,
where P0 (P1) is the projector onto the active (remote)
bands. Assuming that the Fermi energy lies within the
active bands, the Schrieffer-Wolff transformed disorder
Hamiltonian (up to second order) can be written as follows:

Hdis ¼
1

A

X
k;q

ψ†
kþqG

00
q ðkÞψk

−
1

2A2

X
k;q;q0

X
n;n0;m̃

ψ†
n0;kþqþq0 ½G01

q0 ðkþ qÞ�
n0m̃

�
1

Em̃;kþq − En;k
þ 1

Em̃;kþq − En0;kþqþq0

�
½G10

q ðkÞ�m̃nψn;k; ð26Þ

where the sum over m̃ runs over the remote bands and En;k

are the energies of the BM bands. In what follows, we are
interested in only the part of Hdis which couples as a
random field to the IKS state, i.e., the part of Hdis which is
off diagonal in the valley indices.
Let us first consider the first-order term in Hdis. An

important observation is that the flat band wave functions
vary slowly on the moiré scale. Specifically, the BM
eigenvectors satisfy

X
l;σ

juðkÞl;σ;Gðτ;nÞ j2 ≈ 0 for jGj ≳ 2jG1j; ð27Þ

if n is one of the two flat bands. Here, G1 a basis vector of
the moiré reciprocal lattice. This implies that jjG00

q ðkÞjj ≈ 0

if jqj≳ 4jG1j. From this, we conclude that the short-
wavelength disorder does not couple directly to the IKS
order parameter. Furthermore, long-wavelength disorder,
which does couple to the IKS state via the first-order term,
gets suppressed by a factor θ2. Physically, this is because
the density of electrons occupying the central bands is
very small.
Because the first-order term in the Schrieffer-Wolff

transformed disorder Hamiltonian is inoperative for
short-wavelength bond disorder, let us consider the
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second-order term next. The relevant second-order proc-
esses which hop an electron from valley τ ¼ þ to valley
τ ¼ − are shown schematically in Fig. 8. In the figure, the
numbers next to each arrow indicate the order in which the
virtual hopping processes take place. There are two
processes which involve an intermediate electron in the
remote conduction bands and two processes which involve
an intermediate hole in the remote valence bands. Note that,
in Eq. (26), the energy denominators do not have absolute
value signs. This means that the energy denominators
involving remote conduction band energies are positive,
while energy denominators involving remote valence band
energies are negative. This difference in sign comes from
the fact that the virtual electron processes generate terms in
the second-order Schrieffer-Wolff Hamiltonian of the con-
ventional form ψ†ψ , while the virtual hole processes
produce terms of the form ψψ†. The difference in sign,
thus, comes from the fermion anticommutation relations.
From Eq. (26), we can estimate the magnitude of the

second-order term to be

Ejqj>4jG1j
dis ∼ θ4t2dishΔ−1i; ð28Þ

where tdis is the typical energy scale of the bond disorder
and hΔ−1i is the inverse gap between the active bands
and the remote bands averaged over the mini-Brillouin
zone. The energy gain of pinning to short-wavelength
bond disorder is, thus, reduced by a factor of θ2tdishΔ−1i
compared to the energy gain of pinning to long-wavelength
disorder. As a result, for physically relevant disorder
strengths we expect the Imry-Ma domains associated with
short-wavelength bond disorder to be much larger than the
size of the AA regions. For this reason, we ignore short-
wavelength disorder and focus only on long-wavelength or
moiré-scale random-field disorder. We discuss the effect of
moiré-scale quenched disorder on the finite-temperature
physics in the following section.

VIII. FINITE-TEMPERATURE PHASE
TRANSITIONS

The IKS order breaks not only the valley-charge con-
servation symmetry, but also superlattice translation and
threefold rotation symmetries. It is important to distinguish

from the outset the different ways in which the translation
and rotation symmetries are broken. In particular, because
the IKS states are invariant under a combination of super-
lattice translation and valley Uð1Þ rotation, only local
operators with a nonzero valley charge can detect the
translational symmetry breaking. A corollary of this obser-
vation is that the translational-symmetry-breaking order is
replaced by quasi-long-range order at nonzero temperature
and is completely lost once vortices of the IVC order
proliferate. The rotational symmetry breaking, on the other
hand, can be detected by operators which have zero valley
charge. This means that the nematic order (ignoring the
explicit symmetry-breaking effects of strain) can persist as
true long-range order at nonzero temperatures.
Let us now consider the different possible ways for the

IKS order to disappear at finite temperature. We first note
that the destruction of IKS order is likely to be driven by the
proliferation of fluctuating defects in the order parameter
and not by the unbinding of excitons. The reason is that the
binding energy of the condensed intervalley coherent
excitons is expected to be of the order of the Coulomb
scale (approximately 20 meV), whereas the IKS stiffness
extracted from our numerical Hartree-Fock calculations is
significantly smaller (approximately 0.4 meV).
Taking the above considerations into account, there are

three different possible scenarios for the IKS order to
disappear. In the first scenario, a Berezinskii-Kosterlitz-
Thouless (BKT) transition occurs at a temperature TBKT, at
which the IKS angle disorders via the unbinding of vortex-
antivortex pairs. The nematic order, however, persists
above TBKT and disappears at a higher temperature TN .
[113] In the second scenario, the algebraic IKS order and
the nematic order disappear simultaneously via a single
phase transition, which most likely is first order. In the third
scenario, the nematic order disappears inside the region of
the phase diagram with algebraic IKS order, such that
TN < TBKT. In Appendix E [63], we show that all these
different scenarios can indeed be realized for the special
case of commensurate IVC spiral states. In the commen-
surate case, we find that the finite-temperature physics of
IKS states is closely related to that of frustrated or
generalized XY models, which also harbor both quasi-
long-range order and discrete symmetry breaking [114–
120]. Exactly which of the three scenarios is realized
depends on the ratio ρs=σDW, where ρs is the IVC stiffness
and σDW is the domain-wall tension between two different
ground states related by Ĉ3. The physical picture which
arises in our study of the commensurate models also
suggests that the third scenario with TN < TBKT is excluded
in the incommensurate case relevant for TBG. But, regard-
less of which of the three scenarios occurs experimentally,
we expect all transition temperatures to be of the order
TBKT ≲ πρs=2–7 K.
In our discussion of the finite-temperature phase diagram

so far, we have ignored moiré-scale quenched random-field

FIG. 8. Virtual processes in second-order perturbation theory
which hop an electron from valley τ ¼ þ to valley τ ¼ − due to
quenched random bond disorder.
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disorder. Because TBG is a two-dimensional material,
reintroducing quenched disorder, strictly speaking, des-
troys all ordered phases (breaking both discrete and
continuous symmetries). However, if the moiré-scale dis-
order is sufficiently weak, the finite-temperature phase
transitions we discuss for the disorder-free case should still
leave detectable imprints on measurable quantities. In
particular, for the case of discrete symmetry breaking, it
is known that the size of the Imry-Ma domains is
exponentially large in ðσDW=hÞ2, where σDW again is the
domain-wall tension in the ordered state and h is the rms
random-field disorder strength [121,122]. For weak dis-
order, the Imry-Ma domains, thus, are much larger than the
relatively small TBG devices currently being used in
experiment. In this case, nematicity survives the presence
of quenched disorder as “vestigial” order of the IVC spiral
state, similarly to what is discussed in Ref. [123] for 3D
models of charge density wave order in the context of the
cuprate superconductors.

IX. EXPERIMENTS

We have demonstrated that IKS order is ubiquitous at
nonzero integer fillings in the presence of small amounts of
heterostrain, largely independent of substrate or fine details
of twist angle. We now argue that this fact, combined with
the absence of IKS order at charge neutrality in favor of a
gapless nematic semimetal, provides a unified explanation
of several recent experiments. Evidently, this picture
requires us to posit that small heterostrain is inevitably
present in typical experimental samples; this is, however,
not an unreasonable assumption, particularly given the
modest heterostrain needed to stabilize IKS order (which is
comparable to experimentally observed strains [80–82]).
Before proceeding, we note that in Ref. [124] we extend the
Hartree-Fock analysis and investigate the effects of hetero-
strain upon doping away from integer fillings and including
IKS order. By considering the chemical potential variations
and the Fermi surface degeneracies, we obtain results in the
strained regime that are consistent with the experimentally
measured compressibility traces (“cascade” transitions) and
Landau fans [1–3,14,25,29,30,88,125–133].
At even integer fillings, the IKS state can be distin-

guished from the KIVC state by only probing the spin
physics. In particular, in a small magnetic field the KIVC
state at ν ¼ �2 has a local spin moment of ≲2μB per moiŕe
unit cell, [134] whereas the IKS state at ν ¼ �2 has a
vanishing local moment. An immediate prediction that
follows from this observation is that in samples with
negligible strain, which have a strong KIVC gap at
neutrality (assuming there is also negligible h-BN align-
ment), the insulators at ν ¼ �2 should have a nonzero local
spin moment, whereas strained samples with semimetallic
behavior at neutrality should have no (spin or orbital)
magnetic moment at ν ¼ �2. By applying a small strain
to an initially unstrained sample, one should, therefore,

observe a strong first-order transition associated with an
abrupt disappearance of the local moment as one enters the
IKS phase. If the strain in experiment can be both slowly
increased and decreased, hysteretic behaviour should be
observed for the local spin moment around the KIVC-IKS
transition. We note that Ref. [3] indeed finds evidence for
spin-unpolarized insulators at ν ¼ �2 in a sample which is
semimetallic at neutrality, which is consistent with the IKS
or nematic SM scenario under the assumption that their
samples are heterostrained at the approximately 0.1%–
0.2% level.
At ν ¼ �3, the IKS insulators also have a smaller local

magnetic moment than the QAH insulators, which occur in
the absence of strain. As both states are spin polarized in a
small field, this difference is now due to the large orbital
moment of the QAH insulators, which is absent in the IKS
insulator. However, the easiest way to distinguish the IKS
state from the QAH state is via the transverse or Hall
resistance Rxy. This quantity is zero in the IKS state as
dictated by the spinless time-reversal symmetry but takes
on a quantized nonzero value in the QAH state. In
Refs. [3,15], insulating states are observed at ν ¼ þ3
which show Landau fans in magnetotransport measure-
ments that are consistent with a zero Chern number. Given
the semimetallic behavior at charge neutrality, we thus
expect the samples of Ref. [3,15] to be strained and,
therefore, the insulators at ν ¼ þ3 to have IKS order.
As discussed in Sec. VIII and Appendix E [63], the

nematic order of the IKS state survives at finite temper-
ature. We therefore predict that all insulators at ν ¼ �2;�3
should show strong interaction-induced nematicity, much
stronger than what one would naively expect from the small
strain present in the sample. This prediction actually fits
perfectly with the experimental observations of Ref. [89],
where nematicity is observed in the superconducting dome
between ν ¼ −3 and ν ¼ −2. Indeed, unless the insulators
at integer fillings are separated from the superconducting
dome by a strong first-order transition, one would generally
expect the insulators and the superconductors to either both
be isotropic or both be nematic. In Ref. [124], we show that
IKS order persists for a finite range of doping around the
integers and survives to temperatures [138] much greater
than the experimental Tc, suggesting that the supercon-
ducting dome could indeed inherit physics from the IKS.
Furthermore, the ideal ordering wave vector q [which is
naturally soft as illustrated in Fig. 3(d)] changes continu-
ously as a function of density [124], analogous to the
evolution of the nematic axis of the superconductor [89].
Such behavior is harder to rationalize for other rotation
symmetry-breaking parent states such as stripes. So even
without making any assumptions about the nature of the
superconducting state, we can interpret the observations of
Ref. [89] as indirect evidence for the IKS state.
While the above evidence is reasonable, it remains to a

degree circumstantial. A more definitive diagnostic for IKS
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order is possible, in principle, by detecting the Kekulé
pattern at the AA regions directly using STM or STS.
Kekulé order in monolayer graphene induced by mobile
adatoms (or substrate vacancies) [139,140] is measured in
Ref. [141], whereas Kekulé order induced by large (iso-
tropic) strain [142,143] is observed in Ref. [144]. However,
only a very small fraction of the total number of electrons,
i.e., those occupying the central bands, participate in the
IKS order we find at nonzero integer fillings in TBG. As a
result, the signal coming from the graphene-scale

ffiffiffi
3

p
×

ffiffiffi
3

p
Kekulé pattern in the IKS state is significantly smaller than
that seen in the above-mentioned monolayer experiments
and, hence, could lie below the present-day experimental
resolution. [However, the STM studies of Refs. [145,146]
are able to detect a Kekulé distortion in monolayer
graphene in a high magnetic field at densities that are
comparable to those of TBG. The theory here is based on
the approximate SUð4Þ symmetry of the zeroth Landau
level, which is close in spirit to the Uð4Þ ×Uð4Þ limit of
TBG, but the anisotropies and associated mechanisms are
different [147].] In Sec. VI, we discuss how charge order
could be induced in the IKS state by changing the
eccentricity of the Kekulé spiral. This charge order might
be easier to detect experimentally than the Kekulé pattern,
for example, by using high-resolution scanning single-
electron transistors made of a carbon nanotube [148,149].

X. DISCUSSION

By combining the results obtained in this work at
nonzero integer fillings with the findings of Ref. [61] at
neutrality, we conclude that by adding a small amount of
uniaxial heterostrain to the BM Hamiltonian one obtains
from self-consistent Hartree-Fock a global picture of the
TBG phase diagram that is consistent with most or even all
experimental observations at integer fillings. In particular,
at neutrality moderately strained TBG is semimetallic, at
ν ¼ �1 it is metallic but with a significantly lower carrier
density than the noninteracting BM model due to strong
IKS order, and at ν ¼ �2;�3 it becomes an IKS insulator.
On top of this, we argue that several other properties of the
IKS states (e.g., spin polarization, Chern number, nem-
aticity) fit nicely with many of the experimental observa-
tions. The estimated temperatures at which the insulating
IKS states should appear (approximately 7 K) also agree
remarkably well with experiment. Furthermore, as we
explain in Ref. [124], the doped descendants of the
finite-strain integer orders examined here exhibit Landau
fans and compressibility signatures that are consistent with
those measured experimentally.
Our results open up several interesting directions for

future work. For example, a generalized Pomeranchuk
effect is observed in TBG [150,151], which causes high-
entropy insulators to win over metallic states with increas-
ing temperature. There is at present no theory to fit the
IKS state into this Pomeranchuk scenario. For the uniform

QHFM states, several groups have recently calculated the
collective mode spectrum [152–155]. In this work, we do not
attempt to do this for the IKS states, although it would be
helpful to obtain a more complete picture of the low-energy
physics at the different integer fillings. Arguably the most
interesting direction for future work is to investigate the
relation between the IKS states and superconductivity. For
example, the KIVC state has recently been argued to be a
natural parent state for superconductivity in Refs. [21,156].
A future direction would be to adapt this mechanism to the
IKS state or investigate whether local KIVC correlations are
strong enough to allow the same mechanism to be operative.
It would also be interesting to consider if a similar approach
to coupling superconductivity via topological terms in
Ref. [50] could be generalized to the dominant lobe physics
of the IKS. References [126,157] subject TBG to different
amounts of Coulomb screening and find that the strengths of
insulating and superconducting orders seem to anticorrelate.
Any satisfactory theory of superconductivity should be able
to explain this anticorrelation.
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