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Abstract 1 

Background: The anatomical dimensions of the lumbar dural sac determine the 2 

sensory block level of spinal anesthesia; however, whether they show the same 3 

predictive value during continuous epidural anesthesia (CEA) remains undetermined. 4 

We designed the present study to verify the efficacy of the anatomical dimensions of 5 

the lumbar dural sac in predicting the sensory block level during labor analgesia. 6 

Methods: A total of 122 parturients with singleton pregnancies requesting labor 7 

analgesia were included in this study. The lumbar dural sac diameter (DSD), lumbar 8 

dural sac length (DSL), lumbar dural sac surface area (DSA) , and lumbar dural sac 9 

volume (DSV) were measured with an ultrasound color Doppler diagnostic apparatus. 10 

CEA was performed at the L2-L3 interspace. After epidural cannulation, an electronic 11 

infusion pump containing 0.08% ropivacaine and sufentanil 0.4 µg/ml was connected. 12 

The sensory block level was determined with alcohol-soaked cotton, a cotton swab, 13 

and a pinprick. The analgesic efficacy of CEA was determined with a visual analog 14 

scale (VAS). Divided the parturients into two groups: "ideal analgesia" and "non-ideal 15 

analgesia", and compared the groups by t test. Pearson's correlation was performed to 16 

evaluate the association between the anatomical dimensions of the lumbar dural sac 17 

and sensory block level. Multiple linear regression analysis was used to create a 18 

model for predicting the sensory block level. 19 

Results: In the "ideal analgesia" group, the height, DSL, DSA, DSV and DSD were 20 

significantly smaller, and the BMI was significantly larger (P<0.05) (Table 1). In 21 

addition, the DSL demonstrated the strongest correlation with the peak level of pain 22 
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block (r=-0.816, P<0.0001; Figure 2A), temperature block (r=-0.874, P<0.0001; 1 

Figure 3A) and tactile block (r=-0.727, P<0.0001; Figure 4A). Finally, multiple linear 2 

regression analysis revealed that the DSL and BMI contributed to predicting the peak 3 

sensory block level. 4 

Conclusion: In conclusion, our study shows that the sensory block level of CEA is 5 

higher when the DSL, DSA, DSV and DSD of puerpera are lower. The DSL and BMI 6 

can be treated as predictors of the peak sensory block level in CEA during labor 7 

analgesia. 8 

Keywords: Dural sac ; Ultrasound; Labor analgesia; Continuous epidural anesthesia  9 
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Background 1 

Currently, continuous epidural anesthesia (CEA) is one of the preferred pain 2 

management methods for labor analgesia[1]. With the increasing requirements for the 3 

comfort of childbirth, the precision of anesthesia is increasingly required. Predicting 4 

the sensory block level of epidural anesthesia can provide a reference index for 5 

accurate perinatal anesthesia. 6 

At present, it is widely believed that the effect of epidural anesthesia comes from 7 

delayed spinal anesthesia produced by local anesthetics in the epidural space that 8 

penetrate through the dura mater and penetrate into the cerebrospinal fluid (CSF)[2-4]. 9 

Fanning et al reported that the length of the lumbar vertebrae had value in predicting 10 

drug diffusion in continuous combined spinal-epidural anesthesia[5]. In addition, the 11 

dural sac volume (DSV) affects the spread of local anesthetics in spinal anesthesia[5-6]. 12 

As an important channel, the influence of dura mater in epidural anesthesia is worthy 13 

of further study. Although ultrasound imaging of the lumbar spine cannot be used to 14 

determine the volume of CSF, it does allow the assessment of certain dimensions of 15 

the lumbar dural sac[7]. 16 

To verify whether these anatomical dimensions of the lumbar dural sac possess 17 

similar predictive value in determining the sensory block level in CEA during labor 18 

analgesia, we designed and performed this study using ultrasound. 19 

 20 

 21 

 22 
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Methods 1 

Subjects 2 

The study is conducted according to the principles of the Declaration of Helsinki 3 

and has been approved by the Chinese Registered Clinical Trial Ethics Committee 4 

(ChiECRCT20200295). The study was registered in the Chinese Clinical Trial 5 

Registry on November 30th, 2019 (ChiCTR1900027830). This study was performed 6 

at  the First Affiliated Hospital of Wannan Medical College. The study was 7 

conducted without any funding sources. From November 2019 to August 2020, a total 8 

of 122 parturients aged between 18 and 45 with an ASA status of II who received 9 

CEA analgesia for vaginal delivery were included in this clinical observational 10 

research. Written informed consent was obtained from all participants before 11 

participation. Patients with multiple pregnancies, or a history of spinal anesthesia 12 

were excluded, as were patients who failed in the epidural puncture or switched to 13 

cesarean section without completing the study after enrollment. The dataset 14 

supporting the conclusions of this article will be available upon request. 15 

Study protocol 16 

After parturients entered the operating room, routine monitoring were established. 17 

Before performing CEA, lactated Ringer's solution was instilled for prehydration. 18 

Ultrasound scanning was performed before the administration of epidural analgesia 19 

via a portable ultrasound color Doppler diagnostic apparatus system equipped with a 20 

2-5 MHz convex array probe (SonoScape Medical Corp, Shenzhen, China). 21 

Ultrasound imaging was performed with the patient lying on her left side, and the 22 
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same position was used for epidural needle placement. In brief, an ultrasound probe 1 

was placed on the paramedian sagittal oblique plain to identify the L5-S1 interspace 2 

by identifying the continuous hyperechoic line of the sacrum. Then, the probe was 3 

slowly moved cephalad along the paramedian sagittal oblique plain to capture a view 4 

of the intervertebral space[8-9]. Next, the L4-5, L3-4, L2-3, and L1-2 interspaces were 5 

determined in the same manner. The acoustic window included the vertebral body, 6 

ligamentum flavum, and dorsal and ventral dura mater (Figure 1A). The distance from 7 

the dorsal dura mater to the ventral dura mater (lumbar dural sac diameter, DSD) was 8 

measured with a built-in caliper. The lumbar dural sac length (DSL) was defined as 9 

the sum of the each dural sac length between L1-2 and L5-S1 (Figure 1B). The 10 

lumbar DSV and lumbar dural sac surface area (DSA) were obtained by adding the 11 

DSV and DSA, respectively, between each lumbar intervertebral space. 12 

A 13 

 14 

 15 

 16 
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B 1 

 2 

Figure 1. Measurement of the anatomical dimensions of the dural sac by ultrasound. A. 3 

LF=ligamentum flavum, DDM=dorsal dura mater, VDM=ventral dura mater, ES=epidural space, 4 

DS=dural sac. B. DSD=dural sac diameter, DSL=dural sac length. 5 

In the past, the lumbar dural sac was assumed to be cylindrical[5]. In view of the 6 

fact that some scholars have found that the diameter of the dural sac is different in 7 

different intervertebral spaces[10], the formula for a circular truncated cone was 8 

applied to calculate the volume and surface area of the lumbar dural sac in our study. 9 

The volume of each dural sac was calculated according to the formula for the volume 10 

of a circular truncated cone: 2 2( ) / 3V h R r R rπ= + + . The surface area of each dural 11 

sac was calculated according to the formula for the surface area of a circular truncated 12 

cone: S R l r lπ π= + , where the radius is half of the dural sac diameter, h is the dural 13 

sac length, and l is calculated from r and h by ( )2 2
l R r h= − + . 14 

  Cross-sectional imaging was carried out in the L2-3 intervertebral space to 15 

determine the ideal puncture point at the midpoint of L2-3 intervertebral space[11]. We 16 
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need to measure the depth of the epidural space and the distance between the midpoint 1 

of the intervertebral space between L1-2 and L2-3. The sum of the two lengths 2 

determines the depth of epidural catheter placement. This is done to ensure that the 3 

opening of the catheter tip is located in the midpoint of L1-2 intervertebral space. 4 

When the parturient turned to the supine position, 3 ml of 1.5% lidocaine was 5 

infused as an experimental dose to rule out the risk of spinal anesthesia. Then, an 6 

electronic infusion pump (APON Corporation, Nantong, China) containing sufentanil 7 

0.4 μg/ml and 0.08% ropivacaine was connected to the epidural catheter. The initial 8 

dose was 8 ml administered at a rate of 1 ml/s, and the rate of continuous infusion was 9 

8 ml/h. During the whole procedure, 6 mg ephedrine was given intravenously when 10 

the post-anesthesia systolic blood pressure decreased by more than 20%, 0.2mg 11 

atropine was injected when the heart rate was below 55 beats per minute. Patients at 12 

risk of spinal anesthesia should stop using epidural analgesia and be rescued in time. 13 

The efficacy of labor analgesia was evaluated with a visual analog scale (VAS) at 14 

time zero, which was just after epidural cannulation. The level of pain, temperature 15 

and tactile sensory block was tested with a pinprick, alcohol-soaked cotton and a 16 

cotton swab, respectively. Evaluations of the sensory block level and VAS score were 17 

performed every minute within the first 3 minutes and every 5 minutes after 18 

administration of the initial dose. After three consecutive evaluation values remained 19 

unchanged, the sensory block level and VAS score were tested every 30 minutes until 20 

the end of labor.  21 

"Ideal analgesia" was defined as "a VAS score decline to the 3 points within 30 22 
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minutes" [12-13]. If the maternal VAS score does not reach 3 points within 30 minutes, it 1 

was regarded as "non-ideal analgesia". If her sensory block level is fixed (i.e., the 2 

same value for three consecutive assessments), an additional 8ml of the drug will be 3 

added using an electronic infusion pump.   4 

Statistical analysis 5 

G-power 3.1.9.2 was used to calculate the sample size. In this study, multiple linear 6 

regression analysis included five predictors of maternal BMI, DSD, DSL, DSA and 7 

DSV. The expected effect value was 0.15, the test level was 0.05, and the test power 8 

was 0.9, so the minimum sample size was 118. 9 

The following software was used for analysis: Excel 2010, GraphPad Prism 8.0.1, 10 

and IBM SPSS Statistics 25. The results are presented as the mean±SD, and 11 

comparisons between groups were performed by unpaired Student's t test or Welch's t 12 

test. Sensory block level is expressed in median and range. The correlation between 13 

the patient characteristics and sensory block level was analyzed via Pearson's 14 

correlation. Multiple linear regression analysis was used to analyze the five 15 

explanatory variables of the BMI, DSL, DSA, DSV and DSD and sensory block level, 16 

respectively. The prediction model with the highest adjusted R2 value was selected by 17 

a stepwise method. Because of collinearity (the DSA and DSV were calculated using 18 

the DSL as part of the formula), the DSA and DSV could not appear in the same 19 

model when constructing predictive models. Statistical significance was defined as 20 

P<0.05 (two-sided).  21 

 22 
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Results 1 

Three parturients transferred to cesarean section, and the remaining 119 parturients 2 

completed the study and were included in the analysis. With appellate definition, we 3 

classified parturients who underwent epidural analgesia into two groups: "ideal 4 

analgesia" [14] and "non-ideal analgesia" [15]. In the "ideal analgesia" group, the height, 5 

DSL, DSA, DSV and DSD were significantly smaller, and the BMI was significantly 6 

larger (P<0.05) (Table 1). 7 

Table 1. Comparison between between  "ideal analgesia" group and "non-ideal analgesia" group 8 

(n=119) 9 

Patient characteristics "ideal analgesia" 

(n=87)  

"non-ideal analgesia" 

(n=32) 

P 

Height, cm 

Weight, kg 

BMI, kg/m2 

DSL, cm 

DSA, cm2 

DSV, cm3 

DSD, cm 

160.58±4.45 

69.52±8.45 

26.98±2.89 

11.31±1.17 

49.01±7.40 

17.12±3.95 

1.36±0.12 

164.94±3.56 

66.56±8.58 

24.36±2.69 

13.34±1.17 

62.20±10.96 

23.65±7.37 

1.45±0.20 

<0.0001 

0.094 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

0.016 

 10 

Pearson's correlation demonstrated that there is a correlation between the DSL, 11 

DSA, DSV and DSD and the level of pain, temperature and tactile sensory block 12 

(Figures 2-4). The DSL demonstrated the strongest correlation with the peak level of 13 

pain block (r=-0.816, P<0.0001; Figure 2A), temperature block (r=-0.874, P<0.0001; 14 

Figure 3A) and tactile block (r=-0.727, P<0.0001; Figure 4A). 15 

 16 

 17 

 18 

 19 
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 2 

B 3 
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 7 
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D 1 

 2 

Figure 2. A. Correlation between the lumbar dural sac length (DSL) and peak pain block level 3 

(r=-0.816, p<0.0001). B. Correlation between the lumbar dural sac surface area (DSA) and peak 4 

pain block level (r=-0.808, p<0.0001). C. Correlation between the lumbar dural sac volume (DSV) 5 

and peak pain block level (r=-0.722, p<0.0001). D. Correlation between the lumbar dural sac 6 

diameter (DSD) and peak pain block level (r=-0.451, p <0.0001). Although correlation 7 

coefficients (r) and P values were calculated using Pearson’s correlation, the linear regression lines 8 

are presented in these graphs. 9 

 10 

A 11 

 12 

 13 
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B 1 

 2 

C 3 

 4 

D 5 

 6 

Figure 3. A. Correlation between the lumbar dural sac length (DSL) and peak temperature block 7 

level (r=-0.874, p<0.0001). B. Correlation between the lumbar dural sac surface area (DSA) and 8 
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peak temperature block level (r=-0.774, p<0.0001). C. Correlation between the lumbar dural sac 1 

volume (DSV) and peak temperature block level (r=-0.66, p<0.0001). D. Correlation between the 2 

lumbar dural sac diameter (DSD) and peak temperature block level (r=-0.322, p<0.0001). 3 

Although correlation coefficients (r) and P values were calculated using Pearson’s correlation, the 4 

linear regression lines are presented in these graphs. 5 

 6 

A 7 

 8 

B 9 

 10 

 11 

 12 

 13 
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C 1 

 2 

D 3 

 4 

Figure 4. A. Correlation between the lumbar dural sac length (DSL) and peak tactile block level 5 

(r=-0.727, p<0.0001). B. Correlation between the lumbar dural sac surface area (DSA) and peak 6 

tactile block level (r=-0.633, p<0.0001). C. Correlation between the lumbar dural sac volume 7 

(DSV) and peak tactile block level (r=-0.534, p<0.0001). D. Correlation between the lumbar dural 8 

sac diameter (DSD) and peak tactile block level (r=-0.238, p<0.0001). Although correlation 9 

coefficients (r) and P values were calculated using Pearson’s correlation, the linear regression lines 10 

are presented in these graphs. 11 

 12 

The DSL and BMI were important predictors of the peak sensory block level. The 13 
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multiple linear regression analysis revealed the following (Table 2):  1 

Peak pain block level = 4.7+0.452×DSL-0.093× BMI 2 

Peak temperature block level = 3.409+0.461×DSL-0.069× BMI 3 

Peak tactile block level = 9.505+0.220×DSL-0.052× BMI 4 

 5 

 6 

 7 

 8 

Table 2. Multiple Linear Regression Models 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

Response 

Variable 

R
2
 Adjusted 

R
2 

Intercept P Explanatory 

Variables 

Regression 

Coefficient 

Standard 

Regression 

Coefficient 

Peak pain block level 0.771 0.767 4.7 <0.0001 

<0.000 

DSL 

BMI 

0.452 

-0.093 

0.769 

-0.328 

Peak temperature block level 0.829 0.826 3.409 <0.0001 DSL 0.461 0.836 

   <0.0001 BMI -0.069 -0.260 

Peak tactile block level 0.638 0.632 9.505 <0.0001 

<0.0001 

DSL 

BMI 

0.220 

-0.052 

0.679 

-0.334 
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Discussion 1 

In this study, we first observed a smaller DSL, DSA , DSV and DSD, in patients 2 

with "effective analgesia". In addition, our results suggested that there is a negative 3 

correlation between the peak sensory block level (pain, temperature and tactile) and 4 

the anatomical dimensions of the lumbar dural sac (DSL, DSA and DSV). Finally, 5 

multiple linear regression analysis revealed that the DSL and BMI contributed to 6 

predicting the peak sensory block level.  7 

The sensory block level in CEA determines the efficacy of analgesia, which is the 8 

most concerned issue for parturients during labor. However, the sensory block level is 9 

affected by a wide variety of factors, such as the operating proficiency, insertion depth, 10 

injection rate, and drug concentration. Previous studies have used many anatomical 11 

variables to explain the diffusion of local anesthetics in CSF, such as height, weight[13], 12 

spine length[16], and abdominal girth[17]. 13 

The epidural space between the dura mater and vertebral canal wall is used as a 14 

route for administering local anesthetics. The spreading of local anesthetics into the 15 

epidural space after injection involves two steps[2]. First, local anesthetics spread 16 

within the epidural space itself. This is dependent on those conditions that have been 17 

discussed before, such as the dose, volume and infusion rate of local anesthetics. 18 

Second, local anesthetics can penetrate into the subperineural space by spreading 19 

around the capillary and lymphatic channels of the vasa nervorum at the dura 20 

mater[2-3]. Previous experiments have shown that the dose of drugs that reach the 21 

subpial spaces around the spinal cord and can diffuse along the nerve axis will be 22 
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proportional to the dose that can spread through the dura mater into the subperineural 1 

space[2]. Ultimately, most studies have indicated that local anesthetics penetrate 2 

through the dura mater and spread in the CSF after epidural injection, which produces 3 

delayed spinal anesthesia[2-4]. Carpenter and colleagues described that a smaller 4 

volume of CSF leads to a greater sensory block level in spinal anesthesia[18]. Thus, the 5 

volume of CSF is an important anatomical factor affecting the sensory block level of 6 

epidural anesthesia. 7 

Previous studies have shown that obese patients under spinal anesthesia have a 8 

higher level of sensory block[19], which may be due to the narrowing of the epidural 9 

space and increased epidural pressure caused by dilated epidural veins and 10 

accumulated epidural fat in obese patients[20]. Compression of the lumbar dural sac 11 

causes a reduction in the volume of cerebrospinal fluid in the waist, reducing dilution 12 

of local anesthetics[21]. Parturients are a special type of abdominal obesity patients[22]. 13 

Given that maternal epidural fat is difficult to accurately display under ultrasound, 14 

BMI was included as an indicator of obesity in our study. 15 

Based on previous studies have shown that the anatomical dimensions of the 16 

lumbar dural sac can be measured to assess the volume of CSF[5-6], we selected DSL, 17 

DSA, DSV and DSD as the independent variables. In our study, the DSL, DSA , DSV 18 

and DSD were significantly lower in patients with "ideal analgesia". To identify the 19 

factor with the strongest correlation on the sensory block level, we performed 20 

Pearson's correlation analysis. The DSL, DSA , DSV and DSD displayed the 21 

negatively correlation with the level of pain, temperature and tactile sensory block. In 22 
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our study, the correlation between height and sensory block level is relatively small, 1 

while the correlation between DSL and sensory block level is higher. Because the 2 

height differences between most adults are determined by the length of the long bones 3 

in the lower limbs rather than the length of the spine, the measurement of DSL has 4 

more clinical application value. Our DSA measured by ultrasound has a similar 5 

correlation with the DSA measured by Higuchi et al using magnetic resonance 6 

imaging (MRI)[23]. In addition, our results break through the non-correlation between 7 

the DSD and the sensory block level in spinal anesthesia[24], and prove that there is a 8 

negative correlation between the DSD and the sensory block level in epidural 9 

anesthesia, which provides a new idea for the clinical study of intraspinal anesthesia. 10 

There are several limitations to this study. The volume of fluid injected into the 11 

epidural space compresses the dural sac and reduces the volume of CSF[25]. Although 12 

we have limited the volume of the experimental dose of lidocaine to 3 ml, we still 13 

cannot ignore the effect on the sensory block level. In addition, ultrasound imaging 14 

cannot display soft tissue, such as fat[26] or vascular tissue, in the epidural space 15 

clearly and accurately[27]; thus, we should not rule out their influence on the current 16 

results. In addition, although our dural sac model was based on the formula for a 17 

circular truncated cone, the values were approximated. 18 

Our study provides a convenient and noninvasive method to predict the efficacy of 19 

labor analgesia in parturients. In addition, with this method, we can screen patients 20 

with a high risk of “nonideal analgesia” to adjust the dose, volume and infusion rate 21 

of local anesthetics. Further studies at multiple centers with larger populations are 22 
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necessary to explore the suitable drug dose, volume and infusion rate, and provide a 1 

reference index for accurate perinatal anesthesia. 2 
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Conclusions 1 

In conclusion, our study shows that the sensory block level of CEA is higher when 2 

the DSL, DSA, DSV and DSD of puerpera are lower. The DSL and BMI can be 3 

treated as predictors of the peak sensory block level in CEA during labor analgesia. 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 



 24 

 

References 1 

1.  Sng BL, Sia ATH. Maintenance of epidural labour analgesia: The old, the new 2 

and the future. Best Pr Res Clin Anaesthesiol. 2017;31:15–22. 3 

2.  Bromage PR. Spread of analgesic solutions in the epidural space and their site 4 

of action: a statistical study. Br J Anaesth. 1962;34:161–78. 5 

3.  Hogan Q. Distribution of solution in the epidural space: examination by 6 

cryomicrotome section. Reg Anesth Pain Med. 2002;27:150–6. 7 

4.  Hogan Q. Epidural catheter tip position and distribution of injectate evaluated 8 

by computed tomography. Anesthesiology. 1999;90:964–70. 9 

5.  Fanning N, Arzola C, Balki M, Carvalho JC. Lumbar dural sac dimensions 10 

determined by ultrasound helps predict sensory block extent during combined 11 

spinal-epidural analgesia for labor. Reg Anesth Pain Med. 2012;37:283–8. 12 

6.  Higuchi H, Hirata J, Adachi Y, Kazama T. Influence of lumbosacral 13 

cerebrospinal fluid density, velocity, and volume on extent and duration of 14 

plain bupivacaine spinal anesthesia. Anesthesiology. 2004;100:106–14. 15 

7.  Otero PE, Verdier N, Zaccagnini AS, Fuensalida SE, Sclocco M, Portela DA, et 16 

al. Sonographic evaluation of epidural and intrathecal injections in cats. Vet 17 

Anaesth Analg. 2016;43:652–61. 18 

8.  Tubinis MD, Lester SA, Schlitz CN, Morgan CJ, Sakawi Y, Powell MF. Utility 19 

of ultrasonography in identification of midline and epidural placement in 20 

severely obese parturients. Minerva Anestesiol. 2019;85:1089–96. 21 

9.  1. Tawfik MM, Atallah MM, Elkharboutly WS, Allakkany NS, Abdelkhalek M. 22 



 25 

 

Does Preprocedural Ultrasound Increase the First-Pass Success Rate of 1 

Epidural Catheterization Before Cesarean Delivery? A Randomized Controlled 2 

Trial. Anesth Analg. 2017;124:851–6. 3 

10.  Kanbara S, Yukawa Y, Ito K, Machino M, Kato F. Dynamic changes in the 4 

dural sac of patients with lumbar canal stenosis evaluated by multidetector-row 5 

computed tomography after myelography. Eur Spine J. 2014;23:74–9. 6 

11.  Canturk M, Karbancioglu Canturk F, Kocaoglu N, Hakki M. Abdominal girth 7 

has a strong correlation with ultrasound-estimated epidural depth in parturients: 8 

a prospective observational study. J Anesth. 2019;33:273–8. 9 

12.  Panni MK, Columb MO. Obese parturients have lower epidural local 10 

anaesthetic requirements for analgesia in labour. Br J Anaesth. 11 

2006;96:106–10. 12 

13.  Polley LS, Columb MO, Naughton NN, Wagner DS, van de Ven CJ. Relative 13 

analgesic potencies of ropivacaine and bupivacaine for epidural analgesia in 14 

labor: implications for therapeutic indexes. Anesthesiology. 1999;90:944–50. 15 

14.  Pugliese PL, Cinnella G, Raimondo P, De Capraris A, Salatto P, Sforza D, et al. 16 

Implementation of epidural analgesia for labor: is the standard of effective 17 

analgesia reachable in all women? An audit of two years. Eur Rev Med 18 

Pharmacol Sci. 2013;17:1262–8. 19 

15.  Wong CA. Labor analgesia: is there an ideal technique? Anesth Analg. 20 

2009;109:296–8. 21 

16.  1. Wei CN, Zhang YF, Xia F, Wang LZ, Zhou QH. Abdominal girth, vertebral 22 



 26 

 

column length and spread of intrathecal hyperbaric bupivacaine in the term 1 

parturient. Int J Obs Anesth. 2017;31:63–7. 2 

17.  Zhou QH, Xiao WP, Shen YY. Abdominal girth, vertebral column length, and 3 

spread of spinal anesthesia in 30 minutes after plain bupivacaine 5 mg/ml. 4 

Anesth Analg. 2014;119:203–6. 5 

18.  Carpenter RL, Hogan QH, Liu SS, Crane B, Moore J. Lumbosacral 6 

cerebrospinal fluid volume is the primary determinant of sensory block extent 7 

and duration during spinal anesthesia. Anesthesiology. 1998;89:24–9. 8 

19.  Lamon AM, Einhorn LM, Cooter M, Habib AS. The impact of body mass 9 

index on the risk of high spinal block in parturients undergoing cesarean 10 

delivery: a retrospective cohort study. J Anesth. 2017;31:552–8. 11 

20.  Beckworth WJ, McCarty EJ, Garcia-Corrada JE, Holbrook JF. Epidural 12 

Lipomatosis and Associated Spinal Stenosis-The Impact of Weight Loss: A 13 

Case Report. Am J Lifestyle Med. 2017;11:511–4. 14 

21.  Zhou QH, Shen C, Chen G. Abdominal girth and dorso-sacral distance can be 15 

used to estimate lumbosacral cerebral fluid volume. Acta Anaesthesiol Scand. 16 

2018;62:234–41. 17 

22.  Günüşen İ, Sargın A, Akdemir A, Ergenoğlu AM. The effects of uterine size 18 

with or without abdominal obesity on spinal block level and vasopressor 19 

requirement in elective cesarean section: a prospective observational study. 20 

Turk J Med Sci. 2019;49:50–7. 21 

23.  Higuchi H, Adachi Y, Kazama T. Factors Affecting the Spread and Duration of 22 



 27 

 

Epidural Anesthesia with Ropivacaine. Anesthesiology. 2004;101:451–60. 1 

24.  Arzola C, Balki M, Carvalho JC. The antero-posterior diameter of the lumbar 2 

dural sac does not predict sensory levels of spinal anesthesia for Cesarean 3 

delivery. Can J Anaesth. 2007;54:620–5. 4 

25.  Higuchi H, Takagi S, Onuki E, Fujita N, Ozaki M. Distribution of epidural 5 

saline upon injection and the epidural volume effect in pregnant women. 6 

Anesthesiology. 2011;114:1155–61. 7 

26.  Borstlap AC, van Rooij WJ, Sluzewski M, Leyten AC, Beute G. Reversibility 8 

of lumbar epidural lipomatosis in obese patients after weight-reduction diet. 9 

Neuroradiology. 1995;37:670–3. 10 

27.  Borges BC, Wieczorek P, Balki M, Carvalho JC. Sonoanatomy of the lumbar 11 

spine of pregnant women at term. Reg Anesth Pain Med. 2009;34:581–5. 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 



Figures

Figure 1

Measurement of the anatomical dimensions of the dural sac by ultrasound. A.LF=ligamentum �avum,
DDM=dorsal dura mater, VDM=ventral dura mater, ES=epidural space,DS=dural sac. B. DSD=dural sac
diameter, DSL=dural sac length.



Figure 2

A. Correlation between the lumbar dural sac length (DSL) and peak pain block level (r=-0.816, p<0.0001).
B. Correlation between the lumbar dural sac surface area (DSA) and peak pain block level (r=-0.808,
p<0.0001). C. Correlation between the lumbar dural sac volume (DSV) and peak pain block level (r=-0.722,
p<0.0001). D. Correlation between the lumbar dural sac diameter (DSD) and peak pain block level



(r=-0.451, p <0.0001). Although correlation coe�cients (r) and P values were calculated using Pearson’s
correlation, the linear regression lines are presented in these graphs.

Figure 3

A. Correlation between the lumbar dural sac length (DSL) and peak temperature block level (r=-0.874,
p<0.0001). B. Correlation between the lumbar dural sac surface area (DSA) and peak temperature block
level (r=-0.774, p<0.0001). C. Correlation between the 1 lumbar dural sac volume (DSV) and peak



temperature block level (r=-0.66, p<0.0001). D. Correlation between the lumbar dural sac diameter (DSD)
and peak temperature block level (r=-0.322, p<0.0001). Although correlation coe�cients (r) and P values
were calculated using Pearson’s correlation, the linear regression lines are presented in these graphs.

Figure 4

A. Correlation between the lumbar dural sac length (DSL) and peak tactile block level (r=-0.727,
p<0.0001). B. Correlation between the lumbar dural sac surface area (DSA) and peak tactile block level



(r=-0.633, p<0.0001). C. Correlation between the lumbar dural sac volume (DSV) and peak tactile block
level (r=-0.534, p<0.0001). D. Correlation between the lumbar dural sac diameter (DSD) and peak tactile
block level (r=-0.238, p<0.0001). Although correlation coe�cients (r) and P values were calculated using
Pearson’s correlation, the linear regression lines are presented in these graphs.
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