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Abstract—This article presents a time-domain waveform model
developed to characterize pulsed, nonlinear, current waveforms re-
sulting in electromagnetic interference on static energy meters. The
waveform model is calculated by fitting the sampled waveform data
into a linear piece-wise function through a process that involves
applying algorithms of pulse extraction, change-point detection,
and redundancy elimination. The model is applied to data from lab-
oratory experiments that have indicated critical current waveforms
resulting in electromagnetic interference problems with static me-
ters. Afterwards, the parameters of the modeled waveforms are
calculated in order to correlate them to metering errors. The most
relevant parameters that are correlated to significant errors are
the maximum slope, crest factor, pulse duration, and charge. The
waveform model provides an accurate description of the complex
nonlinear waveforms through simplified analytical expressions that
reproduce the significant features of the interfering waveforms.
This waveform modeling approach could be used to standardize
the artificial test signals that are representative of realistic devices
and scenarios.

Index Terms—Electromagnetic interference (EMI), metering
errors, nonlinear, static energy meters, time-domain, waveform
model.

1. INTRODUCTION

HE energy consumption of households, for billing pur-

poses, is measured using static energy meters [1]. These
meters are replacing the conventional electromechanical meters
that use the Ferraris principle, and are widely deployed by util-
ities across Europe. Recently, experimental studies have shown
major errors of diverse static meters in various test conditions,
for example, in [2], harmonic disturbances showed errors of
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static meters outside the limits declared by the manufacturer.
Conducted electromagnetic interference (EMI) problems were
also reported in 2009, and were caused by photovoltaic (PV)
installations and power drive systems [3]. Similar problems
occurred with PV installations in Germany [4], [5], while in
other cases, high interference levels generated by active in-
feed converters were observed [6]. These observations, possibly
combined with a higher number of complaints and failures,
resulted in faster publication of the CLC/TR50579 [7] technical
report and IEC 61000-4-19 standard [8]. In more recent stud-
ies modern household appliances that behave nonlinearly have
shown conducted EMI problems that resulted in static meter
misreadings [9]. The size of this problem is enormous, because
such nonlinear behaving appliances are used increasingly in
electrical networks [10]. In this regard, misreadings were found
due to dimmed lighting equipment of light-emitting diode and
compact fluorescent lighting technology [11], [12], and a speed-
controlled water pump [13], [14]. In [13], experimental errors
in meter reading between -61% and +2675% were found. The
critical waveforms drawn using the nonlinear appliances show
impulsive currents with a high peak value and low root-mean-
square (RMS) value [15]. A fast rising slope was found to be
critical, and was higher than 0.1 A / us, the corresponding critical
rise times were between 2 and 150 us. The existence of more
household appliances and their relation to metering errors was
reported in [ 16]. To regenerate such waveforms, an ac controlled-
current load for controllable waveform parameters to quantify
metering errors has been designed in [17]. In [18], it is shown
that using only the 50 Hz component accurate electromagnetic
compatible energy measurements in the presence of harmonic
distortion can be performed.

Next to these laboratory experiments, it is of interest to survey
the signals occurring at meter connection points in on-site situ-
ations. The existence of current waveforms with fast increasing
slopes that occur in low-voltage (LV) customer terminals is
shown in [19]. Furthermore, in the framework of the MeterEMI
project [20], surveys are performed in modern LV distribution
networks. Preliminary results are shown including networks
with electric vehicle (EV) charging stations [21], and PV in-
stallations [22]. This resulted in a vast repository of datasets
comprising on-site current waveform measurements.

However, a parametric definition of such critical waveform
that enables their identification in real scenarios, remains an un-
solved technical challenge, because of the inherent complexity
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and diversity of the current waveforms found on-site. Therefore,
simple time-domain analysis algorithms that assume bilevel
pulses do not work. Collaterally, the absence of the referred
parametric definition hinders the possibility of establishing new
testing standards concerning the immunity of the static energy
meter with respect to EMI problems.

To produce such a set of standardized artificial test signals is
one of the goals of the MeterEMI project [20]. In this regard,
this article aims at defining and validating a parametric model
for the current waveforms that result in significant errors in
static meter readings. This model must provide a simplified, yet
accurate, mathematical description of the current waveforms,
such that it is easy to standardize into test waveforms. Therefore,
it is intended to reproduce the features that have been found to
be highly correlated to the errors in the static meter readings.
Then, the data collected in the previously performed laboratory
experiments [13]-[15] are fitted into the waveform model for
obtaining parametric versions of such current waveforms, and to
evidence the important parameters to be used in future immunity
test signals. Here, we focus only on the parameters that could
be extracted from the modeled current waveform, however, it
should be noted that the phase firing angle between the voltage
and the current pulse has an influence on the error, as was
already pinpointed in [2], [12], and [15]. Even though this is
not investigated in this article because it is not a characteristic
that is related to the modeled waveform, it should be noted that
the static meter errors might be amplified because of the phase
firing angle.

The rest of this article is organized as follows. Section II de-
scribes the waveforms that have been linked to significant errors
in static meters. Section III presents the waveform modeling
approach and it is followed by the analysis of the key waveform
parameters that can be extracted from the model in Section IV.
Section V discusses the critical waveform parameters related to
static meter errors. Finally, Section VII concludes this article.

II. WAVEFORMS RESULTING IN SIGNIFICANT ERRORS OF
STATIC METERS

The current waveforms resulting in errors on static meter
readings do not follow the voltage and are nonlinear. These
currents are resulting from a single appliance. Two examples,
representative for the waveforms resulting in static meter errors
as reported in [13]-[15], are shown in Fig. 1 and they will be
referred to as pulse 1 and 2. In the waveforms, a clear current
pulse is visible, and one period consists of one pulse as these
waveforms are unsymmetrical/unipolar, e.g., there is no current
pulse in the second half of the sine wave. It is also possible
that the waveform has multiple pulses for a symmetrical/bipolar
waveform or a superposition of multiple pulses, e.g., when using
multiple appliances. Pulse 1 is supplied by the voltage of a
buildings mains supply, while pulse 2 uses the voltage supplied
by a four-quadrant amplifier and a line impedance stabilization
network to provide a stable impedance, therefore, resulting in
a larger voltage dip. The two current waveforms shown look
slightly different, the pulse 1 rises to its peak value at once,
Fig. 1(a), while the pulse 2 can be considered as a superposition
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Fig. 1. Two different signal types considered.

of two trapezoidal pulses, it increases very fast to a first peak
value around 8 A, declines, and then, it increases further to
the peak value Fig. 1(b). Both pulses have a high peak value,
compared to a low RMS value around 1.5 A, and therefore, a
high crest factor (CF) of 10. The pulses increase very fast to
their peak value, the time to rise from 10 to 90% of the pulse
peak value is 20 and 3 ps for pulses 1 and 2, respectively, typical
values are between 2 and 150 ps for waveforms resulting in static
meter errors [15]. And the corresponding critical rising slopes
are higher than 0.1 A /pus.

A parametric model is composed based on a set of 60 current
waveforms and resulting static meter (SM) deviations during lab
measurements, which were reported in [13]-[15]. The model is
explained based on the waveforms presented in Fig. 1, which
are representative for the set of waveforms.

III. MODELED WAVEFORM

From the interfering pulses, a modeled waveform is com-
posed. This modeled waveform is intended to be a simplified
version of the actual current waveform while still representing
all its relevant features, to make it useful for future test stan-
dards. In particular, we propose to approximate the interfering
waveforms, p(t), through a combination of piece-wise linear
functions, y; (), that is, a superposition of linear fitted segments
given by

k+1

p(t) = Z vi(t) (1)

where y;(t) is the equation of a straight line defined between a
pair of change-points occurring at the discrete instants 7;_; and



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HAVE et al.: WAVEFORM MODEL TO CHARACTERIZE TIME-DOMAIN PULSES RESULTING IN EMI 3

T;, In other words
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vilt) = {0, fort <m_Vt>m' 2

The piece-wise linear segments can be estimated through
segmented regression if the change-points instants are known.
Several computational methods for this purpose are described
in [23]. Here, the underlying optimization problem is to find
the optimal change-points, which means, the extreme points of
each linear segment that allow an accurate representation of the
measured waveform through the proposed model.

For this purpose, a three-step algorithm has been designed.
First, the current pulses are extracted from the measurements,
and then, they are aligned and combined for the different oc-
currences of the same pulse. Second, the change-point detection
is implemented through the pruned exact linear time (PELT)
method [24]. Third, the redundant change-points are removed to
create an even more simplified representation of the interfering
impulse. The details of the algorithm’s steps are provided in
the following subsections, and then, the waveform model is
validated by comparing its fit to the original measured waveform
to obtain whether this is an accurate representation.

A. Pulse Extraction

The interfering current pulse is only present in the waveform
during a short time interval in each period, Fig. 1, and in the rest
of the waveform, the signal has a value of zero. To analyze
the pulse more thoroughly, it is extracted from the original
waveform, using the process described as follows.

1) The time domain records obtained from the experiments
comprise several periods of the mains frequency. The data
are segmented per period (50 Hz) resulting in n frames.
It might be possible that multiple pulses occur within one
period, e.g., when the waveform is bipolar. In that case,
the sign of the negative pulse is reversed, as a result, the
frequency of pulse occurrence is doubled.

2) The peak amplitude of the pulses observed during each
cycle is calculated. The interfering pulses are treated as
bilevel waveforms. Consequently, the state levels are cal-
culated according to the histogram method [25].

3) The transition instants between state levels in the rising
and falling edges are detected for a mid reference level
equivalent to the 10% of the difference between the high-
and low-state levels. This is consistent with the commonly
applied criteria of 10-90% — 90-10% used for the mea-
surement of the rise and fall times, respectively [25].

4) The state-level tolerance, T'ol, is defined considering the
variation between the extremes values of the pulses’ peak
amplitudes according to

max(Apeak) — min(Apeak)

Tol (%) = £100 x 3)

2 mean(Apeak)

where the max(-), min(-), and mean(-) functions calculate
the maximum, minimum, and average values of the pulses’
peak amplitudes.
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Fig. 2. Result of the pulse extraction process applied to ten cycles at mains
frequency.

5) Finally, the pulses are extracted from each frame. For
that purpose, the duration of the extracted waveforms is
calculated as twice the maximum pulsewidth among the
different pulse occurrences. The extracted pulses are then
aligned with respect to the first rising edge and a time
margin of 50% of the pulsewidth is allowed before and
after the transition instants.

The result of the pulse extraction process is plotted in Fig. 2.
Among the ten occurrences of the pulse (displayed in different
colors), from pulse 2, Fig. 2(b), it is evidenced that waveform
characteristics such as the peak amplitude and duration vary
significantly from cycle to cycle even if the shape of the pulse
remains similar.

B. Change-Points Detection

The change-point analysis is the identification of points within
a dataset where certain statistical properties change. In particu-
lar, the referenced property could be the standard deviation, the
RMS level, the mean value, or the slope.

Provided that each interfering pulse extracted in the previous
step is represented by an ordered sequence of sampled data
points Pi., = {p1,p2, ..., Pn }, €ach point corresponding to the
instants t1., = {t1,%2,...,t,} and that it is of interest to fit
(t1.n; P1.n) according to the model in (1) and (2) for a number
of k + 1 piece-wise linear segments, then a number of k optimal
change-points, cp;.;, must be calculated for segmenting the
dataset according to abrupt changes in the waveform mean value
and the slope. Those change-points occur in the discrete time
instants 71.;, = {71, T2, ..., 7% }. Each change-point discrete in-
stant corresponds to a vector position that is an integer between
1 and n — 1 inclusive.

We define 7y = t; and 7,1 = t,, and assume that the change-
points are ordered such that 7; < 7; if, and only if, ¢ < j.
Consequently, the k& change-points will split the dataset into
k + 1 segments, with the ith segment containing P, ,).r,.

One commonly used approach to identify multiple change-
points is to minimize the following:

k+1

> Ci (Piryyin)] + BF () )

i=1
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where C; () is the cost function for the ith segment and 5 f (k) is
a penalty to guard against over fitting. For linear cost functions,
the PELT method is computationally efficient for finding the
change-points. More about the PELT method and other algo-
rithms for solving the previous equation is reviewed in [24].

With regards to the cost function in (4), a suitable choice is the
sum of squared errors, SSE, since it is a measure of the goodness
of fit that is meaningful for regression models. The SSE of the
ith segment is given by

m

SSE,; = Z (pji — yi(t4))°

j=1

&)

where (t;;;p;,:) is the time—amplitude coordinate of the jth
waveform point of the ith segment containing m number of
samples. A small SSE indicates a tight fit of the model to the
data.

Then, the best linear fit of the subset of m waveform points in
the ith segment P, )., is obtained through the least squares
regression, that is,

it (B pga) (= t0)
S (B — )

by = pi — ait;

(6)

i

@)

where a; and b; are the slope coefficient and the intercept of
the ith segment in (2), respectively, and p; and ¢; are the mean
values of the waveform amplitudes and of their corresponding
time instants, respectively.

C. Change-Points Selection

Next, the most suitable number of change-points is deter-
mined and it is decided whether or not the detected change-
points are relevant to construct the model waveform. First, the
appropriate number of change-points are determined. The two
pulses in Fig. 1 can be described in the most simple manner
by one (pulse 1) or a superposition of two pulse(s) (pulse 2).
This will result in four and six change-points, for pulses 1 and 2,
respectively. However, the slope of the rising part is not constant,
and to retain the relevant information of the pulse, splitting (for
example) the rising part in different segments allows us to retain
the information about the steepest part of the slope, instead
of modeling the slope as a single segment. Therefore, without
making the modeled waveform too extensive, ten change-points
in between the beginning and the end point of the pulse are used,
so a total of twelve. The resulting modeled waveform is plotted
in Fig. 3.

Second, the redundant information created by the addition of
extra change-points is removed. The slopes of the consecutive
linear piece-wise segments are compared and when those are
similar the middle change-point is removed. It was found that
when the difference between consecutive slopes is lower than
0.6% of the maximum absolute slope of the signal, the middle
change-point could be removed. This simplification results in
an optimized version of the model waveform that represents all
the features of the original measured waveform. The redundant
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representation.

change-points are indicated in Fig. 3, and two and one change-
points are removed for pulses 1 and 2, respectively.

D. Modeled Waveform Validation

Validation of the model is done through comparison with the
actual measured result. Fig. 4 presents a comparison between
the average measured waveform and its modeled representation
with each change-point indicated through its expected value and
its confidence interval for the horizontal and vertical coordinates.
In that sense, individual occurrences of the pulse contained
between the change-points intervals are considered to be repre-
sentative of the same waveform model. It is interesting to notice
that the variability in the time instants of the change-points is,
in general, lower than the variability in their amplitude.

As for the metric of goodness of fit, the mean squared error
(MSE) between the average waveform (reference value) and the
linear piece-wise model (estimated-value) was used because it
provides a scalar value that is easy to calculate, compare, and
interpret. For pulse 1, MSE; = 7.3 x 10~ A? and for pulse 2,
MSE,; = 2.8 x 1073 A2, In both cases, the MSE is very low,
which confirms the excellent fit observed between experimental
data and the modeled waveform.
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modeled waveform.

Likewise, the power spectrum of the measured and modeled
waveforms is also in excellent agreement as is shown in Fig. 5. It
evidences that no significant distortion is added to the modeled
waveform and the same bandwidth is ensured. For both, pulses 1
and 2, the spectrum was calculated up to | MHz with a frequency
resolution of 200 Hz. For this purpose, the pulse repetition
frequency was the mains frequency (50 Hz), and the sampling
rate used was 20 MHz.

IV. PARAMETRIC MODEL

In order to reduce the complexity in the description of the
interfering current pulses, the modeled waveforms are charac-
terized through a set of scalar parameters. Such that these pa-
rameters could be easily implemented in future standardized test
signals. In this respect, the waveform parameters are determined
for the modeled waveform, p(?), and can be determined by the
set M of k change-points, cp;.; as

M = {po{taei; yiltes)} i o =1,.. .k} (8)

The extracted parameters are visualized in Fig. 6, and are
explained one-by-one as follows.
1) Slope (AI/Ar): The slope between two consecutive
change-points, i.e., the ratio between the amplitude and
time difference between consecutive change-points

Al, _ Yi(tzg1i) — Vi(ta i)
At, '

9

tog1,i — tayi

A single pulse consists of multiple segments, and thus,
multiple slopes. By taking the maximum or minimum

value, the maximum rising or falling slope, respectively,
could be determined. This is different from the commonly
used 10-90% — 90-10% criteria [25], especially for the
pulse 2. Where we see in Fig. 3(b) that the 90% value of
the rising part is located between change-points 7 and 8,
while the fastest rising part is between change-points 2 and
4. As it is expected that the fast changing edges, and thus,
steep absolute slopes will contribute to misinterpretation
of the measured signals in energy metering, this definition
of maximum rising and falling slope is a better indication
for the fast changing slopes.

2) Peak value (/): Represents the peak value of the pulse,
meaning the change-point with the highest amplitude

Ik = max({y;(ty ) x=1,...,k}). (10)

3) Pulsewidth (#y;qm): The time the signal needs in-between
its rise to 50% and its fall to 50% of I, where the time in-
stances are interpolated on the linear piece-wise segments,
this is a commonly used criteria for pulsewidth [25].

4) Charge (Q): The area circumferenced by the pulse and
the zero current line; to calculate this, the area be-
tween consecutive change-points and the zero current
line is determined and summed. This is a combination
of a triangle with height A/, and a square with height
min(y;(tz,i),i(tz+1,:), both have width Az,

k
1 .
Q= Z <2AII + min (yx(txyi),yz(tzﬂ’i))) At
=1

(11)

5) Crest factor (CF): The ratio between the peak value (/i)

and the RMS value (I;s) of the pulse over one cycle

at mains frequency, this indicates how extreme the peak

value of the pulse is in comparison with the rest of the
signal

CF = o

=—. (12)
II'IIIS
V. CRITICAL WAVEFORM PARAMETERS RESULTING IN
METERING ERRORS

Considering the model that accurately represents and de-
scribes the interfering current waveforms presented thus far, it
is of interest to identify which, if any, of those parameters are
highly correlated to the static meters errors. In order to evidence
which parameters are of importance to consider in future im-
munity tests for EMI in static meters. However, this problem
is not trivial because most parameters defined in the previous
section are not independent from each other, that is, there are
cross correlations and interactions between them. Additionally,
the error response of the static meters to the interfering current
waveforms is heterogeneous.

From the static meter data in [13]-[15], it was known that
not all static meters result in the same maximum errors, as
shown in Fig. 7. Therefore, the static meters are subdivided
in classes, these different classes might also relate to different
critical parameters. This division could also be related to the
current measuring element in the static meter.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6
SM class A SM class B SM class C
L Y 150 * +
S + + |2 + F40 +
2000 * + 2100 <
é ¥F 0+ & o+ § + E é 20
s $ S 501 g k& *
3 1000 i i i z 3 1
3 180 & S BT &
s = * = 1
» » * ) i ¥
0 S0 1 -20 +
Al A2 A3 A4 B1 B2 Ct C2 C3 C4
SM under test SM under test SM under test
Fig. 7. Difference in the distribution of the maximum errors in static meters
by class and specimen.
[
2500 - ® SMclass A 4
— SM class B
22000 | 4 SMclassC |
12}
2 [
S 1500 °
8 °
>
2 1000 - 0 ® o 1
s [ J
» 500 F [ ] ° ° 4
] ¢ J % )
o8 & & & &Lmﬂ@l [ ‘.2 "‘ iA aaa [ 4
4 5 6 7 8 9 10

Crest factor

Fig. 8. Correlation between the CF and the SM deviations.

1) SMclass A: Large errors, the maximum errors of the static
meters above 200%:; the static meters measure the current
using the Rogowski coil principle.

2) SM class B: Medium errors, the maximum errors are
between 50% and 200%:; the static meters measure the
current using the current transformer principle.

3) SM class C: Small errors, the maximum errors are smaller
than 50%; the static meters measure the current using

either a shunt resistor or Hall effect sensor.
In that sense, the deviations are calculated using

Psy — Prer
Prcf

where Pgy is the power measured by the static meter under
test and P is the power of the reference, according to the
measurement procedure explained in [13]-[15].

Now we will have a look at the correlation between the
parameters and the errors for the different classes of static meters
indicated, considering the meters in static meter class A. First,
the correlation between the CF and static meter errors is plotted
in Fig. 8, it is visible that when the CF increases the errors also
increase. When the CF exceeds 5, errors start to occur. The CF
provides a valuable first selector, because it already differentiates
between linear and nonlinear waveforms, and will only select the
pulsating waveforms. Although this correlation is clear, it is not
univocal, as there are also situations where a CF higher than 5 is
present, but no high error was found, so more parameters need
to be considered.

Second, the correlation between the pulsewidth and the errors
is plotted in Fig. 9. When the pulses become narrower than
1 ms, the static meter errors tend to increase. However, this
correlation is not univocal, and within this graph, three segments
are identified in which the errors increase when the pulsewidth
decreases. From segment 1 to 3, the pulses peak value reduces,
while the pulse contains the same range of charge. As a result,
when the pulses become narrower, also the amount of charge

SM deviation [%] = -100% (13)
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decreases, Fig. 10, and the errors tend to increase as is visible in
all three segments. It should be noted that for one static meter
specimen, the errors in segment 3 increase to higher values
compared to the other specimen.

Third, as already noticed, when the segments indicated before
are compressed, i.e., the pulsewidth reduces from segment 1
to 2, and to 3, the peak value increases and higher errors are
occurring. In that sense, higher peak values are more likely to
produce higher errors, but it is more complicated than that due
to interparameter dependencies.

Fourth, when the amount of charge of the pulse is decreasing,
the errors tend to increase, Fig. 10 but, as we saw with the
segments, the extremity of the error is then more dependent on
the width of the pulse.

Fifth, the maximum slope in the rising part of the pulse is
correlated to the errors in Fig. 11. In this plot, two curves are
visible in which the errors increase with an increasing rising
slope, and a part is visible containing outliers that do not seem
to have a correlation with the maximum slope. For the outliers,
the maximum slope is very large, however, the pulsewidth is
really wide, in fact the pulsewidth is outside the limits of the
plotin Fig. 9. The points in segments 2 and 3 are all on curve 2,
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while the points in segment 1 are divided between curves 1 and
2. For the points in segment 1, the pulsewidth is really low, and
the errors are more correlated to the decrease in charge rather
than the slope, however, we still see an increase in errors with
the slope in curves 1 and 2 for these points.

Sixth, for the maximum falling slope, so minimum slope of the
pulse, no clear relationship with the errors was found, because
all the pulses had similar falling slopes.

The previously noted correlations are clearly visible for SM
class A in the provided plots, and they also hold for SM class B
and C. In that sense, the same pulses, and thus, parameters, are
resulting in errors in the static meter readings. But depending
on the SM class, and thus, the current measuring element, the
severity of the error is altered. However, for the meters in SM
class B, the static meter errors are mostly negative when the
pulses are in segment 1, and for SM class C in all segments, the
errors are for the most part negative. But still the error’s absolute
value increases, or becomes more negative, based on the same
correlated parameters discussed before.

VI. CONCLUSION

In this article, a parametric waveform model was shown that
provided a simplified description of complex nonlinear wave-
forms. The identification of critical parameters had shown that
erroneous waveforms are in general narrow, fast rising, pulses,
where, on average, higher CF, narrower pulsewidth, higher peak
amplitude, less charge, and higher slopes, will contribute to an
increase in the metering error.

Furthermore, it was found that the maximum value of the
static meter errors was related to the current metering element.
In that sense, the Rogowski coil contributed to the highest errors,
followed by the current transformer principle, and when using a
shunt resistor or Hall effect sensor in most cases result in lower
energy reading of the static energy meter.

In future research, the correlated parameters will be used to
estimate the likelihood of errors in on-site waveforms. Like-
wise, this waveform modeling approach could be employed to
standardize artificial test signals that are representative of the
realistic devices and scenarios.
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