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We study the physical properties of four-dimensional, string-theoretical, horizonless “fuzzball”
geometries by imaging their shadows. Their microstructure traps light rays straying near the would-be
horizon on long-lived, highly redshifted chaotic orbits. In fuzzballs sufficiently near the scaling limit this
creates a shadow much like that of a black hole, while avoiding the paradoxes associated with an event
horizon. Observations of the shadow size and residual glow can potentially discriminate between fuzzballs
away from the scaling limit and alternative models of black compact objects.
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Introduction.—The recent images of the shadow of the
supermassive black hole (BH) at the center of M87 taken by
the Event Horizon Telescope (EHT) [1] open up the
exciting prospect to explore the strong-gravity environment
near BHs with horizon-scale resolution.
It has long been believed that the vicinity of the horizon is

well described by BH solutions of classical general relativity.
However, many theorists who study the quantum evolution
of BHs have now concluded that there must be modifications
to BHs extending to horizon scales (see, e.g., Ref. [2]), in
order to resolve the information paradox that stems from the
discovery of Hawking radiation and BH evaporation. A
variety of proposals have been made, among which exotic

compact objects (ECOs) [3–5] such as boson stars [6] or
gravastars [7], firewalls [8], new nonlocal interactions [9],
and fuzzball geometries [10]. Since shadows of compact
black objects are sensitive to the object’s properties in the
near-horizon region (see, e.g., Refs. [11–14]), their obser-
vation offers a promising route to differentiate between some
of these proposed BH alternatives. Here we concentrate on
the subset of fuzzballs known as “microstate geometries”
[15–18]. These are horizonless solutions of low-energy
string theory that describe compact objects with an intricate
geometric and topological inner structure and which can be
thought of as coherent “microstates” corresponding to BHs.
Therefore, in contrast to the ECO models usually employed
in phenomenological studies, fuzzballs admit a firm embed-
ding in string theory; as such, they are guaranteed to have a
UV-complete description and they will not lie within
the inadmissible string-theory swampland [19,20]. Their
phenomenology has recently begun to be explored; see,
e.g., Refs. [21,22] and also Refs. [23–26].
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We study the behavior of null geodesics (light rays) in
four-dimensional fuzzball geometries and use this to obtain
the first images of fuzzball shadows as they would be
perceived by a distant observer. To this end we first
construct a novel axisymmetric scaling solution, the “ring
fuzzball.” Our analysis of this confirms that, as far as the
behavior of geodesics is concerned, fuzzballs in the scaling
limit can resemble BH geometries arbitrarily well. It also
reveals the key features and mechanisms of fuzzballs
through which such phenomenological horizon behavior
emerges.
Even though the geometries we study here are super-

symmetric and have various limitations [22], we expect that
the overall properties of their shadows presented here
qualitatively capture those of shadows of more general
(as yet unconstructed) fuzzballs which correspond to
realistic BHs.
Geometry.—We consider a class of four-dimensional

multicenter solutions in supergravity [27–29] with metric

ds2 ¼ −Q−1=2ðdtþ ωÞ2 þQ1=2ðdx2 þ dy2 þ dz2Þ; ð1Þ

which are smooth and horizonless when uplifted to five
dimensions (and have controlled singularities in four
dimensions). These solutions are completely determined
by harmonic functions ðV;K; L;MÞ on the flat R3 basis
spanned by ðx; y; zÞ [30,31]. The metric warp factor is then
given by

Q ¼ Z3V − μ2V2; Z ¼ Lþ K2

V
;

μ ¼ M þ 3KL
2V

þ K3

V2
: ð2Þ

Finally, the rotation one-form ω is determined by

�3dω ¼ VdM −MdV þ 3

2
ðKdL − LdKÞ; ð3Þ

where �3 is the Hodge star with respect to the flat R3 basis.
In this Letter, we consider microstate geometries inspired

by the “black-hole deconstruction” paradigm [32–34],
which consist of a pair of fluxed D6-D6 brane centers
surrounded by a halo of D0 brane centers [32,35,36]. The
harmonic functions are then given by

V ¼
�
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�
: ð4Þ

The “centers” at r⃗1 and r⃗2 are on the z axis at z ¼ �l=2 and
are fluxed D6 branes in a ten-dimensional perspective. For
MD0, with any number of centers with total charge −q0
(with q0 > 0) distributed on the circle x2 þ y2 ¼ R2 at

z ¼ 0, the so-called bubble equations (i.e., regularity
conditions on the metric) [27,37] relate l and R as

l ¼ 8P3λ; R ¼ 2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20

½1 − ð1 − 3P2Þλ�2 − 4P6

s
: ð5Þ

This is a one-parameter family of solutions entirely
determined by λ > 0. We will show that λ can be effectively
tuned to obtain a correspondence between microstate
geometries and classical BHs.
Instead of considering point singularities, we employ a

“smeared” configuration of uniform charge density on the
entire circle of radius R, giving

MD0 ¼
−2q0

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2 þ 2rR sin θ

p K
�

4rR sin θ
r2 þ R2 þ 2rR sin θ

�
;

ð6Þ

where Kð·Þ is the complete elliptic integral of the first kind
and we used spherical coordinates ðr; θ;ϕÞ on the flat R3

base. In this case, ω ¼ ωϕdϕ and Eq. (1) is axisymmetric
and equatorially symmetric. This microstate geometry,
determined by Eqs. (4) and (6), is the ring fuzzball which
we will study using ray tracing.
The ring fuzzball solution allows for the “scaling limit”

λ → 0, in which it approaches the metric of the static,
supersymmetric BH given by Eq. (1) with

V ¼ L ¼ 0; K ¼ 1þ 2P
r
; M ¼ −

1

2
þ P3 − q0

r
:

ð7Þ

This BH has mass 2MBH ¼ 3Pþ q0 − P3 and a horizon at
r ¼ 0 with area ABH ¼ 16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P3ðq0 − P3Þ

p
. The angular

momentum of the BH vanishes while the ring fuzzball has
J ¼ 2P3ð1 − 3P2Þλ. (Our units are such that G4 ¼ 1=16
[37].) Note that this ring fuzzball represents the first ever
explicitly constructed (exactly) scaling solution that is also
axisymmetric.
Ray tracing.—We explore the ring fuzzball geometry

by tracing geodesics with the ray-tracing code RAPTOR

[38–40]. Ray tracing allows for visualizing the environment
of compact objects (e.g., Ref. [41]). The observer is
represented by a camera at a specified position with
106 pixels. Geodesics are numerically integrated back-
wards in time from the camera to where they originated.
The integration is halted when a geodesic reaches an outer
“celestial sphere,” with chosen radius equal to the camera’s
radial location. To highlight lensing patterns, each geodesic
is assigned a color according to the quadrant (each of
equal angular width in ϕ) of the sphere that it originates
from Ref. [42]. If a geodesic does not reach the celestial
sphere within a predetermined maximum integration time

PHYSICAL REVIEW LETTERS 127, 171601 (2021)

171601-2



(corresponding to an observation window for a physical
observer), we assign the color black to it; this includes
geodesics falling in to horizons.
In our four-dimensional model, the D6-D6 centers and the

D0 ring are (naked) singularities; however, in our calculations
no geodesics ever approach a singularity close enough (i.e.,
< 10−14 inR3 coordinate distance) to require the application
of boundary conditions at the singularities. (Nevertheless,
such boundary conditions can be derived from higher-
dimensional string-theoretical embedding [43].)
For each geodesic, we track the position on the celestial

sphere, the total elapsed (coordinate) time on its trajectory,
as well as Redshift, measured as the minimum value offfiffiffiffiffiffiffiffi−gtt
p ¼ Q−1=4 that a geodesic encounters on its path. This
provides a measure of how much energy a geodesic would

lose in escaping from the gravity well. Curvature, mea-
sured as the maximum value of K ¼ RμνρσRμνρσ that the
geodesic encounters on its path. This provides an estimate
of tidal stress a geodesic encounters. We have also tracked
the actual tidal stresses along geodesics (in the spirit of
higher-dimensional studies of tidal forces in microstate
geometries [44–47]). However, we found that these quan-
tities provide the same information given by K; we will
discuss these further in Ref. [43].
Results.—Our results are presented in Fig. 1 for the

ring fuzzball defined by Eqs. (4) and (6) with the repre-
sentative choice P ¼ 2 and q0 ¼ 50, and for values
λ ¼ 0.19, 0.05, 0.01, 0.001. (The bubble equations require
λ ≤ 17=88 ≈ 0.193.) For comparison, we also show results
for the BH defined by Eq. (7) (also with P ¼ 2; q0 ¼ 50),

FIG. 1. From left to right columns: Visualizations of diagnostics for the ring fuzzball (P ¼ 2 and q0 ¼ 50) for decreasing values of λ,
compared to the λ → 0 BH in the rightmost column. Rows from top to bottom: four-color screen indicating the portion of the celestial
sphere from which geodesics originate; coordinate time t elapsed at the end of the numerical integration (normalized toMBH); strongest
redshift experienced by the geodesic (normalized to the redshift at the camera position); strongest curvature encountered (normalized to
K at the BH horizon).
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which corresponds to the λ → 0 limit of the ring fuzzball.
From top to bottom row, we show the light bending (via the
four-color screen visualization), the total elapsed coordi-
nate time, the redshift, and the curvature. In all cases the
camera is located at x0 ¼ ð250; 0; 0Þ, pointed towards
the origin, and oriented such that the z axis is vertical.
(The camera is then at approximately the same physical
distance to the object in all images.)
As λ decreases to 0, the microstate geometry should

resemble the BH increasingly well [37,48,49]. Here we
observe the explicit mechanism by which the ring fuzzball,
despite possessing no horizon, does so. First, as λ
decreases, the four-color screen pictures reveal that increas-
ingly many geodesics traveling near the would-be horizon
scale follow chaotic paths. They are scattered across the
celestial sphere and form fewer coherent geometric struc-
tures (as indicated by the larger chaotically colored
regions). Second, the elapsed-time pictures confirm that
these complicated chaotic orbits are long-lived; moreover,
as λ decreases, an increasing amount of geodesics do not
escape the near-center region within the observation win-
dow (as indicated by the presence of more black pixels in
the four-color screen pictures).
Finally, the redshift and curvature plots show that geo-

desics in such long-lived, almost-trapped chaotic orbits also
experience extremely strong redshift and encounter large
spacetime curvature. When including backreaction, pho-
tons on such trajectories will interact with and lose energy
to the fuzzball microstructure, leading to effective scram-
bling behavior as expected in a BH. Thus, such photons—
even if they escape after their long, chaotic orbits—will be
significantly redshifted and fall outside any detectable

wavelength range. It is therefore the combined effect of
long-term trapping and strong redshift that makes fuzzball
microstates exhibit an emerging horizon behavior and
ultimately mimic a classical BH.
We also note that the geodesics in the ring fuzzball

metric encode information on the inner structure of the BH
it mimics. The curvature plots in the last row of Fig. 1
indicate that one can interpret the microstate geometry as
“resolving” the curvature singularity of a BH into con-
stituent pieces. In a higher-dimensional, string-theoretical
embedding, these pieces would even be completely smooth
without curvature divergences.
The geodesic trapping mechanism is further shown

explicitly in Fig. 2, where we plot a representative geodesic
for the λ ¼ 0.01 case (also for P ¼ 2; q0 ¼ 50). This shows
that the geodesic is trapped in the near-center region and
experiences strong redshift as it bounces between the two
on-axis centers and the charge ring. Further, the chaotic and
long-lived nature of these orbits is apparent; geodesics may
remain trapped far longer than the observation window.
For higher-dimensional microstate geometries, “chaotic

trapping” behavior of geodesics was anticipated in
Refs. [50,51], and was shown to be related to the presence
of so-called “evanescent ergosurfaces” (timelike surfaces
of infinite redshift); these surfaces are also linked to
instabilities in these geometries [52–55]. There are no
evanescent ergosurfaces in four-dimensional microstate
geometries; our results are thus the first explicit indication
and exploration of such trapping effects in this context.
Note that a chaotic trapping mechanism was observed in
lensing in boson star ECO models [56,57]; however, we
note that, in order to form an emergent horizon, null

FIG. 2. Left panel: Three-dimensional visualization of a representative geodesic in the ring fuzzball geometry with P ¼ 2; q0 ¼ 50,
and λ ¼ 0.01. The on-axis centers and the charged ring are shown in red. Right panels: A short portion (left column) and the full
trajectory (right column) projected on the ϕ ¼ π=2 plane, colored by elapsed time (top) and local redshift (bottom).
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geodesics must also explore regions of extreme curvature
and redshift. The results presented here show that all of
these features appear naturally in a model based on
microstructure, whereas it is unlikely that they can arise
in stable boson stars.
To further make the phenomenological possibilities of

these microstate geometries explicit, in Fig. 3 we compare
the effective shadows of three ring fuzzballs with that of an
extremal Kerr-Newman (KN) BH, all with mass M ¼ 7=4.
[Note that the charge of this BH can be interpreted as “dark
charge” that only interacts gravitationally with standard-
model particles and is not ruled out by current observations
[58–60]. Note that we are focusing on the comparison of
microstate geometry shadows with those of BHs, and thus
making the simplifying assumption that extremal KN with
dark charge is not ruled out for a given BH mass and
angular momentum [60]. A more detailed, realistic com-
parison would be to allow the mass and charge of the (KN)
BH to vary within the allowed range of EHT shadow
observations of M87* and especially to compare explicitly
with (uncharged) Kerr.] We construct the four-color pic-
tures, and darken each pixel according to the (maximal)
redshift the geodesic has encountered on its path. We
assume that light will scatter off the microstructure (due to,
e.g., the large tidal stresses encountered) before they can
escape from the near-center region, making the redshift a
reasonable proxy for the energy loss of the photon and
therefore the darkness of the resulting image. In this way,

the observed image of the microstate geometry can appear
as dark as that of a BH. Figure 3 clearly shows that,
depending on the value of P, λ, fuzzballs can mimic BHs to
different degrees. In particular, fuzzball shadows can
appear very dark, but with a much smaller area (top left);
or, while the shadow size can be within observational
uncertainty bounds [1], a weak redshift may make fuzzballs
appear too bright (top right). With the appropriate param-
eters, fuzzballs can also appear almost indistinguishable
from actual BHs (bottom left). Quantitatively, if we
determine q0 by keeping the mass fixed as we vary P,
then the values 0.695≲ P≲ 0.912 correspond to solutions
with an effective horizon area within 10% of that of the BH;
this is approximately the uncertainty in the shadow size of
M87* measured by the EHT [1]. This bound rules out the
top-left panel in Fig. 3. Furthermore, for M87* the
measured upper bound on the brightness at the center of
the shadow is< 10% of the average image brightness [1]. If
we assume this implies a redshift of

ffiffiffiffiffiffiffiffi−gtt
p

< 0.1 at the
center of the fuzzball shadow, the top-right panel in Fig. 3 is
just within this acceptable bound, and the bottom-left panel
is well within this bound.
Discussion.—We have studied the physical properties of

fuzzballs, both as interesting geometries in their own right
and as phenomenological alternatives to BHs, by numeri-
cally calculating and imaging the behavior of null geo-
desics in a class of microstate geometries. The images
presented here are the first visualizations of fuzzball
geometries. They confirm several physical properties of
microstate geometries which had generally been anticipated
but never verified, such as their trapping behavior. As the
ring fuzzball approaches the BH limit, its microstructure
induces increasingly chaotic motion of geodesics straying
in the near-center region. Infalling geodesics that reach the
microstructure will be heavily blueshifted and subsequently
backreact with the structure and/or be heavily scattered.
The light that will emanate from this region will then be too
redshifted to be detectable. In this way, the microstructure
conspires to create a shadow very much like that of a BH,
while avoiding the paradoxes associated with an event
horizon. Note that the physical mechanisms we report for
geodesics in the ring fuzzball are entirely generic; we have
studied other scaling microstate geometries, for example,
nonaxisymmetric ones, with entirely analogous results
[43]. However, note that other ECOs may not share these
mechanisms. For example, Solodukhin-type wormholes
[61] can be arbitrarily compact, but do not have regions
of large tidal stress; they will also appear dark, but this is
due to the escaping of light rays into a second asymptotic
region.
Our results indicate that fuzzballs sufficiently near the

scaling limit yield a theoretically appealing and phenom-
enologically viable BH alternative. Vice versa, observations
of a faint residual glow in the object’s shadow, or of its
shadow’s size compared to its mass, have the potential to

FIG. 3. Visualization (see text) of ring fuzzballs with
P ¼ 1=4; λ ¼ 0.1 (top left), P ¼ 307=500; λ ¼ 0.3 (top right),
P ¼ 7=8; λ ¼ 0.11 (bottom left), compared to an extremal Kerr-
Newman BH (bottom right) of equal mass (and same angular
momentum as the bottom-left fuzzball). The two bottom pictures
exhibit minimal but nonzero differences.
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discriminate between BHs and fuzzballs somewhat away
from the scaling limit. These should therefore be prime
targets for current and future imaging missions such as
the EHT.
This motivates a more detailed investigation of the

characteristics that differentiate microstate geometries from
BHs through the intricate structure of their shadows. This
will require not only further advances in the construction of
more realistic fuzzballs but also an accurate modeling of the
plasma in a realistic accretion disk, coupled to full radiative
transfer methods. This approach has been employed for BH
geometries considered by the EHT [62], as well as for more
exotic objects [13,63], and we intend to report on this
elsewhere [43,60]. Another generalization of our analysis
could be to include explicit source terms in the geodesic
equation, in order to model the energy exchange between
light rays and the geometry; this would further quantify the
emergence of horizonlike shadows. These source terms can
be modeled after stringy tidal excitations [47]. In a further
step, the subsequent evolution of the microstate geometry
can be studied, using, e.g., inspiration from the quantum
tunneling dynamics studied in Ref. [16] to model this
evolution as a dynamical tendency to form additional
centers in the microstate geometry (which itself could be
an effect similar to the instability of large extremal black
holes to split into smaller ones, as expected within the weak
gravity conjecture [64,65]). It would also especially be
interesting to understand the relation with the (classical)
microstate geometry (in)stabilities of Refs. [52–55] and the
additional role these may play in the interactions and
subsequent evolution and dynamics of the geometry.
Moreover, the chaotic behaviour of geodesics on the

would-be horizon scales also suggests that gravitational
waves propagating in this region will similarly be chaoti-
cally dispersed. Therefore one expects the resulting gravi-
tational wave signal that leaks out to be chaotic and
dispersed over extended time intervals. This suggests that
the post-ringdown phase of gravitational waves generated
in fuzzball mergers will not exhibit a markedly clear echo
structure (see Refs. [22,66]).
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