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Quantum‑circuit black hole lasers
Haruna Katayama

A black hole laser in analogues of gravity amplifies Hawking radiation, which is unlikely to be 
measured in real black holes, and makes it observable. There have been proposals to realize such 
black hole lasers in various systems. However, no progress has been made in electric circuits for a long 
time, despite their many advantages such as high-precision electromagnetic wave detection. Here 
we propose a black hole laser in Josephson transmission lines incorporating metamaterial elements 
capable of producing Hawking-pair propagation modes and a Kerr nonlinearity due to the Josephson 
nonlinear inductance. A single dark soliton obeying the nonlinear Schrödinger equation produces a 
black hole-white hole horizon pair that acts as a laser cavity through a change in the refractive index 
due to the Kerr effect. We show that the resulting laser is a squeezed-state laser characterized by 
squeezing parameters. We also evaluate the degree of quantum correlation between Hawking and its 
partner radiations using entanglement entropy which does not require simultaneous measurements 
between them. As a result, the obtained entanglement entropy depending on the soliton velocity 
provides strong evidence that the resulting laser is derived from Hawking radiation with quantum 
correlation generated by pair production from the vacuum.

There has been considerable effort to construct “The Theory of Everything” that unifies the four fundamental 
forces. The last remaining urgent issue is to integrate general relativity and quantum mechanics. One of the rare 
phenomena they encounter is Hawking radiation1 from a black hole where even light cannot escape. Hawking 
radiation is the particle emission caused by quantum-mechanical pair production near the event horizon. There-
fore, the observation of the Hawking radiation is a key for integrating general relativity and quantum mechanics. 
However, Hawking radiation is unlikely to be measured from a real black hole because it is much smaller than 
the background radiation.

The idea of black hole analogues in laboratory systems came up to study Hawking radiation instead of that 
emitted from an actual black hole. They can be realized by designing a system in which a reference wave cannot 
escape from a background flow with a spatially varying velocity. The velocities of the background flow and the 
reference wave play the roles of the free-fall velocity and electromagnetic wave velocity in an actual black hole. 
Since Unruh2 opened up the study in sonic systems based on the idea, analogue black holes have been proposed 
in various systems such as liquid helium3, optical fibers4, Bose-Einstein condensates5, and electric circuits6–11. 
Later, an extremely unique proposal was put forward by Corley and Jacobson12–14 to further enhance the Hawk-
ing radiation called the black hole laser, which amplifies Hawking radiation by stimulated emissions in the 
analogue cavities consisting of both a black hole and a white hole for a reliable observation. They showed that 
for the bosonic field, the negative energy partner goes back and forth between two horizons if the dispersion is 
superluminal. Some of the particles with negative energy are transformed into particles with positive energy by 
the mode conversion caused on the event horizons during repeating these processes. It leads to an amplification 
of the Hawking process.

Therefore, the black hole laser allows us to make Hawking radiation observable. In fact, experimental studies 
on black hole lasers have progressed in BECs15. In contrast, despite significant advances in detection techniques 
on extremely weak electromagnetic fields in the study of the dynamical Casimir effect16, there have been no 
reports on black hole lasers in electric circuits for more than a decade since the seminal work on Hawking radia-
tion by Schützhold and Unruh6 and the subsequent detailed study by Nation et al.7. This might be due to the 
absence of the anomalous dispersion required for black hole lasers in the previous electric circuits. In addition, 
nonlinear effects have not been actively considered because they are not a necessary condition for analogue 
gravity effects.

Here, we propose black hole lasers in Josephson transmission lines by introducing metamaterial elements 
into the circuit that realize particle-antiparticle pair propagation modes possible with anomalous dispersion 
into a normal one, as well as the Kerr nonlinearity for controlling propagating mode selection in the cavity. This 
proposal is equivalent to creating the same situation in a circuit as an optical black hole laser using an optical 
fiber17. In addition, we evaluate the entanglement entropy, which measures the degree of entanglement of particles 
and antiparticles created in pair production near the event horizons, in order to confirm that the emitted light 
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is surely Hawking radiation. It is revealed that entanglement entropy is characterized by squeezing parameters 
related to Hawking temperatures, which depend on the velocity of the soliton.

Results
Model.  The black hole laser originally requires the superluminal dispersion with a positive curvature in the 
dispersion curve of the system12–14. Here we use a model in which a black hole laser is feasible even in subluminal 
dispersion with well-designed dispersion curves17. To create the dispersion relation required for black hole lasers 
in subluminal dispersion, we employ dispersive engineering utilizing metamaterials made of sub-wavelength 
inclusions that provide tremendous degrees of freedom for manipulating with high precision the electromag-
netic parameters of materials and modes. In fact, metamaterials create a medium in which the permittivity 
and permeability are simultaneously negative, which does not exist in nature, and enables the unique property 
that the phase velocity and group velocity of electromagnetic waves are opposite to each other. In addition, the 
Josephson effect provides the Kerr nonlinearity18, 19 essential for black hole lasers, which determines the group 
velocity, required to select the propagation modes in the system.

Suppose that a Josephson metamaterial transmission line consists of a number of LC blocks each comprised 
of composite right/left-handed components together with a Josephson element in the shunt branch as illustrated 
in Fig. 1. Starting from the application of Kirchhoff ’s law to this system together with the Josephson relation, the 
current conservation at the nth node is expressed as

where In is the current through the nth node comprising of the current through the right-handed (rh) inductor 
with inductance Lrh and the left-handed (lh) capacitor with capacitance Clh at the nth cell, i.e., In = ILrh ,n + IClh ,n,

where Ic , � , e, and θn are the Josephson critical current, Dirac’s constant, an elementary charge, and the phase 
difference in the nth junction, respectively. The currents on the right-hand side of Eq. (1) are the Josephson cur-
rent IJ ,n , the displacement current ICrh ,n flowing through the nth Josephson junction with capacitance Crh , and 
the current ILlh ,n through the left-handed inductor with inductance Llh . Combining these relations, we obtain 
the following circuit equation,

where we use sin θn ≃ θn − θ3n/6 and LJ = �/(2eIc).
Now let us derive the dispersion relation of this transmission line by ignoring the nonlinear terms of the 

Josephson effect. We substitute a plane-wave solution θn ∼ exp[i(kna− ωt)] with the wavenumber k, the fre-
quency ω , and unit cell length a for Eq. (4) and obtain the dispersion relation

where ωrh = 1/
√
CrhLrh and γ = Clh/Crh . In the regime of γω2 ≪ ω2
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Figure 1.   Schematic representation of the composite right/left-handed nonlinear transmission line. Each 
unit cell consists of the series branch elements and the shunt branch elements. In the series branch, a linear 
inductive element of inductance Lrh is arranged in parallel with a linear capacitance Clh . These constitute the 
linear dispersive element of the line. While in the shunt branch, a linear inductive element of inductance Llh is 
also arranged in parallel with a linear capacitor of capacitance Crh as well as the Josephson element (represented 
by × ) which is responsible for the nonlinearity of the system. The dotted vertical lines mark the unit cell of the 
lattice with the length a.
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by designing the circuit so that Llh = −LJ
20. This dispersion relation is the same as that of the optical fiber in 

which the black hole laser is considered17. Thus, our proposed circuit can be regarded as a circuit version of an 
optical fiber17, 21 at the nanometer scale.

Our circuit equation contains a third-order nonlinear term just like an optical fiber, so the existence of a 
nonlinear wave is highly expected. Next, let us explore the waves hidden in the circuit equation (4) by using the 
discrete reductive perturbation method as follows22–27. We introduce two slow stretched space and time variables 
ξ = ε

(

na− vg t
)

 and τ = ε2t with the small dimensionless parameter ε (0 < ε ≪ 1) and group velocity vg to 
separate fast and slow variations of θn and expand θn in principle as

Here, our analysis is restricted to the so-called rotating-wave approximation consisting essentially in neglecting 
higher harmonics,

Inserting these formulas into Eq. (4) in order to find balanced dispersion and nonlinearity yields the following 
equation for the ε3 order,

where

This is a well-known nonlinear Schrödinger equation found in various systems including optical fibers28, which 
contains soliton solutions. One such solution is a dark soliton expressed as,

as shown in Fig. 2a, where A is the soliton amplitude and u is the relative soliton velocity in the ξ − τ coordinate. 
The solution holds under the condition PQ < 0 , which is always satisfied in our system.

Black hole laser.  Our system equipped with both the desired normal dispersion supporting pair-propagat-
ing modes and a Kerr effect is expected to be a circuit version of black hole lasers in optical fibers17, 21. Here we 
briefly review the black hole laser in an optical fiber as an example and reorganize the key parameters appropri-
ate for our system. The fundamental idea is to amplify a probe pulse as Hawking radiation confined in the cavity 
formed by the two propagating solitons with the same velocity vs acting as mirrors in a conventional laser.

The event horizons occur at the points where the group velocity veffg  of the probe pulse in the system cannot 
keep up with the soliton velocity vs , i.e., veffg = vs . In other words, the probe pulse is trapped in the cavity and 
it cannot escape from the cavity, i.e., it cannot go outside the horizons classically. The effective group velocity 
under the Kerr modulations is given as
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where ng , δn(η) , and c represent the unperturbed group index, the refractive index perturbation modified by 
the Kerr effect of Josephson junctions in the comoving frame ( η = ξ − uτ ), and the speed of light in vacuum, 
respectively.

The Kerr effect can cause a change in the refractive index depending on the strength of the electric field, 
equivalently the strength of the voltage in our circuit29. The refractive index perturbation under the soliton 
propagation is expressed as

where χ is the third-order nonlinear susceptibility30, which is a negative constant in the case of the circuit 
with Josephson junctions18, 19 and the electric field E is given by V/d with d being the distance between plates. 
The voltage V across the junction is derived from the Josephson acceleration relation V = (�/2e)∂θ/∂τ and is 
expressed as

The soliton width w is roughly evaluated by 2
√|2P/Q|/A and is about w ≃ 150a for the soliton centered at the 

frequency ωs = 4.3× 109 Hz with A = 0.01 , which is large enough to apply the continuum approximation. We 
plot the electric field E (Fig. 2b) and the refractive index perturbation δn (Fig. 2c). The probe pulses are trapped 
in the soliton because the refractive index perturbation is negative31. In other words, a single soliton behaves as 
the cavity in our system as shown in Fig. 3.

Now let us find the frequency modes satisfying the dispersion relation. The frequency ω′ in the comoving 
frame is given by the Doppler relation as follows,

with the soliton velocity vs = u+ vg (ωs) in the laboratory frame. The modes are given by the solutions of 
ω′
0 = ω′(ω) , where ω′

0 is the invariant frequency in the comoving frame for the given input frequency ωIN . 
Figure 4 represents the Doppler relation in frequencies between the laboratory frame and comoving frame. 
The intersections of the horizontal line and the curved lines give the solutions. There are three modes ωIN , ωP , 
and ωN between horizons with δn = δnmax and the other mode ωT exists outside the horizons with δn = 0 . The 
frequency ωh at the event horizon satisfies dω′/dω|ω=ωh

= 0 and ω′(ωh) = ω′
0 . We can find the position of the 

event horizon ηh by solving these equations.
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Figure 2.   Sketch of (a) the phase soliton with the amplitude A, (b) the electric field with the amplitude 
Emax = (−�/2ed)A2

√|Q/2P|u , and (c) the cavity formed by the single dark soliton with the amplitude δnmax . 
The filled circle and open circle represent the horizon of the black hole and white hole, respectively. The size of 
arrows representing the velocity of the probe pulse varies in space.
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The evolution of these modes is shown in Fig. 5. The IN mode propagates towards the white hole horizon and 
turns back as the P mode to the black hole horizon together with the N mode where both modes undergo partial 
mode conversion. The P mode bounces at the black hole horizon and then becomes the IN mode propagating 
to the white hole horizon, while the N mode crosses the black hole horizon and is emitted as the T mode. The 
norm of the modes is conserved through the process as follows,

where ‖Xn‖ denotes the norm defined by the Klein Gordon inner product of the nth X mode. Since ‖INn‖ > 0 
and �Tn+1� < 0 , this results in �INn+1� > �INn� . Therefore, the Hawking radiation is amplified by the mode 
transformations based on the norm conservation at the event horizon. This is the essential concept of the black 
hole laser11–14.

In addition, the nonlinear optical effect near the event horizons in our system becomes remarkable due to the 
presence of solitons. In the following, we incorporate the nonlinear mode conversions near the event horizon 
by adopting the model considered by Leonhardt et al.32 from the standpoint of nonlinear quantum optics and 
then find that our laser is a squeezed state laser. Consider the nth amplification process in the horizon cavity. 
The two modes pair-produced by mode conversion ( B1 ) at the white hole horizon propagate toward the black 
hole horizon ( B2 ). At the black hole horizon, the two modes again undergo a time-reversed mode conversion 
( B3 ) opposite to the previous one and then propagate toward the departed white hole horizon ( B4 ). These four 
distinct processes are incorporated in the matrix B, allowing it to be expressed as

where

(20)�INn� = �INn+1� + �Tn+1�, n ≥ 0,

(21)B = B4B3B2B1,

Figure 3.   Schematic sketch of the black hole laser in the circuit. The refractive index perturbation δn(η) (green) 
moving with the velocity vs changes the velocity of the probe pulses (orange wave packets) and classically traps 
them inside the soliton acting as the cavity. The probe pulses can be radiated quantum-mechanically as Hawking 
radiation (blue) by pair productions near the horizon.

Figure 4.   The relation between the frequencies in the laboratory frame ω and the comoving frame ω′ by the 
Doppler shift. The dashed, solid, and dotted curved lines represent the relation at the perturbed index δn = 0 , 
δn = δn(ηh) , and δn = δnmax , respectively. The horizontal line shows the invariant frequency ω′

0
 in the 

comoving frame and the intersections with the curved lines correspond to the modes.
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with the phases θ0 , θ− , and θ+ acquired during propagation for each mode and a squeezing parameter ζ . The 
transfer matrix B essentially represents squeezing transformation. Therefore, the laser discussed here is nothing 
but a squeezed state laser. The squeezing parameter ζ is given by

where kB is the Boltzmann constant and TH is the Hawking temperature which is proportional to the gradient 
of the velocity as follows8,

where

The Hawking temperature depends on the relative soliton velocity u as depicted in Fig. 6. The Hawking tempera-
ture reaches the well-observable milli-Kelvin order under the circuit parameters feasible with current technology.

As a result, the input modes at the nth amplification process are transformed to the output modes by a Bogo-
liubov transformation B as follows,
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Figure 5.   Sketch of the trajectories of modes. The solid (dashed) lines represent the mode with positive 
(negative) frequencies for antiparticles (particles). The dotted line is a virtual input mode for particles. The 
symbols are presented in the main text.
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where â+(−)n (â†+(−)n) represents annihilation (creation) operator of the nth input mode for particles (antiparti-
cles), while â′+(−)n (â

′†
+(−)n) are those of output modes for particles (antiparticles). The Bogoliubov transformation 

operator B is rewritten by

where

which satisfy with the conditions that |µ|2 − |ν|2 = 1 and ψ is real. The output modes serve as further input 
modes (â′−n = â−(n+1)) . Note that the frequency of Hawking radiation is negative in our system, as in the case 
with an optical fiber under normal dispersion. As shown in Fig. 5, the virtual particle in the T̃ mode incident 
from the left side of the white hole event horizon and the antiparticle in the IN mode inside the cavity are input 
modes, while the particle in the outgoing T mode and the antiparticle in the IN mode are output modes.

The number of particles outside the horizon after n steps amplified by our black hole laser is estimated as

with

where �· · · � denotes the quantum-mechanical expectation. The amplification of the number of Hawking 
particles with each bounce process at the black hole horizon is depicted in Fig. 7 for the resonant case with 
cos (θ+ + θ−) = 0 . This typical enhancement shows surely lasing. Therefore, the resulting Hawking radiation is 
a squeezed state laser with squeezing parameters due to the nonlinearity of solitons.

Entanglement entropy.  Hawking radiation originates from pair production from the vacuum inside 
near the horizon. The produced particle and antiparticle are inherently entangled with each other. Therefore, 
the detection of this entanglement is indispensable for the confirmation of Hawking radiation. However, it is 
unlikely to confirm the entanglement by conventional detection methods utilizing simultaneous observation of 
particle-antiparticle pairs because of the difficulty of detecting partner antiparticles left inside the horizon cavity. 
Here, we evaluate it using entanglement entropy thanks to the fact that an entangled particle bears the shadow 
of its partner particle. Entanglement entropy is a measure of quantum correlation between two particles labeled 
A and B and is defined by S(ρA) = −Tr

[

ρA log ρA
]

 where ρA = TrB(ρAB) is the reduced density matrix of a pure 
state density matrix ρAB . Therefore, the degree of entanglement can be evaluated without simultaneous observa-
tion of the partner particles.
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Figure 6.   The dependence of the Hawking temperature TH on the relative soliton velocity u. We set the 
circuit parameters as Lrh = 4× 10

−8
H , Crh = 2.5× 10

−16
F , γ = 5000 , Ic = 10

−8
A , ω0 = 2× 10

8
Hz , 

ωs = 4.4× 10
9
Hz , and a = 10

−6
m.
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Fortunately, our black hole laser is a laser with a two-mode squeezed state due to Hawking radiation and its 
partner. The quantum correlation between the two modes is naturally incorporated into the squeezed parameter. 
This squeezing parameter is responsible for the quantum correlation with unobservable partner particles trapped 
in the cavity. The entanglement entropy for the two-mode squeezed states is given in the well-known form33, 34 as

Note that the entanglement entropy depends on the relative soliton velocity u as shown in Fig. 8 since the 
squeezing parameter ζ involves the Hawking temperature depending on the soliton velocity. This soliton velocity 
dependence provides useful evidence for identifying the detected laser as being derived from Hawking radiation.

Discussion
The black hole laser is an analogue gravity-derived laser that amplifies Hawking photons generated from vacuum 
fluctuations inside near the event horizon in a cavity formed by two horizons viewed as mirrors. It requires 
Hawking-related propagation modes with positive (particle) and negative (antiparticle) frequencies, which can 
be generated by using anomalous dispersion for example, in an analogue resonator. In this paper, we have 
applied dispersion engineering by adding metamaterial elements to ordinary transmission lines and deforming 
the dispersion relation by the Doppler effect used in optical fibers and achieved Hawking-related modes despite 
the ordinary dispersion relation in the transmission line. In addition, the third-order Kerr effect through the 
Josephson nonlinear inductance is introduced to control those modes. Based on these, we have proposed an 
optical analogue black hole laser in a Josephson transmission line with metamaterial elements. Unlike previ-
ous optical black hole lasers, our black hole laser still has a black hole/white hole cavity formed within a single 
dark soliton, where Hawking radiation is emitted into the normal region outside of solitons rather than inside 
of solitons. This selection can be achieved by controlling the Kerr effect through Josephson nonlinear induct-
ance. Unfortunately, Hawking radiation has a negative frequency due to normal dispersion as with optical black 

(36)S = 2kB
[

cosh2 ζ ln
(

cosh2 ζ
)

− sinh2 ζ ln
(

sinh2 ζ
)]

.

Figure 7.   The number of outgoing particles as a function of the amplification steps at the fixed relative soliton 
velocities u = 2.99× 10

5m/s (dotted line), u = 3.00× 10
5m/s (solid line), and u = 3.01× 10

5m/s (dashed line). 
The circuit parameters are the same as in Fig. 6.

Figure 8.   The dependence of the entanglement entropy S on the relative soliton velocity u. The circuit 
parameters are the same as in Fig. 6.
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hole lasers and differs from actual Hawking radiation with positive frequency. This will be solved if anomalous 
dispersion can be introduced in the transmission line.

We have also shown that our laser is a squeezed state laser based on Leonhardt’s quantum optical treatment of 
mode conversions in the horizon. This facilitates the analysis of the quantum entanglement required to identify 
the origin of Hawking radiation. In particular, entanglement entropy, which measures the degree of entanglement, 
is very effective when direct observation of partner radiation is difficult. The resulting entanglement entropy was 
found to be characterized by a squeezed parameter defined by the Hawking temperature that depends on the 
soliton velocity. It can be proved that Hawking radiation is strongly related to the soliton providing the analogue 
horizon if the entanglement entropy involved in this soliton velocity can be evaluated.

Black hole lasers have not been discussed in superconducting transmission lines so far. However, there are 
some advantages to the study of black hole lasers due to the latest technology accumulated in research such as 
quantum computers. In particular, the scalability and controllability of the system is an advantage over other 
systems. In addition, the detection of microwave photons and their quantum correlations in Josephson trans-
mission lines has been proven through the study of the dynamical Casimir effect. The observation of Hawking 
radiation is also highly promising if our proposal is implemented.

Data availability
The data that support the findings of this study are available from the corresponding author upon request.
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