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Biologically informed deep neural network 
for prostate cancer discovery

Haitham A. Elmarakeby1,2,3, Justin Hwang4, Rand Arafeh1,2, Jett Crowdis1,2, Sydney Gang1, 
David Liu1,2, Saud H. AlDubayan1,2, Keyan Salari1,2,5, Steven Kregel6, Camden Richter1, 
Taylor E. Arnoff1,2, Jihye Park1,2, William C. Hahn1,2 & Eliezer M. Van Allen1,2 ✉

The determination of molecular features that mediate clinically aggressive 
phenotypes in prostate cancer remains a major biological and clinical challenge1,2. 
Recent advances in interpretability of machine learning models as applied to 
biomedical problems may enable discovery and prediction in clinical cancer 
genomics3–5. Here we developed P-NET—a biologically informed deep learning model—
to stratify patients with prostate cancer by treatment-resistance state and evaluate 
molecular drivers of treatment resistance for therapeutic targeting through complete 
model interpretability. We demonstrate that P-NET can predict cancer state using 
molecular data with a performance that is superior to other modelling approaches. 
Moreover, the biological interpretability within P-NET revealed established and novel 
molecularly altered candidates, such as MDM4 and FGFR1, which were implicated in 
predicting advanced disease and validated in vitro. Broadly, biologically informed fully 
interpretable neural networks enable preclinical discovery and clinical prediction in 
prostate cancer and may have general applicability across cancer types.

With the advancement of molecular profiling technologies, the ability 
to observe millions of genomic, transcriptional and additional features 
from patients with cancer and their tumours has grown markedly over 
the past decade. Specifically, in prostate cancer, the availability of 
rich molecular profiling data linked to clinical annotation has enabled 
discovery of many individual genes, pathways, and complexes that 
promote lethal castration-resistant prostate cancer (CRPC), which has 
led to both biological investigations and clinical evaluations of these 
individual features for predictive utility1,2,6–12. However, the relation-
ships between these molecular features and their combined predictive 
and biological contributions to disease progression, drug resistance 
and lethal outcomes remain largely uncharacterized.

There is a wide range of potential approaches when developing a 
predictive model, although each comes with trade-offs of accuracy and 
interpretability. In translational cancer genomics, interpretability of 
predictive models is critical, as properties that contribute to the predic-
tive capabilities of the model may not only inform patient care, but also 
provide insights into the underlying biological processes to prompt 
functional investigation and therapeutic targeting. Linear models 
such as logistic regression tend to have high interpretability with less 
accurate predictive performance, whereas deep learning models often 
have less interpretability but higher predictive performance13,14. Using 
a typical fully connected dense deep learning approach for building 
predictive models may also result in overfitting unless the network is 
well regularized, and such models have a tendency to be computation-
ally expensive and less interpretable15.

Efforts to search for slimmer architecture and sparse networks given 
a full model demonstrated that sparse models can decrease storage 

requirements and improve computational performance16–18. However, 
finding such a sparse model may be challenging, since the typical train-
ing–pruning–retraining cycle is usually computationally expensive, 
and recent studies indicate that building a sparse model de novo may 
be easier19. In addition, efforts to enhance the interpretability of deep 
learning models and the need to explain model decisions led to the 
development of multiple attribution methods, including LIME20, Deep-
LIFT13, DeepExplain21 and SHAP22, that can be used to enhance the deep 
learning explainability and understand how the model is processing 
information and making decisions.

Together, the advances in sparse model development and attri-
bution methods have informed the development of deep learning 
models to solve biological problems using customized neural network 
architectures that are inspired by biological systems. For example, vis-
ible neural networks were developed to model the effect of gene inter-
action on cell growth in yeast (DCell) and cancer cell line interactions 
with therapies (DrugCell)3,5. A pathway-associated sparse deep neural 
network (PASNet) used a flattened version of pathways to predict 
patient prognosis in Glioblastoma multiforme23. However, whether 
biologically informed neural networks can accelerate biological dis-
covery with translational potential and simultaneously enable clinical 
predictive modelling is largely unknown. Here we hypothesized that 
a biologically informed deep learning model built on advances in 
sparse deep learning architectures, encoding of biological informa-
tion and incorporation of explainability algorithms would achieve 
superior predictive performance compared with established models 
and reveal novel patterns of treatment resistance in prostate cancer, 
with translational implications.
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Results
We developed a deep-learning predictive model that incorporates 
previous biologically established hierarchical knowledge in a neural 
network language to predict cancer state in patients with prostate 
cancer on the basis of their genomic profiles. A set of 3,007 curated 
biological pathways were used to build a pathway-aware multi-layered 
hierarchical network (P-NET) (Methods). In P-NET, the molecular profile 
of the individual is fed into the model and distributed over a layer of 
nodes representing a set of genes using weighted links (Fig. 1, Extended 
Data Fig. 1). Later layers of the network encode a set of pathways with 
increasing levels of abstraction, whereby lower layers represent fine 
pathways and later layers represent more complex biological pathways 
and biological processes. The connections between different layers 
are constrained to follow known child–parent relationships among 
encoded features, genes and pathways, and as a result the network is 
geared toward interpretability by design.

We trained and tested P-NET with a set of 1,013 prostate cancers (333 
CRPCs and 680 primary cancers) (Methods; Supplementary Tables 1–5), 
divided into 80% training, 10% validation and 10% testing, to predict dis-
ease state (primary or metastatic disease) using somatic mutation and 
copy number data (Methods). The trained P-NET outperformed typical 
machine learning models, including linear and radial basis function sup-
port vector machine, logistic regression, and decision trees (area under 
the receiver operating characteristic (ROC) curve (AUC) = 0.93, area 
under the precision-recall curve (AUPRC) = 0.88, accuracy = 0.83) (Fig. 2, 
Extended Data Fig. 2, Supplementary Tables 6, 7, Methods). Incorpora-
tion of additional molecular features was feasible in P-NET (for example, 
fusions) but did not impact the performance of the model in this specific 
prediction task (Extended Data Figs. 3, 4). Furthermore, we evaluated 
whether the sparse model had characteristics distinct from a dense fully 
connected deep learning model. We trained a dense model with the 
same number of parameters as in the P-NET model on training sets with 
a logarithmically increasing number of samples from 100 to 811 (80% of 
the total number of samples). The mean performance (determined by 
AUC) of the P-NET model was higher than the dense model over all sample 
sizes, and this difference was statistically significant in smaller sample 
sizes (up to 500) (for example, mean AUC of fivefold cross-validation was 
significantly higher for P-NET compared with a dense network trained 
on 155 samples, P = 0.004) (Fig. 2c, Extended Data Fig. 5a–e; statistical 
test results are listed in Supplementary Table 8). Furthermore, a dense 
network that had the same number of neurons and layers as P-NET but 

a much larger number of parameters (14 million) also achieved inferior 
performance (Extended Data Fig. 5f).

We next performed external validation of the predictive aspects of the 
model using two additional prostate cancer validation cohorts, one pri-
mary24 and one metastatic25 (sample identifiers are listed in Supplemen-
tary Tables 4, 5; Methods). The trained P-NET model correctly classified 
73% of the primary tumours and 80% of the metastatic tumours, indicat-
ing that the model can generalize to unseen samples with an adequate pre-
dictive performance (Fig. 2b). We hypothesized that patients with primary 
tumour samples incorrectly classified by P-NET as castration-resistant 
metastatic tumours may in fact have worse clinical outcomes. Patients 
with high P-NET scores misclassified as resistant disease were significantly 
more likely to have biochemical recurrence than patients with low P-NET 
scores (P = 8 × 10−5; log-rank test), indicating that for patients with pri-
mary prostate cancer, the P-NET score may be used to predict potential 
biochemical recurrence (Fig. 2d, Supplementary Table 9).

To understand the interactions between different features, genes, 
pathways and biological processes that contributed to the predictive 
performance and to study the paths of impact from the input to the 
outcome, we visualized the whole structure of P-NET with the fully 
interpretable layers after training (Fig. 3). Among aggregate molecular 
alterations, copy number variation was more informative compared 
with mutations, consistent with previous reports26. In addition, P-NET 
selected a hierarchy of pathways (out of 3,007 pathways on which 
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Fig. 2 | Prediction performance of P-NET. a, P-NET outperforms other models 
in terms of the AUPRC, values shown in brackets, when tested on the testing set 
(n = 204 from the Armenia et al. dataset8). RBF, radial basis function. b, When 
evaluated using two independent external validation cohorts24,25, P-NET 
achieves 73% true-negative rate (TN) and 80% true-positive rate (TP), showing 
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false-positive rate. c, P-NET achieves better performance (measured as the 
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parameters. The solid line represents the mean AUC and the bands represent 
mean ± s.d. (n = 5 experiments). The difference in performance is statistically 
significant for all sample sizes up to 500 (*P < 0.05, one-sided t-test) (Methods). 
d, Patients with primary prostate cancer and high P-NET scores, HPS,  (wrongly 
classified by P-NET to be resistant samples) have a greater tendency to exhibit 
biochemical recurrence (BCR) compared with patients with lower P-NET 
scores, LPS,  who tend to exhibit progression-free survival (P = 8 × 10−5; log-rank 
test, two sided). This shows that the P-NET model may be useful in stratifying 
patients in the clinic and predicting potential BCR (raw data are included in 
Supplementary Table 9). LPS, low P-NET score; HPS, high P-NET score.
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P-NET was trained) as relevant to classification, including cell cycle 
checkpoints, post-translational modification (including ubiquitination 
and SUMOylation) and transcriptional regulation by RUNX2 and TP53. 
Multiple members of the cell cycle pathway have been functionally 
implicated in metastatic prostate cancer, and specifically functionally 
interrogated in treatment-resistant contexts27,28. Ubiquitination and 
SUMOylation pathways contribute to the regulation of multiple tumour 
suppressors and oncogenes, including AR29, and dysregulation of these 
pathways has been linked to prostate cancer initiation and progression 
in preclinical models30. RUNX2 is an osteogenic transcription factor that 
regulates cell proliferation and is associated with metastatic disease 
in patients with prostate cancer31.

To evaluate the relative importance of specific genes contributing to 
the model prediction, we inspected the genes layer and used the Deep-
LIFT attribution method to obtain the total importance score of genes 
(Methods)13. Highly ranked genes included AR, PTEN, RB1 and TP53, 
which are known prostate cancer drivers previously associated with 
metastatic disease1,2,9,32. In addition, alterations in less expected genes, 
such as MDM4, FGFR1, NOTCH133 and PDGFA, strongly contributed to 
predictive performance (Extended Data Fig. 6, 7). To understand the 
behaviour of trained P-NET, we checked the activation of each node 
in the network, where activation here represents the signed outcome 
of a certain node given its inputs, and tested whether this activation 
changed with the change of the input sample class (primary versus 
metastatic) (Methods). We observed that the difference in the node 
activation was higher in higher layers and more concentrated in highly 
ranked nodes in each layer (Extended Data Fig. 8). For example, the 
activation distribution of the nodes of layer H3 was different when 
P-NET was given a primary sample compared with a resistant sample 
(Extended Data Fig. 8c). Thus, the interpretable architecture of P-NET 
can be interrogated to understand how the input information is trans-
formed through layers and nodes, enabling further understanding of 
the state and importance of the involved biological entities.

Through evaluation of multiple layers in the P-NET trained model, 
we observed convergence in TP53-associated biology contributing 
to CRPC. Tracing the relevance of TP53-related pathways to the gene 
levels, roles for TP53 and MDM2 have been previously established in 
prostate cancer disease progression32,34–40, we also observed alterations 
in MDM4 that contributed substantially to this network convergence. 
MDM4 can inhibit wild-type TP53 expression by binding to and masking 

the transcriptional activation domain40, although its role in prostate 
cancer treatment resistance is incompletely characterized41.

We further studied the MDM4 profile both in clinical samples and in 
functional models. High amplification of MDM4 was more prevalent 
in resistant samples compared with primary samples (χ2 Yates correc-
tion = 40.8251, P < 0.00001). Alterations in AR, TP53, and MDM4 genes 
are depicted in Fig. 4a. In a genome-wide gain-of-function preclinical 
screen using 17,255 open reading frames (ORFs) in LNCaP cells, MDM4 
overexpression was significantly associated with resistance to enzalu-
tamide, a second-generation antiandrogen medication which is used 
for patients with CRPC42 (Fig. 4b). We then used CRISPR–Cas9 to target 
MDM4 in multiple prostate cancer cell lines (Methods). Compared 
with a negative control, proliferation of prostate cancer cells was sig-
nificantly reduced (P < 0.0001; t-test) (Fig. 4c; Supplementary Data 1) 
in response to MDM4 depletion using two distinct single-guide RNAs 
(sgRNAs) (Extended Data Fig. 9, Supplementary Data 2). This indicated 
that selective therapeutic targeting of MDM4 may be viable in patients 
with TP53-wild-type advanced prostate cancer. We thus sought to study 
the effect of inhibiting MDM4 in prostate cell lines with mutant and 
wild-type TP53. Prostate cells with wild-type TP53 were more sensitive 
to the MDM4 selective inhibitor RO-5963 (which also inhibits MDM2) 
compared with TP53-mutant cell lines43 (Fig. 4d; Methods). Overall, 
convergence of p53 pathway dysregulation across multiple layers of the 
trained P-NET model identified specific vulnerabilities involving MDM4, 
which can be therapeutically targeted with MDM4-selective inhibition 
in a genomically stratified prostate cancer patient population.

Discussion
Broadly, P-NET leveraged a biologically informed, rather than arbitrar-
ily overparameterized, architecture for prediction. As a result, P-NET 
markedly reduced the number of parameters for learning, which led to 
enhanced interpretability. The sparse architecture in P-NET has better 
predictive performance when compared to other machine learning 
models, including dense networks, and may be applicable to other 
similar tasks. Application of P-NET to a molecular cohort of patients 
with prostate cancer demonstrated (1) model performance that may 
enable prediction of clinically aggressive disease in populations of 
patients with primary prostate cancer, and (2) convergent biologi-
cal processes that contribute to a metastatic prostate cancer clinical 
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phenotype that harbour novel therapeutic strategies in molecularly 
stratified populations.

Furthermore, P-NET provided a simple way for integrating multiple 
molecular features (for example, mutations, copy number variations 
and fusions, among others) weighted differently to reflect their impor-
tance in predicting the final outcome, which previously required dif-
ferent statistical approaches for each feature to enable cancer gene 
discovery44,45. Even more, P-NET provided a framework for encoding 
hierarchical prior knowledge using neural network languages and turn-
ing these hierarchies into a computational model that can be used both 
for prediction and for biological discovery in clinicogenomic contexts. 
Specifically, P-NET accurately predicted advanced prostate disease 
based on patients’ genomic profiles and had the ability to predict poten-
tial biochemical recurrence. Visualization of the architecture of P-NET 
enabled a multilevel view of the involved biological pathways and pro-
cesses, which may guide researchers to develop hypotheses regarding 
the underlying biological processes involved in cancer progression and 
translate these discoveries into therapeutic opportunities. Specifically, 
P-NET rediscovered known genes implicated in CRPC, such as AR, PTEN, 
TP53 and RB1. Moreover, P-NET identified MDM4 as a relevant gene 
in this clinical context, which was experimentally validated and may 
inform use of MDM4-selective inhibitors for genomically stratified 
(TP53-wild-type) patients with metastatic prostate cancer.

Whereas P-NET provides a framework for outcome prediction and 
hypothesis generation, the model still requires tuning and training before 
being used. As with all deep learning models, the final trained model heavily 

depends on the hyperparameters used to train the model. In addition, 
P-NET encodes biological pathways inside the network in a hardcoded 
way, which makes the model dependent on the quality of the annotations 
used to build the model. Use of models that leverage other hardcoded 
biological priors (such as KEGG and Gene Ontology) or user-specified 
specific biological modules may further guide model development and 
functional evaluation. Finally, advances in computation may enable use of 
this approach in a patient-specific precision oncology schematic, paired 
with patient-specific model systems for directly comparable experimental 
assessments. Thus, the portability of this approach across different histo-
logical and clinical contexts requires further evaluation.

In conclusion, P-NET, a biologically informed deep neural net-
work, accurately classified castration-resistant metastatic versus 
primary prostate cancers. Visualizing the trained model generated 
novel hypotheses for mechanisms of metastasis in prostate cancer 
and provided insights with direct potential for clinical translation in 
molecularly stratified prostate cancer patient populations. Biologically 
guided neural networks represent a novel approach to integrating 
cancer biology with machine learning by building mechanistic predic-
tive models, providing a platform for biological discovery that may 
be broadly applicable across cancer prediction and discovery tasks.
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the strongest hit among these genes. CSS, low androgen medium. c, Relative 
viability of C4-2, LNCaP, LNCaP Abl and LNCaP 95 cells after transduction of 
CRISPR–Cas9 and sgRNAs targeting MDM4 (2 guides) or control GFP (2 guides). 
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prostate cancer cell lines to RO-5963. Relative viability is shown at each 
indicated dosage of RO5963. Data are mean ± s.d. of three replicates (the 
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and LAPC-4 are TP53-mutant prostate cancer cells; the other cells are  
TP53 wild type.
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Methods

P-NET design
We introduce P-NET, an artificial neural network with biologically 
informed, parsimonious architecture that accurately predicts metas-
tasis in patients with prostate cancer on the basis of their genomic 
profiles. P-NET is a feedforward neural network with constraints on the 
nodes and edges. In P-NET, each node encodes some biological entity 
(for example, genes and pathways) and each edge represents a known 
relationship between the corresponding entities. The constraints on 
the nodes allow for better understanding of the state of different bio-
logical components. The constraints on the edges allow us to use a 
large number of nodes without increasing the number of edges, which 
leads to a smaller number of parameters compared to fully connected 
networks with the same number of nodes, and thus potentially fewer 
computations. The architecture was built using the Reactome pathway 
datasets46. The whole Reactome dataset was downloaded and processed 
to form a layered network of five layers of pathways, one layer of genes, 
and one layer for features. This sparse model had slightly over 71,000 
weights with the number of nodes per layer distributed as shown in 
Extended Data Fig. 1e. A dense network with the same number of nodes 
would have more than 270 million weights with the first layer containing 
more than 94% of the weights. A hybrid model which contains a sparse 
layer followed by dense layers still contains over 14 million weights. 
The number of dense weights is calculated as wl = nl × (nl – 1 + 1), where 
wl is the number of weights per layer l and nl is the number of nodes 
of the same layer. Note that the P-NET model is not bound to a certain 
architecture, as the model architecture is automatically built by reading 
model specifications provided by the user via a gene matrix transposed 
file format (.gmt) file, and custom pathways, gene sets and modules 
with custom hierarchies can be provided by the user.

The meaning of the nodes, layers and connection of P-NET is 
encoded through a carefully engineered architecture and a set of 
restrictions on the connections of the network. The input layer is 
meant to represent features that can be measured and fed into the 
network. The second layer represents a set of genes of interest.  
The higher layers represent a hierarchy of pathways and biological 
processes that are manually curated. The first layer of P-NET is con-
nected to the next layer via a set of one-to-one connections, and each 
node in the next layer is connected to exactly three nodes of the input 
layer representing mutations, copy number amplification and copy 
number deletions. This scheme results in a much smaller number of 
weights in the first layer compared with a fully connected network 
and the special pattern of the connection matrix results in more effi-
cient training. The second layer is restricted to have connections 
reflecting the gene-pathway relationships as curated by the Reactome 
pathway dataset. The connections are encoded by a mask matrix  
M that is multiplied by the weights matrix W to zero-out all the con-
nections that do not exist in the Reactome pathway dataset. For the 
next layers, a similar scheme is devised to control the connection 
between consecutive layers to reflect the real parent–child relation-
ships that exist in the Reactome dataset. The output of each layer is 
calculated as y = f [(M *W)Tx + b], where f is the activation function, M 
is the mask matrix, W is the weights matrix, x is the input matrix, b is 
the bias vector, and * is the Hadamard product (see Extended Data 
Fig. 1a–c). The activation of each node is kept into the range of [−1,1] 
by applying the tanh function f tanh= = (e − 1)/(e + 1)x x2 2  to the 
weighted inputs of the node. The activation of the outcome layers is 
calculated by the sigmoid function σ = 1/(1 + e )x− .

To allow each layer to be useful by itself, we added a predictive layer 
with sigmoid activation after each hidden layer. P-NET has a smaller 
number of nodes per layer in the later layers compared to the first lay-
ers Extended Data Fig. 1e. Since it is more challenging to fit the data 
using a smaller number of weights in the later layers, we used a higher 
loss weight for later layer outcomes during the optimization process. 

The final prediction of the network was calculated by taking the aver-
age of all the layer outcomes, Extended Data Fig. 1d. The learning rate 
was initialized to be 0.001 and actively reduced after every 50 epochs 
to allow for smooth convergence. Since we have an unbalanced dataset, 
we weighted the classes differently to reduce the network bias toward 
one class based on the bias in the training set. The model was trained 
using Adam optimizer47 to reduce the binary cross-entropy loss func-
tions H y p y y p y= − Σ . log( ( )) + (1 − ) . log(1 − ( ))N i i i i

1 , where yi is the label 
for sample i, p y( )i  is the probability that sample i has a metastatic can-
cer as calculated using the sigmoid function σ, and N is the total num-
ber of samples. Empirically we found that using adaptive learning rate 
besides Adam led to smoother convergence and improved prediction 
performance. We checked different gradient-based attribution meth-
ods to rank the features in all the layers, and we chose to use the Deep-
LIFT scheme as implemented in the DeepExplain library13.

DeepLIFT is a backpropagation-based attribution approach for 
assigning a sample-level importance score for each feature. In this 
work, we are interested in assigning scores for each node in each layer. 
Given a certain sample, a specific target t, and a set of layer nodes 
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, where nl is the number of nodes in a certain layer 

l, DeepLIFT calculates an importance score Ci
l s,  for each node on the 

basis of the difference in the target activation t – t0 such that the dif-
ference equals the aggregation of the calculated scores for all the nodes. 
That is, the difference in target activation is given by:

t t t∆ = − 0

Which equals the sum of all node scores when fed by a certain sample 
S. That is,
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We used the ‘Rescale rule’ of DeepLIFT as implemented by DeepExplain 
to calculate the sample-level importance of all nodes in all layers. Fur-
ther details are available in ref. 13. To calculate the total node-level 
importance Ci

l we aggregated the sample-level importance score scores 
over all the ns testing-set samples.
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Note that this is an absolute score (always positive) that measures the 
impact of a certain node on the outcome. The activation of the cor-
responding node i, however, could be positive or negative.

To reduce the bias introduced by over-annotation of certain nodes 
(nodes that are member of too many pathways), we adjusted the Deep-
LIFT scores using a graph informed function f that considers the con-
nectivity of each node. The importance score Ci

l is divided by the node 
degree di

l if the node degree is larger than the mean of node degrees 
plus 5σ where σ is the standard deviation of node degrees.
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P-NET training and evaluation
To check the utility of the developed model, we trained P-NET to 
predict cancer state (primary/metastatic) of patients with prostate 
cancer on the basis of their genomic profiles. We used tumour or 
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germline-matched whole-exome sequencing of 1,013 patients along 
with the corresponding somatic mutations and copy number altera-
tions that were prepared using a unified computational pipeline for 
harmonized somatic alteration derivation8 (annotated in this study as 
the ‘Armenia et al.’ cohort). The mutations were aggregated on the gene 
level with focus on nonsynonymous mutations to align with prior work 
on mutational significance in prostate cancer whole-exome datasets, 
excluding silent, intron, 3′ untranslated region (UTR), 5′ UTR, RNA 
and long intergenic non-coding RNA (lincRNA) mutations. The copy 
number alterations for each gene were assigned on the basis of the 
called segment-level copy number emphasizing high gains and deep 
deletions and excluding single-copy amplification and deletions, as 
defined by GISTIC2.0 and generated from the source data type. For 
secondary analyses involving RNA data (fusions, expression), bulk 
whole transcriptomes from the subset of the Armenia et al. cohort, 
where such data were available, were secured from their source stud-
ies (n = 455 from TCGA, n = 204 from SU2C-PCF consortia) for uniform 
alignment and quantification of RNA sequences. Reads were down-
loaded as FASTQs from TCGA (ISB-CGC; https://isb-cgc.appspot.com/) 
and as CRAMs from SU2C (from Amazon S3 bucket, dbGaP accession 
code, phs000915.v2.p2) and then converted to FASTQs using samtools 
fastq. In cases where an SU2C sample had both transcriptome capture 
and polyA sequencing, transcriptome capture was used to optimize 
for fusion detection as the primary use of these data. Adapters were 
trimmed with cutadapt v2.2 and reads were aligned using STAR aligner 
v2.7.2b48,49. STAR-aligned bam files were passed into RSEM to generate 
gene-level transcript counts and transcript per million (TPM) quantifi-
cations using the GENCODE release 30 gene annotation lifted over to 
GRCh37. STAR chimeric junctions were supplied to STAR-Fusion v1.7.0 
in kickstart mode to call fusions50. Fusion calls were filtered down to 
those that included genes classified as oncogene or fusion in the Cancer 
Gene Census51. To test model flexibility for RNA-based fusion inputs, 
as a secondary analysis we also developed P-NET models trained to 
predict cancer state incorporating fusions or different definitions of 
copy number states (Extended Data Fig. 3, 4).

The prediction performance was measured using the average 
AUC, the AUPRC and the F1 score. The corresponding measures were 
reported for the testing split and also for the cross-validation setup. 
The input data were divided into a testing set (10%) and a development 
set (90%). The development set was further divided into a validation 
set that has the same size as the testing set and the remaining samples 
are reserved for training. For the cross-validation experiments, the 
development dataset was divided into five folds stratified by the label 
classes to account for the bias in the dataset. The external validation 
results are produced by a model that is trained on the main dataset and 
tested on two independent external validation datasets. To mitigate the 
bias issue in the main dataset, we trained two models on two balanced 
subsamples drawn from the main dataset. The prediction scores of the 
two models are averaged to produce the final predictions on the two 
external validation datasets. The implementation of the proposed 
system along with the reproducible results are available on GitHub 
(https://github.com/marakeby/pnet_prostate_paper).

Statistical analysis
The change in the area under the ROC curve between P-NET and other 
models is tested using DeLong test52. The P-values are corrected for mul-
tiple hypothesis testing using FDR. For other scores including AUPRC, 
accuracy, F1 and recall, bootstrapping statistical test with 2,000 sam-
pling is used and the difference in score median was tested for signifi-
cance. The resulting P value was corrected using the false-discovery 
rate (FDR) method. The AUC of five-fold cross-validation resulting from 
training and testing P-NET and dense models over multiple sample 
sizes is compared using a t-test of the means for the null hypothesis 
that two samples (P-NET scores and dense scores) have identical aver-
age (expected) values with the assumption that the populations have 

identical variances. The same test is applied to other scores including 
recall, precision, AUPRC, F1 and accuracy. For the survival analysis 
(Fig. 2d), a nonparametric log-rank test is used to compare estimates 
of the hazard functions of the two groups at each observed event time. 
A t-test of means is used to compare the reduction of prostate cancer 
cells proliferation in comparison to negative control in response to 
MDM4 depletion. Chi-squared test with Yates correction is used to 
compare the expected and observed frequencies of MDM4 high amplifi-
cations in two groups (patients with primary and metastatic tumours).

Analysis of a genome-scale ORF screen
A genome-scale ORF screen was previously performed in LNCaP cells42. 
In brief, cells were infected with a pooled ORF library, subject to puro-
mycin selection to isolate cells containing the respective ORFs, and 
then seeded in low androgen medium (CSS) with enzalutamide. The 
relative effect of each ORF on cell proliferation was determined after 
25 days in culture and is represented as Z-scores. Raw results of the ORF 
screen were obtained from the Hwang et al. source study. We postulated 
that amplified genes identified by P-NET regulate oncogenic func-
tions in metastatic CRPC. To validate this hypothesis, we analysed this 
previously published genome-scale ORF screen performed in LNCaP 
cells, which identified genes that, when overexpressed, promoted 
resistance to the AR inhibitor, enzalutamide42 (Fig. 4b). LNCaP cells 
are dependent on AR and treatment with enzalutamide attenuates cell 
proliferation. On the basis of this analysis, MDM4 scored as a robust 
enzalutamide-resistant gene relative to other hits, including cell cycle 
regulators (CDK4 and CDK6) or those with roles in FGF signalling (FGFR2, 
FGFR3 and FGF6); these are two pathways implicated in driving resist-
ance to anti-androgen therapies in clinical prostate cancers27,53.

Sensitivity to RO-5963
LNCaP, LNCaP Abl, LNCaP 95, DU145, LAPC-4, LNCaP enzalutamide 
resistant, C4-2 and PC3 cells were seeded in 96-well plates at a density 
of 3,000 cells per well. After 24 h, cells were treated with increasing 
concentrations of RO-5963 for 4 days. Cell proliferation was determined 
using CellTiter-Glo assay. IC50 values were determined using GraphPad 
Prism. Data are represented as the mean ± s.d. of three replicates. The 
experiment was repeated three times (raw data and analysis files in 
Supplementary Data 4). All cell lines tested negative for mycoplasma 
contamination. Authentication was performed using STR profiles and/
or obtained directly from ATCC for all publicly available cell lines.

MDM4 gene-depletion experiments
Blasticidin-resistant Cas9-positive prostate cancer cells were cultured 
in 150 μg ml–1 blasticidin (Thermo Fisher Scientific, NC9016621) for 72 h 
to enrich cells with optimal Cas9 activity. One million cells were seeded 
in parallel in 12-well plates and infected with lentiviruses expressing 
puromycin-resistant sgRNAs targeting MDM4 or GFP control. Cells 
were then subjected to puromycin selection for 3 days and then the 
cells were counted using a Vi-Cell and seeded for a proliferation assay. 
7 days later, cells were counted again with a Vi-Cell to assess viability, 
representing a total of 12 days. The target sequence against GFP was 
CACCGGCCACAAGTTCAGCGTGTCG (sgGFP). The target sequences 
against MDM4 were AGATGTTGAACACTGAGCAG (sgMDM4-1) and 
CTCTCCTGGACAAATCAATC (sgMDM4-2).

Immunoblotting
Cells were lysed using 2× sample buffer (62.5 mM Tris pH 6.8, 2% SDS, 
10% glycerol, Coomassie dye) and freshly added 4% β-mercaptoethanol. 
Lysed cells were scraped, transferred into a 1.5 ml microcentrifuge tube, 
sonicated for 15 s and boiled at 95 °C for 10 min.

Proteins were resolved in NuPAGE 4–12% Bis-Tris Protein gels 
(Thermo Fisher Scientific) and run with NuPAGE MOPS SDS Running 
Buffer (Thermo Fisher Scientific, NP0001). Proteins were transferred 
to nitrocellulose membranes using an iBlot apparatus (Thermo 
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Fisher Scientific). Membranes were blocked in Odyssey Blocking 
Buffer (LI-COR Biosciences, 927-70010) for 1 h at room temperature, 
and membranes were then cut and incubated in primary antibodies 
diluted in Odyssey Blocking Buffer at 4 °C overnight. The following 
morning, membranes were washed with phosphate-buffered saline 
with 0.1% Tween (PBST) and incubated with fluorescent anti-rabbit 
or anti-mouse secondary antibodies at a dilution of 1:5,000 (Thermo 
Fisher Scientific, NC9401842 (rabbit) and NC0046410 (mouse)) for 1 h 
at room temperature. Membranes were again washed with PBST and 
then imaged using an Odyssey Imaging System (LI-COR Biosciences). 
Primary antibodies used include MDM4 (Abcam, ab16058) at a dilution 
of 1:500 and α-tubulin (Sigma, T9026) at a dilution of 1:1,000.

Gene depletion of MDM4 reduces prostate cancer cell viability
To determine how prostate cancer cells would respond to precision 
tools that target MDM4 at the gene level, we used CRISPR-Cas9 and 
two sgRNAs targeting distinct sequences of MDM4 in prostate cancer 
cell lines. Compared with a negative-control sgRNA (GFP), viability of  
4 different prostate cancer cells was reduced by about 50–80% (Fig. 4c) 
in response to MDM4 depletion (Extended Data Fig. 9) after 12 days in 
culture. Altogether, we concluded that MDM4 regulates enzalutamide 
resistance, and that targeting MDM4 through either chemical or genetic 
approaches significantly attenuated the viability of prostate cancer cell 
lines. Our observations indicate that antagonizing MDM4 in metastatic 
CRPCs that harbour wild-type p53 is an attractive precision strategy. 
MDM4 antibodies (A300-287A) and (ab16058) were used together for 
immunoblotting experiments done in Extended Data Fig. 9.

Chemical inhibition of MDM4 reduces prostate cancer cell 
viability
Given the proposed role of MDM4 in driving enzalutamide resistance in 
prostate cancer cells, we sought to determine the response of prostate 
cancer cells to chemical inhibition of MDM4. We evaluated RO-5963, 
a small molecule MDM2/4 dual inhibitor with the greatest selectivity 
towards MDM4 in its class43. This drug has previously demonstrated 
robust efficacy against MDM4 dependent cancer cell lines54. We evalu-
ated the effects of increasing concentrations of RO-5963 on prostate 
cancer cell proliferation.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All data used and generated from this study are deposited in https://
doi.org/10.5281/zenodo.5163213. These datasets were derived from 
the following public domain resources8,24,25,46. The main dataset8 
was downloaded from https://static-content.springer.com/esm/
art%3A10.1038%2Fs41588-018-0078-z/MediaObjects/41588_2018_78_ 
MOESM6_ESM.xlsx; https://static-content.springer.com/esm/
art%3A10.1038%2Fs41588-018-0078-z/MediaObjects/41588_2018_78_ 
MOESM4_ESM.txt; https://static-content.springer.com/esm/
art%3A10.1038%2Fs41588-018-0078-z/MediaObjects/41588_2018_78_ 
MOESM10_ESM.txt; https://static-content.springer.com/esm/
art%3A10.1038%2Fs41588-018-0078-z/MediaObjects/41588_2018_78_ 
MOESM10_ESM.txt; and https://static-content.springer.com/esm/
art%3A10.1038%2Fs41588-018-0078-z/MediaObjects/41588_2018_78_ 

MOESM5_ESM.xlsx. The external validation dataset24,25 was down-
loaded from https://met500.path.med.umich.edu/met500_down-
load_datasets/somatic_v4.csv; https://static-content.springer.com/
esm/art%3A10.1038%2Fnature20788/MediaObjects/41586_2017_BFna-
ture20788_MOESM324_ESM.zip; and https://static-content.springer.
com/esm/art%3A10.1038%2Fnature20788/MediaObjects/41586_2017_
BFnature20788_MOESM325_ESM.zip.

Code availability
Custom code was developed as part of the analysis reported here, 
and has been deposited on GitHub: https://github.com/marakeby/
pnet_prostate_paper. The library names and versions used in the imple-
mentation are provided in https://github.com/marakeby/pnet_pros-
tate_paper/blob/master/environment.yml. The final version of the 
code will be permanently available, after publication acceptance, on 
https://doi.org/10.5281/zenodo.5163855. 
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Extended Data Fig. 1 | P-NET architecture and characteristics. a, Dense 
layer with inputs x R∈ dx and output y R∈ dy vectors. The matrix W R∈ dx dy⁎  is a 
trainable weights matrix and b R∈ dy is the bias vector. f  is the layer activation 
function. b, Arbitrary sparse layers are flexible to encode any connection 
scheme with the added M ∈ {0,1}dx dy⁎  binary mask matrix that controls the 
connectivity of the layer imposing sparsity on the weights matrix.  

c, A patterned sparse matrix with mask matrix M  that follows a certain 
pattern. This pattern can be used to make computations more efficient.  
d, Predictive node is connected to each hidden layer in P-NET, and the final 
prediction is calculated by taking the average of all the predictive elements  
in the network. e, The number of parameters per layer of P-NET.



Extended Data Fig. 2 | See next page for caption.



Article
Extended Data Fig. 2 | Computational performance of P-NET as compared 
to other models. a, Original confusion matrix calculated by using a typical  
0.5 threshold of the prediction scores to generate binary predictions. b, Adjusted 
confusion matrix calculated using an adaptive threshold that is used to 
maximize F1 score. c, The ROC curve of P-NET compared to other models 
showing that P-NET outperforms other models in terms of the area under curve 
(AUC) when tested on the testing set (n=204 of Armenia et al dataset). The 
models are compared by repeatedly training and testing each model in a cross-
validation setup (n = 5 experiments) with testing sample sizes of 188, 182, 182, 

182, and 181 respectively. Performance metrics reported here include; accuracy 
(d), area under ROC curve (e), area under precision recall curve AUPRC (f), F1 
measure (g), precision (h), and recall (i). P-NET outperforms other models on 
average using all the metrics except Precision. Data in d-i are represented as 
boxplots where the middle line is the median, the lower and upper hinges 
correspond to the 1st and 3rd quartiles, the whisker corresponds to the 
minimum or maximum values no further than 1.5 × IQR from the hinge (where 
IQR is the inter-quartile range). Data beyond the end of the whiskers are 
outlying points that are plotted individually.



Extended Data Fig. 3 | The effects of incorporating fusions in the P-NET 
model training. The effect of incorporating fusions in the P-NET model 
training. Three models are reported here to study the effect of fusion on the 
P-NET performance i) ‘no-Fusion’ model incorporating only copy number and 
mutations for each gene ii) ‘Fusion’ model where fusion is added to the model 
as one binary variable to indicate whether a certain sample has fusion or not 
(restricted to ETS fusions and oncogene fusions). ‘Fusion (genes)’ model where 
fusions are included as binary variables for each gene indicating whether a 
certain gene was involved in a fusion or not (restricted to ETS fusions and 
oncogene fusions). a, The AUC curve of the three trained models showing 
similar performance when tested on the testing set. b, A bootstrapped version 
of the AUC comparison (2000 bootstrap samplings) showing similar 
performance of the three models. c, The importance score of all features 

showing that the fusion indicator has a non-zero score even when it is added to 
the 27k features fed into the model. d) The overall contributions of different 
data types (calculated as the aggregation of the importance scores of all 
corresponding features) showing minor contributions of the fusion features. 
The signal from the fusion features goes smaller when distributed over genes 
(‘Fusions (genes)’ model) compared to the single feature encoding (‘Fusion’ 
model). e, The effect of adding fusion on the top ranked nodes in each layer as 
compared to the baseline ‘no-Fusion’ model rankings. Adding the fusion has a 
small effect on the top ranked nodes in higher layers, e.g. more than %80 of the 
top ranked nodes in h5 has not been affected by the fusion addition (‘Fusion’ 
model) compared to the baseline ‘no-Fusion’ model. The effect of the fusion 
addition is more prominent in the earlier layers, especially h0.
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Extended Data Fig. 4 | The effects of CNV definition on the P-NET model 
performance and stability. Two different models are trained on (i) mutations 
plus only high amplifications and deep deletions, referred to by ‘two copies’ in 
the legend and (ii) mutations plus all GISTIC2.0 states (deep deletion, deletion, 
neutral, amplification, high amplification) referred to by ‘single copy’ in the 
legends. a) AUC comparison between the two models showing slight increase 
in the performance when including all the copy number levels. b) The stability 

of top features is studied by comparing the overlap between features picked by 
the model over 5-fold data splits. The stability index is calculated for five data 
splits (D1-D5) where the cells show the overlap between top 10 features picked 
by the model for each pair of the data splits. c) comparing the stability index of 
the two models shows that restricting the copy number levels (‘two copies’ 
model) has a positive effect on stabilizing the features picked by the model 
when trained on different data splits.



Extended Data Fig. 5 | Performance comparison of sparse P-NET to dense 
models. Comparing the performance of P-NET to a dense network with the 
same number of trainable parameters using different sizes of training sets  
(a: Recall, b: Precision, c: AUPRC, d: F1, e: Accuracy). Sample sizes marked by (*) 
indicate statistically significant differences (p-value <0.05, one-sided t-test) 

while those marked by (n.s.) are not. The solid line represents the mean and the 
bands represent mean +/- SD (n =5 experiments). f, Comparison of P-NET to a 
dense model with the same architecture (same number of nodes) but with large 
number of trainable parameters (14 M) shows that sparse P-NET is still better 
than a dense model in terms of the area under ROC curve, AUC.
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Extended Data Fig. 6 | Relative ranking of nodes in each layer. Relative 
ranking of nodes in each layer based on P-NET total importance score. The 
height of the bar represents the estimated total importance score calculated as 

the summation of all sample-level importance scores over the testing set  
(n = 204). The error bar represents the 95-confidence interval around the 
estimated score calculated using 1000 bootstrap cycles over the testing set.



Extended Data Fig. 7 | Relationship between P-NET importance scores and 
copy number enrichment of important genes. a, Copy number enrichment 
of genes on chr1p (containing MDM4) relative to their model importance score. 
The y-axis shows the enrichment of the amplification in metastatic samples 
relative to primary samples, using -log (signed p) from Fisher’s exact test. There 
is evidence of high amplification enrichment around MDM4 specifically, but 
the higher model coefficient (importance score) is also partially informed by 

its relevance in biological pathways relative to neighboring genes (e.g. PKP1). 
 b) There is less evidence for copy number focality being enriched around EIF3E 
on chr8q, which suggests that the model coefficient may be largely driven by 
the biological “bias” and less so by copy number focality. c, PDGFA on chr7p is a 
representative example where there is a mix of signal between modest focality 
at the peak where PDGFA is observed and biological “bias”.
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Extended Data Fig. 8 | Activation distribution of important nodes in each 
layer. The activation distribution of top ranked nodes in each layer. Nodes in 
each layer are ordered based on their total importance score. The shown 
distribution is estimated using kernel density estimation to estimate the 
underlying distribution of node activations calculated for the testing set 
(n = 204). The current implementation of P-NET uses tanh activation function  

so the activation values are in the range −1 to 1. The figure shows better 
discrimination between sample classes (Primary- blue vs. Metastatic-orange) 
in higher layers compared to lower layers and in top ranked nodes compared to 
lower ranked ones. This shows that the total importance score of the nodes is 
manifested locally through the differential activation of nodes (nodes process 
different samples differently).



Extended Data Fig. 9 | Immunoblot confirming MDM4 gene deletion. 
Immunoblot confirming MDM4 gene deletion in all cell lines used in Fig. 4-c. 
Tubulin is a loading control. Quantification of MDM4 depletion is given under 

the MDM4 blots. ImageStudioLite was used for quantification (Quantification 
numbers are included in Supplementary Data 3). The experiment was repeated 
3 times with similar results.
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Data collection Data used in the study is available in the public domain. No special software was used to collect the data.

Data analysis A custom code was developed as part of the analysis reported here. The full code is deposited on the code sharing site GitHub and the link is 
provided in the Methods section of the submitted paper (https://github.com/marakeby/pnet_prostate_paper) 
The library names and versions used in the implementation are provided in https://github.com/marakeby/pnet_prostate_paper/blob/master/
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GraphPad Prism 9.1.2 was used to determine IC50 values 
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Sample size Typical sample size and power calculations do not apply to non-linear machine learning models. Machine learning methodologies generally 
improve as sample sizes increase, which makes prospective power analyses in these contexts difficult to interpret given the nonlinearity of the 
underlying mathematical framework relative to the parametric approaches leveraged for power calculations. We explicitly studied the effect 
of the training sample size on the computational performance of the developed model in predicting clinical outcomes in unseen dataset and 
compared this to other machine learning models as well. 

Data exclusions no exclusions

Replication All the analyses reported here are tested for reproducibility. Best practices of machine learning development are followed. Random seed is 
set for all experiments. Source code for reproducing the results are deposited on GitHub. Machine learning training and testing process is  
repeated 5 times in a randomized 5 fold cross-validation setup. Knock down experiments are repeated 3 times with 3 replicates in each 
experiment. Drug treatment experiments are repeated 3 times. 

Randomization Best practices for randomizing samples for machine learning model development were followed. Samples were randomly assigned to training, 
testing, and validation groups. The performance metrics of all machine learning models are reported and compared for testing group. The 
experiments are repeated in a randomized 5 cross-validation setup and the metrics are compared as well. 

Blinding Investigators were not blinded. Blinding during data collection was not needed because the data is collected from the public domain.  
The developed machine learning models however were blinded to part of the data (the testing and external validation sets) to evaluate their 
computational performance after being trained on the training set. 
Blinding is also not needed for the interpretation since the results are quantitative and did not require subjective judgment or interpretation.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used MDM4 (Thermo Fisher Scientific, A300287A, Abcam ab16058) , Alpha Tubulin (DM1A,  Sigma T9026)

Validation These antibodies have been examined in a previous study (Howard TP, et al. “MDM2 and MDM4 are Therapeutic Vulnerabilities in 
Malignant Rhabdoid Tumors”. Cancer Research 2019.). In the cited study, the current work as well as in unpublished experiments, we 
used various forms of gene knockdown (RNAi) or knock-out (CRISPR-Cas9) experiments to confirm the antibodies recognize the 
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appropriate target protein in multiple cell lines. The additional proteins tested are known interactions of the TP53 pathway that 
regulate expression of one another, we we observed the anticipate changes of these as "positive control" phenotypes. 

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) C4-2, DU145, PC3 (ATCC) 
LAPC4, LNCaP95, LNCaP Abl, and LNCaP enz-resisant are used from published sources 
LAPC4, (Ginevra/Levi's lab. https://web.expasy.org/cellosaurus/CVCL_4744) 
LNCaP95, LNCaP Abl (Brown/Freedman's group https://pubmed.ncbi.nlm.nih.gov/10496349 ,https://
pubmed.ncbi.nlm.nih.gov/19117982) 
LNCaP enz-resisant (https://pubmed.ncbi.nlm.nih.gov/27036029/)

Authentication Authentication performed using STR profiles and/or obtained directly from  ATCC for all publicly available cell lines. For 
published cell lines, please contact the original owners of the cell lines. 

Mycoplasma contamination All cell lines were tested every 3-6 months MycoAlert (https://www.promega.com/resources/pubhub/applications-notes/
detecting-mycoplasma-using-the-mycoalert-kit-on-the-glomax-2020/). Each cell line had been aliquoted post testing and 
frozen in liquid nitrogen. Cells are only thawed for experimentation and cultured up to 2 Mos. Results were negative for 
mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Cell lines used are NOT included on the commonly misidentified lines list.
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