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Glass fiber is a good substitute for metal materials. However, in the process of manufacturing, it is necessary to carry out sampling
inspection on its tensile strength to infer its quality. According to previous literatures, the strength data can be well fitted by the
Weibull distribution, while the poor parameter estimation method cannot obtain reliable analysis results. .erefore, a new
parameter estimation method is proposed. Based on the simulation results, it is found that the proposed parameter estimation
method outperforms the other competitors to obtain reliable estimates of theWeibull parameters. Finally, the proposed parameter
estimation method is applied to two real data sets of glass fiber strength for illustration. .e results of data analysis show that our
proposed parameter estimation method is more suitable for these data sets than other estimation methods.

1. Introduction

Glass fiber is a kind of high-performance composite fiber.
Compared with carbon fiber, it has lower cost and wider
application in the field of construction, electronics, chemical
industry, and so on. In the manufacturing process of glass
fiber, it is very important to determine the failure probability
distribution of several nominally identical glass fiber samples
by destructive test and then statistical analysis of their
strength data. Figure 1 shows the typical fracture pattern for
low strength fiber, which is from Feih et al. [1]. According to
previous literatures, the strength data of fiber is usually
described by two-parameter Weibull distribution. For ex-
ample, Sakin and Ay [2] studied the bending fatigue
properties of glass fiber reinforced polyester composite
plates and fitted the data with two-parameter Weibull dis-
tribution. Acitas et al. [3] assumed that the strength data of
glass fiber followed the Weibull distribution and estimated
the parameters with maximum likelihood estimation (MLE).
Zhu et al. [4] developed the technology of making high
strength refractory ceramic fibers using fly ash, and the
mechanical properties of a series of fly ash fibers were
assessed by the Weibull distribution. Ferreira et al. [5]

studied the Weibull analysis of tensile tested piassava fibers
with different diameters.

Because of the good properties of the Weibull distri-
bution, it is currently applied in various fields. Many re-
searches have proposed the related distribution,
neutrosophic statistics, or extended distribution and dis-
cussed its properties and applications, such as Alkarni et al.
[6], Almongy et al. [7], Almetwally et al. [8], Ferretti et al. [9],
Zhao et al. [10], Aslam et al. [11], Fernández et al. [12], Arif
and Aslam [13], Aslam et al. [14], Aslam [15], Aslam et al.
[16], Aslam and Arif [17], and Zhang et al. [18].

Before the reliability and failure rate of glass fiber are
inferred, sample-based parameters’ estimation is required
for the analysis process. .ere are many methods for esti-
mating the unknown parameters and reliability analysis of
the Weibull distribution. Naresh et al. [19] provided reli-
ability analysis of tensile strength of glass/epoxy and carbon/
epoxy composites based on the Weibull distribution. Malik
et al. [20] evaluated reliability of a non-series-parallel system
of seven components, and the Weibull distribution is used
for the random variables associated with failure and oper-
ating times of the components. Jia [21] studied the reliability
for the Weibull distribution with homogeneous heavily
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censored data. Johnson et al. [22] introduced many com-
monly used estimation methods for theWeibull distribution
in the book, such as MLE, moment estimation (MM),
percentile method (PM), method of logarithmic moment
(MLM), and Bayesian estimation. Teimouri et al. [23]
proposed an L-moment (LM) estimator for the Weibull
distribution. Kantar [24] proposed generalized least squares
and weighted least squares estimation methods for distri-
butional parameters. Datsiou and Overend [25] investigated
four estimationmethods of theWeibull distribution for glass
strength data. Hidekazu et al. [26] proposed an improved
estimation method for MLE, which improved the estimation
of Weibull shape parameter, scale parameter, and quantile.
Acitas et al. [3] used particle swarm optimization to solve the
MLE of the Weibull distribution and applied the results to
the strength data of glass fiber. Although the above litera-
tures on parameter estimation and reliability analysis of the
Weibull distribution are valuable, there is a lack of research
on the parameter estimation method of strength data fitting
the Weibull distribution (Datsiou and Overend [25]). .e
most commonly used estimation method is MLE, while it
does not performwell for theWeibull distribution, especially
in small samples.

.e aim of this article is to propose a new parameter
estimation method for the Weibull distribution. .e per-
formance of proposed method outperforms other common
estimation methods for small sample size. In addition, the
proposed estimation method is applied to estimate the re-
liability and failure rate of products to evaluate quality or
reliability.

.e rest of this paper is organized as follows. In Section
2, some existing parameter estimation methods for the
Weibull distribution are addressed. In Section 3, we propose
a new parameter estimation method for the Weibull dis-
tribution. Based on the proposed parameter estimation
method, it is applied to the estimation of reliability and
failure rate. In Section 4, a Monte Carlo simulation is
conducted to evaluate the performances of the proposed
parameter estimation method. .en, two real strength data
sets of glass fiber are used to demonstrate the proposed
parameter estimation method and reliability analysis in

Section 5, and some concluding remarks are provided in
Section 6.

2. Review of Parameter Estimation Methods

Suppose the random variable T has aWeibull distribution with
shape parameter α> 0 and scale parameter β> 0, denoted as
T ∼ W D(α, β). .e probability density function (PDF), cu-
mulative distribution function (CDF), reliability function (RF),
and failure rate function (FRF) are, respectively, given by

fT(t; α, β) �
α
β

t

β
 

α− 1

e
− (t/β)α

, t> 0, (1)

FT(t; α, β) � 1 − e
− (t/β)α

, t> 0, (2)

R(t) � P(X> t) � e
− (t/β)α

, t> 0, (3)

λ(t) �
fX(t; α, β)

R(t)
�

α
β

t

β
 

α− 1

, t> 0. (4)

We assume T1, . . . , Tn is a random sample from the two-
parameter Weibull distribution. Five common parameter
estimation methods are reviewed as follows.

2.1. Method of Moments (MM). .e MM is a traditional
parameter estimation method, which is widely used for
parameter estimation of various distributions. .is esti-
mation method assumes that the first k population moments
are equivalent to the first k sample moments and estimates
the unknown parameters by solving the equations derived
from the equivalence relation. .erefore, it can be used for
two-parameter Weibull distribution, whose parameter es-
timation satisfies the following two equations:

Γ 2/αMM + 1( 

Γ2 1/αMM + 1( 
+

M2 − M
2
1

M1
− 1 � 0, (5)

βMM �
M1

Γ 1/αMM + 1( 
, (6)

where αMM and βMM are the estimates of α and β, re-
spectively, Γ(.) is gamma function, and M1 and M2 are the
first and second noncentral sample moments, respectively.

2.2.Methodof L-Moment (LM). According to Teimouri et al.
[23], they first proposed a L-moment estimator for two-
parameter Weibull distribution. .e LM estimator of pa-
rameters can be obtained by the following equations:

αLM � −
ln(2)

ln 1 − 2/n(n − 1) 
n
i�1(i − 1)Ti: n − T( /T( 

, (7)

βLM �
X

Γ 1/αLM(  + 1( 
, (8)
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Figure 1: Low strength fracture surface of glass fiber.
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where Ti: n denotes the ith order statistic in the sample size n,
and T is the average of sample Ti, i� 1, ..., n.

2.3. Maximum Likelihood Estimator (MLE). .e MLE
method is one of the most commonly used parameter es-
timation methods. .e MLE of two-parameter Weibull
distribution can be obtained by the following equations:

βMLE �
1
n



n

i�1
t
α
i

⎛⎝ ⎞⎠

α

, (9)

1
αMLE

�


n
i�1 t

α
i ln ti( 


n
i�1 t

α
i

−
1
n



n

i�1
ln ti( . (10)

Since the close-form solution of theMLE is not available,
some numerical optimization methods have been proposed
to overcome this issue.

2.4. Method of Percentile (PM). According to Johnson et al.
[22], the PM estimates of the two-parameter Weibull dis-
tribution are

βPM � x0.632, (11)

αPM �
ln[− ln(1 − p2)]

ln tp  − ln t0.632( 
⎛⎝ ⎞⎠, (12)

where tp and t0.632 are the estimators of pth and 0.632th
percentile, respectively. Former studies show that PM has a
good estimation effect when p � 0.15 or 0.31.

3. Proposed Parameter Estimation Method

According to the distribution property, if Y� FT(t; α, β),
then Y becomes a uniform distribution from 0 to 1.
Moreover, the mean and variance of Y are 1/2 and 1/12,
respectively, which can be expressed as

μY �
1
2
, (13)

σ2Y �
1
12

. (14)

Suppose t1, t2, . . . , tn  is a random sample with sample
size n from W D(α, β). .eoretically, yi � FT(ti; α, β), i �

1, . . . , n, also follows a uniform distribution from 0 to 1.
However, the sample has inevitable random error. .ere-
fore, the idea of the proposed parameter estimation method
is to find the estimators of α and β, which can make yi

approximate the uniform distribution as much as possible.
In other words, the estimators of α and β can satisfy as much
as possible that the mean and variance of yi are 1/2 and 1/12,
respectively. Because the sample mean y � 

n
i�1 yi/n and

sample variance S2y � 
n
i�1 (yi − y)2/(n − 1) are unbiased

estimators of population mean and population variance,
respectively, the proposed parameter estimators can be
obtained by solving the following equations:

y �
1
2
,

S
2
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1
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Equation (15) can be rewritten as follows:
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(16)

.erefore, the estimators of α and β can be obtained
from equation (16) and denoted as αC DF and βC DF, re-
spectively. Since the proposed parameter estimation method
is based on CDF, we name this method CDFM (cumulative
distribution function method). .en, α and β in equations
(3) and (4) are replaced by αC DF and βC DF, respectively, so
the RF and FRF based on CDFM can be obtained and
expressed as

R(t) � e
− t/βC DF( 

αC DF

, t> 0,
(17)

λ(t) �
αC DF

βC DF

t

βC DF

 

αC DF− 1

, t> 0. (18)

Since the close-form solution of the proposed estimation is
not available, the estimators can be obtained by using nu-
merical optimization methods such as the quasi-Newton al-
gorithm [27]. Figure 2 shows the flow chart of the parameter
estimation process. When we obtain a sample data T, the
estimators of the parameters, αC DF and βC DF, can be obtained
according to the proposed parameter estimationmethod..en,
the goodness of fit test is used to test whether the data comes
from the Weibull distribution with parameters αC DF and
βC DF. Common goodness of fit tests include Kolmogorov-
Smirnov test (K-S test) and Anderson-Darling test. When the
test results show that the data does not follow the Weibull
distribution, we must find the exact distribution of the data
before inference. When the test results show that the data may
come from the Weibull distribution, we can use equations (17)
and (18) to estimate RF and FRF.

4. Monte Carlo Simulation Study

In this section, all simulation results are obtained by R
software. .e R codes can be obtained from the authors
upon request. In this simulation study, we compare
proposed estimation method CDFM with MLE, LM, PM,
and MM. For convenience, we denoted the results esti-
mated by these methods as θC DF M � (αC DF M, βC DF M),
θMLE � (αMLE, βMLE), θLM � (αLM, βLM), θPM � (αPM,
βPM), and θMM � (αMM, βMM), respectively. Considering
the sample size n � 10, 20, 30, 40, 50, 60, 70, and data set
are generated from the W D(α, β), where α � 1, 2, 4, 6
and β � 1, 2. Ten thousand iteration runs are used to
evaluate the bias and MSEs of five estimation methods.
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.e bias and MSE can be evaluated based on equations
(19) and (20), respectively:

bias �
1

10000


10000

i�1
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, (19)
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�����������������

1
10000



10000

i�1
ηi − η( 

2




, (20)

where η can be α or β and the subscript i denotes the five
estimation methods. All obtained biases and MSEs are re-
ported in Tables 1 and 2. In view of Tables 1 and 2, the
following results are found:

(1) With the increase of sample size, the performance of
bias and MSE of all methods are getting better and
better.

(2) For the bias of shape parameter α, the performance
of αC DF M outperforms other methods in most cases,
followed by αLM.

(3) For the MSE of α, the performance of αLM out-
performs other methods in most cases, followed by
αML and αC DF M.

(4) For the bias of scale parameter β, the performance of
βC DF M outperforms other methods for n� 10, ex-
cept α � 1. And the performance of βLM outperforms
other methods in most cases.

(5) For the MSE of β, the performance of βLM outper-
forms other methods, while the performance of
βMLM is the worst.

(6) With the increase of the population shape parameter,
the bias of α is larger and larger, and the bias of β is
smaller and smaller for all methods.

(7) When β� 1, the performance of each estimation
method is similar to that of β� 2.

According to the above findings, the bias of αC DF M

outperforms other methods. Although the bias of βC DF M is
worse than βLM, the difference is not significant. .erefore,
using the proposed estimation method for inference can get
reliable results.

In addition, in order to compare the performance of the
RF and FRF based on different parameter estimation
methods, we consider that the sample size n� 10, 20, 30, 40,
50, 60, 70, α � 1, 2, 4, 6, β � 1, and strength t� 2. All the
simulation results are shown in Figures 3 and 4. In view of
Figures 3 and 4, the following results are found:

(1) .e performance of biases of the RF and FRF esti-
mated by CDFM method outperforms other
methods in most cases.

(2) With the increase of α or sample size n, the per-
formance of biases of each estimation method is
better for RF and FRF.

(3) Among all estimation methods, PM method per-
forms the worst for biases of RF and FRF.

(4) Among all estimation methods, PM method also
performs the worst for MSEs of RF and FRF.

(5) With the increase of α or sample size n, the per-
formance of MSEs of each estimation method is
better for RF and FRF.

(6) Except PM method, the performance of MSEs of
other estimation methods is very close for RF and
FRF.

5. Real Data Analysis

5.1. Example 1. .e tensile strength data of glass fiber, re-
ported by Smith and Naylor [28] and further studied by
Acitas et al. [3], Morais and Barreto-Souza [29], Alizadeh
et al. [30], and Jones and Faddy [31], is used to illustrate the
methodologies developed in this paper. In the article of
Smith and Naylor [28], two experimental strength data sets
of glass fiber of two lengths, 1.5 cm and 15 cm, are provided,
originally obtained by workers at the UK National Physical
Laboratory. Unfortunately, the units of measurement are not
given in the paper. In this example, the data of 1.5 cm length
is selected for analysis. .e strength data is shown in Table 3.

Two-parameter Weibull distribution is used to charac-
terize the data in Table 3. Moreover, the CDFM, MLE, LM,
PM, and MM estimation methods are used to obtain the
estimates of the Weibull distribution parameters. All the
estimation results are reported in Table 4. .e estimators of
LM are consistent with those of Acitas et al. [3]. .e p value
of the K–S test in Table 4 indicates that the Weibull dis-
tribution can well fit this data set and we found the CDFM
estimation method is the best estimation method to obtain
the estimates of the Weibull distribution parameters. In
addition, Figure 5 presents the histogram of sample and the
fitted PDFs of the Weibull distributions by using the pa-
rameter estimation results in Table 4. Figure 6 presents
empirical distribution function of sample and the fitted
CDFs of the Weibull distributions by using the parameter
estimation results in Table 4. As shown in Figure 5, the PDF

Obtain a sample data
T= {t1, t2, t3, …, tn}

Goodness of fit test of data
NO

�e data does not follow the
Weibull distribution

Yes

Use equations (17) and (18) to
estimate RF and FRF.

�e estimators of the parameter can be obtained by using the following equation

ti
β

n
2

α 222
Min – ti

β
α

–+ – 4n–1
12

s.t. α > 0, β > 0

exp
n
i=1 exp

n
i=1

Figure 2: Flowchart of proposed parameter estimation.
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Table 1: .e bias and MSE of five estimation methods for β � 1, α � 1, 2, 4, 6.

β � 1 α � 1 α � 2 α � 4 α � 6
n Method αi

βi αi
βi αi

βi αi
βi

10 CDFM Bias 0.053 0.042 0.097 0.004 0.240 0.001 0.313 0.002
MSE 0.129 0.123 0.495 0.029 2.148 0.007 4.564 0.003

ML Bias 0.169 0.016 0.327 0.007 0.703 0.006 1.020 0.006
MSE 0.152 0.112 0.589 0.027 2.534 0.007 5.561 0.003

LM Bias 0.056 0.029 0.103 0.011 0.294 0.003 0.445 0.002
MSE 0.110 0.112 0.424 0.028 1.939 0.007 4.367 0.003

PM Bias 0.507 0.016 0.981 0.015 1.988 0.012 2.842 0.009
MSE 1.344 0.153 4.762 0.038 20.94 0.009 41.75 0.004

MM Bias 0.167 0.020 0.182 0.008 0.420 0.004 0.660 0.003
MSE 0.131 0.113 0.441 0.028 2.155 0.007 5.066 0.003

20 CDFM Bias 0.029 0.021 0.045 0.002 0.094 0.001 0.137 0.001
MSE 0.051 0.061 0.192 0.015 0.816 0.004 1.851 0.002

ML Bias 0.080 0.010 0.153 0.004 0.310 0.002 0.441 0.003
MSE 0.050 0.057 0.187 0.014 0.794 0.003 1.761 0.002

LM Bias 0.029 0.012 0.048 0.006 0.121 0.000 0.185 0.001
MSE 0.045 0.057 0.156 0.014 0.717 0.003 1.662 0.002

PM Bias 0.246 0.006 0.457 0.008 0.896 0.004 1.411 0.005
MSE 0.361 0.085 1.373 0.021 5.238 0.005 12.95 0.002

MM Bias 0.091 0.012 0.088 0.005 0.176 0.001 0.278 0.002
MSE 0.055 0.058 0.156 0.014 0.747 0.003 1.814 0.002

30 CDFM Bias 0.016 0.015 0.026 0.001 0.069 0.001 0.068 0.000
MSE 0.031 0.040 0.122 0.010 0.498 0.002 1.121 0.001

ML Bias 0.050 0.008 0.096 0.003 0.206 0.001 0.279 0.002
MSE 0.028 0.038 0.110 0.009 0.441 0.002 0.986 0.001

LM Bias 0.017 0.007 0.027 0.004 0.087 0.000 0.109 0.000
MSE 0.027 0.038 0.100 0.009 0.430 0.002 1.003 0.001

PM Bias 0.141 0.006 0.271 0.006 0.570 0.003 0.823 0.003
MSE 0.166 0.055 0.625 0.014 2.635 0.003 5.884 0.002

MM Bias 0.062 0.009 0.054 0.004 0.123 0.000 0.172 0.001
MSE 0.034 0.039 0.099 0.009 0.437 0.002 1.075 0.001

40 CDFM Bias 0.011 0.015 0.031 0.001 0.092 0.001 0.162 0.002
MSE 0.023 0.031 0.095 0.007 0.377 0.002 0.857 0.001

ML Bias 0.041 0.007 0.087 0.001 0.188 0.002 0.286 0.002
MSE 0.021 0.029 0.084 0.007 0.350 0.002 0.747 0.001

LM Bias 0.018 0.003 0.033 0.002 0.103 0.001 0.178 0.002
MSE 0.019 0.029 0.077 0.007 0.328 0.002 0.763 0.001

PM Bias 0.095 0.010 0.227 0.004 0.442 0.004 0.748 0.001
MSE 0.100 0.044 0.524 0.011 1.692 0.003 3.805 0.001

MM Bias 0.056 0.010 0.054 0.002 0.128 0.001 0.222 0.002
MSE 0.026 0.030 0.077 0.007 0.332 0.002 0.813 0.001

50 CDFM Bias 0.008 0.007 0.020 0.001 0.035 0.000 0.048 0.001
MSE 0.017 0.024 0.070 0.006 0.288 0.001 0.622 0.001

ML Bias 0.028 0.003 0.060 0.000 0.118 0.001 0.168 0.001
MSE 0.015 0.022 0.059 0.006 0.240 0.001 0.526 0.001

LM Bias 0.009 0.006 0.020 0.001 0.045 0.001 0.070 0.000
MSE 0.015 0.023 0.056 0.006 0.245 0.001 0.557 0.001

PM Bias 0.081 0.001 0.167 0.003 0.329 0.002 0.485 0.002
MSE 0.079 0.034 0.313 0.009 1.237 0.002 2.718 0.001

MM Bias 0.038 0.004 0.035 0.001 0.065 0.001 0.106 0.001
MSE 0.019 0.023 0.055 0.006 0.244 0.001 0.591 0.001

60 CDFM Bias 0.010 0.015 0.008 0.000 0.032 0.001 0.029 0.000
MSE 0.014 0.019 0.055 0.005 0.225 0.001 0.496 0.001

ML Bias 0.028 0.009 0.040 0.002 0.100 0.002 0.125 0.000
MSE 0.012 0.018 0.043 0.005 0.189 0.001 0.402 0.001

LM Bias 0.015 0.003 0.008 0.003 0.043 0.001 0.045 0.001
MSE 0.012 0.018 0.043 0.005 0.196 0.001 0.433 0.001

PM Bias 0.065 0.012 0.124 0.002 0.237 0.003 0.416 − 0.002
MSE 0.055 0.029 0.254 0.007 0.907 0.002 2.044 0.001

MM Bias 0.040 0.012 0.020 0.002 0.061 0.002 0.075 0.000
MSE 0.017 0.019 0.041 0.005 0.196 0.001 0.453 0.001
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Table 1: Continued.

β � 1 α � 1 α � 2 α � 4 α � 6
n Method αi

βi αi
βi αi

βi αi
βi

70 CDFM Bias 0.006 0.008 0.010 0.000 0.052 0.002 0.046 0.000
MSE 0.011 0.017 0.049 0.004 0.217 0.001 0.452 0.000

ML Bias 0.021 0.004 0.035 0.001 0.108 0.002 0.134 0.001
MSE 0.009 0.016 0.039 0.004 0.180 0.001 0.374 0.000

LM Bias 0.007 0.002 0.008 0.002 0.058 0.002 0.062 0.000
MSE 0.010 0.016 0.039 0.004 0.184 0.001 0.397 0.000

PM Bias 0.058 0.003 0.118 0.004 0.233 0.003 0.363 0.002
MSE 0.048 0.026 0.206 0.006 0.787 0.001 1.807 0.001

MM Bias 0.028 0.005 0.017 0.002 0.072 0.002 0.088 0.000
MSE 0.014 0.017 0.038 0.004 0.183 0.001 0.415 0.000

Table 2: .e bias and MSE of five estimation methods for β � 2, α� 1,2,4,6.

β � 2 α � 1 α � 2 α � 4 α � 6
n Method αi

βi αi
βi αi

βi αi
βi

10 CDFM Bias 0.046 0.079 0.107 0.014 0.203 0.003 0.285 0.004
MSE 0.131 0.482 0.507 0.116 2.100 0.029 4.535 0.013

ML Bias 0.169 0.036 0.341 0.009 0.666 0.014 0.980 0.011
MSE 0.154 0.461 0.611 0.109 2.411 0.028 5.371 0.012

LM Bias 0.055 0.055 0.114 0.016 0.264 0.006 0.414 0.004
MSE 0.112 0.460 0.435 0.111 1.890 0.028 4.362 0.012

PM Bias 0.506 0.037 1.004 0.025 2.001 0.026 2.825 0.020
MSE 1.310 0.635 5.146 0.151 22.20 0.039 46.90 0.017

MM Bias 0.167 0.042 0.194 0.012 0.387 0.009 0.629 0.007
MSE 0.134 0.461 0.454 0.110 2.072 0.028 5.072 0.012

20 CDFM Bias 0.022 0.033 0.042 0.006 0.107 0.001 0.131 0.002
MSE 0.050 0.244 0.196 0.057 0.818 0.014 1.786 0.007

ML Bias 0.074 0.009 0.149 0.006 0.312 0.006 0.454 0.005
MSE 0.048 0.228 0.191 0.054 0.804 0.014 1.754 0.006

LM Bias 0.025 0.035 0.044 0.009 0.129 0.002 0.188 0.002
MSE 0.043 0.230 0.161 0.055 0.722 0.014 1.648 0.006

PM Bias 0.232 0.011 0.447 0.013 0.929 0.013 1.357 0.009
MSE 0.351 0.342 1.320 0.081 5.424 0.021 12.00 0.009

MM Bias 0.088 0.014 0.084 0.007 0.183 0.004 0.285 0.003
MSE 0.053 0.232 0.160 0.055 0.751 0.014 1.812 0.006

30 CDFM Bias 0.015 0.026 0.031 0.005 0.055 0.000 0.096 0.000
MSE 0.030 0.160 0.123 0.040 0.485 0.010 1.126 0.004

ML Bias 0.049 0.011 0.099 0.002 0.195 0.004 0.298 0.002
MSE 0.028 0.149 0.110 0.038 0.434 0.009 1.005 0.004

LM Bias 0.016 0.019 0.031 0.004 0.071 0.002 0.126 0.000
MSE 0.027 0.151 0.100 0.038 0.414 0.009 1.004 0.004

PM Bias 0.138 0.010 0.282 0.008 0.561 0.008 0.887 0.005
MSE 0.159 0.221 0.640 0.056 2.712 0.014 6.070 0.006

MM Bias 0.062 0.015 0.056 0.003 0.105 0.003 0.185 0.001
MSE 0.034 0.154 0.099 0.038 0.419 0.009 1.077 0.004

40 CDFM Bias 0.014 0.004 0.019 0.003 0.031 0.006 0.058 0.000
MSE 0.020 0.121 0.086 0.027 0.318 0.007 0.827 0.003

ML Bias 0.040 0.012 0.067 0.002 0.137 0.002 0.211 0.002
MSE 0.020 0.114 0.073 0.026 0.267 0.007 0.704 0.003

LM Bias 0.012 0.036 0.019 0.003 0.041 0.004 0.091 0.000
MSE 0.019 0.117 0.070 0.026 0.267 0.007 0.754 0.003

PM Bias 0.109 0.024 0.185 0.008 0.412 0.001 0.586 0.004
MSE 0.095 0.172 0.375 0.040 1.577 0.010 3.699 0.005

MM Bias 0.045 0.014 0.038 0.003 0.066 0.004 0.135 0.001
MSE 0.025 0.118 0.069 0.026 0.265 0.007 0.800 0.003
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corresponding to CDFM is closest to the sample histogram,
which also shows that the estimation result of CDFM is more
suitable for this data. From Figure 6, we can also see that the
curve corresponding to CDFM is closest to the empirical
distribution function of the sample. .e results in Figure 6
also show that the CDFM is more suitable for this data.

Suppose we want to estimate the reliability and failure
rate of glass fiber, we can substitute equations (17) and (18)
according to the parameter estimator results in Table 4, and
the results are shown in Figure 7. From Figure 7, the results
show that when t< 1.6, the RF based on CDFM is higher
than other methods except PMmethod; when t> 1.6, the RF
based on CDFM is lower than other methods except PM
method. In addition, the FRF based on CDFM is higher than
other methods except PM method.

5.2. Example 2. In this example, the data of 15 cm length
reported by Smith and Naylor [28] is selected for analysis.
.e strength data is shown in Table 5. Two-parameter
Weibull distribution is also used to characterize the data in
Table 5. Moreover, the CDFM, MLE, LM, PM, and MM

estimation methods are used to obtain the estimates of the
Weibull distribution parameters. All the estimation results
are reported in Table 6. .e p value of the K-S test in Table 6
indicates that the Weibull distribution can well fit this data
set and we found the CDFM estimation method is the best
estimation method to obtain the estimates of the Weibull
distribution parameters. In addition, Figure 8 presents the
histogram of sample and the fitted PDFs of the Weibull
distributions by using the parameter estimation results in
Table 6. Figure 9 presents empirical distribution function of
sample and the fitted CDFs of the Weibull distributions by
using the parameter estimation results in Table 6. .e results
in Figures 8 and 9 show that the fitting performance of these
estimation methods for this sample is similar.

Suppose we want to estimate the reliability and failure
rate of glass fiber, we can substitute equations (17) and (18)
according to the parameter estimator results in Table 6, and
the results are shown in Figure 10. It can be seen from
Figure 10 that the RF and FRF results estimated by each
method are almost the same, because the parameter esti-
mator results of this data set for each estimation method are
almost the same.

Table 2: Continued.

β � 2 α � 1 α � 2 α � 4 α � 6
n Method αi

βi αi
βi αi

βi αi
βi

50 CDFM Bias 0.012 0.019 0.017 0.004 0.035 0.001 0.062 0.001
MSE 0.018 0.097 0.071 0.023 0.279 0.006 0.619 0.003

ML Bias 0.031 0.010 0.058 0.001 0.116 0.003 0.175 0.002
MSE 0.015 0.091 0.060 0.022 0.234 0.006 0.528 0.002

LM Bias 0.011 0.008 0.017 0.002 0.045 0.002 0.085 0.000
MSE 0.015 0.092 0.057 0.022 0.238 0.006 0.559 0.002

PM Bias 0.086 0.006 0.160 0.005 0.314 0.006 0.491 0.005
MSE 0.076 0.137 0.308 0.033 1.199 0.009 2.727 0.004

MM Bias 0.040 0.012 0.033 0.001 0.065 0.003 0.123 0.001
MSE 0.020 0.095 0.056 0.022 0.238 0.006 0.596 0.002

60 CDFM Bias 0.011 0.013 0.012 0.005 0.026 0.003 0.044 0.002
MSE 0.015 0.076 0.057 0.019 0.228 0.005 0.546 0.002

ML Bias 0.025 0.005 0.052 0.001 0.093 0.005 0.146 0.003
MSE 0.012 0.069 0.046 0.018 0.189 0.005 0.453 0.002

LM Bias 0.011 0.009 0.016 0.000 0.036 0.004 0.061 0.001
MSE 0.012 0.071 0.045 0.018 0.197 0.005 0.473 0.002

PM Bias 0.075 0.009 0.126 0.000 0.268 0.007 0.420 0.003
MSE 0.062 0.114 0.237 0.028 0.966 0.007 2.266 0.003

MM Bias 0.035 0.008 0.030 0.000 0.053 0.004 0.091 0.002
MSE 0.016 0.073 0.044 0.018 0.197 0.005 0.493 0.002

70 CDFM Bias 0.006 0.013 0.006 0.004 0.024 0.004 0.066 0.002
MSE 0.013 0.068 0.046 0.015 0.200 0.004 0.461 0.002

ML Bias 0.021 0.005 0.035 0.001 0.078 0.005 0.146 0.000
MSE 0.010 0.064 0.037 0.014 0.155 0.004 0.389 0.002

LM Bias 0.009 0.007 0.006 0.000 0.036 0.004 0.078 0.002
MSE 0.011 0.064 0.036 0.014 0.170 0.004 0.417 0.002

PM Bias 0.059 0.009 0.109 0.004 0.194 0.009 0.324 0.000
MSE 0.050 0.097 0.186 0.022 0.737 0.006 1.515 0.003

MM Bias 0.030 0.008 0.016 0.000 0.051 0.004 0.100 0.001
MSE 0.014 0.067 0.036 0.014 0.169 0.004 0.441 0.002
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Figure 3: Comparison of biases of the RF and FRF based on CDFM and other four different parameter estimation methods (for β� 1,
α� 1, 2, 4, 6).
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Figure 4: Comparison of MSEs of the RF and FRF based on CDFM and other four different parameter estimation methods (for β� 1,
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Table 3: Sample data set-1 of glass fiber strength (1.5 cm).

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68 1.73 1.81 2.00 0.74
1.04 1.27 1.39 1.49 1.53 1.59 1.61 1.66 1.68 1.76 1.82 2.01 0.77 1.11
1.28 1.42 1.50 1.54 1.60 1.62 1.66 1.69 1.76 1.84 2.24 0.81 1.13 1.29
1.48 1.50 1.55 1.61 1.62 1.66 1.70 1.77 1.84 0.84 1.24 1.30 1.48 1.51
1.55 1.61 1.63 1.67 1.70 1.78 1.89

Table 4: Estimate of the parameters and the P value of K–S test for simple data set-1.

Estimate of α Estimate of β P value of K-S test
CDFM 6.6381 1.6390 0.3980
ML 5.7807 1.6281 0.1001
LM 5.6573 1.6296 0.0863
PM 10.3026 1.6319 0.1254
MM 5.3554 1.6347 0.0802
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Figure 5: .e histogram and the fitted PDFs of the Weibull distributions for sample data set-1.
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Figure 6: Empirical distribution function and the fitted CDFs of the Weibull distributions for sample data set-1.
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Figure 7: .e RF and FRF based on different parameter estimation methods for sample data set-1.

Table 5: Sample data set-2 of glass fiber strength (15 cm).

0.37 0.40 0.70 0.75 0.80 0.81 0.83 0.86 0.92 0.92 0.94 0.95 0.98 1.03
1.06 1.06 1.08 1.09 1.10 1.10 1.13 1.14 1.15 1.17 1.20 1.20 1.21 1.22
1.25 1.28 1.28 1.29 1.29 1.30 1.35 1.35 1.37 1.37 1.38 1.40 1.40 1.42
1.43 1.51 1.53 1.61

Table 6: Estimate of the parameters and the P value of K–S test for sample data set-2.

Estimate of α Estimate of β P value of K-S test
CDFM 5.0562 1.2432 0.9792
ML 5.1473 1.2297 0.9302
LM 4.8265 1.2332 0.9354
PM 5.6034 1.2634 0.9183
MM 4.7472 1.2344 0.9011
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Figure 8: .e histogram and the fitted PDFs of the Weibull dis-
tributions for sample data set-2.
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Figure 9: Empirical distribution function and the fitted CDFs of
the Weibull distributions for sample data set-2.
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6. Conclusions

.is study aims to solve the problem of parameter esti-
mation for the Weibull distribution and then infer the re-
liability of products.

6.1. Unique Contributions of the Study. We propose a new
parameter estimation method (CDFM) and use this method
to estimate the reliability of products. According to Monte
Carlo simulation results, it can be found that the CDFM
estimation method outperforms the other competitors to
obtain reliable estimates of two-parameter Weibull pa-
rameters. .erefore, two strength data sets of glass fiber
provided by Smith and Naylor [28] are estimated according
to the proposed estimation method. .e analysis results
show that the estimates of CDFM are more suitable for these
data sets. And according to the estimates of CDFM, the
reliability and failure rate of glass fiber are also estimated.
From the analysis results, it can be seen that the reliability
and failure rate estimated by different parameter estimates
will be different, so it is very important to use a reliable
parameter estimate for inference. In addition, the estimation
method proposed in this paper can be applied to other fibers,
materials, or tests as long as the data follow the Weibull
distribution.

6.2. Limitations. In particular, the proposed parameter es-
timation method can be used as long as the data follows the
Weibull distribution, but it cannot guarantee the same
performance when the data follows the other distributions.

6.3. Future Research. In the current work, we only consider
the parameter estimation and application of two-parameter
Weibull distribution without inferring the theoretical
properties and limit distribution of the estimators. In future
research, in addition to applying this estimation method to
other distributions, we can also infer the limit distribution
and statistical properties of these estimators. We are cur-
rently exploring possible extensions in this direction.
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