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Abstract: The reporting odds ratio (ROR) is easy to calculate, and there have been several examples
of its use because of its potential to speed up the detection of drug–drug interaction signals by
using the “upward variation of ROR score”. However, since the validity of the detection method
is unknown, this study followed previous studies to investigate the detection trend. The statistics
models (the Ω shrinkage measure and the “upward variation of ROR score”) were compared using
the verification dataset created from the Japanese Adverse Drug Event Report database (JADER).
The drugs registered as “suspect drugs” in the verification dataset were considered as the drugs to
be investigated, and the target adverse event in this study was Stevens–Johnson syndrome (SJS),
as in previous studies. Of 3924 pairs that reported SJS, the number of positive signals detected by
the Ω shrinkage measure and the “upward variation of ROR score” (Model 1, the Susuta Model,
and Model 2) was 712, 2112, 1758, and 637, respectively. Furthermore, 1239 positive signals were
detected when the Haldane–Anscombe 1/2 correction was applied to Model 2, the statistical model
that showed the most conservative detection trend. This result indicated the instability of the positive
signal detected in Model 2. The ROR scores based on the frequency-based statistics are easily inflated;
thus, the use of the “upward variation of ROR scores” to search for drug–drug interaction signals
increases the likelihood of false-positive signal detection. Consequently, the active use of the “upward
variation of ROR scores” is not recommended, despite the existence of the Ω shrinkage measure,
which shows a conservative detection trend.

Keywords: spontaneous reporting systems; drug–drug interaction; reporting odds ratio (ROR);
Ω shrinkage measure

1. Introduction

To ensure the proper use of drugs, it is important to understand the related adverse
events. However, pre-marketing randomized clinical trials focus on establishing the safety
and efficacy of a single drug, rather than investigating drug–drug interactions. Therefore,
patients using other drugs along with the drug being studied in a clinical trial are excluded
from an investigation. However, unlike pre-marketing studies, in actual clinical practice,
multiple drugs are generally used for treatment.

Recent reports have estimated that the proportion of adverse events caused by drug–
drug interactions is approximately 30% of unexpected adverse events [1]. Considering the
numerous reports on polypharmacy in treatment in recent years [2–6], early identification
of adverse events that may be caused by drug–drug interactions is an important issue that
should be addressed.

Spontaneous reporting systems, which play an important role in pharmacovigilance,
are a source of information for the detection of previously unknown adverse events not
identified in clinical trials, including adverse events caused by drugs in post-marketing.

Pharmaceutics 2021, 13, 1531. https://doi.org/10.3390/pharmaceutics13101531 https://www.mdpi.com/journal/pharmaceutics

https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-9110-9604
https://doi.org/10.3390/pharmaceutics13101531
https://doi.org/10.3390/pharmaceutics13101531
https://doi.org/10.3390/pharmaceutics13101531
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pharmaceutics13101531
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics13101531?type=check_update&version=4


Pharmaceutics 2021, 13, 1531 2 of 12

Using spontaneous reporting systems, there are several reports of safety assessments that
reflect real-world use in specific populations and clinical practice. However, the databases
used in spontaneous reporting systems contain only cases of adverse events caused by the
use of drugs and do not include the number of users of the drugs; therefore, the incidence
of adverse events cannot be calculated. Thus, instead of incidence, the disproportionality
analysis signals have been used to search for unknown adverse events [7–9]. The dispro-
portionality analysis focuses on differences in the proportion of adverse event reports. If
the reporting rate of the medicinal product of interest is high compared to the average
reporting rate for all other medicinal products, this indicates that “the medicinal product
and the adverse event have an association” [10]. For this analysis, a number of algorithms
have also been reported to search for signals of drug–drug interactions [11,12]. Among
these, the Ω shrinkage measure [13–15], proposed by Noren et al., is used by the World
Health Organization Uppsala Monitoring Center (WHO-UMC), and previous studies have
shown that it has the most conservative signal detection trend among signal detection
methods based on frequentist statistics [16]. This study defined a conservative signal detec-
tion algorithm as one that detects few signals that are specific to that detection algorithm,
and many signals that are common to other algorithms.

Surprisingly, however, there have only been few papers using the Ω shrinkage mea-
sure [17]; rather, several reports have used a detection method that extends the reporting
odds ratio (ROR) score [18–20]. In addition, there is also a report that evaluated the ROR
score of the concomitant use [21]. However, the validity of the analysis method using
the ROR score has been questioned by Kuss et al., and it was discussed together with the
results using another detection algorithm [22].

The ROR is an algorithm used by the Pharmaceuticals and Medical Devices Agency
(PMDA) in Japan and the Pharmacovigilance Center (Lareb) in the Netherlands, which
generally searches for adverse events caused by a single drug rather than drug–drug
interactions [23].

A detection method that expands the ROR score evaluates a combination as having
an increased risk of adverse events if the ROR score for the combination of drugs is higher
than the ROR score for a single drug (i.e., if there is an upward variation in the ROR score).
Although Susuta et al. were the first to propose a detection method that uses the “upward
variation in the ROR score” as the signals for drug–drug interactions in Japan [18], the
proposed cutoff values of the scores and the comparison with other methods for detecting
signals of drug–drug interactions have not been sufficiently verified, and the validity of the
signals detected by this analysis method is unknown. Therefore, in this study, we aimed
to verify an analysis method that uses the “upward variation in the ROR scores” as the
signals for drug–drug interactions, referring to similar previous studies that evaluated the
detection tendency of search algorithms [16,24–26].

2. Materials and Methods
2.1. Data Sources

The dataset used for validation was the same dataset used in our previous study [16].
The dataset was created from the Japanese Adverse Drug Event Report database (JADER)
data from the first quarter of 2004 to the fourth quarter of 2015. The JADER consists of
four comma-separated values (csv) files as data tables: DEMO.csv (patient information),
DRUG.csv (medicine information), HIST.csv (patient past history), and REAC.csv (AE
event information). These files were linked by identification numbers, and the four csv
files were combined using the identification numbers to create a database for analysis.
In this study, we did not use patient information and past history, because we were
only investigating the differences in detection trends between algorithms. Therefore, we
removed this information when creating the verification dataset.

The Japanese authority, the PMDA, which owns these data, does not permit sharing
the data directly. The latest version of the file can be accessed directly here: (http://

http://www.info.pmda.go.jp/fukusayoudb/CsvDownload.jsp
http://www.info.pmda.go.jp/fukusayoudb/CsvDownload.jsp
http://www.info.pmda.go.jp/fukusayoudb/CsvDownload.jsp
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www.info.pmda.go.jp/fukusayoudb/CsvDownload.jsp (accessed date: 10 August 2021))
(in Japanese only).

2.2. Targeted Drugs and Adverse Events

The drugs registered as “suspected drugs” in the verification dataset were considered
as the drugs to be investigated. As in previous studies [16,18,24–26], the only adverse event
targeted for this signal search was set to be the preferred term; that is, “Stevens-Johnson
syndrome” (SJS) in the Medical Dictionary for Regulatory Activities Japanese version
(MedDRA/J), which is registered in the verification dataset.

2.3. Statistical Models and Criteria
2.3.1. Ω Shrinkage Measure

The Ω shrinkage measure that detected the most conservative signal [16] is used as
the control model in this study. The score of the Ω shrinkage measure was calculated
from the number of reports (n111) and its expected value (E111), as shown in Table 1,
using Equations (1)–(6). The lower limit of the 95% confidence interval (CI) for the Ω
shrinkage measure was Ω025, and a positive signal was considered to exist when Ω025 > 0,
as previously reported [13].

Ω = log2
n111 + 0.5
E111 + 0.5

(1)

where n111 is the number of reports and E111 is the expected value.

f00 =
n001

n00+
, f10 =

n101

n10+
, f01 =

n011

n01+
, f11 =

n111

n11+
(2)

where n is the number of reports shown in Table 1. For example, n111 is the number of
reported target adverse event caused by drug D1 and drug D2.

g11 = 1− 1

max
(

f00
1− f00

, f10
1− f10

)
+ max

(
f00

1− f00
, f01

1− f01

)
− f00

1− f00
+ 1

(3)

when f 10 < f 00, which denotes no risk of an adverse event caused by drug D1, the most
sensible estimator g11 = max (f 00, f 01) is yielded and vice versa when f 01 < f 00.

E111 = g11 × n11+ (4)

Var(Ω0) = Var
(

log2
n111

E111

)
≈ 1

n111 log(2)2 (5)

Ω025 = Ω− φ(0.975)
log(2)

√
n111

(6)

where φ (0.975) is 97.5% of the standard normal distribution.

Table 1. The 4 × 2 contingency table for signal detection.

Target AE Other AEs Total

drug D1 and drug D2 n111 n110 n11+
drug D1 without drug D2 n101 n100 n10+
drug D2 without drug D1 n011 n010 n01+

Neither drug D1 or drug D2 n001 n000 n00+
Total n++1 n++0 n+++

AE: adverse event, n: the number of reports (e.g., n111: the number of target drugs (drug D1 and drug D2) induced
AE, n+++: the number of all reports).

http://www.info.pmda.go.jp/fukusayoudb/CsvDownload.jsp
http://www.info.pmda.go.jp/fukusayoudb/CsvDownload.jsp
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2.3.2. Upward Variation in Reporting Odds Ratio Scores

The ROR scores were calculated using the data from the number of reports shown in
Table 2 and Equations (7) and (8). The lower limit of the 95% CI for ROR was ROR025, and
the upper limit was ROR975 [23].

ROR =
N11/N10

N01/N00
(7)

ROR (95% CI) = e
ln (ROR)±1.96

√
1

N11
+ 1

N10
+ 1

N01
+ 1

N00 (8)

where N is the number of reports shown in Table 2. For example, N11 is the number of
reported target adverse events caused by drug D1 and drug D2.

Table 2. The 2 × 2 contingency table for signal detection.

Target AE Other AEs Total

Target drug (s) N11 N12 N1+
Other drugs N21 N22 N2+

Total N+1 N+2 N++

AE: adverse event, N: the number of reports (e.g., N11: the number of target drug-induced AE, N++: the number
of all reports).

Additionally, to calculate the ROR of drug D1 ∩ drug D2, drug D1 and drug D2, replace
it as follows: drug D1 ∩ drug D2: N11 = n111, N00 = n000 + n010 + n100, N10 = n110, N01 = n001
+ n011 + n101, N1+ = n11+, N+1 = n++1, N0+ = n00+ + n01+ + n10+, N+0 = n++0; drug D1: N11 =
n111 + n101, N00 = n000 + n010, N10 = n110 + n100, N01 = n001 + n011, N1+ = n11+ + n10+, N+1 =
n++1, N0+ = n00+ + n01+, N+0 = n++0; drug D2: N11 = n111 + n011, N00 = n000 + n100, N10 = n110
+ n010, N01 = n001 + n101, N1+ = n11+ + n01+, N+1 = n++1, N0+ = n00+ + n10+, N+0 = n++0.

The signal of drug–drug interactions detected using ROR has been recently reported
in Japan as “the lower limit of the 95% CI of the ROR score when drug D1 and drug D2
are used together (ROR025 drug D1 ∩ drug D2) > 1” and “when drug D1 and drug D2 are used
together (RORdrug D1 ∩ drug D2) is greater than either the ROR score of drug D1 (RORdrug D1)
or the ROR score of drug D2 (RORdrug D2), whichever is greater (Model 1).” The ROR score
ratio (Model 1) is calculated using Equation (9).

ROR score ratio (Model 1) =
RORdrug D1∩ drug D2

max
(

RORdrug D1 , RORdrug D2

) (9)

Susuta et al. proposed “(ROR025 drug D1 ∩ drug D2 ) > 1” and “ROR score ratio (Model 1)
> 2” as signal detection criteria for drug–drug interactions [18]. This was evaluated as the
“Susuta model.”

However, Model 1 and the Susuta model failed to account for the overlap between the
lower 95% CI of the ROR score for drugs D1 and drug D2 together and the upper 95% CI of
the ROR score for either drug D1 or drug D2, whichever is greater (Figure 1).
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If such an overlap occurs, a risk signal may not be detected for concomitant use.
Therefore, with reference to the interaction signal score (INTSS) [27] and concomitant
signal score (CSS) [26], we used the criteria to detect if “(ROR025 drug D1 ∩ drug D2) > 1” and
“the lower limit of the 95% CI of the ROR of the combination of drug D1 and drug D2
(ROR025 drug D1 ∩ drug D2) is greater than either the upper limit of the 95% CI of drug D1
(ROR975 drug D1) or the upper limit of the 95% CI of the ROR of drug D2 (ROR975 drug D2),
whichever is greater (Model 2)” (Figure 2, Equation (10)).

ROR score ratio (model 2) =
ROR025 drug D1∩ drug D2

max
(

ROR975 drug D1 , ROR975 drug D2

) (10)
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Figure 2. The association between the ROR score ratio (Model 2) and disproportionality score.

However, in the estimation of the ROR, if any one of the four cells in Table 2 is 0, the
ROR will be 0 or ∞. In addition, if there is zero in the perimeter sum, the ROR cannot be
defined. Furthermore, when estimating ROR when the sample size in a cell is small, as
seen in a few reports and in this study, the effect of a single case in a small sample cell is
very large, making the estimation unstable [28]. The Haldane–Anscombe 1/2 correction,
which adds 1/2 to each cell, is known to solve this problem [29]. In this study, among
the detection methods (Model 1, Susuta Model, and Model 2) that utilize the “upward
variation in the ROR scores”, the statistical model that showed the most conservative
detection tendency was also analyzed with the Haldane–Anscombe 1/2 correction.
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2.4. Targeted Drugs and Adverse Events

The signal similarity of each statistical detection method was evaluated using Cohen’s
kappa coefficient (κ), proportionate agreement for the positive rating (Ppos), and proportion-
ate agreement for the negative rating (Pneg), as reported in previous studies [16,24]. Cohen’s
kappa coefficient and its 95% CI were obtained from Table 3 and Equations (11)–(14) [30].

Table 3. Agreement between the Ω shrinkage measure and target model.

Ω Shrinkage Measure
Total

Yes No

Target model Yes Nyy Nyn Ny.
No Nny Nnn Nn.

Total N.y N.n N..

Target model: model 1; model 2; Susuta model; Yes: signal detection; No: not signal detection.

Po =
Nyy + Nnn

N..
(11)

Pe =
Ny.

N..
×

N.y

N..
+

Nn.

N..
× N.n

N..
(12)

The number of Nyy, Ny., Ny., Nnn, Nn., N.n and N. can be obtained from Table 3.

Cohen′s kappa coe f f icient (κ) =
Po − Pe

1− Pe
(13)

95% CI o f kappa coe f f icient = κ ± 1.96

√
Po × (1− Po)

N.. × (1− Pe)
2 (14)

The Ppos and Pneg can be obtained from Equations (15) and (16) and Table 3 [27].

Ppos =
2Nyy

Ny. + N.y
(15)

Pneg =
2Nnn

Nn. + N.n
(16)

However, the number of Nyy, Ny., Ny., Nnn, Nn. and N.n can be obtained from Table 3.

3. Results

Table 4 shows the number of reports (n111) and the number of signals detected for
each of the Ω shrinkage measure, Model 1, the Susuta model, Model 2, and Model 2
(Haldane–Anscombe 1/2 correction).

Of the 374,327 cases used in this study, there were 3924 drug D1–drug D2-SJS, wherein
the number of positive signals was 712 for the Ω shrinkage measure [16]; 2,112 for Model 1;
1758 for the Susuta model; and 637 for Model 2. In Model 1, the Susuta Model, and
Model 2, 1239 positive signals were detected when Haldane–Anscombe 1/2 correction was
applied to Model 2, which, consequently, was the statistical model that showed the most
conservative detection trend.

Table 5 shows the κ, Ppos, and Pneg between the Ω shrinkage measure and the detection
methods of Model 1, the Susuta model, Model 2, and Model 2 (Haldane–Anscombe
1/2 correction).
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Table 4. The drug D1–drug D2-SJS combinations detected as a potential signal in five frequency statistical models.

Statistical Models Signal (Y/N)
Number (%) of Combinations

n111 < 3 n111 = 3 n111 = 4 n111 = 5 n111 > 5 Total

Model 1 Y 1363 (47.8) 243 (65.3) 159 (66.8) 110 (80.3) 237 (72.3) 2112 (53.8)
N 525 (18.4) 48 (12.9) 23 (9.7) 14 (10.2) 42 (12.8) 652 (16.6)

N (no criterion) 961 (33.7) 81 (21.8) 56 (23.5) 13 (9.5) 49 (14.9) 1160 (29.6)
Susuta model Y 1142 (40.1) 207 (55.6) 136 (57.1) 97 (70.8) 176 (53.7) 1758 (44.8)

N 746 (26.2) 84 (22.6) 46 (19.3) 27 (19.7) 103 (31.4) 1006 (25.6)
N (no criterion) 961 (33.7) 81 (21.8) 56 (23.5) 13 (9.5) 49 (14.9) 1160 (29.6)

Model 2 Y 239 (8.4) 106 (28.5) 84 (35.3) 74 (54.0) 134 (40.9) 637 (16.2)
N 1649 (57.9) 185 (49.7) 98 (41.2) 50 (36.5) 145 (44.2) 2127 (54.2)

N (no criterion) 961 (33.7) 81 (21.8) 56 (23.5) 13 (9.5) 49 (14.9) 1160 (29.6)
Corrected Model 2 Y 678 (23.8) 178 (47.8) 118 (49.6) 92 (67.2) 173 (52.7) 1239 (31.6)

N 2171 (76.2) 194 (52.2) 120 (50.4) 45 (32.8) 155 (47.3) 2685 (68.4)
N (no criterion) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Total 2849 372 238 137 328 3924

SJS: Stevens–Johnson syndrome; n111: the number of reported target adverse event caused by drug D1 and drug D2 (see Table 1).

Table 5. The Cohen’s kappa coefficient and proportionate agreement for positive rating (Ppos) and that for negative rating
(Pneg) between Ω Shrinkage measure and four frequency statistical models.

Model 1 Susuta Model Model 2 Corrected Model 2 *

Ω Shrinkage measure

κ: 0.074
95% CI:

0.058–0.089
Ppos: 0.325
Pneg: 0.621

κ: 0.152
95% CI:

0.135–0.168
Ppos: 0.371
Pneg: 0.711

κ: 0.495
95% CI:

0.475–0.514
Ppos: 0.581
Pneg: 0.913

κ: 0.479
95% CI: 0.459–0.493

Ppos: 0.597
Pneg: 0.867

κ: Cohen’s kappa coefficient; Ppos: proportionate agreement for positive rating; Pneg: proportionate agreement for negative rating,
*: Model 2 with the Haldane–Anscombe 1/2 correction.

The detection method with the most similar detection tendency as the Ω shrinkage
measure was Model 2 (κ: 0.495; 95% CI: 0.475–0.514; Ppos: 0.581; Pneg: 0.913), followed
by the Susuta model (κ: 0.152; 95% CI: 0.135–0.168; Ppos: 0.371; Pneg: 0.711) and Model 1
(κ: 0.074; 95% CI: 0.058–0.089; Ppos: 0.325; Pneg: 0.621).

However, the similarity of the detection trend of Model 2 decreased when the Haldane–
Anscombe 1/2 correction was applied (κ: 0.476; 95% CI: 0.459–0.492; Ppos: 0.597; Pneg: 0.867).

Figure 3 shows the relationship between the number of reports (n111), the ROR score
(RORdrug D1 ∩ drug D2), and the ROR score ratio when two drug D1 and drug D2 were used in
combination.

In cases where the number of reports (N11 = [n111]) was less than 10, there were many
cases where the RORdrug D1 ∩ drug D2 exceeded 50, and the maximum score was over 700.
The ROR score ratio (Model 1) was also inflated by the inflation of the RORdrug D1 ∩ drug D2,
the maximum score of ROR score ratio (Model 1) was over 450 (Figure 3).

However, some of the combinations with the very high RORdrug D1 ∩ drug D2 or the ROR
score ratios do not meet the detection criteria for the Ω shrinkage measure, e.g., N11: 11,
RORdrug D1 ∩ drug D2: 57.45, ROR score ratio (Model 1): 3.43, Ω025: −0.18.
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Figure 3. Relationship between the number of reports (N11 [= n111]), RORdrug D1 ∩ drug D2, and ROR
score ratio (Model 1).

4. Discussion

In this study, we examined a method of using the “upward variation in the ROR score”
as a signal of drug–drug interactions. Strictly, detection trends should be compared for all
adverse events registered in the database. Unfortunately, even with fast and powerful com-
puters, calculating signal scores for all combinations of multiple drugs and adverse events
can be expected to take an enormous amount of time; thus, targeting all combinations was
not a realistic research method. Therefore, in this study, as in a previous study [16,18,24],
the target adverse event was SJS.

Of the 3924 combinations of drug D1–drug D2-SJS, 2112 positive signals were detected
in Model 1, 1758 in the Susuta model, and 637 in Model 2. All of the combinations
detected in Model 2 also had a positive signal detected in Model 1. Additionally, of the
637 combinations detected in Model 2, 636 pairs also had a positive signal detected in the
Susuta model (Table 4).

The Ω shrinkage measure detected 712 positive signals [16]. The detection method
with the most similar detection tendency as the Ω shrinkage measure was Model 2 (Table 5),
with 392 positive signals in common. However, among the detection methods that utilize
the “upward variation in ROR score”, even in Model 2, which showed the most conservative
detection tendency, even one of the four cells in Table 2 became a 0 cell, and there were
1160 pairs in which the ROR score ratio could not be calculated (Table 4). The problem
of negative signals due to the inability to calculate this score was solved by Haldane–
Anscombe 1/2 correction; however, the number of positive signals increased by 602 from
that before the correction, for a total of 1239 (Table 4). This result indicated the instability
of the positive signal detected in Model 2.

Furthermore, even Model 2, which had the highest similarity to the Ω shrinkage
measure in this study, had a similarity lower than that between the Ω shrinkage measure
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and the Chi-square model [31] in a previous study using the same verification database
and the same targeted adverse event [16].

The signals obtained from JADER, the database used in this study, require verification
to confirm that they are true adverse events, and true data are needed to evaluate the
validity of the detection results. However, it is not possible to prepare true data, including
the data of “unknown” adverse events.

In the verification of a signal detection method for a single drug, Szarfman et al.
reported [32] that the information in the medical package inserts was set as the “true” data
and evaluated using receiver operating characteristic (ROC) curves with different cutoff
values for signal scores [32]. However, as Watanabe et al. pointed out, it is unclear whether
the information in the package insert is the only “true” data, and this verification method
has its limitations [33].

In fact, considering that signal detection methods are designed to search for “un-
known” adverse events, it is not appropriate to evaluate the performance of detection
methods using only “known” information. Thus, following the combinations of drug–drug
interactions described in the medical package insert, as in Kubota et al. and our previous
studies [16,24], we only compared the detection trends of each statistical model in this
study. This study is not affected by patient background, as it only shows the difference
between the calculated results of each statistical model and the interpretation of the signal
scores. This is the same as previous studies [16,18,24].

However, this limitation of not being able to provide “true” data makes it difficult
to determine whether the signal detection results from the detection method using the
“upward variation in ROR score” are overestimated or whether the signal detection results
from the Ω shrinkage measure are underestimated.

This study was conducted under limited conditions and may require further investi-
gation using simulation data. However, unlike the Bayesian confidence neural network
(BCPNN) [34] and the empirical Bayes geometric mean (EBGM) [35] based on Bayesian
statistical methods, the ROR based on frequency-based statistical methods is prone to sig-
nal score inflation when the number of reports is small [36], leading to unstable detection
results [37].

In general, the number of reports for the combination of two drugs (drug D1 ∩ drug D2)
will be less than the number of reports for single drug use (drug D1 or drug D2); therefore,
the ROR score (RORdrug D1 ∩ drug D2) is likely to be inflated. In fact, in this study, there were
many cases of inflation of RORdrug D1 ∩ drug D2, as shown in Figure 3. The RORdrug D1 ∩ drug D2
is a numerator in the equation of Model 1 and the Susuta model, and such signal score
inflation may make it easier to detect false-positive signals of drug–drug interactions.

Further, it is known that the 95% CIs are wider when the number of reports is small,
and in this study, the method that did not take into account the overlap between the 95% CI
of the signal score for the combination of two drugs (drug D1 ∩ drug D2) and the 95% CI of
the signal score for single drug (drug D1 or drug D2) use (Model 1, Susuta model) resulted
in a higher likelihood of detecting false-positive signals than Model 2, the method that took
into account the overlap.

The results indicated that when the number of reports was small, as in the case of
drug–drug interactions, it was important to consider the overlap between the 95% CI of the
signal score for the combination of two drugs (drug D1 ∩ drug D2) and the 95% CI of the
signal score for single drug use (drug D1 or drug D2) when calculating the ROR score ratio.

The spontaneous reporting systems, which are used for disproportionality analy-
sis, consist only of spontaneously “reported” cases and, naturally, do not include those
that occur but are not reported. Additionally, reports are known to contain a variety
of biases [38–40]. Therefore, the calculated signal score is also affected by the biases.
Spontaneous reports often lack information on concomitant medications, leading to un-
derestimation of the drug–drug interaction signal score in some cases. Thus, the use of
any statistical analysis method cannot overcome the inherent qualitative and quantitative
limitations of spontaneous reporting systems [37].
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The ROR is simple to calculate, and utilizing the “upward variation in the ROR score”
may speed up the detection of drug–drug interaction signals. However, even Model 2,
which showed the most conservative detection tendency among the detection methods
utilizing the “upward variation in the ROR score”, did not show stable signal detection
results due to the small number of reports, making it difficult to deny the overestimation
of positive signals of drug–drug interactions, as in Model 1 and the Susuta model.

It is known that there are many attentive points when analyzing a spontaneous report-
ing database, and various analysis algorithms have been proposed [10]. Considering the
history of the development of the BCPNN and the EBGM based on Bayesian statistical mod-
els [37] to avoid signal score inflation that detects a large number of false-positive signals in
the detection of single drug signals, even though there is not only the Ω shrinkage measure
used in WHO-UMC, but also several alternative detection methods for signal detection
of drug–drug interactions [10,11], there is no reason to actively recommend the use of
“upward variation in the ROR score”, which is more likely to detect false-positive signals.

5. Conclusions

Recently, many patients have been concomitantly using drugs, and in order to use
drugs appropriately, it is necessary to screen not only for single drugs but also for safety
signals such as drug–drug interactions. In this study, Model 2, which corrects the problems
contained in Model 1 by referring to INTSS and CSS, was also examined. However, the
ROR scores based on the frequency-based statistics are easily inflated; thus, the use of
the “upward variation of ROR scores” in either statistic model to search for drug–drug
interaction signals increases the likelihood of false-positive signal detection. Although,
some researchers have used “upward variation of ROR scores” (the active use of this
algorithm is not recommended), because of the existence of the Ω shrinkage measure,
which shows a conservative detection trend. In order to reduce false-positive signals, the
selection of appropriate detection algorithms is desired.
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