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Improving sustainable hydrogen production 
from green waste: [FeFe]‑hydrogenases 
quantitative gene expression RT‑qPCR analysis 
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Abstract 

Background:  Bio-hydrogen production via dark fermentation of low-value waste is a potent and simple mean of 
recovering energy, maximising the harvesting of reducing equivalents to produce the cleanest fuel amongst renewa-
bles. Following several position papers from companies and public bodies, the hydrogen economy is regaining 
interest, especially in combination with circular economy and the environmental benefits of short local supply chains, 
aiming at zero net emission of greenhouse gases (GHG). The biomasses attracting the largest interest are agricultural 
and urban green wastes (pruning of trees, collected leaves, grass clippings from public parks and boulevards), which 
are usually employed in compost production, with some concerns over the GHG emission during the process. Here, 
an alternative application of green wastes, low-value compost and intermediate products (partially composted but 
unsuitable for completing the process) is studied, pointing at the autochthonous microbial consortium as an already 
selected source of implementation for biomass degradation and hydrogen production. The biocatalysts investigated 
as mainly relevant for hydrogen production were the [FeFe]-hydrogenases expressed in Clostridia, given their very 
high turnover rates.

Results:  Bio-hydrogen accumulation was related to the modulation of gene expression of multiple [FeFe]-hydroge-
nases from two strains (Clostridium beijerinckii AM2 and Clostridium tyrobutyricum AM6) isolated from the same waste. 
Reverse Transcriptase quantitative PCR (RT-qPCR) was applied over a period of 288 h and the RT-qPCR results showed 
that C. beijerinckii AM2 prevailed over C. tyrobutyricum AM6 and a high expression modulation of the 6 different [FeFe]-
hydrogenase genes of C. beijerinckii in the first 23 h was observed, sustaining cumulative hydrogen production of 0.6 
to 1.2 ml H2/g VS (volatile solids). These results are promising in terms of hydrogen yields, given that no pre-treatment 
was applied, and suggested a complex cellular regulation, linking the performance of dark fermentation with key 
functional genes involved in bio-H2 production in presence of the autochthonous consortium, with different roles, 
time, and mode of expression of the involved hydrogenases.

Conclusions:  An applicative outcome of the hydrogenases genes quantitative expression analysis can be foreseen in 
optimising (on the basis of the acquired functional data) hydrogen production from a nutrient-poor green waste and/
or low added value compost, in a perspective of circular bioeconomy.
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Background
The exploitation of wastes to recover new materials, 
energy and fuels is a key point of circular economy. The 
biochemical processes are among the most effective 
strategies to efficiently maximise this approach, and thus 
the strong and intertwined link between circular econ-
omy and bioeconomy. The greenhouse gases (GHG) neu-
trality is a natural consequence of the equilibrium among 
the biochemical processes involved in bioeconomy. In 
the perspective of a constantly growing energy demand, 
maximising the efficiency of energy recovery from waste 
and limiting GHG at the same time is an obligate path-
way to make the process sustainable and economically 
feasible. In a biological approach the focus is on recov-
ering the reducing equivalents from organic compounds, 
avoiding C and N loss under the form of GHG. Also, the 
efforts should focus to the production of bio-fuels which 
does not produce GHG (or are GHG neutral). In this per-
spective, bio-hydrogen is a very promising bio-fuel and a 
detailed research in biochemistry and biotechnology is 
the tool to reach the envisaged optimisation of the recov-
ering processes.

Hydrogen can be produced by either biological, electro-
chemical or thermochemical processes. Compared with 
other biological hydrogen production processes, dark 
fermentation appears to be the most appealing method 
for the following reasons: (i) it can continually produce 
H2 even in the absence of light; (ii) it can use a variety of 
low-value waste as raw materials such as organic waste-
water and waste biomass [1, 2]; (iii) fermentation by-
products with alternative value include butyric, lactic and 
acetic acid; and (iv) the bacteria used are anaerobic, thus 
costly sparging with O2 would be spared.

To date, research has been focused on reactor opti-
misation and fermentation conditions [3–7] while the 
microbial community structure and how this impacts on 
H2 production are still topics to be elucidated in more 
detail, although interest on these aspects is recently 
growing [7–10].

Dark fermentative hydrogen-producing bacteria 
(dHPB) such as Clostridium, Ethanoligenens, Enterobac-
ter and Bacillus have been isolated from bioreactors and 
natural environments and previous studies have shown 
that culture conditions or operating parameters can sig-
nificantly affect cell growth and hydrogen production 
[11]. The identification and characterisation of highly 
efficient hydrogen-producing bacteria is a very crucial 
point in applicative term. In order to efficiently operate 

biohydrogen-producing dark fermentation processes, or 
adjust parameters upon malfunctions, it is important to 
understand how the system works in real mixed consor-
tia and in applicative condition. In a hydrogen-ferment-
ing bioreactor, where the community structure, including 
microorganisms other than hydrogen producers, can 
change substantially over time [12] functional detection 
would provide a tool for bioprocess monitoring. Quan-
tification of the main producers, monitoring the expres-
sion of their key genes for hydrogen production and 
monitoring the community structure during operation is 
essential in order to understand what kind of community 
changes are linked to changes in the bioreactor operation 
[13].

Hydrogenases are enzymes known to be responsi-
ble for H2 production. They can be divided into three 
groups based on their metal content in the H2-activating 
sites: [Fe]-hydrogenases, [FeFe]-hydrogenases, and 
[NiFe]-hydrogenases.

The [FeFe]-hydrogenases are very efficient hydrogen-
producing biocatalysts with a turnover frequency of up 
to 104 s−1 [14]. They are widespread among bacteria and 
highly represented in Gram-positive Clostridium spp. 
[13]. These bacteria are often considered to be the main 
group of H2 producers in mesophilic, hydrogen-ferment-
ing bioreactors, which makes the [FeFe]-hydrogenase a 
valuable target for analysis.

[FeFe]-hydrogenases are monomeric, dimeric, trimeric 
or tetrameric enzymes with a highly modular structure; 
they have at least a catalytic active H-domain and may 
present other accessory domains, which are responsible 
for the large biodiversity in this class of enzymes [14, 15].

In addition, several microorganisms possess more 
than one [FeFe]-hydrogenase annotated gene-encoding 
enzymes belonging to different subgroups. This redun-
dancy has only partially been explored [16] and, while 
it is expected to imply various roles in the cell growth 
and energetics for the different genes, depending on the 
time of expression and modulation, the correlation is still 
elusive.

So far, only few members of the [FeFe]-hydrogenase 
class have been studied and characterised in details: these 
enzymes belong to species of the genus Desulfovibrio, 
especially D. desulfuricans (DdH) [17]; species of the 
genus Clostridium especially C. pasteurianum, with the 
two variants CpI [18] and CpII [16] and C. acetobutyli-
cum (CaHydA) [19] as well as some green algae like Chla-
mydomonas reinhardtii (CrHydA1) [20].

Keywords:  [FeFe]-hydrogenase, Reverse transcriptase quantitative PCR (RT-qPCR), Dark fermentative hydrogen-
producing bacteria (dHPB), Bio-hydrogen, Clostridium
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It is indeed becoming clearer that the study of new 
uncharacterised [FeFe]-hydrogenases might contribute to 
a broader knowledge of molecular mechanism of H2 pro-
duction and to the isolation of novel and improved bio-
catalysts with unexpected features, such as resistance to 
oxygen damage and quick recovery of full activity upon 
changes of redox state, gas-sensing-role, high electron-
exchange efficiency for biotechnological exploitation in 
bio-hybrid systems (i.e. microbial fuel cells and enzyme-
modified electrodes) [21–32].

This research had multiple aims: firstly, it aimed at the 
isolation, identification and characterisation of efficient 
hydrogen-producing bacteria (with their [FeFe]-hydro-
genases as enzyme catalysts) that may be suitable can-
didates as inoculum on waste biomasses for hydrogen 
production. In this perspective, the waste matrix and 
autochthonous consortium used has already demon-
strated to be able to sustain hydrogen and methane pro-
duction [33], but here a detailed description is provided. 
Secondly, by performing the extensive investigation 
of the time and mode of genes expression of the newly 
identified [FeFe]-hydrogenases in a mixed culture natu-
rally present in waste biomass, the work presented here 
grants data for a better knowledge of the mechanisms of 
bio-hydrogen production in real dark fermentation sys-
tems and an additional information on the fundamental 
biochemical keys to tune and improve the performances. 
As a third and more applicative aspect, this work can 
also contribute to consolidate the use of green waste as 
a substrate for bio-hydrogen and bio-methane produc-
tion (and only the resulting digestate for compost pro-
duction), rather than address the largely available green 
waste to direct composting, which might result in net 
loss of recoverable energy and in the typical emission, 
during composting, of GHG such as methane and N2O 
[34].

Results and discussion
Isolation and microbial community analysis 
of hydrogen‑producing bacteria from green waste biomass
The cultivable microbiota was analysed in an autumnal 
green waste biomass (named Mix) that is usually sent to 
standard composting processes. Given the previous evi-
dence that this kind of biomass alone can sustain dark 
fermentation, producing hydrogen at appreciable levels 
[33], the interest was to grant a detailed characterisation 

of the microbiological and biochemical aspects in order 
to complete the analysis.

All the isolated microorganisms were able to grow 
in anaerobic conditions and among these 36% were 
oxygen-tolerant. The Gram staining showed that all the 
isolated were Gram + ; 26% of the isolated microorgan-
isms were cocci (all of these were oxygen tolerant) and 
74% bacilli (among these 56% oxygen-tolerant and 46% 
oxygen-sensitive).

Subsequently, the isolates were classified in further 
detail on a molecular basis, by means of 16S rRNA-
encoding genes restriction fragment length polymor-
phism (RFLP) analysis. The 16S rRNA-encoding gene was 
amplified by PCR from each isolated strain and digested 
with four restriction endonucleases (HaeIII, AluI, HhaI, 
TaqI).

The morphological features, growth ability and RFLP 
analysis allowed the subdivision of all the isolated strains 
into 11 different group types from A to K (Fig.  1). The 
identified species (on the basis of the sequencing of 16S 
rRNA-encoding genes with the related uncertainties) 
are Clostridium beijerinckii, Clostridium tyrobutyricum, 
Pediococcus acidilactici, Bacillus ginsengihumi, Bacil-
lus licheniformis, Staphylococcus simulans, Lactobacil-
lus mucosae, Lactobacillus fermentum, Lactobacillus 
acidipiscis, Lactobacillus collonoides and Lactobacillus 
sp.

The identified bacteria, Clostridium sp., Lactobacil-
lus sp., Pediococcus sp., Staphylococcus sp. and Bacillus 
sp. are commonly found in soil or fermentable materials 
[35–37].

The microbial diversity found in green waste biomass is 
illustrated through a phylogenetic analysis of 16S rRNA-
encoding genes sequences (Fig. 2).

The consortium was composed of two macro-groups: 
pro-biotic non-hydrogen-producing bacteria (belonging 
to the genera Lactobacillus and Bacillus) and hydrogen-
producing bacteria (belonging to the genus Clostridium). 
Recent interest has been given to the interplay of hydro-
gen producers and non-hydrogen producers in mixed 
consortia degrading agricultural wastes such as wheat 
and reed straw [38, 39], and other available wastes such as 
sugar bagasse [9], highlighting the importance of native 
waste-associated consortia in regulating the hydro-
gen production, even outperforming selected inoculum 
taken from anaerobic digestion plants. The presence of 

(See figure on next page.)
Fig. 1  Morphologic and molecular characterisation of 11 different group type of bacteria isolated from green waste biomass. A–K Gram staining 
of the species. The bacteria shown are: Lactobacillus mucosae (A), Clostridium beijerinckii (B), Pediococcus acidilactici (C), Clostridium tyrobutyricum 
(D), Lactobacillus fermentum (E), Lactobacillus acidipiscis (F), Lactobacillus collonoides (G), Lactobacillus sp. (H), Bacillus ginsengihumi (I), Staphylococcus 
simulans (J), Bacillus licheniformis (K). L–O 16S rRNA-encoding genes RFLP analysis of the A to K isolated bacteria, using different restriction 
enzymes: HaeIII (L), HhaI (M), AluI (N), TaqI (O)
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Fig. 1  (See legend on previous page.)
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autochthonous Lactobacillus and Bacillus strains in the 
Mix sample is in line with previously reported analysis 
of mixed consortia [38–40] and their effect in hydro-
gen-producing digester. The autochthonous consortium 
was challenged here with a bio-augmentation strategy, 
exploiting the good performances already proved by the 
autochthonous microbiota on similar and very poor sub-
strates in previous analysis [33] and testing a possible 
positive synergy between the consortium and the added 
inoculum.

The ability to produce H2 was assayed to investigate the 
direct involvement in H2 production of each species. As 
expected, only two species of the genus Clostridium were 
able to produce H2: Clostridium beijerinckii and Clostrid-
ium tyrobutyricum. Various strains of C. beijerinckii 
were isolated from several sources [2, 29, 35, 41] and C. 
tyrobutyricum has mainly been used in fermentation to 
produce butyric acid and only limitedly in hydrogen pro-
duction [42, 43].

However, the hydrogen-producing bacteria isolated 
here are different strains from those annotated in data-
bases. The 16S rRNA-encoding gene sequence of C. 
beijerinckii displayed a 100% of identity with the 16S 
rRNA-encoding gene of the C. beijerinckii stains anno-
tated in databases, but a further analysis of the sequences 
of the six annotated hydrogenases for this species showed 
few differences, hence the name C. beijerinckii AM2. The 
16S rRNA-encoding gene of C. tyrobutyricum showed a 

99% of identity with two of the C. tyrobutyricum stains 
annotated in databases, therefore named C. tyrobutyri-
cum AM6. The two novel strains isolated were found to 
be two efficient hydrogen producers: C. beijerinckii AM2 
produced 299.4 ± 2  mL of H2 per g of glucose and C. 
tyrobutyricum AM6 released 246 ± 7  mL of H2 per g of 
glucose when tested as individual isolates.

The maximum hydrogen yields of the strain isolated 
from green waste were higher than those previously 
reported in the literature for other hydrogen-producing 
bacteria like C. perfringens 130 ± 3 mL of H2 per g of glu-
cose [35]; C. butyricum 136 ± 5 mL of H2 per g of glucose 
[35]; C. diolis 150 mL of H2 per g of glucose [44]; C. bei-
jerinckii Fanp3 231 mL of H2 per g of glucose [29] and C. 
tyrobutyricum JM1 223 ml of H2 per g of hexose [42].

Therefore, these novel strains (C. beijerinckii AM2 and 
C. tyrobutyricum AM6) were selected for the identifica-
tion of their [FeFe]-hydrogenases and quantification of 
expression levels.

[FeFe]‑hydrogenase genes of C. beijerinckii AM2 and  
C. tyrobutyricum AM6
Fermentative hydrogen production in the genus Clostrid-
ium is related with the activity of the [FeFe]-hydroge-
nases, these enzymes use protons as the final electron 
acceptors in the cellular energy metabolism. In general 
the transcription of [FeFe] hydrogenases encoding genes 
has been previously applied also in meta-trascriptomic 
approaches to estimate the hydrogen-producing bacterial 
consortium in selected soils [45].

C. beijerinckii has six genes encoding for different 
[FeFe]-hydrogenases, 4 monomeric and 2 heterotrimeric 
and a gene for a [NiFe]-hydrogenase [15]. C. tyrobutyri-
cum has one gene encoding for a monomeric [FeFe]-
hydrogenase that has been linked to hydrogen production 
[42] and that until 2016 has been considered as the only 
[FeFe]-hydrogenase-encoding gene in this strain. Only 
recently [43] new hypothetical sequences assigned to 
hydrogenase-encoding genes have been proposed for 
some specific C. tyrobutyricum strains, but these latter 
sequences were not considered in this work.

Each selected gene encodes a protein belonging to a 
specific and diverse modular structure type and phyloge-
netic cluster according to a previously reported classifica-
tion [15].

The 6 hyd genes of C. beijerinckii are: Cbei_1773 
(encoding for a protein with structure type M2c and clus-
ter A5), Cbei_1901 (encoding for a protein with structure 
type M2a and cluster B2), Cbei_0327 (encoding for a pro-
tein with structure type M3a and cluster B3), Cbei_4000 
(encoding for a protein with structure type M2b and clus-
ter A2), Cbei_3796 (encoding for a protein subunit with 
structure type TR (M2) and cluster A3) and Cbei_4110 

Fig. 2  Phylogenetic tree based on 16S rRNA-encoding gene 
sequences of the isolate bacteria from green waste. The tree was 
constructed using the neighbour-joining algorithm. Numbers on the 
tree refer to bootstrap values on 1000 replicates. The bar indicates 
a 2% estimated difference in nucleotide sequences. Analogous 
phylogenetic analysis of Clostridium beijerinckii compared to other 
standard Clostridia and of Bacillus ginsengihumi related to reference 
strains can be found in [37] for Bacilli and in [2] for Clostridia. The 
reference numbers for the 16S rRNA-encoding gene sequences 
are listed below (group A to K as specified in Fig. 1 caption): group 
A: MZ054377, group B: MZ054378, group C: MZ054379, group 
D: MZ054380, group E: MZ054381, group F: MZ054382, group 
G: MZ054383, group H: MZ054384, group I: MZ054385, group K: 
MZ054386
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(encoding for a protein and catalytic subunit with struc-
ture type structure type TR (M3) and cluster A8). The 
gene hyd of C. tyrobutyricum (Ctyr_hydA) encodes for 
a protein with structure type M3 and cluster A2. All 
the gene products are likely to be cytoplasmic, with the 
exception of those belonging to cluster A3 (structure type 
TR (M2)). Interestingly enough, the C. beijerinckii [FeFe]-
hydrogenase enzymes have received little attention in the 
past and even recently the trascriptomics analysis were 
more focused on other metabolic peculiarities of this 
strain [46–48], with some indication on genes involved in 
the hydrogen metabolism only reported in the paper of 
Patakova et al., 2019 [46].

Although recent works from our group highlighted 
the peculiarity of at least one of these enzymes [27] and 
demonstrated the relevance and complexity of their 
expression in pure cultures [35], the study of their genes 
expression modulation with quantitative methods has 
never been performed before. The C. tyrobutyricum 
[FeFe]-hydrogenase protein selected and targeted in this 
study is known to be involved in H2 production [42], but 
no studies are reported on the gene expression analysis of 
this enzyme.

The activity of [FeFe]-hydrogenases can be regulated at 
metabolic level through regulatory controls at transcrip-
tional level [13].

It is already known that Clostridia present more than 
one gene encoding for [FeFe]-hydrogenases, which could 
be subjected to different expression modulation [49]; one 
aim of this research was the identification of the relation-
ship between the performance of dark fermentation on 
a real and nutrient-poor green waste, already contain-
ing a mixed microbial consortium, and the expression 
of [FeFe]-hydrogenase genes, by measuring on the same 
samples the transcription levels of the selected genes and 
the hydrogen produced.

A previous analysis on the relationship between hydro-
gen production and [FeFe]-hydrogenases gene expression 
in C. beijerinckii was performed only in pure cultures and 
based on semi-quantitative estimate of transcripts [35].

RT-qPCR is a powerful and widely used techniques 
for detecting and quantifying specific gene expression 
in vitro. This technique has already been used for quan-
tification of [FeFe]-hydrogenases and has proven to 
be an accurate assay for quantification of hydrogenase 
expression levels either in single or mixed bacterial 
cultures. Nonetheless, the previous studies of hydroge-
nases genes expression developed in various microor-
ganisms have focused on a single [FeFe]-hydrogenase 
gene only in bioreactors or multiple [FeFe]-hydroge-
nase genes expression analysis only in pure cultures 
[13, 35, 49–51] or, when in syntrophic co-cultures, 

only under very controlled and simplified conditions 
and in rich media [50, 52]. Other studies performed on 
real complex matrices only provided an estimate of the 
hydrogen-producing consortium composition by meta-
trascriptomic analysis and were not quantitative [45].

Here, the gene expression modulation in time of the 
seven genes encoding for [FeFe]-hydrogenase enzymes 
with different structure types was investigated by RT-
qPCR in the hydrogen-producing real biomasses waste, 
hence in presence of the autochthonous strains, both 
for the non-producers and the hydrogen-producing 
strains, either with applied bio-augmentation or not.

The recA single copy gene was used to monitor 
the total bacteria in the medium by quantitative PCR 
(qPCR). As a population indicator, this gene is a better 
indicator than the multiple copy 16S rRNA-encoding 
gene (up to 14 copies in C. beijerinckii) that might oth-
erwise compromise the interpretation of the quantita-
tive results, also when the whole genome sequence is 
unknown, such as in the case of C. tyrobutyricum, in 
which the estimation of the correct copy number can 
be problematic [49].

In addition, recA gene expression (cDNA) was used 
as the internal reference gene for RT-qPCR, according 
to the available literature on Clostridia [49, 53, 54], to 
monitor the active bacterial population, since the recA 
expression profile shows the microbial population that 
is viable and with transcriptional capacity [49, 53, 54]. 
Also in other bacterial species recA scored as the best 
in expression stability ranking of the candidate ref-
erence genes according to 4 software out of 5 (Best-
Keeper, NormFinder original softwares and Delta CT 
and RefFinder analysis) as reported in a recent paper 
exploring reference genes for gene expression studies 
using reverse transcription quantitative real-time PCR 
[55].

Strains specific primers were designed (see Materials 
and methods) and the specificity was tested experimen-
tally. The maximal recA expression level (Fig.  4A) was 
detected at 23 h and then the amount of viable bacteria 
decreased at 37 h.

After checking the basal expression level of the refer-
ence gene recA, in order to ensure that hydrogen pro-
duction and transcriptional levels of gene expression 
were high enough to be detected and properly quanti-
fied during the batch dark fermentation process, C. bei-
jerinckii AM2 105 CFU/mL and C. tyrobutyricum AM6 
106 CFU/mL were inoculated in the spring green green 
waste. Methane and hydrogen productions (Fig.  3), 
metabolically active bacteria C. beijerinckii AM2 and 
C. tyrobutyricum AM6 as well as 7 hyd genes transcript 
levels of C. beijerinckii AM2 and C. tyrobutyricum 
AM6 (Fig. 4) were analysed over a period of 288 h.
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Gas production in green waste during dark fermentation 
with and without bio‑augmentation with C. beijerinckii 
AM2 and C. tyrobutyricum AM6
The cumulative curves of gas productions are summa-
rised in Fig.  3, showing the comparison of green waste 
biomass with C. beijerinckii AM2 and C. tyrobutyricum 
AM6 bio-augmentation as well as green waste biomass 
alone (reported, respectively, in black and in green).

The hydrogen production curves from both the waste 
sample with and without bio-augmentation showed a 
similar trend with a production spike after 5  h, then 
hydrogen release decreased after 42  h to increase again 
after 72  h. A decrease in hydrogen production was 
observed in the non-bio-augmented sample after 144 h, 
whereas the waste which underwent bio-augmentation 
maintained a steady and sustained hydrogen produc-
tion value, decreasing only after 216  h due to a rise of 
CH4 gas. The C. beijerinckii AM2 and C. tyrobutyricum 
AM6 enrichment did not cause an exponential increase 
in hydrogen production, but after 150  h of growth, the 
bio-augmented batch cultures produced a sixfold higher 
hydrogen amount, keeping it for a longer period than 
those from the non-augmented batch.

Methane productions from the bio-augmented sam-
ple and the non-augmented waste had a similar trend 
and methane production is revealed after 216 h; hydro-
gen and methane productions were mutually exclusive as 

expected [33]. The comparison of the trends in hydrogen 
and methane production in bio-augmented and non-
augmented samples highlights that the bio-augmented 
sample is a good indicator of the spontaneous processes 
occurring in the waste biomass and it suggest that the 
autochthonous microbial consortium is not significantly 
inhibited upon addition of an inoculum, but a positive 
synergy can be implemented between the autochthonous 
consortium and the inoculum. The advantage of a higher 
hydrogen concentration, as the one observed in the bio-
augmented sample between 72 and 216  h, resulting in 
a sixfold higher hydrogen amount, points to a possible 
further optimisation for applicative purposes. A further 
enhancement of hydrogen production could be achieved 
by pre-treating the waste in order to inhibit methanogen-
esis which is obviously here competing with hydrogen 
accumulation, as reported in Fig. 3. The project support-
ing the research (funded by EU to enhance bioeconomy 

H2 from bio-augmented
green waste
CH4 from bio-augmented
green waste

H2 from non-augmented
green waste
CH4 from non-augmented
green waste

*

#

Fig. 3  Cumulative hydrogen (full line, referred to left y-axis) and 
methane (dashed line; referred to right y-axis) production curves 
during dark fermentation of both hydrogen-producing C. beijerinckii 
AM2 and C. tyrobutyricum AM6 bio-augmented (black line) and 
non-augmented (green line) agriculture waste biomass. The values 
refer to 5 gr of green waste (as detailed in the Materials and Methods 
section). The VS for this quite heterogeneous material was between 
250 and 500 gr VS/kg, therefore the cumulative hydrogen production 
is of 0.6–1.2 ml H2/gr VS, while for methane the cumulative value is of 
0.18–0.36 ml CH4/gr VS. Significant differences were determined with 
a Student’s t-test, *p < 0.05, #p < 0.01, ##p < 0.001 of bio-augmented 
versus non-augmented for each timepoint

Fig. 4  Relationship between Clostridium beijerinckii AM2 and 
Clostridium tyrobutyricum AM6 growth and [FeFe]-hydrogenase 
transcription levels in mixed culture present in agriculture waste 
biomass. A recA genes expression profiles from Clostridium beijerinckii 
AM2 and Clostridium tyrobutyricum AM6. B Clostridium beijerinckii 
AM2 and Clostridium tyrobutyricum AM6 [FeFe]-hydrogenase genes 
expression profiles during dark fermentation. C Clostridium beijerinckii 
AM2 and Clostridium tyrobutyricum AM6 [FeFe]-hydrogenase 
transcription levels normalised on recA. Significant differences in time 
were determined with a one-way ANOVA with a post hoc Student’s 
t-test, *p < 0.05, #p < 0.01, ##p < 0.001 in the pairs indicated in figure
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and circular economy in the Piedmont region) aimed at 
exploring the potential used of untreated wastes, so no 
chemical or thermal treatment was applied to hinder 
methane production.

In the waste biomass bio-augmented with C. beijer-
inckii AM2 and C. tyrobutyricum AM6, the relation 
between hydrogen production and the modulation of the 
seven [FeFe]-hydrogenase genes expression was investi-
gated during dark fermentation after set-up of the analy-
sis method by RT-qPCR (Fig. 4).

C. beijerinckii and C. tyrobutyricum recA expressions 
are indicators of viable and metabolically active popula-
tions. Active cells contain more RNA than inactive cells. 
Predominance of metabolically active C. beijerinckii 
AM2 and C. tyrobutyricum AM6 species was estimated 
in waste biomass based on RT-qPCR monitoring of recA 
gene during dark fermentation, and C. beijerinckii AM2 
prevails over C. tyrobutyricum AM6 although C. tyrobu-
tyricum AM6 was added in larger quantities at the begin-
ning of the process (Fig. 4A).

C. tyrobutyricum AM6 [FeFe]-hydrogenase gene 
expression was undetectable during the whole analy-
sis, even when a second couple of primers were used to 
enhance amplification efficiency (Ctyr_hydA see Material 
and method section). As suggested by the recA expres-
sion profile (Fig.  4A), this bacterium, isolated from 
autumnal agriculture waste biomass, was likely to be in 
a quiescent spore form and not able to sustain an active 
grow on the green waste biomass under the tested condi-
tions. Although the growth rate were similar in pure cul-
tures for the two tested strains, the competition favoured 
the growth of C. beijerinckii AM2 on the green waste 
used.

All the C. beijerinckii AM2 [FeFe]-hydrogenase genes 
are expressed with a variable modulation in the first 
23  h of the fermentative process, while after 72  h no 
[FeFe]-hydrogenase transcriptional activity was detected 
(Fig. 4B and C).

C. beijerinckii AM2 [FeFe]-hydrogenase transcription 
levels were detected from the beginning of the process. 
High levels of expression for [FeFe]-hydrogenase genes 
were observed before optimal hydrogen productions 
according to the literature [56].

At time 0 (inoculum addition) Cbei_1773 and 
Cbei_0327 genes were expressed, respectively, 1- and 
1.5-fold more than the genes encoding for the mono-
meric Cbei_4000, the membrane-bound Cbei_3796 and 
the catalytic subunit alpha Cbei_4110 of the heterotri-
meric [FeFe]-hydrogenases; Cbei_1901 transcription 
level was not detected at this time point, on the contrary 
Cbei_4000 transcription was detected only at that time.

After 5 h, when the first peak of hydrogen was observed 
(Fig. 3), Cbei_1773 and Cbei_1901 genes were expressed, 

respectively, 5- and 4-fold more than the genes encod-
ing for a monomeric Cbei_0327, a membrane-bound 
Cbei_3796 and the catalytic subunit alpha of the het-
erotrimeric Cbei_4110 [FeFe]-hydrogenases (Fig.  4). At 
least one of the selected, monitored genes that is highly 
expressed in the early onset of hydrogen production 
(Cbei_1773) encodes for an unusual [FeFe]-hydrogenase 
resilient to oxygen damage [27], pointing to a specific role 
of this enzyme as the main hydrogen-producing catalyst, 
even if expressed at stages of relatively low anaerobiosis 
level, and therefore enhancing the tolerance of the whole 
system to traces of oxygen. Another intriguing hypoth-
esis on the regulation of this gene and on the activity of 
its encoded protein is the inactivation observed in the 
protein at oxidative potentials, i.e. when the bacterial cell 
experiences a shortage in NAD(P)H and other reduced 
compounds and proteins (ferredoxins and flavodoxins) 
used to supply electrons. In this situation, a high concen-
tration of an active hydrogenase might impair the redox 
equilibrium: although this is still a speculative hypoth-
esis, a possible effect of the protein-based inactivation 
mechanism at high-potential could act as a buffering 
system and allow for a safer high-level expression ena-
bling the cell to promptly reactivate the hydrogen-pro-
ducing metabolism. A 99% similarity to the hydrogenase 
encoded by C. beijerinckii SM10 [27] Cbei_1773 was also 
observed in transcriptomic analysis [46] in the coding 
sequence X276_18165 from C. beijerinckii NRRL B-598, 
but the authors could not unambiguously assign to this 
gene the role of expressing the hydrogenase that mainly 
produces hydrogen in the exponential growth phase of 
the analysed C. beijerinckii NRRL B-598 strain.

After 23  h, as the hydrogen production decreased 
(Fig. 3), Cbei_1773, Cbei_0327 and Cbei_1901 genes were 
expressed, respectively, 4-fold, 1.6-fold and 1.3-fold more 
than the gene encoding for the catalytic subunit alpha 
Cbei_4110 of the heterotrimeric [FeFe]-hydrogenases 
(Fig. 4). Other transcription products were not detected.

During the first 23  h of dark fermentation, transcrip-
tion levels of the genes encoding for the monomeric 
Cbei_1773 and the heterotrimeric Cbei_4110 [FeFe]-
hydrogenases followed the same trend observed for 
hydrogen production; transcription levels of the gene 
encoding for monomeric Cbei_0327 showed a reverse 
trend compared with that of hydrogen. Expression of 
Cbei_1901 was detected only after 5 and 23  h when 
the amount of hydrogen was different from zero in the 
batch; Cbei_4000 was expressed only at the initial time 
point, and Cbei_3796 expression was observed at the 
first two time points. The decrease of transcripts lev-
els of all genes encoding hydrogenases can be explained 
partially by a stationary phase and a low transcriptional 
activity as highlighted by the low recA levels. A relatively 
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high hydrogen production level has been reported 
in Clostridia even at low transcripts amounts, given 
the good stability of the [FeFe] hydrogenases as active 
enzymes in the cell, which could explain the relatively 
high hydrogen accumulation between 23 and 144 h even 
with low transcripts detected at 72 and 144 h.

In summary genes Cbei_1773, Cbei_4110, Cbei_0327 
and Cbei_1901, which undergo larger changes in 
expression, seem to be related to hydrogen produc-
tion, although with positive (Cbei_1773 and Cbei_4110) 
or negative (Cbei_0327) correlations, hence it would be 
interesting to further investigate their metabolic roles. In 
particular, the positive correlation of hydrogen produc-
tion with Cbei_1773 is relevant given the attested good 
productivity and the oxygen-tolerance unique feature 
of the hydrogenase encoded by this gene [27]. Genes 
Cbei_4000 and Cbei_3796 are possibly less related to 
hydrogen production and might be silent during dark fer-
mentation. A null expression of Cbei_4000 and negligible 
levels of Cbei_3796 during hydrogen production were 
also observed in previous semi-quantitative experiments 
performed by our group in pure cultures of C. beijerinckii 
SM10 [35], although here a statistically significant change 
in expression (even if at a low absolute level) can be high-
lighted (Fig.  4). The range of different structures of the 
proteins encoded by the analysed genes, in terms of elec-
tron transfer domains and possible redox partners sup-
plying or accepting electrons, covers almost completely 
the whole panel of classified [FeFe]-hydrogenase modu-
lar structure arrangements. The results obtained suggest 
that a specific physiological and functional relevance is 
linked to each [FeFe]-hydrogenase-encoding gene and 
that a differential expression in time and fine-tuning of 
the reciprocal amount and activity of the hydrogenases 
plays a key role in the entire balance of the redox equi-
librium and the hydrogen metabolism in Clostridia. This 
could justify the redundancy and suggest an increasing 
evolutionary success for the strains which can rely on a 
broader range of different [FeFe] hydrogenases (here C. 
beijerinckii versus C. tyrobutyricum). The knowledge of 
the interplay of different hydrogenase-encoding genes is 
gaining importance in the study of hydrogen-producing 
bacteria [57], not only in Clostridia.

A summarising overview of the obtained results as for 
involved genes and their changes in expression level is 
reported in Table 1 compared to other similar studies on 
hydrogen-producing bacteria. Although the very differ-
ent growth conditions and test strategies, the emerging 
landscape is that these studies are crucial to optimise the 
system in bioreactors and to exploit the cell and enzyme 
catalysts for applicative purposes. In this respect, the 
results of this work as for the bio-augmentation with 
C. beijerinckii, are being implemented by the project 

participating company AgriNewTech Srl to promote 
reuse of low-value compost and intermediate prod-
ucts (partially composted but unsuitable for completing 
the process) which cannot be sold on market. The out-
comes also suggested economically valuable alternative 
exploitation of green wastes that can reduce the GHG 
emission, including a first dark fermentation/anaerobic 
digestion preliminary process and an optimised (imply-
ing low emission) composting process limited to the final 
digestate.

Conclusions
RT-qPCR covering the complete set of known [FeFe]-
hydrogenase gene types [15, 58] was performed for the 
first time in a real and nutrient-poor green waste, usually 
employed for composting processes but re-addressable 
for exploitation on other markets [59] and demonstrated 
to be suitable as dark fermentation substrate. This latter is 
an advantage over composting due to complete recovery 
of organic compounds energy as clean fuel (bio-hydrogen 
or even further to CO2 neutral methane production) and 
to the demonstrated reduced emission of GHG gas (CH4, 
N2O) otherwise generated by the direct composting pro-
cess of the green waste [34]. The matrix, containing the 
autochthonous microbiota was studied with the addition 
of a supplementary inoculum of endogenous hydrogen 
producers which confirmed the main role of C. beijer-
inckii in the waste-sustained hydrogen production and a 
good resilience of the autochthonous consortium to the 
bio-augmentation strategy applied. The diverse modu-
lar structure of the monitored hydrogenases is worth 
further investigation to evaluate if the architecture of 
domain arrangement is consistently related to their roles 
in microbial metabolism and therefore their timing of 
expression.

The data granted by the different aims of the paper (1: 
to isolate and characterise robust hydrogen producers, 2: 
to provide biochemical characterisation of the interplay 
of gene expression times/modes in a fermentation on real 
and complex matrices, 3: to support the enhanced use 
of green waste in dark fermentation rather than only for 
composting) are an example of how biochemical studies 
can support circular bioeconomy.

Materials and methods
Culture media
The medium used for bacteria cultures was Clostridial 
nutrient medium (FLUKA): agar, 0.5  g/L, L-cysteine 
hydrochloride, 0.5  g/L, D( +)-glucose, 5.0  g/L, meat 
extract, 10.0  g/L, peptone, 5.0  g/L, sodium acetate, 
3.0  g/L, sodium chloride, 5.0  g/L, starch, 1.0  g/L, yeast 
extract, 3.0 g/L, final pH 6.8 ± 0.2 (25 °C).
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Or else, minimal medium: 100  mM potassium phos-
phate, 17 g/l tryptone, 3 g/l peptone papaic digest of soy-
bean, 10 g/L glucose, initial pH 7.0.

All culture media were sterilised by autoclaving for 
20 min at 121 °C.

Isolation of culturable bacteria
The cultivable microbiota present in the nutrient-poor 
[33] green waste (here referred as Mix, made by pruning 
of trees and a part of leaves and grass clippings collected 
in the province of Torino from private and public gar-
dens) was isolated after 41 days of dark fermentation. The 
flask was opened and non-selective medium was added, 
then vital cultivable microbiota was isolated by plating of 
untreated dilution of Mix on Clostridial nutrient medium 
agar 1.5% w/v with dilutions from 10–1 to 10–5. From each 
dilution 100  µl was spread plated (two replicates) and 
further incubated under anaerobic conditions at 37  °C 
overnight. Anaerobic conditions were obtained by using 
Anaerogen bags (Oxoid) for the plates and fluxing argon 
for liquid cultures.

In order to select spore-forming microorganisms the 
same sample was pre-heated at 85 °C for 20 min prior to 
dilution from 10–1 to 10–5 before plating. In the untreated 
sample, 2.1 × 105  CFU/mL and in the pre-heated sample 
1.6 × 104  CFU/mL were counted. Following incubation, 
single and isolated colonies with different morphologies 
were randomly selected and pure cultures were obtained 
by an additional passage on plate. Every 4 days, each strain 
was replicated in a new plate in anaerobic conditions to 
maintain it viable.

A total of 31 single colonies, 18 from the untreated and 
13 from the pre-heated samples, were selected based on 
the colony morphology for further identification and char-
acterisation. All the isolates were classified based on cell 
morphology after Gram staining and growth ability also in 
the presence of oxygen, thus discriminating oxygen-toler-
ant from oxygen-sensitive microorganisms.

Morphological characterisation
Gram staining (Fluka kit) was performed to analyse the 
morphology of the bacteria, which were transferred from 
fresh plates and spread over a drop of water onto the sur-
face of a clean glass slide. A tenfold dilution was made to 
the drop of microorganism, which was then placed on a 
glass slide using an inoculation loop and dried with a Bun-
sen flame for a few seconds. The slide was then flooded 
with the Gram’s crystal violet solution (Fluka) for 1  min 
at most and then removed with water. Gram’s iodine solu-
tion (Fluka) was used as mordant, applied for 1 min and 
washed away again with water. After that, the glass slide 
was covered with Gram’s decolouriser solution (Fluka) 
for 20  s followed by washing and flooding with Gram’s 

safranin solution (Fluka) for 1 min and then washed once 
again. Morphological examinations were performed with a 
Reichert microscope. Glass slides were observed through 
optic microscope at 1000 × magnification using immer-
sion oil.

Genomic DNA extraction and 16S rRNA‑encoding gene 
amplification
For identification, each isolated strain consisted of bacte-
ria picked up from fresh plates (incubated under anaero-
bic conditions at 37 °C overnight) using a sterile loop and 
it was suspended into 70 μL of sterile Milli-Q water. DNA 
extraction was performed by 3 cycles of freeze/thawing at 
90  °C/liquid nitrogen and centrifuged for 10  min at max 
speed. Supernatant was recovered and diluted with 200 μL 
of sterile water.

The 16S rRNA-encoding gene was amplified from 
genomic DNA by PCR using the proof-reading polymer-
ase “KOD Hot Start DNA polymerase” (Merck Millipore) 
following the manufacturer’s instructions and the two uni-
versal primers [44, 51]: 27F: 5’-AGA​GTT​TGATYMTGG​
CTC​AG-3’, 1492R: 5’-TAC​GGY​TAC​CTT​GTT​ACG​
ACT-3’.

PCR fragments were separated on 1.5% agarose gel (TAE 
1X) using PerfectSize DNA molecular weight 1 kb XL lad-
der as reference (5Prime). The PCR product was purified 
using Nucleo spin gel and PCR clean-up kit (Macherey-
Nagel) following the manufacturer’s instructions.

Restriction fragment length polymorphism (RFLP) analysis 
of 16S rRNA‑encoding genes
The amplified DNA was then digested using four endo-
nuclease restriction enzymes AluI, HaeIII, HhaI and 
TaqI (Fermentas) separately, in order to obtain RFLP 
fingerprinting.

The amplified 16S rRNA-encoding gene products were 
digested following the manufacturer’s instructions. DNA 
fragments were separated by electrophoresis on 1.5% w/v 
agarose gel 1X TAE stained with SYBR® Safe (Invitrogen) 
for 1 h at 100 V, 400 mA. The reference used was Perfect-
Size DNA molecular weight 100 bp XL Ladder (5 Prime). 
Scanned images of the gels containing DNA-RFLP were 
captured with Quantity One software (Bio-Rad).

Sequencing of 16S rRNA‑encoding genes and phylogenetic 
analysis
After classification, one isolate per group was selected. 
The 16S rRNA-encoding gene was amplified by PCR as 
described above, purified with a PCR clean-up kit (Mach-
erey-Nagel) and the concentration was evaluated with 
NanoVue instrument (GE Healthcare).
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The DNA amplified and purified was diluted to a final 
concentration of 10 μg/mL in a volume of 15 μL and then 
sequenced. The sequencing was carried out by Eurofins 
MWG Operon Company. The sequences obtained were 
searched against NCBI, EMBL and DDJB databases using 
BLASTN 2.0.5. The GenBank accession number of the 
16S rRNA-encoding gene sequences are reported below:

group A: MZ054377, group B: MZ054378, group C: 
MZ054379, group D: MZ054380, group E: MZ054381, 
group F: MZ054382, group G: MZ054383, group H: 
MZ054384, group I: MZ054385, group K: MZ054386.

The identity ≥ 99% with e-value of 0.0 was found for 
each species.

Phylogenetic trees were constructed by neighbour-
joining methods using Molecular Evolutionary Genetics 
Analysis (MEGA) version 6.06 [60]. The topology of the 
tree was evaluated by means of bootstrap analysis based 
on 1000 replicates.

Quantification of H2 and CH4 production
Pure cultures were grown in a 20-mL glass vial sealed 
with a butyl rubber stopper, containing 4  mL of sterile 
minimal medium under anaerobic argon atmosphere at 
37 °C, 250 rpm for 16 or 24 h. The negative control was 
sterile medium without bacteria inoculation. Experi-
ments with the green waste biomass were performed 
as described previously [33]. The gas was sampled with 
a syringe SampleLock Gastight syringe (Hamilton) and 
analysed by a gas chromatographer (Agilent 7890A) with 
TCD detector. The device was equipped with purged 
packed inlet, HP-Molesieve 5A column (length 30  m, 
0.530 mm ID, film 25 mM). Argon, used as carrying gas, 
had a flow of 0.879  mL/min. Efficient and quantitative 
separation was achieved in 2.8 min at 60 °C, the gas chro-
matography method allowed the detection of H2, O2, N2, 
and CH4, respectively, at 1.4, 1.6, 1.9 and 2.4 min. The gas 
chromatographer injector temperature was 60 °C and the 
detector temperature was 250 °C. H2 and CH4 quantifica-
tions were obtained by calibration curves prepared from 
standard gases (Rivoira, Italy).

Green waste bio‑augmented with hydrogen‑producing  
C. beijerinckii AM2 and C. tyrobutyricum AM6 isolates
For the pre-cultures preparation, anaerobic sterile 
medium was inoculated with C. beijerinckii AM2 or C. 
tyrobutyricum AM6 and incubated at 37  °C, 180  rpm 
for 16  h. For culture preparation 1  mL of the pre-cul-
ture was inoculated in 40  mL of anaerobic and ster-
ile medium and incubated at 37  °C 180  rpm for 16  h. 
In order to minimise contamination and thoroughly 
analyse the sample in its original characteristics, the 

same spring green waste was divided into sterile glass 
vials with a volume of 60  ml. Each vial containing 5 g 
of green waste was sealed with butyl rubber stoppers 
and flushed with argon for 25  min. The bacteria C. 
beijerinckii 5 × 105  CFU (1  mL) and C. tyrobutyricum 
5 × 106  CFU were inoculated in each vial by means of 
a sterile syringe in a sequential manner. All the samples 
were incubated at 37 °C, 220 rpm. Ten time points were 
selected and the gas samples were taken, respectively, 
after 0, 5, 23, 23, 42, 48, 72, 144, 216 and 288 h from the 
initial time of incubation. The control group used was 
the very same spring green waste just without C. beijer-
inckii and C. tyrobutyricum inoculation and the same 
volume of sterile medium was added to the non-aug-
mented mixture to check real-time performances and 
compare hydrogen production over the long run. The 
data collected correspond to the average of two inde-
pendent samples (biological replicates) analysed at least 
in triplicate.

RNA extraction and purification
Metal beads and all glassware used in the isolation of 
total RNA from green waste were kept at 180 °C over-
night; plasticware was autoclaved before use, whereas 
solutions used in RNA extractions were treated with 
0.1% (v/v) diethylpyrocarbonate (DEPC) and autoclaved 
to inactivate RNases. Two samples per time point were 
collected immediately. Each sample (100  mg) was 
homogenised in liquid nitrogen with metal beads using 
TissueLyserII, then the RLT extraction buffer was added 
and the tube was incubated at 56 °C for 1–3 min. Total 
RNA was extracted and purified in triplicate from the 
pooled samples following using the kit “Rneasy Plant 
Mini Kit” (Qiagen). The total RNA was treated with 
LiCl (3  M). The sample was incubated at 4  °C on ice 
overnight and then RNA was selectively pelleted after 
centrifugation at 21,000 g for 30 min at 4  °C. The pel-
let was washed with cold ethanol (70%), dried and re-
suspended in DEPC–water. The total RNA was treated 
with Ambion® TURBO DNA-free DNase (Ambion, Life 
Technologies), according to the manufacturer’s instruc-
tions. RNA purity and concentration were assessed 
using a NanoDrop 1000 spectrophotometer (Thermo 
Scientific, Wilmington, DE, USA) by determining the 
spectrophotometric absorbance of the samples at 230, 
260 and 280  nm and ratios of A260:A280 and A260:A230 
(A260/280 ≥ 2 and A260/230 ≥ 1.8). The RNA integ-
rity was evaluated from the 23S and 16S rRNA bands 
on 1.2% agarose gel after electrophoresis, staining with 
SYBR® Safe (Invitrogen). The absence of gDNA con-
tamination was tested by omitting reverse transcriptase 
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and testing PCR reaction using specific primers for 
recA genes by ONE STEP kit (Sigma).

Primers design, reference gene and standard curves 
preparation
The specific recA gene is used as an internal reference 
gene in reverse RT-qPCR. No recA gene of C. tyrobu-
tyricum was reported in the NCBI database so, from 
gDNA of C. beijerinckii AM2 and C. tyrobutyricum 
AM6 recA genes were amplified with degenerate prim-
ers for Clostridium sp: RecA-F1: 5’-GATGCNGAR​CAT​
GCNYTNGA-3’, RecA-R1: 5’-CAT​TYT​CHCKWCC​YTG​
DCCWA-3’ (N = A, C, T, G; R = A, G; Y = C, T; H = A, 
C, T; K = C, T; D = A, T, G; W = A, T), which generated a 
fragment of around 634 bp [58].

The obtained sequences (GenBank accession num-
bers: C. beijerinckii AM2 recA: MZ062441, C. tyrobu-
tyricum AM6 recA: MZ062442) were used to design new 
RT-qPCR primer pairs for recA that were specific for C. 
beijerinckii and C. tyrobutyricum. The new recA primer 
pairs were designed by Primer3 tool to obtain amplifica-
tion products that were no longer than 200 bp, as well as 
cover regions that were conserved within a species and 
were as different as possible from the other affiliated spe-
cies. Specificity and cross-reactivity were tested using 
BLAST (NCBI).

For each hydrogenase gene between 5 and 10 hydA 
gene sequences encoding for the same structure type 
hydrogenase from the NCBI (National Center for Bio-
technology Information) database were aligned using 
ClustalW to form 5’–3’ consensus sequences. These were 
used to develop the specific primer sets by AnnHyb tool. 
The selected sets were synthesised by Eurofins MWG 
(Germany). The amplicon fragment sizes ranged from 
161 to 111 bp as reported in Table 2.

The complete sequencing of the selected hydroge-
nases genes was performed. Reference numbers of 

hydrogenases sequences containing silence or missense 
mutations and deposited in GenBank are: C. beijer-
inckii AM2 1773: MZ062438, C. beijerinckii AM2 1901: 
MZ062439 and C. tyrobutyricum AM6 hydA: MZ062440.

The amplicon sequences were screened using BLAST 
to determine cross-reactivity.

The specificity for all primer pairs were experimen-
tally evaluated with a range of target and non-target 
Clostridium species. The primers targeting the recA and 
hyd genes were specific (100% identity) also when used 
in RT-qPCR optimisation. No amplification for nega-
tive controls was observed. The high specificity of the 
designed oligonucleotides and their amplification condi-
tions was demonstrated at the specific melting tempera-
tures reported in Table 2, conditions under which all the 
genes tested showed positive signals. The expected frag-
ment (Table  2) gave a single band when visualised on a 
2% agarose gel. To determine the detection limits, reac-
tion efficiencies and linear ranges of amplification, the 
standard curves were generated using genomic DNA as 
reported in Yun et al. [61], DNA was extracted and puri-
fied from pure cultures by Wizard genomic DNA purifi-
cation kit (Promega). Seven tenfold dilutions were freshly 
prepared each time from the DNA, ranging from 15 to 
15 X 10–5  ng/µl. The good linearity is demonstrated by 
linear correlation coefficient (R2) value ≥ 0.98 for six 
orders of magnitude for all the genes and the slope of the 
regression curve showed efficient yields ranging between 
101 and 87.5% the values for each primers couple are 
reported in Table 2.

cDNA synthesis and real‑time qPCR
The first-strand cDNA was synthesised starting from 
0.645  µg of total RNA by using a selected iScript 
Reverse Transcriptase (Invitrogen) following the manu-
facturer’s instructions. The analysis was performed in 
96-well plate using SYBR Green method (Power SYBR® 

Table 2  List of primers, amplicon fragment size and features

Gene description Forward (5′-3′) Reverse (5′-3′) Size (bp) E% R2 Tm (℃)

Ctyr_recA GTG​GAA​GCA​TTG​GTT​AGA​TC GTC​CTA​CAT​GAG​AAT​CTC​CCA​ 111 101 0.98 75.1

Cbei_recA GTC​ACA​GGC​GTT​AAG​AAA​GCT​ TGC​TCT​TCC​TCC​AGT​TGT​TG 129 87.5 0.99 74.5

Cbei_1773 GAG​GTT​GGG​ATG​GAT​TCA​GA CCA​CCT​ACA​CAC​GCC​ATT​A 161 89.3 0.99 75.6

Cbei_0327 AGC​CTT​ATT​CGA​TGC​GTT​TG TCA​ATC​CAC​CAC​CTA​CAG​CA 104 95.9 0.99 74.8

Cbei_1901 TTG​TGG​TGT​ATG​CGT​GGA​TT AGT​ACC​AAA​TTG​CCC​GCT​A 139 88.0 0.99 74.4

Cbei_4000 AGG​GTG​GCA​TAA​ATG​GAG​GTG​ CCT​CTG​CCC​TTC​CTC​TCT​AACA​ 140 97.1 0.99 75.3

Cbei_4110 TGG​TGA​TTG​ATG​GCA​ATA​GG TCA​TCC​TCG​ACC​ACA​CAC​AT 148 95.2 0.99 73.3

Cbei_3796 TGT​TTG​CGT​TTC​TTG​TGG​AC TGG​CTC​CTT​CAC​ACT​CTC​AA 127 103 0.98 72.7

Ctyr_hydA′ CCA​TGC​CCA​AGA​AGA​GAA​AA GCA​TTT​GGT​TCT​GTC​AAG​CA 144 88.0 0.99 75.0

Ctyr_hydA″ GAG​GCA​AAT​GGC​AGA​ACA​AT TTT​TCT​CTT​CTT​GGG​CAT​GG 161 95.2 0.99 74.7
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Green PCR Master Mix, Applied Biosystems). The PCR 
reaction mix contained 1 µL of cDNA, 0.2 mM dNTPs, 
0.2  µM each primer, 1.5  mM MgCl2 and 0.5 unit Taq 
polymerase. Cycling conditions consisted of an initial 
denaturation phase at 95  °C for 10  min, followed by 
40 cycles at 95  °C for 15 s and 60  °C for 1 min. At the 
end of each RT-qPCR run, a melting analysis was car-
ried out to verify the absence of non-specific amplifica-
tion with 95 °C for 15 s, 60 °C for 1 min and 95 °C for 
15 s with a transition rate of 0.3 °C every 10 s. Non-RT 
controls (using total RNA without reverse transcrip-
tion to monitor for genomic DNA contamination) and 
non-template controls (water instead of template) were 
included in all runs. Gene expression was determined 
as the mean, and standard errors were calculated over 
all biological and technical replicates. The standard 
curve was generated by performing three independent 
serial dilutions of the DNA standard and by assaying 
each dilution in duplicate together with negative con-
trol reactions. In order to calculate the copy number 
of each target gene in the samples the standard curve 
method was used and the hydrogenase gene expression 
was normalised on the total RNA and later on the refer-
ence gene expression.
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