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In this paper, we study the problem of exponential stability for the Hopfield neural network with time-varying delays. Different
from the existing results, we establish new stability criteria by employing the method of variation of constants and Gronwall’s
integral inequality. Finally, we give several examples to show the effectiveness and applicability of the obtained criterion.

1. Introduction

Since Hopfield [1] proposed the Hopfield neural network
named after him in 1984, these types of artificial neural
networks have been widely applied in many aspects, such as
combinative optimization [2–4], image processing [5, 6],
pattern recognition [7], signal processing [8], communi-
cation technology [9], and so on. (e Hopfield neural
network has been extensively investigated in the past de-
cades [10–26]. In the practical application of neural net-
works, because of the time delay of information transmission
between two neurons and the influence of hardware, such as
the limited speed of switch, the phenomenon of time delay is
inevitable. (erefore, the introduction of a time delay in the
study of neural networks has widely been of concern
[15–23]. Because the number of hidden layers and the initial
value of connection weights of the neural network are
random, the stability of the system is not being guaranteed. If
the control system is unstable, the convergence of the
network will lose its foundation. (erefore, stability is a very
important property for neural networks. In the study of the
stability of Hopfield neural networks, researchers usually
construct Lyapunov functional and combine with linear
matrix inequality or integral inequality to analyze the

stability of the system. It is no doubt that Lyapunov’s method
is a powerful tool in the study of the stability of differential
equations, but how to construct an appropriate Lyapunov
functional is the key to solve these problems. In addition,
constructing different Lyapunov functions for the same
system will lead to different stability ranges, which is also an
uncertain problem. Besides, the operation of the linear
matrix inequality is very complicated. Zhang et al. proposed
a method based on weight delay to study the stability of a
class of recurrent neural networks with time-varying delays
[25]. (ey obtained a new delay-dependent stability crite-
rion for neural networks with time-varying delays by con-
structing a Lyapunov–Krasovskii functional and using
Jensen’s integral inequality. However, the results obtained by
the authors are complicated. To describe the complexity of
these results, we give another specific example. Wang et al.
[27] studied the delay-dependent stability of a class of
generalized continuous neural networks with time-varying
delays in system (1) (for the meaning of parameters in the
formula, please refer to article [27]):

_u(t) � − Au(t) + B􏽢f(u(t)) + C􏽢f(u(t − τ(t))) + 􏽢I. (1)

(ey shift the equilibrium point u∗ of system (1) to the
origin by the transformation x(t) � u(t) − u∗ and obtain
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_x(t) � − Ax(t) + Bf(x(t)) + Cf(x(t − τ(t))). (2)

(ey constructed a new Lyapunov–Krasovskii functional
and then used Jensen’s integral inequality to obtain the
following criterion for system (2). (e origin of system (2) is
globally asymptotically stable, if for given diagonal matrices
Δ1 and Δ2 and positive scalars τm, τM, ρm, ρM, βk, cj, n1, and
n2, there exist symmetric definite matrices
P> 0, Ws > 0, Ss > 0, Qk > 0, and Rj > 0, positive definite di-
agonal matrices V> 0, U> 0,Λ1 > 0, andΛ2 > 0, andmatrices
Gr and J such that the following inequalities hold, s � 1, 2, 3:

Ω − Ξ1 − Ξ2 < 0,

S3 J

∗ S3

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦≥ 0, max βk, ciρM < 1,

S2 Gr

∗ S2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦≥ 0, r � 1, . . . ,
n1 + n2( 􏼁 n1 + n2 − 1( 􏼁

2
.

(3)

(ese symbols are defined in [27].
(ere are some problems with this result:

(i) Do the matrices P, Ws, Ss, Qk, and Rj exist?
(ii) For such complex matrix inequalities, how does one

ensure the existence of the unknown matrices?
(iii) If they exist, how are they represented?

If one does not solve these problems, the stability of the
original equation remains unsolved. In fact, the stability
depends only on the coefficient matrices of the system, not
on the existence of those unknown matrices.

We have also paid attention to some recent research
results [28–30]. (eir conclusions are also based on the
creation of the Lyapunov–Krasovskii functional. (ey all
assume that some unknown matrices satisfying some matrix
inequalities make the system stable, and it is unknown
whether these unknown matrices exist.

To solve this problem, in this paper, we will use the
technique of integral inequality to construct a new stability
criterion, which is only related to the coefficient matrix and
independent of those unknown matrices.

Gronwall’s integral inequality plays an important role in
the qualitative theory of differential equations. Many re-
searchers extended it and used it to solve numerous prob-
lems [31–36]. However, it is rare to study the stability of a
neural network system. In this paper, we use Gronwall’s
inequality to avoid the above problems and obtain new
criteria for the exponential stability of a class of Hopfield
neural network with a time-varying delay. Similar to the
model studied byWang et al. [27], we consider the following
system:

_x(t) � − Ax(t) + Bg(x(t)) + Cg(x(t − τ(t))) + U,

x(t) � κ(t), ∀t ∈ [− τ, 0],
􏼨 (4)

where x(t) � (x1(t), x2(t), . . . , xn(t))T denotes the neuron
state vector, g(x(t)) � (g1(x1(t)), g2(x2
(t)), . . . , gn(xn(t)))Tis the activation function, and
g(x(t − τ(t))) is the time-delay term.
A � diag a1, a2, . . . , an􏼈 􏼉(ai > 0, i � 1, 2, . . . , n),B � (bij)n×n,
and C � (cij)n×n are the interconnected matrices with ap-
propriate dimensions. (e initial state κ(t) is a continuously
differentiable vector function. U is the bias value, and τ(t)

denotes transmission delay and satisfies
0≤ τ(t)≤ τ, τ′(t)≤ τ∗ ≤ 1, where τ and τ∗ are constants.

In this paper, we define the norms of the n × n matrix
M � (aij)n×n and the n-dimensional vector as follows:

‖M‖ � max
1≤j≤n

􏽘

n

i�1
aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
⎧⎨

⎩

⎫⎬

⎭,

‖x(t)‖ �

��������

x(t)
Tx(t)

􏽱

.

(5)

We assume that all activation functions
gi(i � 1, 2, . . . , n) satisfy the following conditions:

(i) gi: R⟶ R is continuous and differentiable, and
gi(0) � 0

(ii) gi is bounded on R, that is, ‖gi(t)‖≤Gi for t ∈ R,
and Gi is a constant

(iii) ‖gi(y) − gi(x)‖‖≤Li‖‖y − x‖ for all y, x ∈ R, where
Li is a constant, and let L � max L1, L2, . . . , Ln􏼈 􏼉

Lemma 1. If ‖A− 1(B + C)‖L< 1 and the activation function
g satisfies conditions (i)–(iii), then the equilibrium point of
system (4) must exist and be unique.

Proof. If u∗ � (u∗1 , u∗2 , . . . , u∗2 )T is the equilibrium point of
system (4), then

− Au∗ +(B + C)g u∗( 􏼁 + U � 0. (6)

According to the definition of A, the inverse matrix A− 1

of A exists; therefore, (6) is equivalent to

− u∗ + A− 1
(B + C)g u∗( 􏼁 + A− 1U � 0. (7)

Let W � A− 1(B + C) � (wij)n×n and I � A− 1U, then (7)
can be expressed as

− u∗ + Wg u∗( 􏼁 + I � 0. (8)

To prove that (8) is true, we create the following
mapping:

H(u) � Wg(u) + I. (9)

From conditions (i)–(iii), g(u) is a continuous mapping
of Rn⟶ Rn; then, H(u) is also a continuous mapping of
Rn⟶ Rn. According to the definition of the norm of the n-
dimensional vector and assumption (ii), we have that
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‖H‖ �

����������������������

􏽘

n

j�1
􏽘

n

i�1
wjigi ui( 􏼁 + Ii􏼐 􏼑⎛⎝ ⎞⎠

2
􏽶
􏽴

≤

���������������������

􏽘

n

j�1
􏽘

n

i�1
wji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Gi + Ii

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼒 􏼓⎛⎝ ⎞⎠

2
􏽶
􏽴

≤

��������������������

􏽘

n

j�1
􏽘

n

i�1
wji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌G + Ii

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼒 􏼓⎛⎝ ⎞⎠

2
􏽶
􏽴

,

(10)

where G � max G1, G2, . . . , Gn􏼈 􏼉.
Let ρ≤

���������������������
􏽐

n
j�1 (􏽐

n
i�1(|wji|G + |Ii|))

2
􏽱

, then
Ω � x|‖x‖≤ ρ􏼈 􏼉 is a bounded convex set and H(u) is a
continuous mapping of Ω⟶Ω . According to Brouwer’s
fixed-point theorem, there must exist u∗ ∈ Ω such that
H(u∗) � u∗. As formula (8) holds, there exists an equilib-
rium point u∗ in system (4). To prove the uniqueness of the
equilibrium point, we suppose v∗ � (v∗1 , v∗2 , . . . , v∗n )T is
another equilibrium point of system (4). (en,

􏽘

n

j�1
u
∗
j − v
∗
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 􏽘
n

j�1
􏽘

n

i�1
wji gi u

∗
i( 􏼁 − gi v

∗
i( 􏼁( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽘
n

j�1
􏽘

n

i�1
wji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 gi u
∗
i( 􏼁 − gi v

∗
i( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼒 􏼓⎛⎝ ⎞⎠

� 􏽘
n

i�1
􏽘

n

j�1
wji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Li u
∗
i − v
∗
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼒 􏼓⎛⎝ ⎞⎠

≤ 􏽘
n

i�1
‖W‖L u

∗
i − v
∗
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

≤ ‖W‖L 􏽘
n

i�1
u
∗
i − v
∗
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(11)

We have

􏽘
n

j�1
u
∗
j − v
∗
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(1 − ‖W‖L) ≤ 0, (12)

i.e.,

􏽘

n

j�1
u
∗
j − v
∗
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 1 − A− 1
(B + C)

����
����L􏼐 􏼑≤ 0. (13)

According to the condition 1 − ‖A− 1(B + C)‖L> 0, we
have 􏽐

n
j�1 |u∗j − v∗j | � 0 and v∗ � u∗. (is equation shows

that the equilibrium point is unique.
Let the equilibrium point of system (4) be x∗ and

y(t) � x(t) − x∗. In this situation, system (4) can be re-
written as

_y(t) � − Ay(t) + Bf(y(t)) + Cf(y(t − τ(t))),

y(t) � η(t), ∀t ∈ [− τ, 0],
􏼨 (14)

where f(y) � g(y + x∗) − g(x∗), f(y(t)) � (f1(y1(t)),

f2(y2(t)), . . . , fn(yn(t))T, and the initial state is
η(t) � x(t) − x∗, t ∈ [− τ, 0]. (e meaning of the other

symbols is the same as that of system (6). Let activation function
fi(z)(i � 1, 2, . . . , n) be a continuous function that satisfies a
Lipschitz condition for all z ∈ R. (at is, assume that

fi z1( 􏼁 − fi z2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ Li z1 − z2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (15)

for some constant Li > 0 and for all z1, z2 ∈ R. □

Definition 1. System (14) is said to be globally exponentially
stable, if there exists a constant M≥ 1 and α> 0, such that

‖y(t)‖≤M sup
s∈[− τ,0]

(‖y(s)‖)exp(− αt), ∀t> 0. (16)

Lemma 2 (Gronwall’s inequality [31]). Let K be a non-
negative constant and v(t) and p(t) are nonnegative and
continuous functions on the interval α≤ t≤ β and satisfy the
inequality

v(t)≤K + 􏽚
b

a
p(s)v(s)ds, a≤ t≤ b, (17)

then

v(t) ≤K exp 􏽚
b

a
p(s)ds􏼠 􏼡, a≤ t≤ b. (18)

2. Stability Analysis

In this section, we discuss the global exponential stability
condition for the trivial solution of system (14).

(e linear term in system (14) can be expressed as

_y(t) � − Ay(t). (19)

(e fundamental solution matrix of (19) is

exp[− At] �

e
− a1t 0

e
− a2t

⋱
0 e

− ant

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (20)

Let the initial time t � 0 and the corresponding initial
value be η(0) � (η1, η2, . . . , ηn)T, then the solution of system
(19) can be expressed as

Y(t) � exp(− At)η(0). (21)

For convenience, we denote ω � min a1, a2, . . . , an􏼈 􏼉.

Theorem 1. Suppose that the activation function f(•) sat-
isfies conditions (i)–(iii) with the Lipschitz constant L; if

(‖B‖ +‖C‖)L
1

1 − τ∗
exp(ωτ) − ω< 0, (22)

then the trivial solution of system (14) is globally exponentially
stable.

Proof. For t � 0, the initial value is η � (η1, η2, . . . , ηn)T; by
using the method of constant variation, we obtain that the
solution of system (14) satisfies the following equation:
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y(t) � exp(− At)η + 􏽚
t

0
exp(− A(t − s))(Bf(y(s)) + Cf(y(s − d(s))))ds. (23)

Taking the norm on both sides of the above formula,
without loss of generality, for t> τ, we obtain

‖y(t)‖≤ ‖exp(− At)η‖ + 􏽚
t

0
exp(− A(t − s))(Bf(y(s)) + Cf(y(s − d(s))))ds

�������

�������

≤ ‖exp(− At)η‖ + 􏽚
t

0
exp(− A(t − s))Bf(y(s))ds

�������

�������

+ 􏽚
t

0
exp(− A(t − s))Cf(y(s − τ(s)))ds

�������

�������

≤ exp(− ωt)‖η‖ + 􏽚
t

0
‖exp(− A(t − s))‖‖B‖‖f(y(s))‖ds

+ 􏽚
t

0
‖exp(− A(t − s))‖‖C‖‖f(y(s − τ(s)))‖ds

≤ exp(− ωt)‖η‖ + 􏽚
t

0
‖exp(− ω(t − s))‖‖B‖L‖y(s)‖ds

+ 􏽚
t

0
exp(− ω(t − s))‖C‖L‖y(s − τ(s))‖ds

≤ exp(− ωt)‖η‖ + 􏽚
t

0
‖exp(− ω(t − s))‖‖B‖L‖y(s)‖ds

+ 􏽚
t

0
exp(− ω(t − s))‖C‖L‖y(s − τ(s))‖

1
1 − τP(s)

d(s − τ(s))

≤ exp(− ωt)‖η‖ + 􏽚
t

0
‖exp(− ω(t − s))‖‖B‖L‖y(s)‖ds

+ 􏽚
t− τ(s)

− τ(s)
exp(− ω(t − s − τ(s)))‖C‖L‖y(s)‖

1
1 − τ∗

ds

≤ exp(− ωt)‖η‖ + 􏽚
t

0
‖exp(− ω(t − s))‖‖B‖L‖y(s)‖ds

+ 􏽚
t

− τ
exp(− ω(t − s − τ))‖C‖L‖y(s)‖

1
1 − τ∗

ds

≤ exp(− ωt)‖η‖ + 􏽚
t

0
‖exp(− ω(t − s))‖‖B‖L‖y(s)‖ds,

+ 􏽚
t

− τ
exp(− ω(t − s − τ))‖C‖L‖y(s)‖

1
1 − τ∗

ds

≤ exp(− ωt)‖η‖ +‖B‖L exp(− ωt) 􏽚
t

− τ
exp(ωs)‖y(s)‖ds

+‖C‖L
1

1 − τ∗
exp(− ωt)exp(ωτ) 􏽚

t

− τ
exp(ωs)‖y(s)‖ds

� exp(− ωt)‖η‖

+ (‖B‖ +‖C‖)L
1

1 − τ∗
exp(ωτ)􏼒 􏼓exp(− ωt) 􏽚

t

− τ
exp(ωs)‖y(s)‖ds.

(24)
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According to Lemma 1 (Gronwall’s inequality), we
obtain

exp(ωt)‖y(t)‖≤ ‖η‖exp ‖B‖L +‖C‖L
1

1 − τ∗
exp(ωτ)􏼒 􏼓 􏽚

t

− τ
ds􏼠 􏼡

� ‖η‖exp (‖B‖ +‖C‖)L
1

1 − τ∗
exp(ωτ)􏼒 􏼓(t + τ)􏼒 􏼓

� ‖η‖exp (‖B‖ +‖C‖)L
1

1 − τ∗
exp(ωτ)􏼒 􏼓τ􏼒 􏼓

· exp (‖B‖ +‖C‖)L
1

1 − τ∗
exp(ωτ)􏼒 􏼓t􏼒 􏼓.

(25)

(erefore,

‖y(t)‖≤ ‖η‖exp (‖B‖ +‖C‖)L
1

1 − τ∗
exp(ωτ)􏼒 􏼓τ􏼒 􏼓

· exp (‖B‖ +‖C‖)L
1

1 − τ∗
exp(ωτ)􏼒 􏼓 − ω􏼒 􏼓t.

(26)

Since ((‖B‖ + ‖C‖)L(1/1 − τ∗)exp(ωτ)) − ω< 0, then the
delay system (14) is globally exponentially stable. (e proof
is completed. □

Remark 1. How to obtain better stability results in time-delay
systems has been the concern of many scholars. Some scholars
use improved integral inequality techniques and construct
better Lyapunov–Krasovskii functional and estimate its de-
rivative to obtain new results. In [29], the authors discuss the
exponential stability and generalized dissipative analysis of
time-delay generalized neural networks. Based on Lyapu-
nov–Krasovskii functional (LKF) andWirtinger single integral
inequality (WSII) and Wirtinger double integral inequality
(WDII) techniques, they establish new criteria for exponential
stability of generalized neural networks with delays. However,
as we see, their results are still based on the assumption that
there are some unknown symmetric matrices. (ey only used
some examples to verify the validity of the results, but failed to
prove the existence of these unknown symmetric matrices
theoretically. In this paper, the stability criterion is only related
to the coefficient matrix of the system and has nothing to do
with other unknown matrices.

Next, we consider several special cases.
For the following system without time delay,

_y(t) � − Ay(t) + Bf(y(t)),

y(0) � η(0),
􏼨 (27)

we have the following corollary.

Corollary 1. Suppose that the activation function satisfies the
Lipschitz condition; if ‖B‖L − ω< 0, the trivial solution of
system (27) is globally exponentially stable.

For the following system with constant time delay,

_x(t) � − Ax(t) + Bg(x(t)) + Cg(x(t − τ)) + U,

x(t) � κ(t), ∀t ∈ [− τ, 0],
􏼨 (28)

we can get the following corollary.

Corollary 2. Suppose that the activation function satisfies the
Lipschitz condition; if ((‖B‖ + ‖C‖)L exp(ωτ)) − ω< 0, the
trivial solution of system (28) is globally exponentially stable.

3. Numerical Examples

In this section, we provide four illustrative examples to
demonstrate the effectiveness of (eorem 1.

Example 1. We consider the following two-dimensional
neural network model without delay:

_x(t)

_y(t)
􏼠 􏼡 � − A

x(t)

y(t)
􏼠 􏼡 + B

f1(x(t))

f2(y(t))
􏼠 􏼡, (29)

where the activation functionfi(u) � tanh(u)(i � 1, 2)

satisfies the Lipschitz condition with the Lipschitz constant
L � 1.

We take

A �
2 0

0 2
􏼢 􏼣,

B �
1 0.8

0.4 − 0.5
􏼢 􏼣,

(30)

and then, for ω � 2, ‖B‖ � 1.4 andL‖B‖ − ω � − 0.6< 0.
When t � 0, the initial value is (x(0), y(0)) � (− 10, 10).
According to Corollary 1, the zero solution of system (31) is
exponentially stable, and the state rail diagram of the system
is shown in Figure 1.

If we take A �
2 0
0 1􏼢 􏼣 and B �

5 − 20
10 − 10􏼢 􏼣, then

ω � 1, ‖B‖ � 30, and L‖B‖ − ω � 28> 0. When t � 0, the
initial value is (x(0), y(0)) � (− 10, 10). (e state rail dia-
gram of the system is shown in Figure 2. According to the
literature [36], we know that system (31) is global asymptotic
stability, but we can see that it is not exponentially stable
from Figure 2.
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Example 2. We consider the following two-dimensional
neural network model with constant delay:

_x(t)

_y(t)
􏼠 􏼡 � − A

x(t)

y(t)
􏼠 􏼡 + B

f1(x(t))

f2(y(t))
􏼠 􏼡 + C

f1(x(t − τ))

f2(y(t − τ))
􏼠 􏼡,

(31)

where the activation function fi(u) � tanh(u), i � 1, 2,
satisfies the Lipschitz condition and L � 1.

If we take

A �
2 0

0 2
􏼢 􏼣,

B �
0.1 0.3

0.2 − 0.2
􏼢 􏼣,

C �
0.2 − 0.1

− 0.4 0.3
􏼢 􏼣,

(32)

time delay τ � 0.1, ω � 2, ‖B‖ � 0.8, and ‖C‖ � 1, then
((‖B‖ + ‖C‖)L exp(ωτ)) − ω ≈ − 0.0107< 0. According to
Corollary 2, the zero solution of system (33) is exponentially
stable. When t � 0, the initial value is

(x(0), y(0)) � (− 10, 10). (e state rail diagram of the
system is shown in Figure 3.

Example 3. We consider the following two-dimensional
neural network model with variable delay:

_x(t)

_y(t)
􏼠 􏼡 � − A

x(t)

y(t)
􏼠 􏼡 + B

f1(x(t))

f2(y(t))
􏼠 􏼡 + C

f1(x(t − τ(t)))

f2(y(t − τ(t)))
􏼠 􏼡,

(33)

where the activation function fi(u) � tanh(u), i � 1, 2,
satisfies the Lipschitz condition andL � 1.

If we take

A �
2 0

0 2
􏼢 􏼣,

B �
0.1 0.3

0.2 − 0.2
􏼢 􏼣,

C �
0.2 − 0.1

− 0.4 0.3
􏼢 􏼣,

(34)
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Figure 1: (e state rail diagram of system (29): (L‖B‖ − ω< 0).
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Figure 2: (e state rail diagram of system (29): (L‖B‖ − ω< 0).
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and time delay τ(t) � 0.1 sin(t) + 0.1, then ω � 2, ‖B‖ � 0.5,
‖C‖ � 0.6, τ � 0.2, τ∗ � 0.1, and ((‖B‖ + ‖C‖)L(1/
1 − τ∗)exp(ωτ)) − ω ≈ − 0.1767< 0. According to (eorem
1, the zero solution of system (33) is exponentially stable.
When t � 0, the initial value is(x(0), y(0)) � (− 10, 10),
and the state rail diagram of the system is shown in
Figure 4.

If we take

A �
2 0

0 2
􏼢 􏼣,

B �
0.1 0.3

0.2 − 0.2
􏼢 􏼣,

C �
0.2 − 0.1

− 0.4 0.3
􏼢 􏼣,

(35)

and time delay τ(t) � 0.1 sin(t) + 0.1, then
ω � 2, ‖B‖ � 11, ‖C‖ � 10.3, τ � 0.2,

τ∗ � 0.1, and ((‖B‖ + ‖C‖)L(1/1 − τ∗)exp(ωτ))

− ω ≈ 33.31> 0. When t � 0, the initial value is
(x(0), y(0)) � (− 1, 1). (e state rail diagram of the system
is shown in Figure 5. According to the literature [36], we
know that system (33) is global asymptotic stability, but we
can see that it is not exponentially stable from Figure 5.

Remark 2. In [30], the author also gives a two-dimensional
example. According to the criterion of exponential stability
obtained in paper [30], it is necessary to find some sym-
metric matrices that meet the specified matrix inequalities.
Although the authors can find these matrices, the results
obtained by this method are accidental and uncertain and
they cannot guarantee the existence of symmetric matrices
that meet the conditions. (e stability judgment method
used in the example in this paper is according to the data of
the coefficient matrix without the unknown parameters or
matrix of the third party. Although the result is relatively
conservative, this is a sufficient condition and has obvious
advantages for judging the stability of the system.
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Figure 3: (e state rail diagram of system (31):
((‖B‖ + ‖C‖)L exp(ωτ) − ω< 0).
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4. Conclusion

In this work, we have studied the exponential stability for the
Hopfield neural network with a time-varying delay. We use
the method of variation of constants of ordinary differential
equations to obtain an equation satisfied by the state variable
of the neural network. (en, we used Gronwall’s inequality
to analyze this system and obtained new criteria for the
exponential stability of the neural networks with time-
varying delay. Our result is related only to the coefficient
matrix of the system and not to the existence of the other
unknown matrices. It is easy to test the exponential stability
for specific systems by using these criteria.
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