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Perpetual points have been defined in mathematics recently, and they arise by setting accelerations and jerks equal to zero for
nonzero velocities. 'e significance of perpetual points for the dynamics of mechanical systems is ongoing research. In the linear
natural, unforced mechanical systems, the perpetual points form the perpetual manifolds and are associated with rigid body
motions. Extending the definition of perpetual manifolds, by considering equal accelerations, in a forced mechanical system, but
not necessarily zero, the solutions define the augmented perpetual manifolds. If the displacements are equal and the velocities are
equal, the state space defines the exact augmented perpetual manifolds obtained under the conditions of a theorem, and a
characteristic differential equation defines the solution. As a continuation of the theorem herein, a corollary proved that different
mechanical systems, in the exact augmented perpetual manifolds, have the same general solution, and, in case of the same initial
conditions, they have the same motion. 'e characteristic differential equation leads to a solution defining the augmented
perpetual submanifolds and the solution of several types of characteristic differential equations derived. 'e theory in a few
mechanical systems with numerical simulations is verified, and they are in perfect agreement. 'e theory developed herein is
supplementing the already-developed theory of augmented perpetual manifolds, which is of high significance in mathematics,
mechanics, and mechanical engineering. In mathematics, the framework for specific solutions of many degrees of freedom
nonautonomous systems is defined. In mechanics/physics, the wave-particle motions are of significance. In mechanical engi-
neering, some mechanical system’s rigid body motions without any oscillations are the ultimate ones.

1. Introduction

Perpetual points (PPs) have been defined in mathematics
recently [1]. 'e PPs of a dynamical system are obtained by
setting accelerations and jerks of the equations of motion of
a mechanical system equal to zero for nonzero velocities.
Currently, there are four research directions relevant to the
perpetual points. 'e first research direction, including
experiments, is strictly relevant to developing the perpetual
point theory [1–4]. 'e second research direction is to
identify hidden and chaotic attractors [5–13]. 'e third
research direction is to identify dissipative systems [14–18],
and the fourth direction is about their use in mechanics
[19–22]. In [19, 20] with proved theorems, the PPs in linear
unforced natural mechanical systems are associated with
rigid body modes/motions, and they form the perpetual
manifolds.

Moreover, the perpetual manifolds of some nonlinear
unforced systems which are associated with rigid body
motions in [19, 20] are shown. Based on the correlation of
the PPs with the rigid body modes/motions, some new
definitions of mechanical systems in [22] are derived. 'e
mechanical systems that admit rigid body modes as solu-
tions are called perpetual mechanical systems [22]. 'e
perpetual manifold’s definition extended in [22] to the
augmented perpetual manifolds defined by the state space of
the solutions of external forced mechanical systems motions
that all the accelerations are equal but not necessarily zero.
'e state spaces, with the solutions that all generalized
coordinates are equal and the velocities are equal, are called
exact augmented perpetual manifolds. Based on these new
definitions, a theorem written in [21] and proved in [22]
defines the conditions for exact augmented perpetual
manifolds solutions of mechanical systems. A corollary
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proved that, in exact augmented perpetual manifolds of
harmonic excitation, the N-DOF mechanical system’s mo-
tion is particle wave. 'e theorem is applied in three ex-
amples, where, in one of them, explicit solution of two types
of external forces in the exact augmented perpetual mani-
folds is defined.

'ere are significant research efforts in examining rigid
body equations’ validity in modeling elastic structures, for
example, [23, 24]. 'e examination of a viscoelastic bar with
end loads targeting application in rails, including more
significant terms in modeling and further in the nonlinear
dynamic analysis, is done in [23]. Also, in [24], the plane and
antiplane dynamic problems of an elastic rectangle, with
asymptotic and exact dynamic analysis, were examined to
identify the limitations of the rigid body formalism in elastic
structures.

'is article continues the work done in [22] by proving a
corollary arising from the theorem in [21, 22]. 'e explicit
analytical form of the exact augmented perpetual manifolds
for several external forces is then given.

In the numerical section, to validate the analytical re-
sults, three examples are examined.

'e first example is a two-DOF mechanical system in
translational motion. A shaft in torsional motion with a
nonlinear energy sink attachment, examined through finite
element model, is the second example.'e third example is a
five-degrees-of-freedom mechanical system.

2. Theory

In Section 2.1, the theory developed in [22], relevant to the
corollary, is presented. In Section 2.2, there are the statement

and the proof of corollary. 'e last section, Section 2.3, is
about the augmented perpetual submanifold’s explicit an-
alytical forms for specific external forces.

2.1. Preliminary. In this section, preliminary definitions and
theory, developed in other articles, are presented. 'e
perpetual points have been defined recently as the sets of
points that arise when the accelerations and jerks of the
equations describing the motion of a mechanical system, for
nonzero velocities, are set equal to zero [1].

In cases where the perpetual points are not just a few
points but infinite, they form the perpetual manifolds [20]. A
mechanical system that admits rigid body motions as a
solution is called a perpetual mechanical system [22], and
the rigid body motions with perpetual manifolds [19, 20] are
associated. 'e concept of perpetual manifolds in [22] ex-
tended to augmented perpetual manifolds, which are defined
when all mechanical systems’ accelerations are equal to each
other but not necessarily equal to zero [22]. 'e augmented
perpetual manifolds of a mechanical system, where all the
generalized velocities are equal and the generalized dis-
placements are equal, form the exact augmented perpetual
manifolds [22]. Based on the exact augmented perpetual
manifolds definition, the following theorem stated in [21]
and proved in [22] arose:

Any N(≥ 2)-degrees-of-freedom discrete mechanical
system with generalized coordinates qi(t) can be written as a
perpetual mechanical system with external forcing that is
described by the following system of differential equations:

Mi,j t, ql(t), _qm(t)( 􏼁􏽨 􏽩 × €qi(t)􏼈 􏼉 + Ci,j􏽨 􏽩 × _qi(t)􏼈 􏼉 + Ki,j􏽨 􏽩 × qi(t)􏼈 􏼉 + F
NL
i qn(t), _qo(t)( 􏼁􏽮 􏽯

� Fi t, qp(t), _qq(t)􏼐 􏼑􏽮 􏽯 for i � 1, . . . , N, j � 1, . . . , N, l, m, n, o, p, q ∈ 1, 2, . . . , N{ } qi(t), _qi(t), €qi(t)( 􏼁 ∈ R3
,

(1)

and it admits unique solutions for the following matrices:
[Mi,j] is a real N × N inertia matrix with elements that can
be nonsmooth, nonlinear, and time- and state-dependent
functions but having at least one nonzero sum of k-row for
all time instants, [Ki,j] and [Ci,j], are real N × N constant,
stiffness and proportional to velocity vector, matrices, FNL

i􏼈 􏼉

is an N × 1 vector of nonlinear internal forces with elements

that can be state-dependent nonlinear functions which can
be nonsmooth but single-valued for rigid body motions, and
FNL

i (qs, 0) � 0 for qs ∈ R, Fi􏼈 􏼉 is a real N × 1 vector of
external forces with elements that can be time- and state-
dependent and may be nonlinear and nonsmooth functions,
if the external forces (Fi) with the reference k-inertia ex-
ternal force (Fk) are related as follows:

Fi t, qa(t), _qa(t)( 􏼁 �
􏽐

N
j�1 Mi,j t, qa(t), _qa(t)( 􏼁 · Fk t, qa(t), _qa(t)( 􏼁

􏽐
N
j�1 Mk,j t, qa(t), _qa(t)( 􏼁

, for i, k ∈ 1, 2, . . . , N{ }, and qa(t) � qi(t), _qa(t) � _qi(t),

(2)
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and then the solution of any of the following differential
equations,

€qa (t) �
Fk t, qa(t), _qa(t)( 􏼁

􏽐
N
j�1 Mk,j t, qa(t), _qa(t)( 􏼁

� G t, qa(t), _qa(t)( 􏼁,

(3)

with vector field G, for the following set of initial conditions
at the time instant t0,

qi t0( 􏼁 � qa t0( 􏼁, for i � 1, . . . , N, and qa t0( 􏼁 ∈ R, (4a)

_qi t0( 􏼁 � _qa t0( 􏼁, for i � 1, . . . , N and qa t0( 􏼁 ∈ R, (4b)

is defining the generalized coordinates qi and their velocities
in the exact augmented perpetual manifold, Xa �

(t, qa(t), . . . , qa(t), _qa(t), . . . , _qa(t)), (t, qa(t), _qa(t)) ∈ R3􏼈 􏼉

(see (5)) [21, 22].
'e basis of the exact augmented perpetual manifold is

the augmented perpetual submanifold A, and the following
triple defines it [22]:

A � t, qa(t), _qa(t)( 􏼁 ∈ R3
􏽮 􏽯. (5)

In the next section, based on the theorem above, there is
the corollary.

2.2. Corollary

Corollary 1. Two externally forced different discrete per-
petual mechanical systems, with an exact augmented per-
petual manifold which arises by the same vector field, have the
same general solution in the exact augmented perpetual

manifold. If they also have the same initial conditions, then
the functions defining their motions are coinciding.

Proof. 'e exact augmented perpetual manifold solution by
equation (3) arises with a vector field G(t, qa(t), _qa(t)).
'erefore, the two systems with the same vector field in
equation (3) have the same general solution, and if they start
their motion from the same initial conditions, they have the
same functions defining their motion.

'erefore, equation (3) defines the exact augmented
perpetual manifold as the characteristic differential equation
of the exact augmented perpetual manifold and applies to
any perpetual mechanical system. Unless otherwise stated,
all perpetual mechanical systems, following the theorem
requirements ending up to a solvable characteristic differ-
ential equation (3), have the same general solution.

In this corollary, the equations might be the same for
angular and translational generalized coordinates, meaning
that the two systems’ inertia elements do not have the same
motion, but the same functions define their motion. □

2.3. Several Types of Exact Augmented Perpetual Manifolds.
In this section, several types of external forces that fulfil the
theorem’s requirements are considered. Each system’s
motion is in an exact augmented perpetual manifold, de-
scribed by equation (3) solutions.

In the exact augmented perpetual manifolds, the re-
sponses/velocities of all masses are the same, which means
that the N-DOF system is moving like a particle with ab-
solute synchronization of all displacements.

A time-dependent vector field in the exact augmented
perpetual manifolds is given by

€qa (t) � G t, qa(t), _qa(t)( 􏼁 �
Fk t, qa(t), _qa(t)( 􏼁

􏽐
N
j�1 Mk,j t, qa(t), _qa(t)( 􏼁

�
fk(t)

m
, m ∈ R≠0. (6)

In case of constant inertia matrix, equation (6) takes the
following form:

€qa (t) �
Fk t, qa(t), _qa(t)( 􏼁

􏽐
N
j�1 Mk,j

�
fk t, qa(t), _qa(t)( 􏼁

m
� G t, qa(t), _qa(t)( 􏼁, (7)

and the denominator in the right-hand side is nonzero and
positive for natural mechanical systems.

In case of a state-dependent inertia matrix, equation (6)
for specific types of external forces takes the following form:

€qa (t) �
Fk t, qa(t), _qa(t)( 􏼁

􏽐
N
j�1 Mk,j t, qa(t), _qa(t)( 􏼁

�
σ · 􏽐

N
j�1 Mk,j t, qa(t), _qa(t)( 􏼁 · fk t, qa(t), _qa(t)( 􏼁

􏽐
N
j�1 Mk,j t, qa(t), _qa(t)( 􏼁

�

� σ · fk t, qa(t), _qa(t)( 􏼁 �
fk t, qa(t), _qa(t)( 􏼁

m
� G t, qa(t), _qa(t)( 􏼁.

(8)

Mathematical Problems in Engineering 3



and they are applied in kth− mass. 'e theorem’s validity
requires that the rest of applied forces in all the other masses
should be correlated through equation (2). In the case of a

vector field given by the right-hand side of equation (6),
equation (2) that defines the rest of forces takes the following
form:

Fi t, qa(t), _qa(t)( 􏼁 �
􏽐

N
j�1 Mi,j t, qa(t), _qa(t)( 􏼁

􏽐
N
j�1 Mk,j t, qa(t), _qa(t)( 􏼁

· Fk t, qa(t), _qa(t)( 􏼁 �

� 􏽘

N

j�1
Mi,j t, qa(t), _qa(t)( 􏼁 · σ · fk t, qa(t), _qa(t)( 􏼁, for � i, k ∈ 1, 2, . . . , N{ }.

(9)

Six types of external forces are considered, and, in Ta-
ble 1, the explicit forms of the displacements and velocities,
for each considered type, in the exact augmented perpetual
manifolds are provided. Irrespective of their original system
equations of motion, these functions are the same for all
mechanical systems with the same external forces in the
exact augmented perpetual manifolds.

More precisely, each type of force f
(r)
k leads to a solution

qa,r(t) through equation (11) or (24) and the triple
(t, qa,r, _qa,r) forms the augmented submanifold A(r).
Depending on the number of degrees of freedom, using the
augmented submanifolds A(r) as a basis, the exact aug-
mented manifold X is formed.

'e considered six external forces of Table 1 lead easily to
an explicit solution of equation (6) as follows:

(1) Linear time varying forces (f
(1)
k (t)):

€qa,1 (t) �
f

(1)
k (t)

m
�
η · t + c

m
� G

(1)
(t),with (η, c) ∈ R2

.

(10)

'e solution of equation (10) is defined in [22] and is
shown in Table 1. 'is solution leads to the aug-
mented perpetual submanifold A(1) and is given by
equations (a)–(f) in Table 1.

(2) Single frequency harmonic forces (f
(2)
k ):

€qa,2 (t) �
f

(2)
k (t)

m
�

Aex · sin ωex · t + θex( 􏼁

m
� G

(2)
(t),with Aex, θex( 􏼁 ∈ R2 andωex ∈ R≥0, (11)

where Aex is the amplitude, ωex and θex are the
external frequency and phase, respectively, and the
other forces should be in the form defined by
equation (9). 'e solution in [22] is given and in
Table 1 is presented. 'e augmented perpetual

submanifold A(2) is defined through the general
solution given by equations (17b)–(18b) in Table 1.

(3) Harmonic forces with Nf− frequencies (Nf ∈ N∗),
(f

(3)
k (t)):

G
(3)

(t) �
f

(3)
k (t)

m
�

􏽐
Nf

i�1 Aex,i · sin ωex,i · t + θex,i􏼐 􏼑

m
,with Aex,i, θex,i􏼐 􏼑 ∈ R2·Nf and,ωex,i ∈ R

Nf

≥ 0,
(12a)

considering that the other forces are following
equation (6), in the exact augmented perpetual
manifolds, the motion is described by

€qa,3 (t) �
􏽐

Nf

i�1 Aex,i · sin ωex,i · t + θex,i􏼐 􏼑

m
� G

(3)
(t),

(12b)

and _qa,3(t) and qa,3(t) are given similarly with single
and double integrations of equation (12b), in time,
respectively.'e general solution of equation (12b) is
shown in Table 1.'e equations ((c)-(h) presented in

Table 1) can be used to define the augmented per-
petual submanifold A(3)

Nf
.

(4) Harmonic forces with Nf− frequencies combined
with a function €V(t): for example, _V(t) is monotonic
for the considered time interval of motion, and the
form of the force (f

(4)
k (t)) is given by

G
(4)

(t) �
f

(4)
k (t)

m
�

􏽐
Nf

i�1 Aex,i · sin ωex,i · t + θex,i􏼐 􏼑 + €V(t)

m
,

(13a)

in case that the other forces follow equation (9), the
motion is described by
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�
�
�
�
�
�
�
�
�
�
�
�
��

C
1

−
C
2

·
(
t

−
t 0

)
􏽰

−
1)
>
0,
(1
6h

)
−
2

·

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
��

(
C
1

−
C
2

·
(
t

−
t 0

))
3

􏽱

/3
·
δ

·C
2

−
1/
δ

·
(
t

−
t 0

)
+
2

·

�
��

C
3 1

􏽱

/3
·
δ

·
C
2

+
q

a
,6

,+
(
t 0

),
(1
6k
)

−

−
1/
δ

·
(

�
�
�
�
�
�
�
�
�
�

�
�
��

C
3

−
C
2

·(
t

−
t 0

)
􏽰

−
1)
<
0,

(1
6p

)
2

·

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
��

(
C
3

−
C
2

·(
t

−
t 0

))
3

􏽱

/3
·δ

·
C
2

+
1/
δ

·
(
t

−
t 0

)
−
2

·

�
��

C
3 3

􏽱

/3
·
δ

·C
2

+
q

a
,6

,−
(
t 0

),
(1
6r
)

−
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qa,4(t) �
􏽐

Nf

i�1 Aex,i, sin ωex,i · t + θex,i􏼐 􏼑 + €V(t)

m
� G

(4)
(t),

(13b)

and, similarly, _qa,4(t) and qa,4(t), with direct inte-
gration in time of equation (13b), are given. 'e
augmented perpetual submanifold A(3)

Nf ,
€V is defined

through equations (d)-(i) in Table 1.
(5) Aerodynamic and time-dependent force

(f
(5)
k (t, _qk,5(t))):

f
(5)
k (t) � cd · _qk,5(t) + F

T
(t),with cd, F

T
􏼐 􏼑 ∈ R2

.

(14a)

For negative cd(cd ∈ R<0), the force is aerodynamic
drag, and, in case of positive cd(cd ∈ R>0), it is a
flutter. For positive _qk,5(t), positive FT is a throttle or
negative FT is a break and vice versa for negative
_qk,5(t). 'e other forces for the validity of theorem in
the exact augmented perpetual manifold must follow
equation (9) and must be given by

f
(5)
i t, _qa,5(t)􏼐 􏼑 �

􏽐
N
j�1 Mi,j t, qa(t), _qa(t)( 􏼁

m
· cd · _qa,5(t) + F

T
(t)􏼐 􏼑. (14b)

'en, in the exact augmented perpetual manifolds,
the solution is provided through equation (6) which
takes the following form:

€qa,5 (t) �
cd · _qa,5(t) + F

T
(t)

m
� G

(5)
t, _qa(t)( 􏼁. (14c)

For FT � ct(FT ∈ R≠0), the following change of
variables,

z(t) � _qa,5(t) +
F

T

cd

⇒€qa,5 � _z(t) �
cd

m
· z(t), (14d)

leads to the general solution of equations (14c) and
(14d):

z(t) � z t0( 􏼁 · e
cd/m· t− t0( ). (14e)

Once the velocities _qa,5(t), using equation (14d), are
defined, the displacements qa,5(t), with direct inte-
gration of equation (14e) in time, can be obtained,
and their forms are in Table 1. Equations (e) and (j)
in Table 1 are used to define the augmented perpetual
submanifold A(5).

(6) A special type of considered external force (f
(6)
k ) is

dry friction nonsmooth force in the following form
[25]:

f
(6)
k t, _qk,6(t)􏼐 􏼑 � − μd

k _qk,6(t)􏼐 􏼑 · F
N
k · sign _qk,6(t)􏼐 􏼑, (15a)

where FN
k ∈ R>0, is the normal force to the motion and μd

k is
the dynamic friction coefficient which is dependent on
velocity and is defined as in [25]:

μd
k _qk,6(t)􏼐 􏼑 �

μs
k

1 + δ · _qk,6(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,with μs

k, δ( 􏼁 ∈ R2
> 0. (15b)

In the exact augmented perpetual manifold, equation
(15a), considering equation (15b), takes the following form:

f
(6)
k t, _qa,6(t)􏼐 􏼑 � −

μs
k

1 + δ · _qa,6(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼠 􏼡 · F

N
k · sign _qa,6(t)􏼐 􏼑.

(15c)

'e other forces (f
(6)
i ) in the exact augmented perpetual

manifolds must satisfy equation (6) and must be in the
following form:

f
(6)
i t, _qa,6(t)􏼐 􏼑 �

􏽐
N
j�1 Mi,j t, qa(t), _qa(t)( 􏼁

m
· −

μs
k

1 + δ · _qa,6(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼠 􏼡 · F

N
k · sign _qa,6(t)􏼐 􏼑􏼠 􏼡. (15d)

'e existence of the system’s solutions is ensured when
convexification of the external forces (equations (15c) and
(15d)) takes place in all the equations, and then the system
will be a Fillipov system that has solutions [25, 26].

In this case, the dynamics are described by equation (6),
which takes the following explicit form:

€qa,6 (t) �
1
m

· −
μs

k

1 + δ · _qa,6(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼠 􏼡 · F

N
k · sign _qa,6(t)􏼐 􏼑􏼠 􏼡 � G

(6)
t, _qa(t)( 􏼁. (15e)
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A change of variables,

w(t) � _qa,6(t), (16a)

leads to

_w(t) � −
1
m

·
μs

k

1 + δ · |w(t)|
􏼠 􏼡 · F

N
k · sign(w(t)), (16b)

and, after convexification of the vector field, equation (16b)
takes the following form:

_w(t) ∈

−
1
m

·
μs

k

1 + δ · w(t)
􏼠 􏼡 · F

N
k , w(t)> 0,

1
m

· μs
k · F

N
k · [− 1, 1], w(t) � 0,

1
m

·
μs

k

1 − δ · w(t)
􏼠 􏼡 · F

N
k , w(t)< 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16c)

Equation (16c) with differential inclusions forms a Fil-
lipov system, and the solution arises by considering initial
conditions in the three individual vector fields as follows.

In case of positive initial velocities in the mechanical
system (w(t0) ∈ R>0), as long as the velocity is positive, the
motion is described by the first vector field of equation (16c)
and in explicit form is given by

_w+(t) � −
1
m

·
μs

k

1 + δ · w+(t)
􏼠 􏼡 · F

N
k . (16d)

Consider a change of variables,

v(t) � 1 + δ · w+(t), (16e)

where v(t) ≠ 0, and then equation (16d) takes the following
form:

_v(t) � −
δ · μs

k · F
N
k

m
·

1
v(t)

, (16f)

which can be solved with integration and leads to

v(t) �

�������������������������

v
2

t0( 􏼁 −
2 · δ · μs

k · F
N
k

m
· t − t0( 􏼁

􏽳

, (16g)

or taking into account equations (16a) and (16e) in equation
(16g) leads to

_qa,6,+(t) �
1
δ

·

��������������

C1 − C2 · t − t0( 􏼁

􏽱

− 1􏼒 􏼓> 0, for _qa,6,+(t) ∈ R>0,

(16h)

where

C1 � 1 + δ · _qa,6 t0( 􏼁􏼐 􏼑
2
, thereforeC1 ∈ R>0, (16i)

C2 �
2 · δ · μs

k · F
N
k

m
, thereforeC2 ∈ R>0, (16j)

since all the involved parameters in equation (16j) are
positive.

'e displacements can be obtained with direct inte-
gration of equation (16h), and they are given by

qa,6,+(t) � −
2 ·

�����������������

C1 − C2 · t − t0( 􏼁( 􏼁
3

􏽱

3 · δ · C2
−
1
δ

· t − t0( 􏼁 +
2 ·

���

C
3
1

􏽱

3 · δ · C2
+ qa,6,+ t0( 􏼁. (16k)

In case that the initial velocities of the mechanical system
are negative (w(t0) ∈ R<0), as long as the velocity is neg-
ative, the motion is described by the third vector field of
equation (16c) and in explicit form is given by

_w− (t) �
1
m

·
μs

k

1 − δ · w− (t)
􏼠 􏼡 · F

N
k , (16l)

and then consider the following change of variables:

u(t) � 1 − δ · w− (t), (16m)

where u(t)≠ 0, and then equation (16l) takes the following
form:

_u(t) � −
δ · F

N
k · μs

k

m
·

1
u(t)

, (16n)

which after integration leads to

u(t) �

�������������������������

u
2

t0( 􏼁 −
2 · δ · F

N
k · μs

k

m
· t − t0( 􏼁

􏽳

, (16o)

or taking into account equations (16a) and (16m) in equation
(16o) leads to

_qa,6,− (t) � −
1
δ

·

��������������

C3 − C2 · t − t0( 􏼁

􏽱

− 1􏼒 􏼓, for _qa,6,− (t) ∈ R<0,

(16p)

where

C3 � 1 − δ · _qa,6,− t0( 􏼁􏼐 􏼑
2
. (16q)

'e displacements can be obtained with direct inte-
gration of equation (16p) and they are given by

qa,6,− (t) �
2 ·

�����������������

C3 − C2 · t − t0( 􏼁( 􏼁
3

􏽱

3 · δ · C2
+
1
δ

· t − t0( 􏼁

−
2 ·

���

C
3
3

􏽱

3 · δ · C2
+ qa,6,− t0( 􏼁.

(16r)
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In any of the two described ways, the velocities tend to
zero. 'erefore, the three ways where the velocities are
becoming zero are as follows:

(i) 'rough equation (16h)
(ii) 'rough equation (16p),
(iii) 'rough initial zero velocities, and then the system

is remaining with zero velocity, and all the masses
are in stick condition.

'e exact augmented perpetual submanifold A(6) is
defined by the general solution of equations (16d) and (16l)
which is given by equations (16h), (16k), (16p), and (16r).

'e selected types of forces are some representative types
of external forces in the perpetual mechanical system, which,
of course, by no means are the types of the external forcing
limited.

'e external forces can be any combination of them, or
any other type and nature, that fulfil equations (2) and (9).
'ey can also be thermomechanical, electromechanical, or
aerodynamic forces, and so forth. In such cases, the per-
petual mechanical system’s state space forms an exact
augmented perpetual manifold, and themotion in the case of
constant inertia matrices is described by the solution of the
differential equations (3) and (6).

3. Numerical Results

'e theory developed in the previous section in three ex-
amples of mechanical systems is applied. In the first example
of a 2-degrees-of-freedom (DOF) system, the four external
forces (3–6 of Table 1), with solutions determined in this
article, are applied. In the second example of a shaft in
torsional vibration with torsional nonlinear energy sink,
modeled with finite element structural matrices, the first two
types of forces with the analytical solution of [22] are ap-
plied, for the theory validation in many-degrees-of-freedom
system. Finally, in the third example, a 5-DOF mechanical
system, the first two types of external forces of the 2-DOF
mechanical system are applied for comparison with the
previous section’s results.

3.1. A Two-Degrees-of-Freedom System. In this section, an
example of a 2-DOF mechanical system is examined. Fig-
ure 1 shows the 2-DOF mechanical system in translational
motion, and the equations of motion have the following
form:

mx,0 + _x
2 0

0 my,0 + _y
2

⎡⎢⎢⎣ ⎤⎥⎥⎦ × €x €y􏼈 􏼉 +
k1 − k1

− k1 k1
􏼢 􏼣 ×

x

y
􏼨 􏼩 +

c1 − c1

− c1 c1
􏼢 􏼣 ×

_x

_y
􏼨 􏼩

+
k2 · (x − y)

3
+ c2 · tanh(b · ( _x − _y))

k2 · (y − x)
3

+ c2 · tanh(b · ( _y − _x))

⎧⎨

⎩

⎫⎬

⎭ �
Fx(t, x, y, _x, _y)

Fy(t, x, y, _x, _y)

⎧⎨

⎩

⎫⎬

⎭.

(20)

'e system is comprised of two masses (mx andmy) that
are velocity-dependent, coupled through linear (k1) and
nonlinear springs (k2) and also through linear dashpot (c1)
and nonlinear damping force (c2). In each, mx and my mass
friction forces and external forces fx and fy are applied.

'e associated perpetual mechanical system without
external forces is a smooth nonlinear system with unique

solutions, but the existence of the solution of equations (20)
depends on the external force’s form on the equation’s right-
hand side. 'e theorem’s first condition is to examine if this
mechanical system is a perpetual mechanical system. Ini-
tially, the unforced mechanical system has to be considered
and eliminating the external forces (including the friction
forces) in equations (20) leads to

mx,0 + _x
2 0

0 my,0 + _y
2

⎡⎢⎢⎣ ⎤⎥⎥⎦ × €x €y􏼈 􏼉 +
k1 − k1

− k1 k1
􏼢 􏼣 ×

x

y
􏼨 􏼩 +

c1 − c1

− c1 c1
􏼢 􏼣 ×

_x

_y
􏼨 􏼩

+
k2 · (x − y)

3
+ c2 · tanh(b · ( _x − _y))

k2 · (y − x)
3

+ c2 · tanh(b · ( _y − _x))

⎧⎨

⎩

⎫⎬

⎭ �
0

0
􏼨 􏼩.

(21)

In case of exact rigid body motions,
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xa � ya, (22a)

_xa � _ya, (22b)

and replacing equations (22a) and (22b) in the system of
equations (21) leads to

mx,0 + _x
2
a􏼐 􏼑 · €xa � 0⟺ €xa � 0, (23a)

my,0 + _y
2
a􏼐 􏼑 · €ya � 0⟺ €ya � 0. (23b)

'e equations of jerks arise with direct differentiation of
equations (21) in time, and they are given by

2 · _x · €x 0

0 2 · _y · €y
􏼢 􏼣 × €x €y􏼈 􏼉 +

mx,0 + _x
2 0

0 my,0 + _y
2

⎡⎢⎢⎣ ⎤⎥⎥⎦ ×
x
ṫ

y
ṫ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+

k1 − k1

− k1 k1
􏼢 􏼣 ×

_x

_y
􏼨 􏼩 +

c1 − c1

− c1 c1
􏼢 􏼣 × €x €y􏼈 􏼉

+ 3 · k2 · (x − y)
2

· ( _x − _y) + b · c2 · sech2
(b · ( _x − _y)) · ( €x − €y)3 · k2 · (y − x)

2
· ( _y − _x) + b · c2 · sech2

(b · ( _y − _x)) · ( €y − €x)􏽮 􏽯 �
0

0
􏼨 􏼩.

(24)

Replacing equations (22a), (22b), (23a), and (23b) in
equation (24) leads to

mx,0 + _x
2

􏼐 􏼑 · x
ṫ

a � 0⇔x
ṫ

a � 0, (25a)

my,0 + _y
2

􏼐 􏼑 · y
ṫ

a � 0⇔y
ṫ

a � 0. (25b)

'e accelerations and jerks with exact rigid body mo-
tions are equal to zero, and, therefore, the system is a
perpetual mechanical system.

'e second condition of the theorem is that the external
forcing should comply with equation (10), where, in the

exact augmented perpetual manifolds (EAPMs) of this
system, it is given by

􏽘

2

j�1
M1,j _xa( 􏼁 � mx,0 + _x

2
a, (26a)

􏽘

2

j�1
M2,j _xa( 􏼁 � my,0 + _x

2
a, (26b)

and considering equations (26a) and (26b) with equation (9)
leads to

Fx t, xa, xa, _xa, _xa( 􏼁

mx _xa( 􏼁
�

Fy t, xa, xa, _xa, _xa( 􏼁

my _xa( 􏼁
⟺Fy t, xa, xa, _xa, _xa( 􏼁 �

my,0 + _x
2
a

mx,0 + _x
2
a

· Fx t, xa, xa, _xa, _xa( 􏼁, (27)

with reference mass mx.
'e analytical solution of the external forces applied to

this system is derived in Section 2.3, and it is given in Table 1.
'e type of vector field arising from the characteristic dif-
ferential equation and the form of the external forces and the
type of motion for each time interval are given in Table 2.
Moreover, the equations associated with the analytical so-
lutions, the wave velocity equations, and the associated type
of motion are indicated in Table 2.

'e existence of nonsmooth forces (in the third- and
sixth-time intervals) requires preliminary work in devel-
oping the numerical scheme based on the switch model
algorithm of [26], and herein the algorithm developed in
[22] is used.

'e chosen parameters for this example correspond to a
car with mx,0 � 2000 kg dragging a van with mass
my,0 � 1000 kg. 'e coupler has linear stiffness
k1 � 106 N/m and nonlinear stiffness k2 � 5 · 105 N/m3. In

mx (x‧) my (y‧)

k2

k1

c2

c1

fx

fd,x fd,y

fy

x y

Figure 1: Configuration of the 2-DOF mechanical system.
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the two-degrees-of-freedom-associated linear system, the
linear natural frequencies (ωi) and mode shapes (Vi) are

ω1 � 0rad/s with normalized mode shape

V1 �
0.816
0.577􏼨 􏼩,

ω2 � 38.73rad/s with normalized mode shape

V2 �
− 0.577
0.816􏼨 􏼩.

'erefore, when the second mode is excited, the two
masses are vibrating in out-of-phase fashion, and although
the main frequency of harmonic external forces would be
this one of the second mode, this mode will not be excited
due to the same direction of external forces (same sign as in
equation (2)).

Considering 1% damping ratio for the second mode, the
damping coefficient is c1 � 516.398N · s/m and the non-
linear damping coefficient has same value c2 � 516.398N
with b � 106s/m (significantly high to approximate dry
friction). In the developed theory, damping does not play
any role, but the considered values are sensibly high enough,
mainly for illustration purposes.

'e external forcing parameters are shown in Table 3,
with the associated initial conditions and the wave velocity
for each type of external forcing.

All the numerical simulations in this section, with 64-bit
Scilab 6.1.0 [27] using “Adams” solver with time step
dt � 5 · 10− 4 s and relative and absolute tolerance 6 · 10− 14,
have been performed. 'e parameter for the convexification
of the vector field in the application of the switch algorithm
of [22] is τ � dt · 10− 3 � 5 · 10− 7 s.

In Figures 2(a)–2(f), the displacements (xa) obtained
from theoretical solution in EAPMs (equations in Table 1)
and those obtained from numerical simulations of the
system with equations (20) are depicted, and it seems that

they are in good agreement. 'is can be certified further by
examining the maxima’s maximum of the absolute differ-
ence between the analytical and numerical displacements,
which has the minimal value of 1.875 10− 8m.

In Figure 2(a), the displacements on the first time interval
are depicted.'e motion of the mechanical system is a particle
standing wave with two frequencies (Nf � 2), defined by
equation (h) in Table 1, and it is associated with the vector field
G

(3)
2 . In Figure 2(b), the displacements on the second time

interval are depicted; the motion is a particle-longitudinal wave
and is defned by equation (i) in Table 1. It is associated with the
vector field G

(4)

1,f(1)

k
, which indicates harmonic forcing with a

single frequency combinedwith the associated vector fieldG(1).
'e displacements, on the third time interval in Figure 2(c), are
depicted, associated with the vector field G(6) for positive
velocities, and they are analytically determined by equation
(16k). 'e motion is particle decelerating due to dry friction
components. In Figures 2(d)–2(e), the displacements on the
fourth and fifth time intervals are depicted, and both are as-
sociated with the vector field G(5). 'ey are analytically de-
termined by equation (j) in Table 1. In the fourth time interval
(Figure 2(d)), the positive value of (cd) is associated with
flutter, which indicates particle-accelerating motion, and in the
fifth time interval (Figure 2(e)), the negative value of (cd) is
associated with drag, which indicates particle-decelerating
motion. Finally, in Figure 3(f), the displacements on the sixth
time interval are depicted, and themotion is decelerating, and it
is associated with the vector field G(6) for negative velocities,
with displacements analytically determined by equation (16r).

In Figures 3(a)–3(f), the velocities obtained from the
numerical simulations of equations (20) incorporating the
analytical solutions ( _xa) are depicted, and it seems that they are
in very good agreement. Moreover, this is certified by exam-
ining the maximum of the maxima of the absolute difference
between the analytical and numerically determined velocities,
which has the minimal value of 1.213 10− 8m/s.

Table 2: 'e external forces, the solutions, and the motions in EAPMs of the 2-DOF system.

i Time
interval (s) G(i) F(i)

x � fx + fd,x

Analytical
velocity _xa,i

Analytical
displacement

xa,i

Longitudinal
wave velocity

wvi

Type of motion

1 t ∈ (0, t1] G
(3)
2

fx � σ1 · (mx,0 + _x2
a) · f

(3)
k,2 Equation

(17c) Equation (18c) Equation (19b)
Particle linear-two

frequencies standing wave
(using specific amplitudes)fd,x � 0

2 t ∈ (1, t2] G
(4)

1,f(1)

k

fx � σ2 · (mx,0 + _x2
a) · (f

(3)
k + f

(1)
k ) Equation

(17d) Equation (18d) Equation (19c) Particle-longitudinal wave
fd,x � 0

3 t ∈ (2, 3] G(6) fy � 0 Equation
(16h) Equation (16k) —∗ Particle decelerating (dry

friction)fd,x � σ3 · (mx,0 + _x2
a) · f

(6)
k

4 t ∈ (3, t4] G(5)

fx � σ4 · (mx,0 + _x2
a) · f

(5)
k Equation

(17e) Equation (18e) —∗
Particle exponential

accelerating (throttle with
flutter)fd,x � 0

5 t ∈ (4, t5] G(5)

fx � σ5 · (mx,0 + _x2
a) · f

(5)
k Equation

(17e) Equation (18e) —∗
Particle exponential

decelerating (throttle with
drag)fd,x � 0

6 t ∈ (5, t6] G(6) fy � 0 Equation
(16p) Equation (16r) —∗ Particle decelerating (dry

friction)fd,x � σ3 · (mx,0 + _x2
a) · f

(6)
k

∗Not expected for this type of motion.
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In Figure 3(a), the velocities on the first time interval are
depicted, with the analytical ones determined by equation
(a) in Table 1, and they are associated with the vector field
G

(3)
2 . Figure 3(b) depicts the velocities on the second time

interval, and their increasing values indicate the nonzero
wave velocity. 'e analytical velocity by equation (d) in
Table 1 is given, and it is associated with the vector field
G

(4)

1,f(1)

k
.

'e decreasing velocity on the third time interval in
Figure 3(c) is depicted, and the analytical solution by
equation (16h) is determined, which is associated with the
vector field G(6). 'e increasing velocities for the fourth time
interval depicted in Figure 3(d) are associated with flutter.
Equation (e) in Table 1 defines the analytical solution, and it
is associated with the vector field G(5). 'e decreasing ve-
locities in the fifth time interval depicted in Figure 3(e) are
associated with the vector field G(5), for aerodynamic drag,
and the analytical solution by equation (e) in Table 1 is
obtained. Finally, in Figure 3(f), the velocities of the sixth
time interval are depicted. 'ey are decreasing due to dry
friction, and they are associated with the vector field G(6).
'e analytical solution of the velocity on the sixth time
interval by equation (16p) is determined.

'e basis of each exact augmented perpetual manifold
is the augmented perpetual submanifolds defined by
equation (5), and it is associated with each vector field G(i)

of the characteristic differential equation (6). In
Figures 4(a)–4(f ), the augmented perpetual submanifolds,
defined by the analytical solutions for each time interval,
are depicted. In Figure 4(a), the shape of the augmented
perpetual submanifold− A(3)

2,0 of the vector field− G
(4)
2 , de-

fined by the analytical solution on the first time interval, is
depicted with the first subscript indicating the number of
frequencies and the second subscript indicating the wave
velocity.

In Figure 4(b), using the analytical solution on the
second time interval, the exact augmented perpetual
submanifold− A(4)

1,f(1)

k

that is associated with the vector field
G

(4)

1,f(1)

k

is depicted, with the first subscript indicating the
number of frequencies and the second subscript indicating
the type of the nonharmonic function. In Figure 4(c), the
exact augmented perpetual submanifold− A(6)

+ that is as-
sociated with the vector field G(6), for positive velocities
indicated by the plus sign in the subscript, is depicted. 'e
exact augmented perpetual submanifold− A(5)

+ that is as-
sociated with the vector field G(5) for flutter is depicted in

Table 3: 'e initial conditions, the external forcing parameters, and the wave velocities for each time interval of the 2-DOF system.

i Time interval (s)
ICs

External forcing parameters wvi (m/s)
_xa,i(t0) (m/s) xa,i(t0) (m)

1 t ∈ (0, t1] 0.000000 0.000000

σ1 � 0.1

0

Nf � 2
Aex,1 � Aex � − 5 · 105N
ωex,1 � ω2 � 38.73 rad/s

θex,1 � 0rad
Aex,2 � 1 · 106N

ωex,2 � 2 · ω2 � 77.46 rad/s
θex,2 � 0rad

2 t ∈ (1, t2] 1272.330962 13.893890

σ2 � 0.2

500 · t2 − 1.962 · t − 556.915

η � 5000N/s
c � 9.81N

Nf � 1
Aex,1
ωex,1
θex,1

3 t ∈ (2, t3] 229.631038 628.195850

σ3 � 0.5

−
� μs

x · FN
x μ

s
x · mx,0 · g � 1962N∗
δ �3 s/m

my,0/mx,0 · μs
x · FN

x � μs
x · my,0 · g � μs

x · FN∗
y

4 t ∈ (3, t4] 228.204655 857.114437
σ4 � 0.3

−cd � 3N · s/m, (> 0)

FT
1 � 1000N

5 t ∈ (4, t5] 1047.827251 1434.472876
σ5 � 0.4

−cd � − 5N · s/m(< 0)

FT
2 � − 1000N

6 t ∈ (5, t6] − 31.124946 1773.948974

σ3 � 0.5

−
μs

x · FN
x � μs

x · mx,0 · g � 1962N∗
δ �3 s/m

my,0/mx,0 · μs
x · FN

x � μs
x · my,0 · g � μs

x · FN∗
y

∗In this example, without losing the generality and simplifying the frictional terms, the state-dependent inertia elements are considered which are not
correlated with the weight of the vehicles.
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Figure 4(d). In the case of aerodynamic drag, the exact
augmented perpetual submanifold− A(5)

− associated with
the vector field G(5) is depicted in Figure 4(e). Finally, the
exact augmented perpetual submanifold− A(6)

− that is as-
sociated with the vector field G(6) for negative velocities is
depicted in Figure 4(f ).

3.2. A Shaft in Torsional Vibration with Torsional Nonlinear
Energy Sink. In this example, a discretized, through finite
element formulation, shaft in torsional vibration with free
boundary condition in one end and dynamic boundary
condition in the other end coupled with a nonlinear energy
sink (NES) is considered, as indicated in Figure 5. 'e shaft
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Figure 2: Numerically determined (x, y) and analytically determined displacements (xa) of the 2-DOF mechanical system: (a) for the first
time interval 0-1 s, with external forces f

(3)
k,2 ; (b) for the 2nd time interval 1-2 s, with external forces f

(3)
k and f

(1)
k ; (c) for the 3rd time interval

2-3 s, with external forces f
(6)
k
; (d) for the 4th time interval 3-4 s, with external forces f

(5)
k
; (e) for the 5th time interval 4-5 s, with external

forces f
(5)
k ; and (f) for the 6th time interval with external forces f

(6)
k .
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is of length Ls, with internal and external diameters of (Di)

and of (Do), respectively.'e density is denoted as ρ and the
shear modulus is denoted as G. 'e shaft with inertia I is
coupled with an NES mass, Ines, through a linear torsional
spring with stiffness kl,nes, a nonlinear torsional spring with
stiffness knes, and a torsional dashpot (cnes) as indicated in

Figure 5. 'e length of each element in finite element
formulation is le � Ls/(N) for all divisions of the shaft.

'e discrete model of the shaft can be easily obtained.
'e equation of motion is described by the same partial
differential equations describing the motion of rod in axial
vibration [28, 29], and they are given by
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Figure 3: Numerically determined ( _x, _y) and analytically determined velocities ( _xa) of the 2-DOF mechanical system: (a) for the first time
interval 0-1 s, with external forcesf

(3)
k,2 ; (b) for the 2nd time interval 1-2 s, with external forces f

(3)
k andf

(1)
k ; (c) for the 3rd time interval 2-3 s,

with external forces f
(6)
k ; (d) for the 4th time interval 3-4 s, with external forces f

(5)
k ; (e) for the 5th time interval 4-5 s, with external forces

f
(5)
k ; and (f) for the 6th time interval, with external forces f

(6)
k .
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Is􏼂 􏼃 × €qi(t)􏼈 􏼉 + Cs􏼂 􏼃 × _qi(t)􏼈 􏼉 + Ks􏼂 􏼃 × qi(t)􏼈 􏼉 + Js,NL,i􏽮 􏽯 � Js,ex,i(t)􏽮 􏽯, (28)

with structural matrices defined explicitly in Appendix A. In
case of N elements discretization of the shaft, there areN + 1
nodes in the shaft plus the NES DOF and the resulting mass,
stiffness, and damping matrices dimensions being (N + 2) ×

(N + 2) [28, 29].
'e nonlinear torque vector is given by

Js,NL,i􏽮 􏽯
T

� knes · qN+1(t) − qNES(t)( 􏼁
3

· 0 . . . 1 − 1􏼂 􏼃.

(29)

'e external torque vector is obtained by considering
only point loads at each node of the finite element for-
mulation as follows:
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Figure 4: Exact augmented perpetual submanifold A(r): (a) A(3)
2,0 that is associated with vector field G

(3)
2 , (b) A(4)

1,f(1)

k
that is associated

with the vector field G
(4)

1,f(1)

k

, (c) A(6)
+ that is associated with the vector field G(6) for positive velocities, (d) A(5)

+ that is associated with the

vector field G(5) for flutter, (e) A(5)
− that is associated with the vector field G(5) for aerodynamic drag, and (f ) A(6)

− that is associated with
the vector field G(6) for negative velocities.

14 Mathematical Problems in Engineering



Js,ex,i(t)􏽮 􏽯
T

� Js,ex,1(t) Js,ex,2(t) . . . Js,ex,N(t) Js,ex,N+1(t) Js,ex,N+2(t)􏼂 􏼃. (30)

Initially, the mechanical system given by equation (28),
by neglecting the vector forces on the right-hand side of the
equations fulfilling the perpetual mechanical system’s re-
quirements, is examined. In case of rigid body motion, the
following is true:

Ks􏼂 􏼃 × 1{ } · qa(t) � 􏽘
N+2

j�1
Ks,i,j

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
· qa(t) � 0{ }, (31)

which is easily obtained by summing up all the elements of
the stiffness matrix, given by equation (A.3), which belongs
to each row.

Also, using equation (31) with equation (A.4) leads to

Cs􏼂 􏼃 × 1{ } · _qa(t) � β3 · Ks􏼂 􏼃 × 1{ } · _qa(t) � 0{ }, (32)

and

Js,NL,a􏽮 􏽯
T

� knes · qa(t) − qa(t)( 􏼁
3

· 0 . . . 1 1􏼂 􏼃 � [0].

(33)

'erefore, taking into account equations (31)–(33) in
case of unforced system, since the inertia matrix is positive-
definite, for rigid body motions, all the accelerations are
equal to zero in the system of equations (28).

'e equations of jerks for the unforced system are given
by

Is􏼂 􏼃 × q
ṫ
i(t)􏼚 􏼛 + Cs􏼂 􏼃 × €qi(t)􏼈 􏼉 + Ks􏼂 􏼃 × _qi(t)􏼈 􏼉 + _Js,NL,i􏽮 􏽯 � 0{ },

(34a)

with

_Js,NL,i􏽮 􏽯
T

� 3 · knes · qN+1(t) − qNES(t)( 􏼁
2

· _qN+1(t) − _qNES(t)( 􏼁 · 0 . . . 1 − 1􏼂 􏼃, (34b)

where, for rigid body motion, they lead to

_Js,NL,a􏽮 􏽯
T

� 3 · knes · qa(t) − qa(t)( 􏼁
2

· _qa(t) − _qa(t)( 􏼁 · 0 . . . 1 − 1􏼂 􏼃 � 0{ }
T
, (34c)

and, also for rigid body motions, the following is true:

Ks􏼂 􏼃 × _qa(t)􏼈 􏼉 � Ks􏼂 􏼃 × 1{ } · _qa(t) � 0{ }. (34d)

Considering equations (34c) and (34d) with the fact that
the accelerations are zero, in the equation that defines jerks
(34a), one certifies that the jerks are equal to zero in the case
of rigid body motions. 'erefore, rigid body motions are
acceptable perpetual manifolds for the shaft with a free end
and NES attachment boundary conditions.

Summing up the rows of the inertia matrix defined by
equation (A.1) leads to

􏽘
N+2

j�1
Is,1,j � 􏽘

N+2

j�1
Is,N+1,j �

I · le

2
, (35a)

􏽘

N+2

j�1
Is,k,j � I · le, for k ∈ 2, 3, . . . , N{ }, (35b)

􏽘

N+2

j�1
Is,N+2,j � INs. (35c)

'e required condition for the external torques to lead to
EAPMs solution is the following:

…

l

Boundary limits of the perpetual mechanical subsystem 

Lr Ar

kl,nes

cnes qnes

Fr,ex,1 Fr,ex,2

. . .

Fr,ex,N Fr,ex,N+1

qN+1qNq2q1

Fr,ex,N+2

knes

Figure 5: A discretized shaft in torsional vibration with NES attachment.
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Js,ex,i t, qa, _qa( 􏼁

􏽐
N+2
j�1 Is,i,j

�
2 · Js,ex,1 t, qa, _qa( 􏼁

I · le
�

Js,exl t, qa, _qa( 􏼁

I · le
�
2 · Js,ex,N+1 t, qa, _qa( 􏼁

I · le
�

Js,ex,N+2 t, qa, _qa( 􏼁

Ines
, for i ∈ 1, 2, . . . , N + 2{ }, and l ∈ 2, 3, . . . , N{ },

(36)

which leads to several arrangements of the external torques
and herein the following is considered:

Js,ex,1 t, qa, _qa( 􏼁 � Js,ex,N+1 t, qa, _qa( 􏼁, (37a)

Js,ex,l � 2 · Js,ex,1 t, qa, _qa( 􏼁 � 2 · Js,ex,1 t, qa, _qa( 􏼁, for l ∈ 2, 3, . . . , N{ }, (37b)

Js,ex,N+2 �
2 · Ines

I · le
· Js,ex,1 t, qa, _qa( 􏼁 �

2 · Ines

I · le
· Js,ex,1 t, qa, _qa( 􏼁. (37c)

Considering the system of equations (28) and the ex-
ternal torques defined by equations (37a)–(37c), the solution
is given by solving the following characteristic differential
equation:

€qa (t) �
Js,ex,i t, qa, _qa( 􏼁

􏽐
N
j�1 Is,i,j

�
Js,ex,1

I · le
. (38)

Four different types of excitation forces are applied in the
shaft, as is shown in Table 4. Also, in Table 4, the equations
that determine the shaft’s motion for each time interval, the
wave velocity where it is applicable, and the type of motion
are given. Of the first, second, and fourth time intervals, the
external forces are the same as those applied in the train as 5-
DOF mechanical system model in [22].

A stainless-steel solid shaft with external ro � 0.03m,
length of L � 1m, density of ρ0 � 8000 kg/m3, and shear
modulus of G � 76.9GPa, is considered.'e geometrical and
material properties of the shaft lead to an inertia coefficient
I � 5.0894 · 10− 3 kg/m3. 'e NES inertia coefficient is
INES � 5.0894 · 10− 4 kg/m2, linear torsional stiffness is
kl,nes � 2000N · m/rad, and nonlinear torsional stiffness is
knes � 2000N · m/rad3. 'e number of elements for the
discretization of the shaft is N� 100. 'e first three natural
frequencies of the underlying linear system, which are ob-
tained through the eigenvalue solution, are ωs,1 � 0 rad/sec,
ωs,2 � 2064.67 rad/sec, and ωs,3 � 9782.50rad/sec. 'e Ray-
leigh damping coefficients are α � 0 s− 1 and β1 � 9.686798 ·

10− 6s which correspond to 1% damping ratio of the second
natural frequency of the underlying linear system.

'e values of the external forcing parameters are given in
Table 5. Also, in this table, the initial conditions resulting
from previous time interval motion associated with each
time interval as well as the wave velocities are shown. After
the first time interval, the initial conditions from the pre-
vious interval motion are given.

All the numerical simulations in this section have been
performed with 64-bit Scilab 6.6.1 [27] using “Adams” solver

with time step 7.6080 · 10− 6 s, as well as relative and absolute
tolerance 5 · 10− 15.

In Figures 6(a)–6(d), selected numerically determined
angular displacements of the mechanical system, of the
left edge of the shaft (q1), of the NES (q102), and of the
middle (q50) of the shaft are depicted, incorporating the
analytical solution (qa). 'ey seem to be in good agree-
ment and this can be certified further by considering the
maximum of the maxima of the absolute differences be-
tween the analytical solution and each angular displace-
ment of the mechanical system, which has the minimal
value of 1.999 10− 10 rad. In Figure 6(a), the angular dis-
placements for the first time interval are depicted, which is
a particle standing wave solution, and they are associated
with the vector field G(2) with analytical solution given by
equation (g) in Table 1 and it has the same solution of the
train example on the second time interval in [22]. 'e
angular displacements for the second time interval in
Figure 6(b) are depicted; they have particle curvilinear
function motion, and they are associated with the vector
field G(1). 'e analytical solution is given by equation (f )
in Table 1, and it has the same solution as the train ex-
ample of [22] for the first time interval. In Figure 6(c), the
angular displacements for the third time interval are
depicted, which correspond to particle-motion directed
two-frequency wave, and they are associated with the
vector field G

(3)
2 . 'e analytical solution is given by

equation (h) in Table 1 considering two frequencies of the
external forcing. In Figure 6(d) the angular displacements
for the fourth time interval are depicted, corresponding to
particle-motion directed single-frequency wave and as-
sociated with the vector field G(2). 'e analytical solution
of displacements by equation (g) in Table 1 is given, and it
has the same solution as the train example for the third
time interval in [22].

In Figures 7(a)–7(d), selected numerically determined
angular velocities (the same ones depicted in the previous
Figure 6) are depicted, incorporating the analytically
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determined angular velocities, and they seem to be in very
good agreement. 'is is certified by examining the maxi-
mum of the maxima of the absolute differences of the an-
alytical and each of the numerically determined velocities,
which has the minimal value of 1.479 10− 8 rad/s.

In Figure 7(a), the angular velocities in the first time
interval are depicted, and they are analytically determined by
equation (b) in Table 1. 'e angular velocities for the second
time interval in Figure 7(b) are depicted, and they are an-
alytically determined by equation (a) in Table 1. In
Figure 7(c), the angular velocities for the third time interval
are depicted, and they are analytically determined by
equation (c) in Table 1. 'e angular velocities for the last
time interval in Figure 7(d) are depicted by equation (b) in
Table 1.

In Figures 8(a)–8(d), the rest of exact augmented per-
petual submanifolds defined by the vector fields of Table 1,
which are not determined in the 2-DOF example of Section
3.1, are depicted. Figure 8(a) depicts the exact augmented

perpetual submanifold A(2)
2,0 that is associated with the vector

field G(2) for particle-standing wave motion, and it has the
same form as the train example for the second time interval
of [22]. 'e exact augmented perpetual submanifold A(1) in
Figure 8(b), which is associated with the vector field G(1), is
depicted, and it has the same form as the train example for
the first time interval of [22]. In Figure 8(c), the exact
augmented perpetual submanifold A(3)

2 that is associated
with the vector field G

(3)
2 is depicted. 'e exact augmented

perpetual submanifold A(2)
2 that is associated with vector

field G(2) is depicted in Figure 8(d), and it has the same form
as the train example of [22] for the third time interval.

3.3. A Five-Degrees-of-Freedom System. In this section, the
train modeled as a five-degrees-of-freedom system in [22] is
considered, and the motion is described by the following
equation of motion:

Mi,j􏽨 􏽩 × €xi􏼈 􏼉 + Ci,j􏽨 􏽩 × _xi􏼈 􏼉 + Ki,j􏽨 􏽩 × xi􏼈 􏼉 + F
NL
i xn, _xo( 􏼁􏽮 􏽯 � Fext,i(t)􏽮 􏽯, for n, o ∈ 1, 2, . . . , 5{ }, i � 1, . . . , 5, (39)

Table 4: Equations that describe the solutions in augmented perpetual manifolds with the expected motions at different time intervals
(Tch � 1.52159874 · 10− 2s).

i Time interval (s) G(r) � J
(r)
s,ex,1/I · le

Analytical
velocity _qa,i

Analytical
displacement qa,i

Longitudinal wave
velocity wvi

Type of motion

1 t ∈ (0,Tch]
G(2) � f

(2)
k /I · le, Equation

(11) Equation (17b) Equation (18b) Equation (19a) Particle-standing
wave

2 t ∈ (Tch, 2 · Tch]
G(1) � f

(1)
k /I · le, Equation

(10) Equation (17a) Equation (18a) —∗ Particle curvilinear

3 t ∈ (2 · Tch, 3 · Tch]
G

(3)
2 � f

(3)
k,2 /I · le, Equation
(12a) Equation (17c) Equation (18c) Equation (19b) Particle-motion

directed wave

4 t ∈ (3 · Tch, 4 · Tch]
G(2) � f

(2)
k /I · le, Equation

(11) Equation (17b) Equation (18b) Equation (19a) Particle-motion
directed wave

∗Not applicable on this type of motion.

Table 5: External forcing parameters of the shaft with the associated initial conditions for each time interval and the theoretical wave
velocity.

i Time interval (s)
ICs

External forcing parameters wvi (t) (rad/s)
_qa,i(t0) (rad/s) qa,i(t0) (rad)

1 t ∈ (0, 0.0152] − 190.333562 0.000000
Aex,1 � 10N · m

0.00ωex,1 � ωs,2 � 2064.67 rad/s
θex � 0 rad

2 t ∈ (0.01520, 0.0304] − 190.333562 0.000000 η � 1.5N · m/s
−

c � 1 N/m

3 t ∈ (0.0304, 0.0456] 428.088376 1.791532

Aex,1

713.59

ωex,1
θex

Aex,1
ωex,2 � 2 · ωs,2 � 4129.33 rad/s

θex

4 t ∈ (0.0456, 0.0609] 428.088376 12.649489
Aex,1

618.42ωex,1
θex
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Figure 6: Selected numerically determined angular displacements of the FEmodel, of the left edge of the shaft (q1), of the NES (q102), and of
the middle (q50) of the shaft, incorporating the analytical solution (qa): (a) for the first time interval 0-1 s, with external forces f

(2)
k ; (b) for

the 2nd time interval 1-2 s, with external forces f
(1)
k ; (c) for the 3rd time interval 2-3 s, with external forces f

(3)
k ; and (d) for the 4th time

interval 3-4 s, with external forces f
(2)
k .
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Figure 7: Selected numerically determined angular velocities of the FE model, of the left edge of the shaft (q1), of the NES (q102), and of the
middle (q50) of the shaft, incorporating the analytical solution (qa): (a) for the first time interval 0-1 s, with external forces f

(2)
k ; (b) for the

2nd time interval 1-2 s, with external forces f
(1)
k ; (c) for the 3rd time interval 2-3 s, with external forces f

(3)
k ; and (d) for the 4th time interval

3-4 s, with external forces f
(2)
k .
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Figure 8: Exact augmented perpetual submanifolds A(r): (a)A(2)
2,0 that is associated with the vector field G(2), (b)A(1) that is associated with

the vector field G(1), (c)A(3)
2 that is associated with the vector field G(3)

2 , and (d)A(2)
2 that is associated with the vector field G(2).
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with mass matrix defined by

Mi,j􏽨 􏽩 �

m1 0 0 0 0

0 m2 0 0 0

0 0 m3 0 0

0 0 0 m4 0

0 0 0 0 m5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (40a)

and mi(i � 1, . . . , 5) being positive constants; therefore all
sums of rows are nonzero.

'e stiffness matrix is defined by

Ki,j􏽨 􏽩 �

k1 − k1 0 0 0

− k1 k1 + k2 − k2 0 0

0 − k2 k2 + k3 − k3 0

0 0 − k3 k3 + k4 − k4

0 0 0 − k4 k4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (40b)

'e damping matrix is defined with Rayleigh damping
and given by

Ci,j􏽨 􏽩 �

c1 − c1 0 0 0

− c1 c1 + c2 − c2 0 0

0 − c2 c2 + c3 − c3 0

0 0 − c3 c3 + c4 − c4

0 0 0 − c4 c4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� β · Ki,j􏽨 􏽩.

(40c)

'e nonlinear forces vector is given by

F
NL
i xn, _xo( 􏼁􏽮 􏽯 �

knl,1 · sin x1 − x2( 􏼁 + cnl,1 · _x1 − _x2( 􏼁
3

− knl,1 · sin x1 − x2( 􏼁 − cnl,1 · _x1 − _x2( 􏼁
3

+ knl,2 · x2 − x3( 􏼁
5

+ cnl,2 · _x2 − _x3( 􏼁
5

− knl,2 · x2 − x3( 􏼁
5

− cnl,2 · _x2 − _x3( 􏼁
5

+ knl,3 · sin x3 − x4( 􏼁 + cnl,3 · _x3 − _x4( 􏼁
7

− knl,3 · sin x3 − x4( 􏼁 − cnl,3 · _x3 − _x4( 􏼁
7

+ knl,4 · x4 − x5( 􏼁
7

+ cnl,4 · tanh b · _x4 − _x5( 􏼁( 􏼁

− knl,4 · x4 − x5( 􏼁
7

− cnl,4 · tanh b · _x4 − _x5( 􏼁( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, for n, o ∈ 1, 2, . . . , 5{ },

(40d)

and the theorem’s condition for the external forcing vector
(equation (9)), considering the first mass as reference k-
mass, leads to

Fext,i(t)􏽮 􏽯
T

� 1
m2

m1

m3

m1

m4

m1

m5

m1
􏼔 􏼕 · Fext,1(t). (40e)

'e considered external forces are the first two types of
forces given by Table 2 of the example of Section 3.1.

'e mechanical system in [22] is shown to form a
perpetual mechanical system, and the solution in the exact
augmented perpetual manifold is given by equation (6) with
m � m1/σi.

'e nonlinear system of equations (38) has been solved
numerically. All numerical simulations in this section have
been performed, with 64-bit Scilab 6.6.1 [27] using “Adams”
solver with time step 5 · 10− 4 s, as well as relative and ab-
solute tolerance 6 · 10− 14.

'e system parameters, which define the matrices in
equation (35), are shown in Table 6.

'e external forces parameters are the same as those
given in Table 3 for the first two time intervals of the 2-DOF
mechanical system in the previous example. 'ese forces
lead to the same characteristic differential equation, the first
external force is multiplied with a constant σ1 � 200, and the
second external force with a constant σ2 � 400, which leads
to the same vector fields describing the motion for the first

two time intervals of the 2-DOF mechanical system example
of Section 3.1.

In Figure 9(a), selected numerically determined dis-
placements of the 5-DOF system, of the two edges (x1, x5)
and of the middle (x3), are depicted incorporating the
analytical solution (xa) and the numerical solution (x −

2dof) of the 2-DOF system of the example of Section 3.1, and
it seems that they are in good agreement. 'is is certified by
examining (a) the maximum of the maxima of the absolute
differences between the analytical solution and each of the
displacements of the 5-DOF system, which has the minimal
value of 4.669 10− 8m, and (b) the maximum of the maxima
of the absolute differences between the numerically deter-
mined 2-DOF displacement and each of the displacements
of the 5-DOF system, which has the minimal value of 4.204
10− 8m.

Some selected numerically determined velocities of the
5-DOF system of the two edges ( _x1, _x5) and of the middle
( _x3) are depicted in Figure 9(b), incorporating the analytical
solution ( _xa) and the numerical solution ( _x − 2dof) of the
2-DOF system of the example of Section 3.1, and it seems
that they are in good agreement. 'is is certified by ex-
amining firstly the maximum of the maxima of the absolute
differences between the analytical velocity and each of the
velocities of the 5-DOF system, which has the minimal value
of 1.84 10− 7m/s. Secondly, the maximum of the maxima of
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the absolute differences between the numerically determined
2-DOF velocity and each of the velocities of the 5-DOF
system, which has the minimal value of 1.95 10− 7m/s.

'erefore, the corollary is certified.

4. Conclusions

As a continuation of the main theorem defining the con-
ditions for a mechanical system’s motion to belong in the
exact augmented perpetual manifolds, some theoretical
developments with the definition of a corollary and its proof
are presented. More precisely, all the perpetual mechanical
systems with the same characteristic differential equation
have the same general solution. Moreover, the analytical
solutions in the exact augmented perpetual manifolds and
their augmented perpetual submanifolds for six types of
forces are determined. 'e analytical results are examined
with numerical simulations in three examples, and they are
in very good agreement.

'e significance of this outcome is that the many dif-
ferent mechanical systems, in the exact augmented perpetual
manifolds with the same characteristic differential equation,
have the same general solution, independent of the type of
system, and upon the external forcing can lead to particle-

single-frequency or multiple frequencies’ standing wave or
motion directed single-frequency or multiple frequencies’
wave motions.

'is work is significant in mathematics for unifying
specific solutions of nonautonomous systems of differ-
ential equations. Also, in physics/mechanics, the particle-
wave motions are of high significance. In mechanical
engineering, the rigid body motions without any vibra-
tions are the ultimate motions for some flexible me-
chanical systems.

Further work can be done incorporating the Part-II
article of the augmented perpetual manifolds outcome,
which is associated with the energies of the mechanical
systems in the exact augmented perpetual manifolds.

Appendix

A. Structural Matrices for Finite
Element Formulation

In this appendix, the structural matrices for the finite ele-
ment model of the rod with NES attachment are defined.

'e mass matrix is given by

Table 6: 'e parameters of the matrices defining the equations of motion of the train.

Mi,j Ki,j Ci,j FNL
i

m1 � 2000 kg k1 � 1 · 105 N/m c1 � 319.07 N · s/m knl,1 � 1 · 104 N cnl,1 � 319.07 N · s3/m3

m2 � 1000 kg k2 � 1.4 · 105 N/m c2 � 446.70 N · s/m knl,2 � − 1.5 · 104 N/m5 cnl,2 � 446.70 N · s5/m5

m3 � 1500 kg k3 � 1.3 · 105 N/m c3 � 414.80 N · s/m knl,3 � 1.3 · 104 N cnl,3 � 414.80 N · s7/m7

m4 � 1200 kg k4 � 1.2 · 105 N/m c4 � 382.88 N · s/m knl,4 � 1.2 · 104 N/m7 cnl,4 � 382.88 N
m5 � 500 kg — — — —
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Figure 9: (a) Selected numerically determined displacements of the 5-DOF mechanical system, of the two edges (x1, x3) and of the middle
(x5), incorporating the analytical solution (xa) and the 2-DOF mechanical system numerical solution (x − 2dof). (b) Selected numerically
determined displacements of the 5-DOF mechanical system, of the two edges ( _x1, _x3) and of the middle ( _x5), incorporating the analytical
solution ( _xa) and the 2-DOF mechanical system’s numerical solution ( _x − 2dof).
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Is􏼂 􏼃 �
I · le

6
·

2 1 0 0 0 0 0

1 4 1 0 0 0 0

0 1 4 1 0 0 0

0 0 1 4 1 ⋮ ⋮

0 0 0 1 ⋱ 1 0

0 0 0 . . . 1 2 0

0 0 0 . . . 0 0
6 · Ines

I · le

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.1)

where le is the length element, the polar moment of inertia of
the NES is (Ines), and the distributed (associated with the
partial differential equation describing the torsional dy-
namics) polar moment of inertia of the shaft is denoted by
(I) and correlated with the second moment of area
(Ixx) through the following formula:

I � ρ · Ixx � ρ · π ·
Do

4
− Di

4

64
􏼠 􏼡. (A.2)

'e stiffness matrix is given by

Kr􏼂 􏼃 �
G · Ixx

le
·

1 − 1 0 0 0 0 0

− 1 2 − 1 0 0 0 0

0 − 1 2 − 1 0 0 0

0 0 − 1 2 − 1 ⋮ ⋮

0 0 0 − 1 ⋱ − 1 0

0 0 0 . . . − 1 1 +
kl,nes · le

G · Ixx

−
kl,nes · le

G · Ixx

0 0 0 . . . 0 −
kl,nes · le

G · Ixx

kl,nes · le

G · Ixx
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.

(A.3)

'e damping matrix is obtained as Rayleigh damping:

Cr􏼂 􏼃 � α · Mr􏼂 􏼃 + β1 · Kr􏼂 􏼃, (A.4)

with α � 0.
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