
COMBINATORICS OF THE DOUBLE-DIMER MODEL

by

HELEN K. JENNE

A DISSERTATION

Presented to the Department of Mathematics
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2020



DISSERTATION APPROVAL PAGE

Student: Helen K. Jenne

Title: Combinatorics of the Double-Dimer Model

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Mathematics
by:

Benjamin Young Chair
Shabnam Akhtari Core Member
Ben Elias Core Member
Nicholas Proudfoot Core Member
David Sutherland Institutional Representative

and

Kate Mondloch Interim Vice Provost and Dean of the
Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded June 2020

ii



c© 2020 Helen K. Jenne

iii



DISSERTATION ABSTRACT

Helen K. Jenne

Doctor of Philosophy

Mathematics

June 2020

Title: Combinatorics of the Double-Dimer Model

We prove that the partition function for tripartite double-dimer configurations

of a planar bipartite graph satisfies a recurrence related to the Desnanot-Jacobi

identity from linear algebra. A similar identity for the dimer partition function

was established nearly 20 years ago by Kuo. This work was motivated in part

by the potential for applications, including a problem in Donaldson-Thomas

and Pandharipande-Thomas theory, which we will discuss. The proof of our

recurrence requires generalizing work of Kenyon and Wilson; specifically, lifting

their assumption that the nodes of the graph be black and odd or white and even.
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CHAPTER I

INTRODUCTION

In this dissertation, we prove that under certain conditions the partition

function for double-dimer configurations satisfies a recurrence related to the

Desnanot-Jacobi identity from linear algebra.

In this chapter, we motivate this work. We begin with a discussion of

the dimer model, which is the study of dimer configurations. Double-dimer

configurations and dimer configurations are related in the sense that a double-dimer

configuration is the union of two dimer configurations. The recurrence we prove in

this dissertation has a dimer version which was established nearly 20 years ago and

motivated the search for our recurrence. The remainder of this chapter is devoted

to a discussion of applications of our recurrence.

1.1. The Dimer Model and Kuo Condensation

Let G = (V1, V2, E) be a finite bipartite planar graph embedded in the plane

with a weight function w : E → R>0 on edges. A dimer configuration (or perfect

matching) of G is a collection of edges of G that covers each vertex exactly once. A

dimer configuration of a grid graph is shown in Figure 1.1.

The dimer model is the study of Gibbs measures on the set of a dimer

configurations of a graph. The dimer model arose in the 1960’s in statistical

mechanics [9, 27] and separately in combinatorics through the theory of plane

partitions and related objects [1]. Since then many connections to geometry, string

theory, random matrix theory, and other areas have been found [11, 20, 21, 23].

1



FIGURE 1.1. An 8× 8 grid graph G (left) and a dimer configuration of G (right).

We define a probability measure µ on dimer configurations as follows: for a

dimer configuration M ,

µ(M) =
1

ZD(G)

∏
e∈M

w(e)

where w(M) :=
∏
e∈M

w(e) is referred to as the weight of a dimer configuration. The

normalization constant ZD(G) is called the partition function, defined to be

ZD(G) =
∑
M

w(M),

where the sum is over all dimer configurations M of G.

Kasteleyn discovered techniques that made it possible to compute ZD(G) for

large classes of graphs. He defined a matrix K with the property that | det(K)| =

ZD(G) (see Section 3.2.1). In the case where G has all edge weights equal to 1,

| det(K)| is the number of dimer configurations of G.

The partition function ZD(G) satisfies an elegant recurrence.

Theorem 1.1.1. [14, Theorem 5.1] Let G = (V1, V2, E) be a planar bipartite graph

with a given planar embedding in which |V1| = |V2|. Let vertices a, b, c, and d appear

2



in a cyclic order on a face of G. If a, c ∈ V1 and b, d ∈ V2, then

ZD(G)ZD(G−{a, b, c, d}) = ZD(G−{a, b})ZD(G−{c, d})+ZD(G−{a, d})ZD(G−{b, c}).

Kuo proved Theorem 1.1.1 bijectively. There have since been a number

of non-bijective proofs. For example, several authors have pointed out that

Theorem 1.1.1 follows from certain Pfaffian identities; see for example [7]. In [26],

Speyer shows that the six terms in Theorem 1.1.1 are the Plücker coordinates of

a point in the totally nonnegative Grassmannian Gr(2, 4). Kuo’s theorem then

follows from a Plücker relation. The connection between dimers and the totally

nonnegative Grassmannian is detailed in [6, 18].

Theorem 1.1.1 can also be proven using the Desnanot-Jacobi identity, which is

also called Dodgson condensation.

Theorem 1.1.2 (Desnanot-Jacobi identity). Let M = (mi,j)
n
i,j=1 be a square

matrix, and for each 1 ≤ i, j ≤ n, let M j
i be the matrix that results from M by

deleting the ith row and the jth column. Then

det(M) det(M i,j
i,j ) = det(M i

i ) det(M j
j )− det(M j

i ) det(M i
j)

To prove Theorem 1.1.1 using the Desnanot-Jacobi identity, let M be the

Kasteleyn matrix K of G. The details of this proof are included in the Appendix.

Kuo’s proof technique can be considered as a combinatorial interpretation of

Dodgson condensation1, and for this reason it is called graphical condensation or

Kuo condensation.

1Prior to Kuo’s work, Zeilberger gave a bijective proof of Dodgson condensation by interpreting

each term in det(M) =
∑
π∈Sn

sign(π)
n∏
i=1

mi,π(i) as a matching of n men with n women [30].

3



Kuo’s work has a variety of applications. For example, Kuo uses graphical

condensation to give a new proof of the Aztec diamond theorem due to Elkies

Kuperberg, Larsen, and Propp [4] and a new proof for MacMahon’s generating

function for plane partitions that are subsets of a box [19].

There are also applications of Kuo’s work to the theory of cluster algebras.

Cluster algebras are a class of commutative rings introduced by Fomin and

Zelevinsky [5] to study total positivity and dual canonical bases in Lie Theory.

The theory of cluster algebras has since been connected to many areas of math,

including quiver representations, Teichmüller theory, Poisson geometry, and

integrable systems [29]. In [16, 17], Tri Lai and Gregg Musiker study toric cluster

variables for the quiver associated to the cone over the del Pezzo surface dP3,

giving algebraic formulas for these cluster variables as Laurent polynomials. Using

identities similar to Kuo’s Theorem 1.1.1, they give combinatorial interpretations of

most of these formulas [16].

The main result of this dissertation is an analogue of Kuo’s theorem for

double-dimer configurations. This work was motivated in part by the potential for

similar applications to Kuo’s. For example, one application to the theory of cluster

algebras is providing combinatorial interpretations of toric cluster variables for the

dP3 quiver in the case where the dimer model is not sufficient [16, Problem 9.1]. In

addition, by using both Kuo condensation and the double-dimer analogue of Kuo

condensation, we can give a direct proof of a problem in Donaldson-Thomas and

Pandharipande-Thomas theory.
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1.2. Application to Donaldson-Thomas and Pandharipande-Thomas

Theory

Donaldson-Thomas (DT) theory, Pandharipande-Thomas (PT), and Gromov-

Witten (GW) theory are branches of enumerative geometry closely related to

mirror symmetry and string theory. The DT and GW theories give frameworks

for counting curves2 on a threefold X. One of the conjectures in [20, 21] gives a

correspondence between the DT and GW frameworks, which has been proven in

special cases, such as when X is toric [22].

PT theory gives a third framework for counting curves when X is a

nonsingular projective threefold that is Calabi-Yau. The correspondence between

the DT and PT frameworks was first conjectured in [25] and was proven in [2],

which is closely related to the work in [28]. Specifically, let X be a toric Calabi-Yau

threefold. Define ZDT (q) =
∑
n

Inq
n, where In counts length n subschemes of X, and

ZPT (q) =
∑
n

Pnq
n, where Pn counts stable pairs on X (see [25]). Bridgeland proved

that these generating functions coincide up to a factor of M(q) =
∞∏
n=1

1

(1− qn)n
,

which is the total q-weight of all plane partitions [19].

Theorem 1.2.1. [2, Theorem 1.1] ZDT (q) = ZPT (q)M(−q).

The application of Theorem 2.1.1 that we describe relates to Theorem 1.2.1

at the level of the topological vertex. Define Vλ,µ,ν = qc(λ,µ,ν)
∑
π

q|π|, where the

sum is taken over all plane partitions π asymptotic to (λ, µ, ν). Maulik, Nekrasov,

Okounkov, and Pandharipande [20, 21] proved that ZDT (q) = Vλ,µ,ν and thus

Vλ,µ,ν is called the DT topological vertex. Let Wλ,µ,ν = qc(λ,µ,ν)
∑
i

diq
i where di is

a certain weighted enumeration of labeled box configurations of length i [24]. In [24,

2The frameworks differ in what is meant by a curve on X.
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Theorem/Conjecture 2] Pandharipande and Thomas conjecture that Wλ,µ,ν is the

stable pairs vertex, i.e. that ZPT (q) = Wλ,µ,ν .

Conjecture 1.2.2. [24, Calabi-Yau case of Conjecture 4] Vλ,µ,ν = Wλ,µ,νM(−q).

Pandharipande and Thomas remark that a straightforward (but long)

approach to this conjecture using DT theory exists [24]. In a forthcoming paper

with Gautam Webb and Ben Young [8], we give a direct proof by showing that

Vλ,µ,ν is a single dimer model and Wλ,µ,ν is a double-dimer model, and then using

Kuo condensation (Theorem 1.1.1) and double-dimer condensation to show that

both sides of the above equation satisfy the same recurrence.

1.3. Outline

This dissertation is organized as follows. In Chapter II, we give a precise

statement of double-dimer condensation, in addition to collecting relevant

background that will be used in later chapters. In this chapter we also give an

outline of our proof, including statements of the main results from Chapters III

and IV. In Chapter III, we generalize the combinatorial results of [12, 13] that are

needed for the proof of double-dimer condensation. We conclude in Chapter IV by

proving our condensation theorem.
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CHAPTER II

BACKGROUND

In this chapter, we outline the proof of our main result: an analogue of Kuo

condensation for the partition function for tripartite double-dimer configurations.

We begin in Section 2.1 by defining double-dimer configurations and giving a

precise statement of our condensation theorem (Theorem 2.1.1). Then, we review

relevant background from Kenyon and Wilson’s study of the double-dimer model

(Section 2.2) and groves (Section 2.3). We conclude in Section 2.4 with a discussion

of the main ideas behind the proof of Theorem 2.1.1 and an outline of Chapters III

and IV.

2.1. The Double-Dimer Model and Double-Dimer Condensation

Throughout this dissertation, G = (V1, V2, E) is a finite edge-weighted

bipartite planar graph embedded in the plane with |V1| = |V2|. G has a set

N of special vertices called nodes on its outer face numbered consecutively in

counterclockwise order. A double-dimer configuration on (G,N) is a multiset of the

edges of G with the property that each vertex in V \ N is the endpoint of exactly

two edges, and each vertex in N is the endpoint of exactly one edge. In other

words, it is a configuration of disjoint cycles of length greater than two (called

loops), doubled edges, and paths connecting the nodes in pairs. Consequently, each

double-dimer configuration is associated with a planar pairing of the nodes. For

example, in Figure 2.1, the pairing of the nodes is ((1, 8), (3, 4), (5, 2), (7, 6)).

A double-dimer configuration can be decomposed into two dimer

configurations in 2` ways, where ` is the number of loops in the configuration;

7
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1
2 3

4

567

8

+

FIGURE 2.1. A double-dimer configuration is the union of two dimer
configurations: a dimer configuration (shown in red) of the graph with a subset
of the nodes determined by the black/white coloring and a dimer configuration
(shown in blue) of the graph with the remaining nodes.

see Figure 2.1. Define a probability measure Pr where the probability of a

configuration is proportional to the product of its edge weights times 2`.

Kenyon and Wilson initiated the study of the double-dimer model in [13],

when they showed how to compute the probability that a random double-dimer

configuration has a particular planar node pairing. In particular, when σ is a

tripartite pairing, Pr(σ) is proportional to the determinant of a matrix [12].

A planar pairing σ is a tripartite pairing if the nodes can be divided into

three circularly contiguous sets R,G, and B so that no node is paired with a node

in the same set (see Figure 2.2). We visualize this by coloring the nodes in the

sets red, green, and blue, in which case σ is the unique planar pairing in which like

colors are not paired.

We prove that when σ is a tripartite pairing, a similar recurrence to Kuo

condensation (Theorem 1.1.1) holds for ZDD
σ (G,N), the weighted sum of all double-

dimer configurations on (G,N) with pairing σ.

Theorem 2.1.1. Let G = (V1, V2, E) be a finite edge-weighted planar bipartite

graph with a set of nodes N. Divide the nodes into three circularly contiguous sets

8



1

2

3

8

7

4 5
6

1

2

3

8

7

4 5
6

FIGURE 2.2. Two double-dimer configurations on a grid graph. The pairing of
the nodes on the left is a tripartite pairing because the nodes can be colored
contiguously using three colors so that no pair contains nodes of the same color.
The pairing on the right is not a tripartite pairing because four colors are required.

R, G, and B such that |R|, |G| and |B| satisfy the triangle inequality and let σ be

the corresponding tripartite pairing1. Let x, y, w, v be nodes appearing in a cyclic

order such that the set {x, y, w, v} contains at least one node of each RGB color2. If

x,w ∈ V1 and y, v ∈ V2 then

ZDD
σ (G,N)ZDD

σxywv(G,N− {x, y, w, v}) = ZDD
σxy (G,N− {x, y})ZDD

σwv (G,N− {w, v})

+ZDD
σxv (G,N− {x, v})ZDD

σwy (G,N− {w, y})

where for i, j ∈ {x, y, w, v}, σij is the unique planar pairing on N − {i, j} in which

like colors are not paired together.

We illustrate Theorem 2.1.1 with an example.

Example 2.1.2. If G is a graph with eight nodes colored red, green and blue as

shown in Figure 2.3, then σ = ((1, 8), (3, 4), (5, 2), (7, 6)). If x = 8, y = 1, w = 2, v =

1If |R|, |G|, and |B| do not satisfy the triangle inequality, there is no corresponding tripartite
pairing σ.

2The nodes of G have two colors: the black-white coloring from the bipartite assumption,
and the RGB coloring. The coloring we are referring to is often clear from context, but we will
sometimes write RGB color to emphasize that we are referring to the red, green, blue coloring of
the nodes rather than the black-white coloring.
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5, then by Theorem 2.1.1,

ZDD
σ (G,N)ZDD

σ1,2,5,8
(G,N− {1, 2, 5, 8}) = ZDD

σ1,8
(G,N− {1, 8})ZDD

σ2,5
(G,N− {2, 5})

+ZDD
σ1,2

(G,N− {1, 2})ZDD
σ5,8

(G,N− {5, 8})

Figure 2.3 gives examples of the double-dimer configurations counted by the

partition functions in this equation.

1 2 3

4

567

8

3

4

67

2 3

4

567

1 3

4

67

8

3

4

567

8

1 2 3

4

67

FIGURE 2.3. From left to right: The unique tripartite pairings on the node sets N,
N−{1, 2, 5, 8}, N−{1, 8}, N−{2, 5}, N−{1, 2}, and N−{5, 8} from Example 2.1.2.

Theorem 2.1.1 is a corollary of a more general theorem, Theorem 2.4.3, in

which x, y, w, and z can be any subset of four nodes with an equal number of black

and white nodes. The proof of Theorem 2.4.3 is not bijective, like Kuo’s proof of

Theorem 1.1.1. Instead, we use the Desnanot-Jacobi identity with a matrix that

is a generalization of Kenyon and Wilson’s matrix for tripartite double-dimer

configurations [12].

Before discussing the main ideas behind the proof of Theorem 2.1.1, we give

an overview of Kenyon and Wilson’s results from [12, 13] that are needed for our

work.
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2.2. Double-Dimer Pairing Probabilities

Kenyon and Wilson gave explicit formulas for the probability that a random

double-dimer configuration has a particular node pairing σ. When σ is a tripartite

pairing, this probability is proportional to the determinant of a matrix.

To be more precise, we need to introduce some notation and definitions. Since

G is bipartite, we can color its vertices black and white so that each edge connects

a black vertex to a white vertex. Let GBW be the subgraph of G formed by deleting

the nodes except for the ones that are black and odd or white and even. Define

GWB analogously, but with the roles of black and white reversed. Let GBW
i,j be the

graph GBW with nodes i and j included if and only if they were not included in

GBW . For convenience, Kenyon and Wilson assume the nodes alternate in color,

so all nodes are black and odd or white and even. (If a graph G does not have

this property, we can add edges of weight 1 to each node that has the wrong color

to obtain a graph whose double-dimer configurations are in a one-to-one weight-

preserving correspondence with double-dimer configurations of G.)

For each planar pairing σ, Kenyon and Wilson showed that the normalized

probability

P̂r(σ) := Pr(σ)
ZD(GWB)

ZD(GBW )
=

ZDD
σ (G,N)

(ZD(GBW ))2

that a random double-dimer configuration has pairing σ is an integer-coefficient

homogeneous polynomial in the quantities Xi,j :=
ZD(GBW

i,j )

ZD(GBW )
[13, Theorem 1.3].

For example, the normalized probability P̂r that a random double-dimer

configuration on six nodes has pairing ((1, 2), (3, 4), (5, 6)) is

P̂r
(

1 3 5
2 4 6

)
= X1,4X2,5X3,6 +X1,2X3,4X5,6 (2.2.1)

11



and the probability that a random double-dimer configuration on eight nodes has

the pairing ((1, 8), (3, 4), (5, 2), (7, 6)) (see Figure 2.1) is

P̂r
(

1 3 5 7
8 4 2 6

)
= X1,8X3,4X5,2X7,6 −X1,4X3,8X5,2X7,6 +X1,6X3,4X5,8X7,2

−X1,8X3,6X5,2X7,4 −X1,4X3,6X5,8X7,2 +X1,6X3,8X5,2X7,4.

Kenyon and Wilson gave an explicit method for computing these polynomials:

they proved that

P̂r(σ) =
∑

odd-even pairings τ

P(DD)
σ,τ X ′τ , (2.2.2)

where X ′τ = (−1)# crosses of τ
∏
i odd

Xi,τ(i) and showed how to compute the columns of

the matrix P(DD) completely combinatorially [13, Theorem 1.4].

The τth column of P(DD) is determined by writing the odd-even pairing τ as

a linear combination of planar pairings. So if τ is planar, P(DD)
τ,τ = 1 and P(DD)

σ,τ = 0

for all σ 6= τ . If τ is nonplanar, we repeatedly apply a transformation rule [13, Rule

2] which is a generalization of the following rule for six nodes:

14|36|52→ 14|32|56 + 12|36|52 + 16|34|52− 12|34|56− 16|32|54 (2.2.3)

This rule tells us, for example, that when σ = ((1, 2), (3, 4), (5, 6)) and τ =

((1, 4), (3, 6), (5, 2)), P(DD)
σ,τ = −1.

When G has six nodes the matrix P(DD) is
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12
34

56

12
36

54

14
32

56

16
32

54

16
34

52

14
36

52



12|34|56 1 0 0 0 0 −1

12|36|54 0 1 0 0 0 1

14|32|56 0 0 1 0 0 1

16|32|54 0 0 0 1 0 −1

16|34|52 0 0 0 0 1 1


.

The first row of the matrix tell us that

P̂r
(

1 3 5
2 4 6

)
= X ′

(
1 3 5
2 4 6

)
−X ′

(
1 3 5
2 4 6

)
which agrees with equation (2.2.1), since ((1, 4), (3, 6), (5, 2)) has three crossings.

Note that equation (2.2.1) could also have been written as

P̂r
(

1 3 5
2 4 6

)
= det


X1,2 X1,4 0

0 X3,4 X3,6

X5,2 0 X5,6

.

In general, whenever σ is a tripartite pairing, P̂r(σ) is a determinant of a

matrix whose entries are Xi,j or 0.

Theorem 2.2.1. [12, Theorem 6.1] Suppose that the nodes are contiguously colored

red, green, and blue (a color may occur zero times), and that σ is the (unique)

planar pairing in which like colors are not paired together. Let σ(i) denote the item

that σ pairs with item i. We have

P̂r(σ) = det[1i,j colored differently Xi,j]
i=1,3,...,2n−1
j=σ(1),σ(3),...,σ(2n−1).
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Kenyon and Wilson’s discovery that the partition function for double-dimer

configurations is proportional to polynomials in the quantities Xi,j has an analogue

for a different type of subgraph called a grove. In [13], Kenyon and Wilson develop

their results for groves alongside their double-dimer results; many of the proofs

are similar. It turns out that the grove polynomials and double-dimer polynomials

are related as formal polynomials and this relationship is essential to the proof of

Theorem 2.2.1.

2.3. Groves and Their Connection to the Double-Dimer Model

Definition 2.3.1. [13] If G is a finite edge-weighted planar graph embedded in

the plane with a set of nodes, a grove is a spanning acyclic subgraph of G such

that each component tree contains at least one node. The weight of a grove is the

product of the weights of the edges it contains.

1
2 3

4

567

8

FIGURE 2.4. A grove
of a grid graph with 8
nodes. The partition of
the nodes is 18|245|3|67.

The connected components of a grove partition the

nodes into a planar partition. If σ is a planar partition

of 1, 2, . . . , n, let Pr(σ) be the probability that a random

grove of G partitions the nodes according to σ. Kenyon

and Wilson showed that
...
Pr(σ) :=

Pr(σ)

Pr(1|2| · · · |n)
is

an integer-coefficient homogeneous polynomial in the

variables Li,j
3 [13, Theorem 1.2].

For example, the normalized probability
...
Pr(σ)

that a random grove on four nodes partitions the nodes

3When G is viewed as a resistor network with conductances equal to the edge weights, Li,j is
the current that would flow into node j if node i were set to one volt and all other nodes were set
to zero volts [13, Appendix A].
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according to 1|234 is

...
Pr(σ) = L2,3L3,4 + L2,3L2,4 + L2,4L3,4 + L1,3L2,4.

(See [13, Section 1.2]). The probability that a random grove on six nodes has

partition 12|34|56 is

...
Pr(σ) = L1,2L3,4L5,6 − L1,2L3,5L4,6 + L1,3L2,5L4,6 − L1,3L2,4L5,6 + L1,4L2,6L3,5

−L1,4L2,5L3,6 + L1,5L2,4L3,6 − L1,5L2,6L3,4.

Each monomial in the polynomial
...
Pr(σ) is of the form Lτ =

∑
F

∏
{i,j}∈F

Li,j.

The sum is over spanning forests F of the complete graph Kn for which the trees of

F span the parts of τ and the product is over edges {i, j} of the forest F .

To compute these polynomials, Kenyon and Wilson define a matrix P(t) with

rows indexed by planar partitions and columns indexed by all partitions and show

how to compute the columns of this matrix combinatorially. As in the double-dimer

case, the τth column of P(t) is computed by writing the partition τ as a linear

combination of planar partitions. So if τ is planar, then P(t)
τ,τ = 1 and P(t)

σ,τ = 0 for

all σ 6= τ . If τ is nonplanar, the rule is a generalization of the rule for four nodes:

13|24→ 1|234 + 2|314 + 3|124 + 4|123− 12|34− 14|23 (2.3.1)

This rule tells us, for example, that P
(t)
12|34,13|24 = −1.

In general, if a partition is nonplanar, then there will exist nodes a < b <

c < d such that a and c belong to one part, and b and d belong to another part.

In Kenyon and Wilson’s transformation rule, 1, 2, 3, and 4 in equation (2.3.1)

15



are replaced with parts A,B,C and D, which contain the nodes a, b, c and d,

respectively.

Rule 2.3.2. [13, Rule 1] Arbitrarily subdivide the part containing a and c into

two sets A and C such that a ∈ A and c ∈ C, and similarly subdivide the part

containing b and d into B 3 b and D 3 d. Let the remaining parts of the partition

be denoted by “rest.” Then the transformation rule is

AC|BD|rest → A|BCD|rest +B|ACD|rest + C|ABD|rest +D|ABC|rest

−AB|CD|rest− AD|BC|rest.

Remark 2.3.3. If we arbitrarily subdivide the part containing a and c into two

sets A and C such that a ∈ A and c ∈ C, and similarly for the part containing b

and d, it is possible to repeat Rule 2.3.2 indefinitely without ever obtaining a linear

combination of planar partitions.

For example, consider the partition 1235|46. One crossing is a = 1, b = 4,

c = 5, d = 6. If we choose A = {1, 2, 3}, B = {4}, C = {5}, and D = {6}, then after

applying Rule 2.3.2, all of the partitions are planar. But if we choose A = {1, 2},

B = {4}, C = {3, 5}, and D = {6} then after applying Rule 2.3.2 we get

12|3456 + 4|12356 + 35|1246 + 6|12345− 124|356− 126|345

which includes nonplanar partitions. For example, the partition 124|356 has

crossing a = 1, b = 3, c = 4, d = 6. If we choose A = {1, 2}, B = {3, 5},

C = {4}, and D = {6} then after applying Rule 2.3.2 to 124|356 we get

12|3456 + 35|1246 + 4|12356 + 6|12345− 1235|46− 126|345.
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So after applying Rule 2.3.2 twice, all partitions cancel except for the partition

1235|46, which is the partition we started with. We could continue this process

indefinitely.

Remark 2.3.3 motivates the following modification of Rule 2.3.2.

Rule 2.3.4. Subdivide the part containing a and c into two sets A and C such that

A contains all the items in this part less than b, and C contains all other items.

Similarly, subdivide the part containing b and d into two sets B and D so that B

contains all items in this part less than c, and D contains all other items. Then the

transformation rule is

AC|BD|rest → A|BCD|rest +B|ACD|rest + C|ABD|rest +D|ABC|rest

−AB|CD|rest− AD|BC|rest.

Applying Rule 2.3.4 repeatedly will result in a linear combination of planar

partitions.

We have now presented all the definitions needed to state Kenyon and

Wilson’s main result for groves.

Theorem 2.3.5. [13, Theorem 1.2] Any partition τ may be transformed into a

formal linear combination of planar partitions by repeated application of Rule 2.3.2,

and the resulting linear combination does not depend on the choices made when

applying Rule 2.3.2, so that we may write

τ →
∑

planar partitions σ

P(t)
σ,τσ.
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For any planar partition σ, the same coefficients P(t)
σ,τ satisfy the equation

...
Pr(σ) =

Pr(σ)

Pr(1|2|3| · · · |n)
=

∑
partitions τ

P(t)
σ,τLτ

for bipartite edge-weighted planar graphs.

Just as the double-dimer polynomials P̂r(σ) can be expressed as determinants

of a matrix whose entries are Xi,j or 0 when σ is a tripartite pairing, the grove

polynomials
...
Pr(σ) can be expressed as Pfaffians of a matrix whose entries are Li,j

or 0 when σ is a partition that is a tripartite pairing.

Theorem 2.3.6. [12, Theorem 3.1] Let σ be the tripartite pairing partition defined

by circularly contiguous sets of nodes R,G, and B, where |R|, |G|, and |B| satisfy

the triangle inequality. Then

...
Pr(σ) = Pf


0 LR,G LR,B

−LG,R 0 LG,B

−LB,R −LB,G 0

 .

Here LR,G is the submatrix of L whose rows are the red nodes and columns are the

green nodes.

Kenyon and Wilson prove their determinant formula (Theorem 2.2.1) by

combining Theorem 2.3.6 with the following theorem, which states that the double-

dimer polynomials P̂r(σ) are a specialization of the grove polynomials
...
Pr(σ).
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Theorem 2.3.7. [13, Theorem 4.2] If a planar partition σ only contains pairs and

we make the following substitutions to the grove partition polynomial
...
Pr(σ):

Li,j →


0, if i and j have the same parity,

(−1)(|i−j|−1)/2Xi,j, otherwise,

then the result is signOE(σ) times the double-dimer pairing polynomial P̂r(σ), when

we interpret σ as a pairing.

The proof of Theorem 2.3.7 requires comparing the double-dimer

transformation rule for computing P̂r(σ) to the grove transformation rule for

computing
...
Pr(σ). Several observations in this proof are important for our work

in Section 3.4, so we include it here.

Proof. [13, Proof of Theorem 4.2] By Rule 2.3.2, when we express a partition τ as

a linear combination of planar partitions, any singleton parts of τ show up in each

planar partition with nonzero coefficient. Therefore if σ is a planar partition that

is a pairing and τ contains at least one singleton part, P(t)
σ,τ = 0. Also observe that

when we apply Rule 2.3.2 to a partition τ , each of the resulting partitions contains

the same number of parts as τ . It follows that if σ is a pairing, and P(t)
σ,τ 6= 0 for

some partition τ , then τ is also pairing.

When we apply Rule 2.3.2 to a pairing τ , it becomes the following:

If τ is nonplanar, then there will exist items a < b < c < d such that a and c

are paired, and b and d are paired. Then

ac|bd|rest → a|bcd|rest + b|acd|rest + c|abd|rest + d|abc|rest

−ab|cd|rest− ad|bc|rest.
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Since σ is a pairing, only the last two partitions can contribute to P(t)
σ,τ , so we get

the following rule

ac|bd|rest→ −ab|cd|rest− ad|bc|rest

Transforming 14|36|52 using this abbreviated rule and comparing the result to

(2.2.3) completes the proof.

Now that we have collected the relevant definitions and results from [12, 13],

we discuss our proof of Theorem 2.1.1.

2.4. Main Ideas for the Proof of Double-Dimer Condensation

Initially, it seems that Theorem 2.1.1 will follow immediately from combining

Theorem 2.2.1 with the Desnanot-Jacobi identity (Theorem 1.1.2). However, we

run into some technical obstacles, which we illustrate with an example.

2.4.1. Example

Suppose we wish to prove the equation from Example 2.1.2:

ZDD
σ (G,N)ZDD

σ1,2,5,8
(G,N− {1, 2, 5, 8}) = ZDD

σ1,8
(G,N− {1, 8})ZDD

σ2,5
(G,N− {2, 5})

+ZDD
σ1,2

(G,N− {1, 2})ZDD
σ5,8

(G,N− {5, 8})

where recall that σ = ((1, 8), (3, 4), (5, 2), (7, 6)). Then the matrix M from

Theorem 2.2.1 is

M =


X1,8 X1,4 0 X1,6

X3,8 X3,4 0 X3,6

X5,8 0 X5,2 0

0 X7,4 X7,2 X7,6

 .
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Since the first row and column of M correspond to nodes 1 and 8,

respectively, and the third row and column correspond to nodes 5 and 2, we apply

the Desnanot-Jacobi identity with i = 1 and j = 3:

det(M) det(M1,3
1,3 ) = det(M1

1 ) det(M3
3 )− det(M3

1 ) det(M1
3 ).

By Theorem 2.2.1,

det(M) =
ZDD
σ (G,N)

(ZD(GBW ))2
.

We also need to prove, for example, that

det(M3
3 ) =

ZDD
σ2,5

(G,N− {2, 5})
(ZD(GBW ))2

(2.4.1)

where

M3
3 =


X1,8 X1,4 X1,6

X3,8 X3,4 X3,6

0 X7,4 X7,6

 .

An example of a double-dimer configuration counted by ZDD
σ2,5

(G,N − {2, 5}) is

shown in Figure 2.5.

1 3

4

67

8

1
�3 2

�4 3

�6 4�7 5

�86

1

2

3

45

6

FIGURE 2.5. Shown left is a double-dimer configuration on a grid graph with node
set N − {2, 5}. We relabel the nodes (center) and add edges of weight 1 to nodes 2
and 3 (right) so that all nodes are black and odd or white and even.
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We cannot apply Theorem 2.2.1 to M3
3 because the nodes are not numbered

consecutively. We might hope to resolve this by relabeling the nodes, as shown

in Figure 2.5. But since Kenyon and Wilson assume that all nodes are black and

odd or white and even, in order to satisfy the assumptions of Kenyon and Wilson’s

theorem, we need to add edges of weight 1 to nodes 2 and 3. Call the resulting

graph G̃ and let X̃i,j =
ZD(G̃BW

i,j )

ZD(G̃BW )
. Then by Theorem 2.2.1,

ZDD
σ2,5

(G̃,N− {2, 5})
(ZD(G̃BW ))2

= det(M̃),

where

M̃ =


X̃1,6 0 X̃1,4

X̃3,6 X̃3,2 0

0 X̃5,2 X̃5,4

 .

Therefore, to prove equation (2.4.1) it suffices to show

(ZD(GBW ))2 det(M3
3 ) = (ZD(G̃BW ))2 det(M̃). (2.4.2)

Recall that the graph GBW
i,j includes the nodes i and j if and only if GBW

i,j

does not. Since dimer configurations on G with node i removed are in a one-to-one

correspondence with dimer configurations on G with an edge of weight 1 added to

node i, it is easy to state the relationship between ZD(GBW
i,j ) and ZD(G̃BW ). For

example, ZD(GBW
7,4 ) = ZD(G̃BW

5,2 ) and ZD(GBW
1,8 ) = ZD(G̃BW − {1, 2, 3, 6}) (see

Figure 2.5). We will use this observation along with Kuo’s Theorem 1.1.1 to verify

equation (2.4.2).

Since the nodes of G and G̃ are all black and odd or white and even, GBW =

G and G̃BW = G̃, so we omit the BW superscripts from the computations below.
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Additionally, we abbreviate ZD(G) as Z(G).

Z(G̃)(Z(G))3 det(M3
3 )

= Z(G̃)(Z(G))3

∣∣∣∣∣∣∣∣
X1,8 X1,4 X1,6

X3,8 X3,4 X3,6

0 X7,4 X7,6

∣∣∣∣∣∣∣∣
= Z(G̃)

∣∣∣∣∣∣∣∣
Z(G1,8) Z(G1,4) Z(G1,6)

Z(G3,8) Z(G3,4) Z(G3,6)

0 Z(G7,4) Z(G7,6)

∣∣∣∣∣∣∣∣
= Z(G̃)

∣∣∣∣∣∣∣∣
Z(G̃− {1, 2, 3, 6}) Z(G̃− {1, 2}) Z(G̃− {1, 2, 3, 4})
Z(G̃− {3, 6}) Z(G̃) Z(G̃− {3, 4})

0 Z(G̃− {2, 5}) Z(G̃− {2, 3, 4, 5})

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
Z(G̃)Z(G̃− {1, 2, 3, 6}) Z(G̃)Z(G̃− {1, 2}) Z(G̃)Z(G̃− {1, 2, 3, 4})

Z(G̃− {3, 6}) Z(G̃) Z(G̃− {3, 4})
0 Z(G̃− {2, 5}) Z(G̃− {2, 3, 4, 5})

∣∣∣∣∣∣∣∣
= Z(G̃)Z(G̃− {1, 2, 3, 6})

(
Z(G̃)Z(G̃− {2, 3, 4, 5})− Z(G̃3,4)Z(G̃5,2)

)
−Z(G̃3,6)

(
Z(G̃1,2)Z(G̃)Z(G̃− {2, 3, 4, 5})− Z(G̃5,2)Z(G̃)Z(G̃− {1, 2, 3, 4})

)
=

(
Z(G̃1,2)Z(G̃3,6) + Z(G̃1,6)Z(G̃3,2)

)(
Z(G̃)Z(G̃− {2, 3, 4, 5})− Z(G̃3,4)Z(G̃5,2)

)
−Z(G̃3,6)

(
Z(G̃1,2)Z(G̃)Z(G̃− {2, 3, 4, 5})− Z(G̃5,2)Z(G̃)Z(G̃− {1, 2, 3, 4})

)
= −Z(G̃1,2)Z(G̃3,6)Z(G̃3,4)Z(G̃5,2) + Z(G̃1,6)Z(G̃3,2)Z(G̃)Z(G̃− {2, 3, 4, 5})

−Z(G̃1,6)Z(G̃3,2)Z(G̃3,4)Z(G̃5,2) + Z(G̃3,6)Z(G̃5,2)Z(G̃)Z(G̃− {1, 2, 3, 4})

= −Z(G̃1,2)Z(G̃3,6)Z(G̃3,4)Z(G̃5,2)− Z(G̃1,6)Z(G̃3,2)Z(G̃3,4)Z(G̃5,2)

+Z(G̃1,6)Z(G̃3,2)
(
Z(G̃3,2)Z(G̃5,4) + Z(G̃5,2)Z(G̃3,4)

)
+Z(G̃3,6)Z(G̃5,2)

(
Z(G̃1,2)Z(G̃3,4) + Z(G̃1,4)Z(G̃3,2)

)
= Z(G̃1,6)Z(G̃3,2)Z(G̃3,2)Z(G̃5,4) + Z(G̃3,6)Z(G̃5,2)Z(G̃1,4)Z(G̃3,2)

= Z(G̃3,2)

∣∣∣∣∣∣∣∣
Z(G̃1,6) 0 Z(G̃1,4)

Z(G̃3,6) Z(G̃3,2) 0

0 Z(G̃5,2) Z(G̃5,4)

∣∣∣∣∣∣∣∣ = Z(G)(Z(G̃))3

∣∣∣∣∣∣∣∣
X̃1,6 0 X̃1,4

X̃3,6 X̃3,2 0

0 X̃5,2 X̃5,4

∣∣∣∣∣∣∣∣ .
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And thus

ZD(G̃)(ZD(G))3 det(M3
3 ) = ZD(G)(ZD(G̃))3 det(M̃),

which proves the claim.

When we consider graphs with more nodes, the computations are more

involved.

To be able to interpret the minors of Kenyon and Wilson’s matrix outside of

small examples, we need to lift their assumption that the nodes of the graph be

black and odd or white and even. Notice that under the assumption that the nodes

of the graph are black and odd or white and even, Xi,j =
ZD(GBW

i,j )

ZD(GBW )
=
ZD(Gi,j)

ZD(G)
.

This suggests that the correct generalization of Kenyon and Wilson’s matrix will

have entries
ZD(Gi,j)

ZD(G)
.

.

2.4.2. Outline

The previous remark motivates our approach, which is to define Yi,j :=

ZD(Gi,j)

ZD(G)
and P̃r(σ) =

ZDD
σ (G,N)

(ZD(G))2
. When G is a graph with nodes that are

either black and odd or white and even, ZD(G) = ZD(GBW ), so Yi,j = Xi,j and

P̃r(σ) = P̂r(σ).

Many of Kenyon and Wilson’s results from [12, 13] have analogues in the

variables Yi,j. Following Kenyon and Wilson’s approach, for any black-white pairing

ρ, we define

Y ′ρ = (−1)# crosses of ρ
∏
i black

Yi,ρ(i).

Note that we work with black-white pairings rather than odd-even pairings since we

are not requiring that the nodes are black and odd or white and even. In [12, 13],
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black-white pairings and odd-even pairings coincide, so Xi,j = 0 when i and j have

the same parity, which occurs exactly when they are the same color. In our general

setting, Yi,j may be nonzero when i and j have the same parity, but if i and j are

the same color then there are no dimer configurations of Gi,j, so Yi,j = 0.

Our analogue of Kenyon and Wilson’s matrix P(DD) (see equation (2.2.2))

is Q(DD). The rows of Q(DD) are indexed by planar pairings and the columns are

indexed by black-white pairings. To prove that Q(DD) is integer-valued, we show

that the columns of this matrix can be computed combinatorially and in Chapter

III we prove the following theorem:

Theorem 2.4.1. Let G be a finite edge-weighted planar bipartite graph with a set of

nodes. For any planar pairing σ,

P̃r(σ) =
∑

black-white pairings ρ

Q(DD)
σ,ρ Y ′ρ ,

where the coefficients Q(DD)
σ,ρ are all integers.

To prove Theorem 2.4.1, we use Kenyon and Wilson [13] as a road map,

proving analogues of Lemmas 3.1 − 3.5 and Theorem 3.6 from [13]. Because we

follow their work so closely, before presenting each of our lemmas we state the

corresponding lemma from [13]. In some cases the proofs are very similar. In

others, substantially more work is required.

In Chapter IV, we use our results from Chapter III to generalize Kenyon

and Wilson’s determinant formula (Theorem 2.2.1). Before stating our version

of their formula, we observe that if we reorder the columns of the matrix from
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Theorem 2.2.1 we get

det[1i,j colored diff. Xi,j]
i=1,...,2n−1
j=σ(1),...,σ(2n−1) = signOE(σ) det[1i,j colored diff. Xi,j]

i=1,...,2n−1
j=2,...,2n

where signOE(σ) is the parity of the permutation
(
σ(1)

2
σ(2)

2
· · · σ(2n−1)

2

)
written

in one-line notation.

We prove that

Theorem 2.4.2. Let G be a finite edge-weighted planar bipartite graph with a set

of nodes. Suppose that the nodes are contiguously colored red, green, and blue (a

color may occur zero times), and that σ is the (unique) planar pairing in which like

colors are not paired together. We have

P̃r(σ) = signOE(σ) det[1i,j RGB-colored differently Yi,j]
i=b1,b2,...,bn
j=w1,w2,...,wn

.

where b1 < b2 < · · · < bn are the black nodes and w1 < w2 < · · · < wn are the white

nodes.

By combining Theorem 2.4.2 with the Desnanot-Jacobi identity, we prove our

main result:

Theorem 2.4.3. Let G = (V1, V2, E) be a finite edge-weighted planar bipartite

graph with a set of nodes N. Divide the nodes into three circularly contiguous sets

R, G, and B such that |R|, |G|, and |B| satisfy the triangle inequality and let σ be
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the corresponding tripartite pairing. If x,w ∈ V1 and y, v ∈ V2 then

signOE(σ)signOE(σ′xywv)Z
DD
σ (G,N)ZDD

σxywv(G,N− {x, y, w, v})

= signOE(σ′xy)signOE(σ′wv)Z
DD
σxy (G,N− {x, y})ZDD

σwv (G,N− {w, v})

−signOE(σ′xv)signOE(σ′wy)Z
DD
σxv (G,N− {x, v})ZDD

σwy (G,N− {w, y})

where for i, j ∈ {x, y, w, v}, σij is the unique planar pairing on N − {i, j} in which

like colors are not paired together, and σ′ij is the pairing after the the node set N −

{i, j} has been relabeled so that the nodes are numbered consecutively.

Theorem 2.1.1 follows as a corollary; the additional assumptions in

Theorem 2.1.1 lead to a nice simplification of the signs in Theorem 2.4.3.
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CHAPTER III

PROOF OF THEOREM 2.4.2.1

Recall that throughout this dissertation each graph is assumed to have a set

of nodes N on its outer face numbered consecutively in counterclockwise order.

Kenyon and Wilson [12, 13] assume that the nodes alternate in color so that the

black nodes are odd and the white nodes are even. We allow the nodes to have any

coloring, as long as N has an equal number of black and white nodes.

In this chapter we prove Theorem 2.4.1, which is an analogue of Theorem 1.4

from Kenyon and Wilson [13] in this more general setting. We begin with a sign

lemma, which is our version of Lemma 3.4 from Kenyon and Wilson (Section 3.1).

Then, we show that P̃r(σ) is a homogeneous polynomial in the quantities Yi,j,

which requires analogues of Lemmas 3.1-3.3 from Kenyon and Wilson (Section 3.2).

In Section 3.3 we define the matrix Q(DD) and in Section 3.4 we show it is integer

valued, which concludes the proof of Theorem 2.4.1. Section 3.5 contains the proof

of a technical lemma from Section 3.3.

3.1. Lemma 3.4 From Kenyon and Wilson

In this section, we prove an analogue of the following lemma from Kenyon

and Wilson [13] for black-white pairings.

Lemma 3.1.1. [13, Lemma 3.4] For odd-even pairings ρ,

signOE(ρ)
∏

(i,j)∈ρ

(−1)(|i−j|−1)/2 = (−1)# crosses of ρ.
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A cross of a pairing ρ is a set of two pairs (a, c) and (b, d) of ρ such that

a < b < c < d. Recall from Section 2.4 that the sign of an odd-even pairing

ρ = ((1, ρ(1)), (3, ρ(3)), . . . , (2n − 1, ρ(2n − 1))) is the parity of the permutation(
ρ(1)

2
ρ(2)

2
· · · ρ(2n−1)

2

)
written in one-line notation.

For our version of this lemma, we need to define the sign of a black-white

pairing ρ, which we will denote signBW (ρ).

Definition 3.1.2. If ρ is a black-white pairing, then we can write ρ =

((b1, w1), (b2, w2), . . . , (bn, wn)), where b1 < b2 < · · · < bn. Let r :

{w1, . . . , wn} → {1, . . . , n} be the map defined by r(k) = #{i : wi ≤ wk}.

Then the sign of ρ, denoted signBW (ρ), is the parity of the permutation σρ =(
r(w1) r(w2) · · · r(wn)

)
written in one-line notation.

When ρ is a pairing that is both black-white and odd-even, these signs agree.

Lemma 3.1.3. If ρ is a black-white pairing that is also odd-even, then signOE(ρ) =

signBW (ρ).

The proof of Lemma 3.1.3 is straightforward, but it is postponed to

Section 3.1.3 for clarity of exposition.

Lemma 3.1.1 contains factors (−1)(|i−j|−1)/2 for each pair (i, j) of ρ. If (b, w) is

a pair of a black-white pairing ρ that is not odd-even, it is not necessarily the case

that |b−w|−1
2

is an integer. Therefore we need a different way to define the sign of a

pair.

To motivate this definition, notice that if two nodes of the opposite color b

and w have the same parity, it cannot be the case that the nodes between b and

w alternate black and white. So we keep track of the number of consecutive nodes

of the same color between b and w. Consecutive nodes of the same color appear in
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pairs. For example, if we have a graph with eight nodes so that nodes 1, 3, 4, and

6 are black and nodes 2, 5, 7, and 8 are white, there are two pairs of consecutive

nodes of the same color: (3, 4) and (7, 8). Since we frequently use the term pair

when describing pairings of the nodes, we will refer to pairs of consecutive nodes as

couples of consecutive nodes instead.

Definition 3.1.4. If (b, w) is a pair in a black-white pairing, let ab,w be

the number of couples of consecutive nodes of the same color in the interval

[min{b, w},min{b, w}+ 1, . . . ,max{b, w}].

Note that a triple of consecutive nodes that are all the same color contributes

2 to ab,w.

Remark 3.1.5. If (b, w) is a pair in a black-white pairing, then
|b− w|+ ab,w − 1

2

is an integer.

Proof. Let (n1, n1 + 1), (n2, n2 + 1), . . . , (n2k, n2k + 1) be a complete list of couples

of consecutive nodes of the same color in N so that n1 < n2 < · · · < n2k, where

it is possible that ni+1 = ni + 1. Every time we reach a couple of consecutive

nodes, the black nodes and white nodes switch parity. That is, if the black nodes

in the interval [n` + 1, n` + 2, . . . , n`+1] are odd, then the black nodes in the

interval [n`+1 + 1, n`+1 + 2, . . . , n`+2] are even. (Note that these intervals could

be length 1). It follows that if b and w are the same parity, then there are an odd

number of couples of consecutive nodes in the interval [min{b, w},min{b, w} +

1, . . . ,max{b, w}]. So in this case
|b−w|+ab,w−1

2
is an integer. If b and w are opposite

parity, then there are an even number of couples of consecutive nodes in the

interval [min{b, w},min{b, w} + 1, . . . ,max{b, w}]. So
|b−w|+ab,w−1

2
is an integer in

this case as well.
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Definition 3.1.6. If (b, w) is a pair in a black-white pairing, let

sign(b, w) = (−1)(|b−w|+ab,w−1)/2.

We observe that when the nodes of G alternate black and white, ab,w = 0

for all pairs (b, w), so this definition of the sign of a pair agrees with Kenyon and

Wilson’s definition.

Remark 3.1.7. For the remainder of the paper, we use the following notation. We

let

– (n1, n1 + 1), (n2, n2 + 1), . . . , (n2k, n2k + 1) be a complete list of couples of

consecutive nodes of the same color so that n1 < · · · < n2k,

– (s1, s1 + 1), (s2, s2 + 1), . . . , (sk, sk + 1) be a complete list of couples of

consecutive black nodes so that s1 < · · · < sk, and

– (u1, u1 + 1), (u2, u2 + 1), . . . , (uk, uk + 1) be a complete list of couples of

consecutive white nodes so that u1 < · · · < uk.

Note that we could have ni+1 = ni + 1, si+1 = si + 1, or ui+1 = ui + 1.

Since we are allowing arbitrary node colorings, many of our results contain

a global sign that depends on the order in which the couples of consecutive nodes

appear. For example, suppose a node set N has two couples of consecutive nodes: a

couple of consecutive black nodes (s, s + 1) and a couple of consecutive white nodes

(u, u + 1). Then the global sign will be 1 if u < s and −1 if s < u. To emphasize

that this sign only depends on the relative ordering of the couples of consecutive

nodes of the same color, we use the notation signc(N).
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Definition 3.1.8. Using the notation from Remark 3.1.7, if node 1 is black, define

the map ϕ : {n1, n2, . . . , n2k} → {1, 2, . . . , 2k} by

ϕ(nj) =


2i− 1 if nj = ui

2i if nj = si

.

Then the image of {n1, n2, . . . , n2k} under the map ϕ can be considered as a

permutation in one-line notation:

σN =
(
ϕ(n1) ϕ(n2) · · · ϕ(n2k)

)
.

Define signc(N) to be the sign of this permutation. Note that if u1 < s1 < u2 <

s2 < · · · < uk < sk then σN =
(

1 2 · · · 2k
)

, so signc(N) = 1.

If node 1 is white, define the map ϕ : {n1, n2, . . . , n2k} → {1, 2, . . . , 2k} by

ϕ(nj) =


2i− 1 if nj = si

2i if nj = ui

.

As above, the image of {n1, n2, . . . , n2k} under the map ϕ can be considered as

a permutation in one-line notation and we define signc(N) to be the sign of this

permutation. Note that if s1 < u1 < s2 < u2 < · · · < sk < uk, signc(N) = 1.

In Definition 3.1.8, if node 1 is black, it is possible that sk = 2n. Similarly, if

node 1 is white, it is possible that uk = 2n.

Definition 3.1.9. Since the image of {n1, n2, . . . , n2k} under the map ϕ can be

considered a permutation in one-line notation, we say that a pair (u`, sm) is an
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inversion with respect to the node coloring of N if (ϕ(u`), ϕ(sm)) is an inversion of

σN.

Example 3.1.10. Let N be a set of nodes where node 1 is black.

– If N has four couples of consecutive nodes of the same color with u1 < s1 <

s2 < u2, then σN =
(

1 2 4 3
)

, so signc(N) = −1. The pair (s2, u2) is an

inversion with respect to the node coloring.

– If instead s1 < u1 < s2 < u2, then σN =
(

2 1 4 3
)

, so signc(N) = 1. The

pairs (s1, u1) and (s2, u2) are inversions.

Example 3.1.11. Let N be a set of nodes where node 1 is white. If N has six

couples of consecutive nodes of the same color with s1 < s2 < u1 < u2 < u3 < s3,

then σN =
(

1 3 2 4 6 5
)

. The pairs (s2, u1) and (u3, s3) are inversions.

Remark 3.1.12. If node 1 is black, (u`, sm) is an inversion with respect to the

node coloring when u` < sm and ` > m. The pair (sm, u`) is an inversion when

sm < u` and m ≥ `. If node 1 is white, (u`, sm) is an inversion with respect to the

node coloring when u` < sm and ` ≥ m. The pair (sm, u`) is an inversion when

sm < u` and m > `.

We have now established the definitions needed to state our version of Kenyon

and Wilson’s lemma.

Lemma 3.1.13 (analogue of Lemma 3.4 from [13]). If ρ is a black-white pairing,

signc(N)signBW (ρ)
∏

(b,w)∈ρ

sign(b, w) = (−1)# crosses of ρ.

Before proving Lemma 3.1.13, we will prove the following:
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Lemma 3.1.14. There exists a planar black-white pairing ρ such that

signBW (ρ)
∏

(b,w)∈ρ

sign(b, w) = signc(N).

3.1.1. Proof of Lemma 3.1.14

We will prove Lemma 3.1.14 by induction on k, where N has 2k couples of

consecutive nodes of the same color. The following lemma is the base case k = 1.

Lemma 3.1.15 (Base case of Lemma 3.1.14). For any node coloring such that

there are exactly two couples of consecutive nodes of the same color, there is a

planar black-white pairing ρ such that

signBW (ρ)
∏

(i,j)∈ρ

sign(i, j) = signc(N).

Proof. Let (n1, n1 + 1), (n2, n2 + 1) be the list of the couples of consecutive nodes

of the same color so that n1 < n2. There are two cases to consider: Either n1 and 1

are opposite colors, or n1 and 1 are the same color.

If n1 and 1 are opposite colors, the pairing ρ = ((1, 2), (3, 4), . . . , (2n − 1, 2n))

is black-white. To see this, note that since n1 and 1 are opposite colors, n1 is even,

so the only pairs of adjacent nodes that are both the same color are of the form

(x, x + 1), where x is even, or (2n, 1). Since all pairs of ρ are of the form (i, i + 1)

where i is odd and i + 1 is even, ρ is a black-white pairing. Since signBW (ρ) = 1,∏
(i,j)∈ρ

sign(i, j) = 1 and signc(N) = 1, the claim holds.

If n1 and 1 are the same color, the pairing ρ = ((2n, 1), (2, 3), . . . , (2n −

2, 2n − 1)) is black-white. The reasoning is analogous to the previous case: n1 is

odd, so the only pairs of adjacent nodes that are both the same color are of the
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form (x, x+ 1), where x is odd. In this case, signBW (ρ) = (−1)n−1 and

∏
(i,j)∈ρ

sign(i, j) = (−1)(2n−1+a2n,1−1)/2 = (−1)n−1(−1)a2n,1/2,

so signBW (ρ)
∏

(i,j)∈ρ
sign(i, j) = (−1)a2n,1/2 = −1. Since signc(N) = −1, the claim

holds.

Definition 3.1.16. Suppose ρ is a black-white pairing. Then recall that we can

write ρ = ((b1, w1), (b2, w2), . . . , (bn, wn)), where b1 < b2 < · · · < bn. We say that

(wi, wj) is an inversion of ρ if i < j and wi > wj. Note that (wi, wj) is an inversion

of ρ if and only if (r(wi), r(wj)) is an inversion of σρ (see Definition 3.1.2).

Remark 3.1.17. An inversion of a planar pairing ρ corresponds to a nesting in

the diagram constructed by placing the nodes in order on a line and linking pairs in

the upper half-plane (see Figure 3.1). This follows immediately from the four node

case, where the only planar pairings are ((1, 2), (3, 4)) and ((1, 4), (3, 2)).

1 2 3 4 1 2 3 4

FIGURE 3.1. An inversion of a planar pairing ρ corresponds to a nesting. The
pairing ((1, 2), (3, 4)) has no inversions and its diagram has no nestings. The
pairing ((1, 4), (3, 2)) has one inversion and its diagram has one nesting.

Proof of Lemma 3.1.14. The proof of the lemma is long and technical, so we first

identify a few easy cases.

Easy Case 1. If

– node 1 is black and u1 < s1 < u2 < s2 < · · · < uk < sk, or
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– node 1 is white and s1 < u1 < s2 < u2 < · · · < sk < uk,

then the pairing ((1, 2), (3, 4), . . . , (2n − 1, 2n)) is a black-white pairing and

signc(N) = 1, so the claim holds.

Easy Case 2. If

– node 1 is black and s1 < u1 < s2 < u2 < · · · < sk < uk, or

– node 1 is white and u1 < s1 < u2 < s2 < · · · < uk < sk,

then the pairing ρ = ((2n, 1), (2, 3), . . . , (2n− 2, 2n− 1)) is black-white. In this case,

– signBW (ρ) = (−1)n−1, and

–
∏

(i,j)∈ρ
sign(i, j) = (−1)(2n−1+a2n,1−1)/2 = (−1)n−1(−1)a2n,1/2 = (−1)n−1(−1)k,

so signBW (ρ)
∏

(i,j)∈ρ
sign(i, j) = (−1)k = signc(N).

General case. For the general case, we proceed by induction on the number of

couples of consecutive nodes of the same color. The base case is when there are two

couples of consecutive nodes of the same color, which is Lemma 3.1.15. Assume the

claim holds when we have a set of nodes that has 2(k − 1) couples of consecutive

nodes of the same color and let N be a set of nodes with 2k couples of consecutive

nodes of the same color.

Using the notation from Remark 3.1.7, let h be the smallest integer so that

nh−1 and nh are different colors. Then ρ1 = ((nh−1 + 1, nh−1 + 2), . . . , (nh− 1, nh)) is

a black-white pairing that contains at least one pair.

Throughout this proof, we will illustrate the main ideas with the example

where N is a set of 12 nodes colored so that nodes 1, 3, 4, 5, 7, and 10 are black, as

shown in Figure 3.2. In this example, the couples of consecutive nodes of the same
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12

FIGURE 3.2. The pairing ρ1 when the nodes are colored as shown.

color are (3, 4), (4, 5), (8, 9), and (11, 12). Since n1 = 3 and n2 = 4 are black and

n3 = 8 is white, h = 3. So the pairing ρ1 is ((5, 6), (7, 8)).

Consider N′ = {1, . . . , |N|− (nh−nh−1)}. Define ψ : N−{nh−1 + 1, . . . , nh} →

N′ by

ψ(`) =


` if ` ≤ nh−1

`− (nh − nh−1) if ` > nh

(3.1.1)

That is, ψ defines a relabeling of the nodes of N−{nh−1 + 1, . . . , nh} so that node 1

is labeled 1, . . . , node nh−1 is labeled nh−1, node nh + 1 is labeled nh−1 + 1, . . . , node

2n is labeled 2n − (nh − nh−1). Since N′ has 2k − 2 couples of consecutive nodes of

the same color, by the induction hypothesis there is a black-white planar pairing ρ2

of the nodes of N′ such that

signBW (ρ2)
∏

(i,j)∈ρ2

sign(i, j) = signc(N
′).

Let ψ−1(ρ2) denote the pairing that results from applying ψ−1 to each node in

ρ2. That is, ψ−1(ρ2) is the pairing obtained by returning the nodes of ρ2 to their

original labels in N. Let ρ = ρ1 ∪ ψ−1(ρ2). Observe that ρ is a planar black-white

pairing of N.
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FIGURE 3.3. Left: The pairing ρ2 of N′ guaranteed by the induction hypothesis.
Right: The pairing ρ of N. The pairing ρ1 is shown with solid red lines and the
pairing ψ−1(ρ2) is shown with dotted blue lines.

In our example, the map ψ defines a relabeling of N − {5, 6, 7, 8} so that

node 9 is labeled 5, . . . , node 12 is labeled 8. The node set N′ has two couples

of consecutive pairs of the same color. By Lemma 3.1.15, the pairing ρ2 is

((1, 8), (3, 2), (5, 4), (7, 6)), so the pairing ψ−1(ρ2) is ((1, 12), (3, 2), (9, 4), (11, 10))

and thus ρ = ((1, 12), (3, 2), (5, 6), (7, 8), (9, 4), (11, 10)), as shown in Figure 3.3.

We will next

(1) Compare
∏

(i,j)∈ρ2
sign(i, j) to

∏
(i,j)∈ρ

sign(i, j),

(2) Compare signBW (ρ2) to signBW (ρ), and

(3) Compare signc(N
′) to signc(N).

(1) Comparing
∏

(i,j)∈ρ2
sign(i, j) to

∏
(i,j)∈ρ

sign(i, j).

If (i, j) is a pair in ρ that is a pair of ρ1, then sign(i, j) = 1. If (i, j) is a pair

in ρ that is a pair of ψ−1(ρ2), then consider (ψ(i), ψ(j)) (the corresponding pair

of ρ2). If i, j ≤ nh−1 or i, j ≥ nh + 1, then sign(i, j) = sign(ψ(i), ψ(j)) because
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ai,j = aψ(i),ψ(j). If i ≤ nh−1 and j ≥ nh + 1 then

sign(ψ(i), ψ(j)) = (−1)(ψ(j)−ψ(i)+aψ(i),ψ(j)−1)/2 = (−1)(j−(nh−nh−1)−i+ai,j−2−1)/2

= (−1)(nh−nh−1+2)/2sign(i, j)

so ∏
(i,j)∈ρ2

sign(i, j) =
∏

(i,j)∈ρ:
min(i,j)≤nh−1 and

max(i,j)≥nh+1

(−1)(nh−nh−1+2)/2
∏

(i,j)∈ρ

sign(i, j).

In the example, there are two pairs (i, j) with i ≤ n2 and j ≥ n3 + 1: the pairs

(1, 12) and (4, 9).

(2) Comparing signBW (ρ2) to signBW (ρ).

Comparing signBW (ρ2) to signBW (ρ) requires comparing the number of

inversions of ρ to the number of inversions of ρ2 (see Definition 3.1.16). Since ρ1

contains only pairs of the form (i, i + 1), ρ1 contains no inversions. By Remark

3.1.17, inversions in ρ correspond to nestings in the corresponding diagram. Since

there are nh−nh−1

2
pairs in ρ1, ρ has nh−nh−1

2
additional inversions compared to ρ2 for

each pair (i, j) such that min(i, j) ≤ nh−1 and max(i, j) ≥ nh + 1. So,

signBW (ρ2) = signBW (ρ)
∏

(i,j)∈ρ:
min(i,j)≤nh−1 and

max(i,j)≥nh+1

(−1)(nh−nh−1)/2

In the example, since there are two pairs (i, j) with i ≤ n2 and j ≥ n3 + 1 and

the pairing ρ1 consists of two pairs, there are four more inversions in ρ than in ρ2.

(3) Comparing signc(N
′) to signc(N). We will show that

signc(N
′) = (−1)h−1signc(N)

39



by comparing the number of inversions with respect to the node coloring of N to

the number of inversions in with respect to the node coloring of N′ (see Definition

3.1.9).

Recall the notation from Remark 3.1.7: si is the first in a couple of

consecutive black nodes in N and ui is the first in a couple of consecutive white

nodes in N. Define s′i and u′i analogously for N′. Recall also that we have the

map ψ : N − {nh−1 + 1, . . . , nh} → N′ which defines a relabeling of the nodes

of N− {nh−1 + 1, . . . , nh} (see equation (3.1.1)).

First assume node 1 is black and that we have

s1 < · · · < sh−1 < u1 < · · · .

Inversions with respect to the node coloring of N. By Remark 3.1.12, there are two

types of inversions with respect to the node coloring of N.

(1) Nodes x and y in N such that x < y, x = sa, y = ub, and a ≥ b.

(2) Nodes x and y in N such that x < y, x = ua, y = sb, and a > b.

Considering the first type of inversion, there are several cases:

(a) If a ≤ h−2 and b > 1, then ψ(x) = s′a and ψ(y) = u′b−1. Since a ≥ b, a ≥ b−1,

so in this case there is a corresponding inversion in N′.

(b) If a ≤ h − 2 and b = 1, then y /∈ N − {nh−1 + 1, . . . , nh}, so in this case there

is not a corresponding inversion in N′.

(c) If a = h − 1 and b ≤ h − 1, then x /∈ N − {nh−1 + 1, . . . , nh}, so in this case

there is not a corresponding inversion in N′.
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(d) If a > h − 1 and b ≤ a, then b > 1 (since u1 < sa). In this case, ψ(x) = s′a−1

and ψ(y) = u′b−1, so there is a corresponding inversion in N′.

Note that (b) gives h−2 inversions in N that are not in N′ and (c) gives h−1

inversions in N that are not in N′.

Considering the second type of inversion, since sh−1 < u1 we must have a > h.

In this case, ψ(x) = u′a−1 and ψ(y) = s′b−1, so there is a corresponding inversion in

N′.

In the example, the pairs (s1, u1), (s2, u1), and (s2, u2) are inversions with

respect to the node coloring of N. Since h = 3, the inversion (s1, u1) is in case (b)

of the first type and the inversions (s2, u1) and (s2, u2) are in case (c) of the first

type. So in this example, all of the inversions with respect to the node coloring of

N do not have corresponding inversions in N′.

Inversions with respect to the node coloring of N′. Similarly, there are two types of

inversions in N′.

(1) Nodes w and z in N′ such that w < z, w = s′a, z = u′b, and a ≥ b.

(2) Nodes w and z in N′ such that w < z, w = u′a, z = s′b, and a > b.

Considering the first type of inversion, there are two cases:

(a) If a ≤ h− 2, then ψ−1(w) = sa and ψ−1(z) = ub+1.

(i) If a ≥ b+ 1 then there is a corresponding inversion in N.

(ii) If a = b there is not a corresponding inversion in N.

(b) If a ≥ h − 1, then ψ−1(w) = sa+1 and ψ−1(z) = ub+1, so there is a

corresponding inversion in N.
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We see that case (a)(ii) gives h− 2 inversions in N′ that are not in N.

Considering the second type of inversion, since s′h−2 < u′1 the only possibility

is that a > h − 1. In this case, ψ−1(w) = ua+1 and ψ−1(z) = sb+1, so there is a

corresponding inversion in N.

In the example, the only inversion with respect to the node coloring of N′

is (s′1, u
′
1), which is an example of case (a)(ii), so there is not a corresponding

inversion in N.

We conclude that in the case where node 1 is black and we have s1 < · · · <

sh−1 < u1 < · · · , the equation signc(N
′) = (−1)h−1signc(N) holds.

Combining this with

– signBW (ρ2)
∏

(i,j)∈ρ2
sign(i, j) = signc(N

′),

–
∏

(i,j)∈ρ2
sign(i, j) =

∏
(i,j)∈ρ:

min(i,j)≤nh−1 and
max(i,j)≥nh+1

(−1)(nh−nh−1+2)/2
∏

(i,j)∈ρ
sign(i, j), and

– signBW (ρ2) = signBW (ρ)
∏

(i,j)∈ρ:
min(i,j)≤nh−1 and

max(i,j)≥nh+1

(−1)(nh−nh−1)/2,

we have

signBW (ρ)
∏

(i,j)∈ρ

sign(i, j) = signc(N) · (−1)h−1 ·
∏

(i,j)∈ρ:
min(i,j)≤nh−1 and

max(i,j)≥nh+1

(−1).

So it remains to observe that the number of pairs (i, j) ∈ ρ such that

min(i, j) ≤ sh−1 and max(i, j) ≥ u1 + 1 has the same parity as h − 1. There

are exactly h − 1 more black nodes than white nodes in the interval [1, . . . , sh−1]

because there are h − 1 black nodes that are not followed by a white node in this

interval. So there are h − 1 black nodes that must all be paired with a white node
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with label ≥ u1 + 1. Therefore there are at least h − 1 pairs (i, j) ∈ ρ such that

min(i, j) ≤ sh−1 and max(i, j) ≥ u1 + 1. There may be more than h − 1 such pairs,

but there must be h− 1 + 2m pairs for some m ≥ 0.

There are three other cases: when node 1 is white and we have s1 < · · · <

sh−1 < u1 < · · · , when node 1 is black and we have u1 < · · · < uh−1 < s1 < · · · , and

when node 1 is white and we have u1 < · · · < uh−1 < s1 < · · · . These are omitted

because the analyses are nearly identical to the case we just considered.

3.1.2. Proof of Lemma 3.1.13

Recall that we want to show that if ρ is a black-white pairing on a graph G

with node set N,

signc(N)signBW (ρ)
∏

(b,w)∈ρ

sign(b, w) = (−1)# crosses of ρ. (3.1.2)

By Lemma 3.1.14 there is a black-white planar pairing ρ such that

signBW (ρ)
∏

(i,j)∈ρ

sign(i, j) = signc(N).

Since ρ is planar, (−1)#crosses of ρ = 1, so equation (3.1.2) holds.

To prove equation (3.1.2) holds for all black-white pairings we consider

ways we can modify black-white pairings to obtain new black-white pairings and

determine how these modifications affect equation (3.1.2).

Definition 3.1.18. Let σ be a (not necessarily black-white) pairing on {1, . . . , 2n},

such that x is not paired with y. When we swap the locations of x and y in σ
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we create a new pairing σ′ that is identical to σ except that it contains the pairs

(x, σ(y)) and (y, σ(x)) rather than (x, σ(x)) and (y, σ(y)).

Example 3.1.19. Suppose σ is the pairing ((1, 3), (2, 4), (5, 6)). If we swap the

locations of 3 and 4 in σ we obtain the pairing σ′ = ((1, 4), (2, 3), (5, 6)).

Remark 3.1.20. If ρ is a black-white pairing and ρ′ is obtained from ρ by

swapping the locations of two nodes of the same color, signBW (ρ′) = −signBW (ρ).

Now we observe that we can obtain any black-white pairing on N from a

given black-white pairing ρ using the following types of swaps:

(1) Swapping the locations of u and u + 1 in ρ, where (u, u + 1) is a couple of

consecutive white nodes.

(2) Swapping the locations of x and y in ρ, where x < y are white nodes and all `

nodes appearing between x and y are black, where ` ≥ 1.

To see that these swaps are sufficient, let w1, . . . , wn be the white nodes

in increasing order. The swaps described are the adjacent transpositions

(w1, w2), (w2, w3), . . . , (wn−1, wn).

We will show that equation (3.1.2) holds after applying each type of swap.

This requires a few additional lemmas. Note that the proofs of Lemmas 3.1.21

through 3.1.23 follow immediately from Definition 3.1.6.

Lemma 3.1.21. Let b be a black node and let (u, u + 1) be a couple of consecutive

white nodes. Then sign(b, u) = −sign(b, u+ 1).

Proof. If b < u, then ab,u+1 = ab,u + 1. So

sign(b, u) = (−1)(u−b+ab,u−1)/2 = −(−1)(u+1−b+ab,u+1−1)/2 = −sign(b, u+ 1).
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If b > u+ 1, then ab,u+1 = ab,u − 1. So

sign(b, u) = (−1)(b−u+ab,u−1)/2 = −(−1)(b−(u+1)+ab,u+1−1)/2 = −sign(b, u+ 1).

Lemma 3.1.22. Assume the nodes x and y with x < y are white and all ` nodes

between x and y are black, where ` ≥ 1. If b is a black node not in the interval

[x+ 1, . . . , y − 1], then sign(b, x) = (−1)`sign(b, y).

Proof. If b < x, then ab,y = ab,x + `− 1. Then since y = x+ `+ 1,

sign(b, x) = (−1)(x−b+ab,x−1)/2 = (−1)(y−(`+1)−b+ab,y−`+1−1)/2

= (−1)`(−1)(y−b+ab,y−1)/2

= (−1)`sign(b, y).

If b > y, then ab,y = ab,x − (`− 1). Then

sign(b, x) = (−1)(b−x+ab,x−1)/2 = (−1)(b−(y−(`+1))+ab,y+(`−1)−1)/2

= (−1)`(−1)(b−y+ab,y−1)/2

= (−1)`sign(b, y).

Lemma 3.1.23. Assume the nodes x and y with x < y are white and all ` nodes

between x and y are black, where ` ≥ 1. If b is a black node in the interval [x +

1, . . . , y − 1], so b = x+ j for some j ≤ `, then sign(b, x) = (−1)`−1sign(b, y).
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Proof. Since b = x+ j and ab,x = j − 1, we see that

sign(b, x) = (−1)(b−x+ab,x−1)/2 = (−1)(j+j−1−1)/2 = (−1)j−1.

Using the fact that y − b = `+ 1− j and ab,y = `− j, we have

sign(b, y) = (−1)(y−b+ab,y−1)/2 = (−1)(`+1−j+`−j−1)/2 = (−1)`−j.

So sign(b, x) = (−1)`−1sign(b, y).

Remark 3.1.24. The symmetric group S2n acts on the set of pairings on

{1, . . . , 2n}: the transposition (i, i+1) acts on a pairing ρ by swapping the locations

of i and i + 1. If i is paired with i + 1, acting with (i, i + 1) leaves the pairing

fixed; otherwise, (i, i + 1) acts nontrivially and changes the parity of the number of

crossings.

Let ρ be a (not necessarily black-white) pairing on {1, . . . , 2n}. Let x and y

be two nodes such that x < y. Assume no node in the interval [x, y] is paired with

any other node in this interval. Then

(x, y)ρ = (x, x+ 1) · · · (y − 1, y) · · · (x+ 1, x+ 2)(x, x+ 1)ρ

where each transposition of the form (i, i+ 1) acts nontrivially.

Lemma 3.1.25. Let ρ be a (not necessarily black-white) pairing on {1, . . . , 2n}. Let

x and y be two nodes such that x < y and x is not paired with y. Assume that no

node in the interval [x + 1, . . . , y − 1] is paired with any other node in this interval.

Then when the locations of x and y in ρ are swapped,
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(1) if x and y were both paired with nodes in the interval [x + 1, . . . , y − 1], the

number of crossings of ρ changes parity,

(2) if exactly one of x and y was paired with a node in the interval [x + 1, . . . , y −

1], then the number of crossings of ρ does not change parity, and

(3) if neither x nor y was paired with a node in the interval [x+ 1, . . . , y − 1] then

the number of crossings of ρ changes parity.

Proof. Let ρ be a pairing on {1, . . . , 2n} and consider (x, y)ρ. There are several

cases. The strategy is to factor (x, y) into adjacent transpositions and determine

which transpositions act nontrivially.

Case 1. If the nodes ρ(x) and ρ(y) are both in the interval [x + 1, . . . , y − 1], then

(x, y)ρ = (ρ(x), ρ(y))ρ. Let a = min(ρ(x), ρ(y)) and let b = max(ρ(x), ρ(y)). Then

(ρ(x), ρ(y))ρ = (a, a+ 1) · · · (b− 1, b) · · · (a+ 1, a+ 2)(a, a+ 1)ρ

We have written (ρ(x), ρ(y)) as a product of an odd number of transpositions of the

form (i, i + 1). Since no node in the interval [a, . . . , b] is paired with any other node

in this interval, all these transpositions act nontrivially by Remark 3.1.24. Thus the

parity of the number of crossings changes.

Case 2. If exactly one of the nodes ρ(x) or ρ(y) is in the interval [x + 1, . . . , y − 1],

then

(x, y)ρ = (x, x+ 1) · · · (y − 1, y) · · · (x+ 1, x+ 2)(x, x+ 1)ρ

and exactly one of these transpositions acts trivially. For if x is paired with x + k,

then after applying the transposition (x, x + 1) to ρ, x + 1 and x + k are paired.

Similarly, after applying the transposition (x + 1, x + 2) to (x, x + 1)ρ, x + 2 and
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x + k are paired. It follows that the transposition (x + k − 1, x + k) acts trivially.

Since an even number of transpositions of the form (i, i + 1) act nontrivially, the

parity of the number of crossings does not change.

Case 3. If neither of the nodes ρ(x) and ρ(y) are in the interval [x + 1, . . . , y − 1],

then

(x, y)ρ = (x, x+ 1) · · · (y − 1, y) · · · (x+ 1, x+ 2)(x, x+ 1)ρ

so we have written (ρ(x), ρ(y)) as a product of an odd number of transpositions of

the form (i, i + 1). Since no node in the interval [x, y] is paired with any other node

in this interval, all of these transpositions act nontrivially. Thus the parity of the

number of crossings changes.

Now that we have established Lemmas 3.1.21 through 3.1.25 we can show

that equation (3.1.2) holds after applying both types of swaps to ρ. By Remark

3.1.20, each swap changes signBW (ρ).

(1) Swapping the locations of u and u+ 1.

Let b1 be the node paired with u and let b2 be the node paired with u+ 1. By

Lemma 3.1.21, sign(b1, u) = −sign(b1, u + 1) and sign(b2, u + 1) = −sign(b2, u). So

when we swap the locations of u and u + 1,
∏

(b,w)∈ρ
sign(b, w) does not change. Since

signBW (ρ) changes, the sign of the LHS of (3.1.2) changes. Swapping u and u + 1

changes (−1)# crosses of ρ, so swapping the locations of u and u + 1 does not affect

equation (3.1.2).

(2) Swapping the locations of x and y, where x < y are white nodes and

all ` nodes between x and y are black.
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Case 1. If x and y are both paired with black nodes in the interval [x + 1, x +

2, . . . , y − 1] then (−1)# crosses of ρ changes sign by Lemma 3.1.25. By Lemma 3.1.23,

sign(ρ(x), x)sign(ρ(y), y) = ((−1)`−1)2sign(ρ(x), y)sign(ρ(y), x)

so
∏

(b,w)∈ρ
sign(b, w) does not change. Since signBW (ρ) changes, the sign of the LHS

of (3.1.2) changes.

Case 2. If exactly one of x and y is paired with a black node in the interval [x +

1, x + 2, . . . , y − 1], then (−1)# crosses of ρ does not change sign by Lemma 3.1.25. By

Lemmas 3.1.22 and 3.1.23,

sign(ρ(x), x)sign(ρ(y), y) = (−1)`−1(−1)`sign(ρ(x), y)sign(ρ(y), x)

so
∏

(b,w)∈ρ
sign(b, w) changes sign. Since signBW (ρ) changes, the sign of the LHS of

(3.1.2) does not change sign.

Case 3. If neither x nor y is paired with a black node in the interval [x + 1, x +

2, . . . , y − 1], then (−1)# crosses of ρ changes sign. By Lemma 3.1.22,

sign(ρ(x), x)sign(ρ(y), y) = ((−1)`)2sign(ρ(x), y)sign(ρ(y), x)

so
∏

(b,w)∈ρ
sign(b, w) does not change. Since signBW (ρ) changes, the sign of the LHS

of (3.1.2) changes.

This completes the proof of Lemma 3.1.13.

We conclude Section 3.1 by proving Lemma 3.1.3, which states that when a

black-white pairing ρ is also odd-even, signOE(ρ) = signBW (ρ).
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3.1.3. Proof of Lemma 3.1.3

Before we prove Lemma 3.1.3, we prove the lemma in the case where ρ is

planar.

Lemma 3.1.26. When ρ is a planar black-white pairing,

signOE(ρ) = signBW (ρ)

Proof. Let ρ be a planar black-white pairing. Recall from Definition 3.1.16 that

all black-white pairings can be written ρ = ((b1, ρ(b1)), (b2, ρ(b2)), . . . , (bn, ρ(bn))),

where b1 < b2 < · · · < bn, and we say that (ρ(bi), ρ(bj)) is an inversion of ρ if i < j

and ρ(bi) > ρ(bj).

All planar pairings are odd-even, and an inversion of an odd-even pairing is

an inversion of the permutation
(
ρ(1)

2
ρ(3)

2
· · · ρ(2n−3)

2
ρ(2n−1)

2

)
. In this proof,

will say (ρ(i), ρ(j)) is an inversion if i < j and ρ(i) > ρ(j), even though the

inversion is actually (ρ(i)
2
, ρ(j)

2
).

We will show that there is a one-to-one correspondence between inversions

of ρ when it is considered as a black-white pairing (which we will call black-white

inversions) and inversions of ρ when it is considered as an odd-even pairing (which

we will call odd-even inversions).

Consider a black-white inversion, that is, some bi < bj such that ρ(bi) > ρ(bj).

There are several cases to consider:

Case 1. bi, bj are both odd.

In this case, bi = 2k − 1 and bj = 2` − 1 for some k < `, so (ρ(bi), ρ(bj)) is an

odd-even inversion.

Case 2. bi, bj are both even.
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Since bi < bj and ρ(bi) > ρ(bj), (bj, bi) is an odd-even inversion.

Case 3. bi is odd and bj is even.

There are two subcases to consider. If ρ(bj) < bi, then it must be the case

that bj > ρ(bi). To see this, observe that if bj < ρ(bi), then ρ(bj) < bi < bj < ρ(bi),

but then we have a crossing, which contradicts the planarity of ρ. So (bj, ρ(bi)) is

an odd-even inversion.

If ρ(bj) > bi, then ρ(bi) > bj (otherwise bi < ρ(bj) < ρ(bi) < bj, so ρ has a

crossing). So (ρ(bi), bj) is an odd-even inversion.

Case 4. bi is even and bj is odd.

If ρ(bi) > bj, then ρ(bj) > bi (otherwise ρ(bj) < bi < bj < ρ(bi) is a crossing),

so (ρ(bj), bi) is an odd-even inversion. If ρ(bi) < bj, then bi > ρ(bj) (otherwise

bi < ρ(bj) < ρ(bi) < bj is a crossing), so (bi, ρ(bj)) is an odd-even inversion.

A similar argument shows that for each odd-even inversion, there is a black-

white inversion. Since there is a one-to-one correspondence between odd-even

inversions and black-white inversions, signOE(ρ) = signBW (ρ).

Lemma 3.1.3. When ρ is a black-white pairing that is also odd-even,

signOE(ρ) = signBW (ρ).

Proof. One can get from an odd-even black-white pairing ρ1 to any other odd-even

black white pairing ρ2 by applying a series of moves, where each move swaps the

locations of two nodes of the same color and parity. Since each of these moves

changes signOE and signBW , the claim follows from Lemma 3.1.26.
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3.2. Lemmas 3.1 and 3.2 From Kenyon and Wilson

Throughout this section, S denotes a balanced subset of nodes (a subset

containing an equal number of black and white nodes). The union of a dimer

configuration of G \ S and a dimer configuration of G \ Sc is a double-dimer

configuration of (G,N) (see Figure 2.1 in Section 2.1). In [13], Kenyon and Wilson

show that ZD(G \ S)ZD(G \ Sc) is a sum of double-dimer partition functions

ZDD
π (G,N), where the sum is over all pairings π that do not connect nodes in S

to nodes in Sc.

Lemma 3.2.1. [13, Lemma 3.1] If S is a balanced subset of nodes then ZD(G \

S)ZD(G \ Sc) is a sum of double-dimer configurations for all connection topologies

π for which π connects no element of S to an element of Sc := N \ S. That is,

ZD(G \ S)ZD(G \ Sc) = ZDD
∑
π

MS,π Pr(π),

where MS,π is 0 or 1 according to whether π connects nodes in S to Sc or not.

This lemma relates the quantity ZD(G\S)ZD(G\Sc) to Pr(π). Next, Kenyon

and Wilson show that
ZD(G \ S)ZD(G \ Sc)

(ZD(G))2
is a determinant in the quantities

Xi,j.

Lemma 3.2.2. [13, Lemma 3.2] Let S be a balanced subset of {1, . . . , 2n}. Then

ZD(G \ S)ZD(G \ Sc)
(ZD(G))2

= det[(1i,j∈S + 1i,j /∈S)× (−1)(|i−j|−1)/2Xi,j]
i=1,3,...,2n−1
j=2,4,...,2n .

The combination of these results shows that P̂r(π) is a homogeneous

polynomial in the Xi,j, since the matrix M from [13, Lemma 3.1] has full rank [13,

Lemma 3.3]. Our analogues of these lemmas have several differences (such as the
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additional global signs in our version of Lemma 3.2.2, see Lemma 3.2.5), but our

proofs are quite similar to their proofs.

We begin with Lemma 3.2.1. For a graph G with node set N that does not

necessarily have the property that all nodes are black and odd or white and even, a

statement very similar to Lemma 3.2.1 holds. Let T ⊆ N be the set of nodes that

are odd and white or even and black. Let G̃ be G with an extra vertex and edge

of weight 1 added to each node in T , so all of the nodes in G̃ are black and odd or

white and even. Since ZD(G̃ \ S) = ZD(G \ (S4T )), Lemma 3.2.1 implies the

following.

Corollary 3.2.3. Let S be a balanced subset of nodes. ZD(G \ (S4T ))ZD(G \

(S4T )c) is a sum of double-dimer configurations for all connection topologies π for

which π connects no element of S to an element of Sc. That is,

ZD(G \ (S4T ))ZD(G \ (S4T )c) = ZDD(G)
∑
π

MS,π Pr(π),

where MS,π is 0 or 1 according to whether π connects nodes in S to Sc or not.

If V = S4T , then S = V4T , so we have:

Corollary 3.2.4. Let V be a balanced subset of nodes. ZD(G \ V )ZD(G \ V c) is

a sum of all connection topologies π for which π connects no elements of V4T to

(V4T )c. That is,

ZD(G \ V )ZD(G \ V c) = ZDD(G)
∑
π

MV4T,π Pr(π),

where MV4T,π is 0 or 1 depending on whether π connects nodes in V4T to

(V4T )c.
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Corollary 3.2.4 is the version of Lemma 3.2.1 that we will need to prove

Theorem 2.4.1.

Our version of [13, Lemma 3.2] is the following.

Lemma 3.2.5. Let S be a balanced subset of N = {1, . . . , 2n}. Then

ZD(G \ S)ZD(G \ Sc)
(ZD(G))2

= signc(N)sign(S) det
[
(1i,j∈S + 1i,j /∈S)× sign(i, j)Yi,j

]i=b1,...,bn
j=w1,...,wn

(3.2.1)

where b1, b2, . . . , bn are the black nodes of {1, 2, . . . , 2n} listed in ascending order,

w1, w2, . . . , wn are the white nodes of {1, 2, . . . , 2n} listed in ascending order,

sign(i, j) is defined in Definition 3.1.6 and sign(S) = (−1)# crosses of ρ, where ρ is

a black-white pairing that does not bridge S to Sc and is planar when restricted to

S and planar when restricted to Sc.

Remark 3.2.6. The fact that such a pairing ρ always exists is a consequence of

Lemma 3.1.14, which states that for any node coloring there is a planar black-white

pairing ρ satisfying signBW (ρ)
∏

(b,w)∈ρ
sign(b, w) = signc(N). Since S is balanced, the

existence of a planar black-white pairing of S and a planar black-white pairing of

Sc follows.

The proof of Lemma 3.2.5 requires some Kasteleyn theory. The reader

familiar with basic facts about Kasteleyn matrices can skip the following section.

3.2.1. Kasteleyn Matrices

Recall that G = (V1, V2, E) is a finite edge-weighted bipartite planar graph

embedded in the plane. Let w((i, j)) denote the weight of an edge (i, j) ∈ E.
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Definition 3.2.7. A Kasteleyn (or flat) weighting of G is a choice of sign for each

edge with the property that each face with 0 mod 4 edges has an odd number of −

signs and each face with 2 mod 4 edges has an even number of − signs.

For the remainder of this section we will let σ : E → ±1 denote the Kasteleyn

weighting of G. A Kasteleyn matrix of G is a signed bipartite adjacency matrix of

G. More precisely, define a |V1| × |V2| matrix K by

Ki,j =


σ((i, j))w((i, j)) if (i, j) ∈ E

0 otherwise

Kasteleyn showed that every bipartite planar graph with an even number of

vertices has a Kasteleyn matrix. Moreover, | detK| is the weighted sum of all dimer

configurations of G [10].

The proof of Lemma 3.2.5 uses a few straightforward facts about Kasteleyn

weightings. First, we will show that if G = (V1, V2, E) has a Kasteleyn weighting

σ, and we add edges to G to obtain G′, we can choose weights for the added edges

to obtain a Kasteleyn weighting σ′ of G′ with the property that σ′(e) = σ(e) for all

e ∈ E.

Lemma 3.2.8. Let b and w be two vertices of opposite color on a face F of G =

(V1, V2, E). Let E ′ = E ∪ {ẽ}, where ẽ /∈ E is an edge connecting b and w that

separates F into two faces and let G′ = (V1, V2, E
′). Define σ′ : E ∪ {ẽ} → ±1 so

that σ′(e) = σ(e) for all e ∈ E and choose σ′(ẽ) so that one of the faces bounded by

ẽ is flat (i.e., it has an odd number of − signs if it has 0 mod 4 edges, and an even

number of − signs otherwise). Then σ′ is a Kasteleyn weighting of G′.
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Proof. By assumption, the edge ẽ separates F into two faces: the face consisting of

the edges of a path Q and the edge ẽ, and the face consisting of the edges of a path

P and the edge ẽ. The path P consists of 1 mod 4 edges or 3 mod 4 edges. Define

σ′(ẽ) =


∏
e∈P

σ(e) if P has 1 mod 4 edges

−
∏
e∈P

σ(e) if P has 3 mod 4 edges

and define σ′(e) = σ(e) for all e ∈ E. Now the face consisting of the path P and the

edge e is flat. Consider the edges of Q. By the assumption that σ is a Kasteleyn

weighting,

∏
e∈Q

σ(e) =


∏
e∈P

σ(e) if P and Q have the same number of edges mod 4

−
∏
e∈P

σ(e) if P and Q have a different number of edges mod 4

.

So σ′(ẽ)
∏
e∈Q

σ′(e) =



(∏
e∈P

σ(e)

)2

= 1 if P and Q have 1 mod 4 edges(
−
∏
e∈P

σ(e)

)2

= 1 if Q has 1 mod 4 edges and P has 3 mod 4 edges

−
(∏
e∈P

σ(e)

)2

= −1 if P and Q have 3 mod 4 edges

−
(∏
e∈P

σ(e)

)2

= −1 if Q has 3 mod 4 edges and P has 1 mod 4 edges

.

Noting that the face F ′ consisting of Q and ẽ has 2 mod 4 edges if Q has 1 mod 4

edges and 0 mod 4 edges otherwise, we conclude that F ′ is flat, so σ′ is a Kasteleyn

weighting of G′.
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Lemma 3.2.9. Let W = {v1, . . . , v2m} be a set of vertices on the outer face of G =

(V1, V2, E). Pair the vertices of W so that we can add edges e1, . . . , em connecting

the pairs without introducing any edge crossings. Let E(m) = E ∪ {e1, . . . , em}

and let G(m) = (V1, V2, E
(m), w). Define σi : E ∪ {ei} → ±1 as in Lemma 3.2.8:

σi(e) = σ(e) for all e ∈ E and σi(ei) is chosen so that one of the faces bounded by

ei is flat. By Lemma 3.2.8, σi is a Kasteleyn weighting for all 1 ≤ i ≤ m. Then

τ : E ∪ {e1, . . . , em} → ±1 defined by τ(e) = σ(e) for all e ∈ E and τ(ei) = σi(ei)

for 1 ≤ i ≤ m is a Kasteleyn weighting of G(m).

Proof. We prove the claim by induction on m. When m = 1, there is nothing to

show. Assume the claim holds when we add m−1 edges to G. Now suppose we add

m edges e1, . . . , em. Choose an “innermost” edge ej, i.e. an edge with the property

that one of its faces is bounded only by edges of G and ej. By the induction

hypothesis, τ : E ∪ {e1, . . . , ej−1, ej+1, . . . , em} → ±1 defined by τ(e) = σ(e) for

all e ∈ E and τ(ei) = σi(ei) for i = 1, 2, . . . , j − 1, j + 1, . . . ,m is a Kasteleyn

weighting of G(m−1) = (V1, V2, E ∪ {e1, . . . , ej−1, ej+1, . . . em}). Since ej is an

innermost edge and σj : E ∪ {ej} → ±1 was defined so that when ej is added to G,

one of the faces bounded by ej is flat, we may apply Lemma 3.2.8 to conclude that

τ : E ∪{e1, . . . , em} → ±1 defined by τ(e) = σ(e) for all e ∈ E and τ(ei) = σi(ei) for

1 ≤ i ≤ m is a Kasteleyn weighting of G(m) = (V1, V2, E ∪ {e1, . . . , em}).

We also need to show that if we delete rows and columns from a Kasteleyn

matrix of a graph, the resulting submatrix is a Kasteleyn matrix of the

corresponding graph.

Lemma 3.2.10. Let K be a Kasteleyn matrix of G. Let S be a balanced subset of

vertices on the outer face of G. Then K\S, the submatrix of K formed by deleting

the rows and columns from S, is a Kasteleyn matrix of G \ S.
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To prove this, we need the following lemma and corollary from [15].

Lemma 3.2.11. [15, Theorem 2.1] If G is a planar bipartite graph with an even

number of vertices, there are an even number of faces with 4k sides.

Proof. By Euler’s formula, f − e + v = 2, where f denotes the number of faces,

e denotes the number of edges, and v denotes the number of vertices of G. Divide

the contribution to e from each edge evenly between the two incident faces. Then a

face with 4k sides contributes an odd integer to f − e and a face with 4k + 2 sides

contributes an even integer to f − e. So there must be an even number of faces with

4k sides.

Corollary 3.2.12. [15, Theorem 2.2] Every signed graph with an even number of

vertices has an even number of non-flat faces.

Proof. If each edge of a graph has sign +1, the faces which are not flat are exactly

the faces with 4k sides. By Lemma 3.2.11, there are an even number of faces with

4k sides. It remains to observe that every time we change the sign of an edge, we

change the flatness of exactly two faces.

Proof of Lemma 3.2.10. G \ S is flat at each internal face because G is flat at

each internal face, so it remains to show that it is also flat on the outer face. Since

G \ S has an even number of vertices, it has an even number of non-flat faces by

Corollary 3.2.12, so it must be flat on the outer face.

3.2.2. Proof of Lemma 3.2.5

Proof of Lemma 3.2.5. Assume there are 2k couples of consecutive nodes of the

same color. As in Remark 3.1.7, we label the couples of consecutive white nodes

(ui, ui + 1) and the couples of consecutive black nodes (si, si + 1) for 1 ≤ i ≤ k.
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Following the proof of [13, Lemma 3.2], we adjoin to the graph G 2n − 2k

edges connecting all adjacent nodes except nodes si and si+1 and nodes ui and ui+

1. The resulting graph is still bipartite by the assumption that the nodes alternate

between black and white except for the nodes si and si + 1 and the nodes ui and

ui + 1. Now add 4k more edges as follows. Since G is bipartite, there is a white

vertex ti on the outer face of G between nodes si and si + 1 and a black vertex vi

on the outer face of G between nodes ui and ui + 1. Add edges connecting nodes si

and ti and ti and si + 1, and edges connecting nodes ui and vi and vi and ui + 1.

Give the 2n − 2k + 4k = 2n + 2k edges we have added weight ε (and then take the

limit ε→ 0). Let G′ denote the resulting graph.

Given a Kasteleyn weighting of a graph, the signs of edges incident to a

vertex may be reversed, and each face will still have a correct number of minus

signs. Fix a Kasteleyn weighting of the graph G′. List the vertices from the set

N ∪ {ti}ki=1 ∪ {vi}ki=1 in counterclockwise order. For each vertex in this list, if the

edge from the vertex i to the next vertex in the list j has a minus sign, reverse the

signs of all edges incident to vertex j. This ensures that the edges of weight ε we

added to G have positive sign, with the possible exception of the edge from node 2n

to 1, which must have sign −(−1)n+k for the outer face to have a correct number of

minus signs (because if n+ k is even, the outer face has 0 mod 4 edges, and if n+ k

is odd, the outer face has 2 mod 4 edges).

Let S be a balanced subset of {1, . . . , 2n}. Let (w1, b1), . . . , (wj, bj) be any

noncrossing pairing of the nodes of S, where w1, . . . , wj are the white nodes of S

and b1, . . . , bj are the black nodes of S. Adjoin edges of weight W connecting wi to

bi for 1 ≤ i ≤ j. Because of the edges of weight ε we adjoined to G, we let the sign
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of a new edge of weight W connecting black node b and white node w be

sign(b, w) = (−1)(|b−w|+ab,w−1)/2,

where recall that ab,w is the number of couples of consecutive nodes of the same

color in the interval [min{b, w},min{b, w}+ 1, . . . ,max{b, w}].

Observe that with this choice of signs, when we add any one of the edges

ei = (bi, wi) to G′ so that it separates the outer face of G′ into two faces, one of the

faces bounded by ei is flat. So by Lemma 3.2.9, this is a Kasteleyn weighting.

Let KW be the Kasteleyn matrix of the resulting graph, with rows and

columns ordered so that b1, . . . , bj are the first j rows and w1, . . . , wj are the first

j columns. Let K = K0 be the corresponding Kasteleyn matrix when W = 0. Then

ZD(G \ S) = ±[W j] det(KW ) where [W j] det(KW ) denotes the coefficient of W j

in the polynomial det(KW ). (Because [W j] det(KW ) is, up to a sign, the weighted

sum of matchings that include all of the edges of weight W, which is exactly the

weighted sum of matchings of G \ S.) Since each term of det(KW ) has the same

sign,

ZD(G \ S)

ZD(G)
=

[W j] det(KW )

[W 0] det(KW )
.

Next let K\S denote the submatrix of K formed by deleting the rows and columns

from S. By Lemma 3.2.10, K\S is a Kasteleyn matrix of G\S. The sign of det(K\S)

and the sign of [W j] det(KW ) differ by the product of the signs of the edges of

weight W . So, noting that [W 0] det(KW ) = det(K), we have

[W j] det(KW )

[W 0] det(KW )
=

j∏
`=1

sign(b`, w`)
det(K\S)

det(K)
.
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By Jacobi’s determinant identity,

j∏
`=1

sign(b`, w`)
det(K\S)

det(K)
=

j∏
`=1

sign(b`, w`) det[K−1
b,w]b=b1,...,bjw=w1,...,wj

.

So we have

ZD(G \ S)

ZD(G)
=

j∏
`=1

sign(b`, w`) det[K−1
b,w]b=b1,...,bjw=w1,...,wj

. (3.2.2)

Letting S = {b, w} in equation (3.2.2), we get

Yb,w =
ZD(Gb,w)

ZD(G)
= sign(b, w)K−1

b,w.

From this and equation (3.2.2) we find that when ρ1 = (w1, b1), . . . , (wj, bj) is

a noncrossing pairing of the nodes of S and ρ2 = (wj+1, bj+1), . . . , (wn, bn) is a

noncrossing pairing of the nodes of Sc,

ZD(G \ S)ZD(G \ Sc)
(ZD(G))2

=
n∏
`=1

sign(b`, w`) det [sign(b, w)Yb,w]b=b1,...,bjw=w1,...,wj
det [sign(b, w)Yb,w]b=bj+1,...,bn

w=wj+1,...,wn

=
n∏
`=1

sign(b`, w`) det [(1i,j∈S + 1i,j /∈S)sign(b, w)Yb,w]b=b1,...,bnw=w1,...,wn

which is equation (3.2.1), except for the global sign and the order of the rows and

columns (since w1, . . . , wn and b1, . . . , bn are not necessarily in ascending order).

Let ρ = ρ1 ∪ ρ2. Reorder the rows so that the black nodes are in ascending

order. For each row swap, make the corresponding column swap. Then ρ pairs the

node corresponding to row i with the node corresponding to column i. Since the

row swaps and column swaps we have made are in one-to-one correspondence, we
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have not changed the sign of the determinant. Finally, we need to put the columns

in ascending order. The number of swaps required to do this is exactly signBW (ρ).

So after reordering the rows and columns so that they are listed in ascending

order, the global sign is:
n∏
`=1

sign(b`, w`)signBW (ρ)

which is equal to signc(N)(−1)# crosses of ρ by Lemma 3.1.13.

3.3. Defining Q(DD)

Let Y ′ be the vector of monomials Y ′ρ indexed by black-white pairings, where

Y ′ρ = (−1)# crosses of ρ
∏

(i,j)∈ρ
Yi,j.

In this section, we define Q(DD), which is the matrix satisfying

P̃r(σ) =
∑

black-white pairings ρ

Q(DD)
σ,ρ Y ′ρ .

We begin with a few definitions.

Definition 3.3.1. If σ and τ are two pairings on a set of nodes {1, 2, . . . , 2n},

construct the undirected multigraph C with vertex set {1, 2, . . . , 2n} by adding

an edge between vertices i and j for each pair (i, j) of σ, and similarly for τ . The

number of components in σ ∪ τ is the number of connected components in C. Note

that all connected components of C are cycles.

Example 3.3.2. If σ = ((1, 2), (3, 4), (5, 6)) and τ = ((1, 5), (2, 6), (3, 4)) then there

are two components in σ ∪ τ , as shown in Figure 3.4.
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1 2 3 4 5 6

FIGURE 3.4. The multigraph C from Definition 3.3.1 for the pairings
σ = ((1, 2), (3, 4), (5, 6)) and τ = ((1, 5), (2, 6), (3, 4)).

Definition 3.3.3. If π is an odd-even pairing and ρ is a black-white pairing, let

sign(π, ρ) := (−1)#nodes/2(−1)# components in π∪ρsignOE(π)signBW (ρ).

Definition 3.3.4. Define the matrix B2 which has rows indexed by planar pairings

and columns indexed by black-white pairings by

(B2)π,ρ = sign(π, ρ)2# components in ρ∪π.

Let M be the matrix from Corollary 3.2.4 and let D be the vector indexed

by balanced sets S with entries DS =
ZD(G \ S)ZD(G \ Sc)

(ZD(G))2
(see Lemma 3.2.5).

Following Kenyon and Wilson, we will show that

MTD = B2Y
′

(Theorem 3.3.5). This result is nontrivial, requiring several lemmas, but once it is

established it is nearly immediate that

MTMP = B2Y
′,
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where P is the vector indexed by planar pairings π with entries P̃r(π)

(Corollary 3.3.12). Kenyon and Wilson proved that MTM is invertible ([12,

Theorem 3.3]), so we conclude the section by defining Q(DD) as (MTM)−1B2.

Theorem 3.3.5 (analogue of Lemma 3.5 from [13]). MTD = B2Y
′.

In the proof of [13, Lemma 3.5], Kenyon and Wilson use the fact that if the

nodes of G are all either black and odd or white and even and π and ρ are odd-

even pairings, then there are 2# comp in π∪ρ balanced sets S such that π and ρ do

not bridge S to Sc (for each component, either put all of its nodes in S or all of its

nodes in Sc). Recall from Section 3.2 that T ⊆ N is the set of nodes that are odd

and white or even and black; under Kenyon and Wilson’s assumptions, T = ∅. It

turns out that after removing the requirement that the nodes be black and odd or

white and even, if π is an odd-even pairing and ρ is a black-white pairing there are

still 2# comp in π∪ρ sets S such that ρ does not bridge S to Sc and π does not bridge

S4T to (S4T )c.

Lemma 3.3.6. Let π be an odd-even pairing and let ρ be a black-white pairing.

For each component of π ∪ ρ there are exactly two ways to put the nodes in this

component into S and Sc so that ρ does not bridge S to Sc and π does not bridge

S4T to (S4T )c.

Proof. We start by placing an initial node a into S or Sc, and then apply the

algorithm below until all nodes in the component have been placed into S or Sc.

Algorithm 3.3.7. d

Step 1

(a) If a ∈ S ∩ T c or a ∈ Sc ∩ T :
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(i) If π(a) ∈ T :

Put π(a) in Sc.

(ii) Else if π(a) /∈ T :

Put π(a) in S.

(b) Else if a ∈ S ∩ T or a ∈ Sc ∩ T c:

(i) If π(a) ∈ T :

Put π(a) in S.

(ii) Else if π(a) /∈ T :

Put π(a) in Sc.

Go to Step 2 with a := π(a).

Step 2

If a ∈ S:

Put ρ(a) in S.

Else if a ∈ Sc:

Put ρ(a) in Sc.

Go to Step 1 with a := ρ(a).

Claim 3.3.8. The set S described in Algorithm 3.3.7 is well-defined and balanced.

Proof. We will prove this claim by induction on the number of nodes in a

component of π ∪ ρ.
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Base Cases. First note that in the case where the nodes alternate between black

and white, T = ∅ or T = N so the algorithm reduces to putting all of the nodes

in a component in S or all of the nodes of a component in Sc, so S is well-defined.

Since in this case both pairings are black-white, S is balanced as well.

If there are two nodes in a component, since ρ is a black-white pairing one

of the nodes is black and the other is white, so by the previous comment there is

nothing to show.

If there are four nodes in a component, since ρ is a black-white pairing two

nodes must be black and two nodes must be white. By symmetry, it is enough to

consider when nodes 1 and 2 are black and nodes 3 and 4 are white. There are two

odd-even pairings: ((1, 2), (3, 4)) and ((1, 4), (3, 2)) and two black-white pairings:

((1, 4), (3, 2)) and ((1, 3), (2, 4)).

For example, when π = ((1, 2), (3, 4)) and ρ = ((1, 4), (2, 3)) (see Figure 3.5),

we start by putting node 1 in S. (We could also start by putting node 1 in Sc.)

Then we run the algorithm:

Step 1. Since 1 /∈ T and π(1) = 2 ∈ T , we put 2 ∈ Sc.

Step 2. Since 2 ∈ Sc we put ρ(2) = 3 ∈ Sc.

Step 1. Since 3 ∈ Sc, 3 ∈ T and 4 /∈ T , we put 4 ∈ S.

So we get S = {1, 4}, which is balanced. To check that S is well-defined, it

suffices to show that if we continue the algorithm for one more step, we do not get

a contradiction. If we apply Step 2 starting at node 4, we find that we should put

ρ(4) = 1 in S, as desired.

In Table 3.1 we show the results of applying the algorithm for each possible

combination of odd-even pairings π and black-white pairings ρ that results in a
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1 2 3 4

FIGURE 3.5. The diagram of π ∪ ρ when π = ((1, 2), (3, 4)) and ρ = ((1, 4), (2, 3)).
The nodes in T are underlined. If we begin the algorithm by putting 1 ∈ S, we get
S = {1, 4}.

component of size 4. When π = ρ = ((1, 4), (3, 2)), there are two components that

each have size 2, so this is omitted from the table.

π ρ S start end one more step
((1, 2), (3, 4)) ((1, 4), (2, 3)) {1, 4} 1 ∈ S 4 ∈ S 1 ∈ S
((1, 2), (3, 4)) ((1, 3), (2, 4)) {1, 3} 1 ∈ S 3 ∈ S 1 ∈ S
((1, 4), (3, 2)) ((1, 3), (2, 4)) {1, 2, 3, 4} 1 ∈ S 3 ∈ S 1 ∈ S

TABLE 3.1. The base case for the proof of Claim 3.3.8. This table shows the set
S obtained after applying the algorithm to each possible combination of odd-even
pairings π and black-white pairings ρ that result in a component of size 4.

In each case, S is balanced, and continuing the algorithm for one more step

does not create a contradiction.

Now suppose that a component of π ∪ ρ has 2n nodes, where 2n > 4.

Assume that if a component has fewer than 2n nodes, the set S is well-defined and

balanced. Let N denote the set of nodes in this component. There are two cases to

consider based on whether or not π|N has a black-white pair.

Case 1. (Illustrated in Figure 3.6). Assume π|N has at least one black-white pair

(a, π(a)). Since ρ is a black-white pairing, ρ(a) and ρ(π(a)) are opposite color.

Consider the black-white pairing ρ̃ on N − {a, π(a)} obtained from ρ by removing

the pairs (a, ρ(a)) and (π(a), ρ(π(a))) and adding the pair (ρ(a), ρ(π(a))). Let

π̃ = π|N−{a,π(a)}. Now π̃ ∪ ρ̃ is a single component with 2n − 2 nodes. Start the

algorithm by putting ρ(π(a)) ∈ S. By the induction hypothesis, the set S produced
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by the algorithm is well-defined and balanced. Note that the fact that S is well-

defined means that ρ(a) ∈ S.

Considering the original component of π ∪ ρ, when we start the algorithm at

ρ(π(a)) it proceeds identically as it did with π̃ ∪ ρ̃ until we reach the node ρ(a).

Since ρ(a) ∈ S, applying Step 2 of the algorithm we add a to S. (Note that we are

guaranteed to be on Step 2 here by the fact that ρ(a) is paired with ρ(π(a)) in ρ̃,

and the algorithm starts with Step 1.) Since π is odd-even, black-white pairs of π

have the property that either both nodes are in T or both are not in T . So after

the next step of the algorithm (Step 1) we add π(a) to S. Since we added a and

π(a) to S, S is still balanced. Since π(a) ∈ S, continuing the algorithm for one

more step would put ρ(π(a)) ∈ S, which is consistent.

a π(a) ρ(π(a))ρ(a) a π(a) ρ(π(a))ρ(a)

FIGURE 3.6. Illustration of case 1 of Claim 3.3.8. On the left we have the odd-
even pairing π (top) and the black-white pairing ρ (bottom). On the right we have
replaced ρ with ρ̃, the black white pairing on N − {a, π(a)} obtained by pairing
ρ(π(a)) with ρ(a).

Case 2. (Illustrated in Figure 3.7). If π|N does not have a black-white pair, then

consider a white pair of π|N: (a, π(a)). Let b = ρ(a). Since a is white, ρ(a) must

be black, and (b, π(b)) is a black pair of π|N by the assumption that π|N does not

have a black-white pair. Consider the black-white pairing ρ̃ on N− {a, π(a), b, π(b)}

obtained from ρ by removing the pairs (a, b), (π(a), ρ(π(a))), and (π(b), ρ(π(b))) and

adding the pair (ρ(π(a)), ρ(π(b))). Let π̃ = π|N−{a,π(a),b,π(b)}. Now π̃ ∪ ρ̃ is a single

component with 2n − 4 nodes. Start the algorithm by putting ρ(π(a)) ∈ S. By
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the induction hypothesis, the set S produced by the algorithm is well-defined and

balanced. Note that the fact that S is well defined means that ρ(π(b)) ∈ S.

Considering the original component of π ∪ ρ, when we start the algorithm by

putting ρ(π(a)) ∈ S it proceeds identically as it did with π̃ ∪ ρ̃ until we reach the

node ρ(π(b)). Since ρ(π(b)) ∈ S, applying Step 2 of the algorithm we add π(b) to S.

Since π is odd-even and contains no black-white pairs, exactly one of {b, π(b)} is in

T . This means that after applying Step 1 we put b ∈ Sc. Then we put a ∈ Sc (since

ρ(a) = b) and π(a) ∈ S (since exactly one of {a, π(a)} is in T ). Since we added π(b)

and π(a) to S, S is still balanced. Since π(a) ∈ S, continuing the algorithm for one

more step puts ρ(π(a)) ∈ S, which is consistent.

π(b)

ρ(π(a))

ρ(π(b)) b a π(a) π(b)

ρ(π(a))

ρ(π(b)) b a π(a)

FIGURE 3.7. Illustration of case 2 of Claim 3.3.8. The left image shows the odd-
even pairing π (top) and the black-white pairing ρ (bottom). On the right we have
replaced ρ with ρ̃, the black white pairing on N − {a, π(a), b, π(b)} obtained by
pairing ρ(π(a)) with ρ(π(b)).

Claim 3.3.9. After applying Algorithm 3.3.7, ρ does not bridge S to Sc and π does

not bridge S4T to (S4T )c.

Proof. By Step 2, for each node a, a and ρ(a) will either both be in S or Sc, so ρ

does not bridge S to Sc. To show that a and π(a) are either both in S4T or both

in (S4T )c, there are several cases to consider.
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– If a and π(a) are both not in T , then they are both placed into S by Step

1(a)(ii) or both placed into Sc by Step 1(b)(ii). In the first case, a and π(a)

are both in S4T , and in the second case a and π(a) are both in (S4T )c.

– If a ∈ T and π(a) /∈ T , then one of a, π(a) is placed into S and one is

placed into Sc by Step 1(a)(ii) or Step 1(b)(ii). If a is placed into S and

π(a) is placed into Sc, then a and π(a) are both in (S4T )c. The other case

is similar.

– If a ∈ T and π(a) ∈ T , then they are both placed into Sc by Step 1(a)(i) or

both placed into S by Step 1(b)(i).

– If a /∈ T and π(a) ∈ T , then one is placed in S and one is placed in Sc by

Step 1(a)(i) or Step 1(b)(i).

We have shown that the algorithm produces a well-defined balanced set S

with the desired properties. We conclude that for each component of π ∪ ρ there are

exactly two ways to put the nodes in this component into S and Sc so that ρ does

not bridge S to Sc and π does not bridge S4T to (S4T )c.

We need two more facts to prove Theorem 3.3.5.

Lemma 3.3.10. Let S be a balanced subset of nodes and let sign(S) be defined as

in Lemma 3.2.5. Then

sign(S) = (−1)
#nodes

2 (−1)# comp in π∪ρsignOE(π)signBW (ρ),
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where π is an odd-even pairing such that π does not bridge S4T to (S4T )c and ρ

is a black-white pairing such that ρ does not bridge S to Sc.

The proof of Lemma 3.3.10 is long and technical so we postpone it to

Section 3.5 for ease of exposition. The following is an immediate consequence of

this lemma.

Corollary 3.3.11. Let π be an odd-even pairing and let ρ be a black-white pairing.

If S1 and S2 are sets such that π does not bridge Si4T to (Si4T )c and ρ does not

bridge Si to Sci for i = 1, 2, then sign(S1) = sign(S2).

Proof of Theorem 3.3.5. Recall from Lemma 3.2.5 that

DS =
ZD(G \ S)ZD(G \ Sc)

(ZD(G))2

= signc(N)sign(S) det [(1i,j∈S + 1i,j /∈S)× sign(i, j)Yi,j]
i=b1,b2,...,bn
j=w1,w2,...,wn

,

where b1, b2, . . . , bn are the black nodes listed in ascending order and w1, w2, . . . , wn

are the white nodes listed in ascending order.

When we expand the determinant, we get

DS = signc(N)sign(S)
∑

BW pairings ρ:
ρ does not bridge

S to Sc

signBW (ρ)
∏

(i,j)∈ρ

sign(i, j)Yi,j.

By Lemma 3.1.13,

DS = signc(N)sign(S)
∑

BW pairings ρ:
ρ does not bridge

S to Sc

signc(N)(−1)# crosses of ρ
∏

(i,j)∈ρ

Yi,j,
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and thus by definition,

DS = sign(S)
∑

BW pairings ρ:
ρ does not bridge

S to Sc

Y ′ρ . (3.3.1)

Let π be a planar pairing and let M be the matrix from Corollary 3.2.4. The

πth row of MTD is ∑
S⊆{1,2,...,2n}

π does not bridge
S4T to (S4T )c

DS.

We see that

∑
S⊆{1,2,...,2n}:
π does not bridge
S4T to (S4T )c

DS =
∑

S⊆{1,2,...,2n}:
π does not bridge
S4T to (S4T )c

sign(S)
∑

BW pairings ρ:
ρ does not bridge

S to Sc

Y ′ρ

=
∑

BW pairings ρ

∑
S: ρ does not

bridge S to Sc and
π does not bridge
S4T to (S4T )c

sign(S)Y ′ρ .

By Lemma 3.3.6 and Corollary 3.3.11,

∑
BW pairings ρ

∑
S: ρ does not

bridge S to Sc and
π does not bridge
S4T to (S4T )c

sign(S)Y ′ρ =
∑

BW pairings ρ

sign(π, ρ)2# comp in π∪ρY ′ρ .

Since this sum is the πth row of B2Y
′, we have proven the claim.

Corollary 3.3.12 (analogue of Theorem 3.6 from [13]). MTMP = B2Y
′
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Proof. Noting that P̃r(π) = Pr(π)ZDD(G)/(ZD(G))2, we see that by

Corollary 3.2.4, MP = D. Then, applying Theorem 3.3.5 we get MTMP =

MTD = B2Y
′.

It remains to show that MTM is invertible. In fact, MTM is equal to the

meander matrix Mq evaluated at q = 2.

Lemma 3.3.13. [13, Lemma 3.3] Let M be the matrix from Lemma 3.2.1. Then

MTM = M2, where M2 is a matrix with rows and columns indexed by planar

pairings, with entries

(M2)σ,τ = 2# comp in σ∪τ

Since the only difference between the matrix from Lemma 3.2.1 and the

matrix from Corollary 3.2.4 is the ordering of the rows, Lemma 3.3.13 applies to

the matrix M from Corollary 3.2.4 as well.

Definition 3.3.14. Since M2 is invertible (see [3]), define

Q(DD) =M−1
2 B2

Since P = Q(DD)Y ′, Q(DD) is the matrix of the Y ′ polynomials: for a given

planar pairing π, the πth row of Q(DD) gives the polynomial P̃r(π).

We will next prove that Q(DD) is integer-valued, which will complete the proof

of Theorem 2.4.1.
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3.4. Proof That Q(DD) Is Integer-Valued

To show that Q(DD) is integer-valued, we prove that we can compute

the columns combinatorially using a transformation rule closely related to the

transformation rule for groves.

Recall that Kenyon and Wilson’s proof of Theorem 2.3.7 in Section 2.3

established the following transformation rule:

If a pairing ρ is nonplanar, then there will exist items a < b < c < d such that

a and c are paired, and b and d are paired. Then the transformation rule is

ac|bd|rest→ −ab|cd|rest− ad|bc|rest (3.4.1)

Rule 3.4.1. For a black-white pairing ρ, repeatedly apply (3.4.1) until we have

written ρ as a linear combination of planar pairings. Then multiply each planar

pairing σ in this sum by signOE(σ)signBW (ρ).

The fact that Rule 3.4.1 is well-defined follows from Theorem 2.3.5.

Let Q̃ be the matrix obtained by the procedure from Rule 3.4.1, so the

(σ, ρ)th entry of Q̃ is the product of signOE(σ)signBW (ρ) with the coefficient of σ

when ρ is written as a linear combination of planar pairings using (3.4.1). That is,

Q̃σ,ρ = signOE(σ)signBW (ρ)P(t)
σ,ρ. (3.4.2)

We will show that

M2Q̃ei = B2ei

for all i. This shows that M2Q̃ = M2Q(DD), which proves that Q̃ = Q(DD) since

M2 is invertible.
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Let ρ be a black-white pairing. Recall from Definition 3.3.4 that (B2)π,ρ =

sign(π, ρ)2# comp in π∪ρ. So to show that M2Q̃ei = B2ei we need to show that for

each planar pairing π,

sign(π, ρ)2# comp in π∪ρ =
∑

planar pairings σ

P(t)
σ,ρsignOE(σ)signBW (ρ)2# comp in π∪σ.

By Definition 3.3.3,

sign(π, ρ) = (−1)#nodes/2(−1)# comp in π∪ρsignOE(π)signBW (ρ).

So, it suffices to prove the following.

Lemma 3.4.2. Let ρ be a pairing (not necessarily black-white). Then for any

planar pairing π,

signOE(π)(−1)Cρ(−1)#nodes/22Cρ =
∑

planar pairings σ

P(t)
σ,ρsignOE(σ)2Cσ . (3.4.3)

Here, Cρ denotes the number of components in π ∪ ρ and Cσ denotes the number of

components in π ∪ σ.

Lemma 3.4.2 requires one additional lemma.

Lemma 3.4.3. Let π be a pairing and let ρ be a pairing with nodes a < b < c < d

that form a crossing in ρ. Let ρ1 be the pairing obtained from ρ by replacing the

pairs (a, c) and (b, d) with (a, b) and (c, d) and let ρ2 be the pairing obtained from ρ

by replacing the pairs (a, c) and (b, d) with (a, d) and (b, c). Then either

(1) π ∪ ρ has one more component than both π ∪ ρ1 and π ∪ ρ2,
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(2) π∪ρ1 has one more component than π∪ρ, and π∪ρ2 and π∪ρ have the same

number of components, or

(3) π∪ρ2 has one more component than π∪ρ, and π∪ρ1 and π∪ρ have the same

number of components.

Proof. Observe that either a, b, c, and d are all in the same component of π ∪ ρ or

a and c are in the same component and b and d are in a different component. If a

and c are in the same component and b and d are in a different component, then

pairing a with b and c with d merges these two components. Similarly, pairing a

with d and b with c merges these two components.

If a, b, c and d are in the same component, then we consider the following

path in π ∪ ρ:

c− a− π(a)− ρ(π(a))− · · · (3.4.4)

This path reaches b or d before it reaches c since by assumption a, b, c, d are all in

the same component. If it reaches b before d, then in ρ1, a and b are in a different

component than c and d. This is because path (3.4.4) is replaced with

b− a− π(a)− ρ(π(a))− · · · − b,

so π∪ρ1 has one more component than π∪ρ. In ρ2, a, b, c, and d are all in the same

component, because path (3.4.4) is replaced with

d− a− π(a)− ρ(π(a))− · · · − b− c,

so π ∪ ρ2 and π ∪ ρ have the same number of components. If the path reaches d

before b, then in ρ2, a and d are in a different component than b and c, so π ∪ ρ2

76



has one more component than π∪ρ. In ρ1, a, b, c, and d are in the same component,

so π ∪ ρ1 and π ∪ ρ have the same number of components.

Proof of Lemma 3.4.2. We will prove the claim by induction on the number of

crossings in ρ.

Base Case. When ρ has 0 crossings, equation (3.4.3) becomes

signOE(π)(−1)Cρ(−1)#nodes/22Cρ = P(t)
ρ,ρsignOE(ρ)2Cρ .

Recall from Section 2.3 that when ρ is planar, P(t)
ρ,ρ = 1. So the above equation is

equivalent to

signOE(π)(−1)Cρ(−1)#nodes/2signOE(ρ) = 1. (3.4.5)

First suppose ρ = π. Since (−1)# comp in π∪π = (−1)#nodes/2, equation (3.4.5)

holds. We can obtain any planar pairing from any other planar pairing by a

sequence of moves, where each move consists of swapping the locations of two

nodes of the same parity. So we will show that when ρ is a planar pairing, x

and y are two nodes of the same parity, and ρ′ is the pairing obtained from ρ by

swapping the locations of x and y, replacing ρ with ρ′ does not change the left

hand side of equation (3.4.5). Since signOE(ρ) = −signOE(ρ′), we must show that

(−1)# comp in π∪ρ = −(−1)# comp in π∪ρ′ .

If x and ρ(x) are in a different component than y and ρ(y) in π ∪ ρ, then

π∪ ρ′ has one fewer component than π∪ ρ. If x, ρ(x), y, and ρ(y) are all in the same

component in π ∪ ρ, then without loss of generality assume that x and y are both

even, so ρ(x) and ρ(y) are both odd, and consider the following path in π ∪ ρ:

ρ(x)− x− π(x)− ρ(π(x))− · · · .
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Since ρ and π are both odd-even, segments n _ ρ(n) go from an odd node to an

even node. Since ρ(y) is odd and y is even, this means that we must reach the node

ρ(y) before the node y. Therefore we have the path

ρ(x)− x− π(x)− ρ(π(x))− · · · − ρ(y)− y − · · ·

When we replace the pairs (x, ρ(x)), (y, ρ(y)) with (x, ρ(y)) and (y, ρ(x)), this path

is replaced with

ρ(y)− x− π(x)− ρ(π(x))− · · · − ρ(y)

so (x, ρ(y)) and (y, ρ(x)) are in different components of π ∪ ρ′. We conclude that

equation (3.4.5) holds for all planar pairings ρ.

Now assume that equation (3.4.3) holds for pairings ρ with ≤ k crossings.

Let ρ be a pairing with k + 1 crossings. Let a < b < c < d be nodes that form

a crossing in ρ. Let ρ1 be the pairing obtained by replacing the pairs (a, c) and

(b, d) with (a, b) and (c, d) and let ρ2 be the pairing obtained by replacing the pairs

(a, c) and (b, d) with (a, d) and (b, c). We claim that both ρ1 and ρ2 have fewer than

k + 1 crossings. Observe that if a chord connecting two nodes n1 and n2 crosses the

chord connecting a and b in ρ1, it also crosses the chord connecting a and c or the

chord connecting b and d in ρ. Similarly, if a chord connecting two nodes crosses

the chord connecting c and d in ρ1, it also crosses the chord connecting a and c or

the chord connecting b and d in ρ. It follows that ρ1 has at least one less crossing

than ρ. A similar argument shows that ρ2 has at least one less crossing than ρ.

By the induction hypothesis,

signOE(π)(−1)Cρ1 (−1)#nodes/22Cρ1 =
∑

planar pairings σ

P(t)
σ,ρ1

signOE(σ)2Cσ
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and

signOE(π)(−1)Cρ2 (−1)#nodes/22Cρ2 =
∑

planar pairings σ

P(t)
σ,ρ2

signOE(σ)2Cσ .

By the transformation rule (3.4.1), P(t)
σ,ρ1 + P(t)

σ,ρ2 = −P(t)
σ,ρ, so we have

∑
planar

pairings σ

P(t)
σ,ρsignOE(σ)2Cσ = −signOE(π)(−1)#nodes/2

(
(−1)Cρ12Cρ1 + (−1)Cρ22Cρ2

)
.

By Lemma 3.4.3 there are three cases to consider:

(1) π ∪ ρ has one more component than both π ∪ ρ1 and π ∪ ρ2,

(2) π∪ρ1 has one more component than π∪ρ, and π∪ρ2 and π∪ρ have the same

number of components, and

(3) π∪ρ2 has one more component than π∪ρ, and π∪ρ1 and π∪ρ have the same

number of components.

Case (1). Since Cρi − Cρ = −1 for i = 1, 2,

(−1)Cρ12Cρ1 + (−1)Cρ22Cρ2 = −(−1)Cρ · 1

2
· 2Cρ +−(−1)Cρ · 1

2
· 2Cρ

= (−1)Cρ2Cρ
(
−1

2
− 1

2

)
= −(−1)Cρ2Cρ .
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Cases (2) and (3). We will only include the proof for case (2), since case (3) is

completely analogous. Since Cρ1 − Cρ = 1 and Cρ2 − Cρ = 0,

(−1)Cρ12Cρ1 + (−1)Cρ22Cρ2 = −(−1)Cρ2 · 2Cρ + (−1)Cρ2Cρ

= (−1)Cρ2Cρ(−2 + 1)

= −(−1)Cρ2Cρ .

So in all cases,

−signOE(π)(−1)#nodes/2
(
(−1)Cρ12Cρ1 + (−1)Cρ22Cρ2

)
= signOE(π)(−1)#nodes/2(−1)Cρ2Cρ ,

and thus

signOE(π)(−1)Cρ(−1)#nodes/22Cρ =
∑

planar pairings σ

P(t)
σ,ρsignOE(σ)2Cσ .

This proves that

(Q(DD))π,ρ = signOE(π)signBW (ρ)P(t)
π,ρ, (3.4.6)

which completes the proof of Theorem 2.4.1. Its full statement is below.

Theorem 2.4.1. Any black-white pairing ρ can be transformed into a formal

linear combination of planar pairings by repeated application of Rule 3.4.1, and

the resulting linear combination does not depend on the choices we made when
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applying Rule 3.4.1, so that we may write

ρ→
∑

planar pairings σ

Q(DD)
σ,ρ σ.

For any planar pairing σ, these same coefficients Q(DD)
σ,ρ satisfy the equation

P̃r(σ) :=
ZDD
σ (G,N)

(ZD(G))2
=

∑
black-white pairings ρ

Q(DD)
σ,ρ Y ′ρ .

Remark 3.4.4. The fact that the resulting linear combination does not depend

on the choices we made when applying Rule 3.4.1 is an immediate consequence of

Theorem 2.3.5.

3.5. Another Characterization of sign(S)

In this section, we prove Lemma 3.3.10, which was key in establishing

Theorem 3.3.5.

Lemma 3.3.10. Let S be a balanced subset of nodes. Recall that sign(S) :=

(−1)# crosses of ρ, where ρ is a black-white pairing that does not bridge S to Sc, and

ρ|S and ρ|Sc are planar (see Lemma 3.2.5). Let π be an odd-even pairing such that

π does not bridge S4T to (S4T )c and let ρ be a black-white pairing such that ρ

does not bridge S to Sc. Then

sign(S) = (−1)
#nodes

2 (−1)# comp in π∪ρsignOE(π)signBW (ρ). (3.5.1)

Proving Lemma 3.3.10 requires

(1) proving that such pairings π and ρ always exist,

81



(2) proving that equation (3.5.1) is well-defined, and

(3) proving that equation (3.5.1) holds.

We will postpone the proof of (1) because the fact that such pairings π and ρ

always exist will follow quickly from the proofs of (2) and (3).

3.5.1. Proof That Equation (3.5.1) is Well-Defined

The strategy of the proof is to define local moves that allow us to get from a

pair (π1, ρ1) such that π1 does not bridge S4T to (S4T )c and ρ1 does not bridge

S to Sc to any other pair (π2, ρ2) with this property, and to show that these moves

do not change the right hand side of equation (3.5.1).

Specifically, we will define two types of local moves. First, we define moves

that modify π by swapping the locations of two nodes of the same parity under

certain conditions but leave ρ fixed, called moves of type AOE. Next, we define

moves that modify ρ by swapping the locations of two nodes of the same color

under similar conditions but leave π fixed, called moves of type ABW .

In order to describe the conditions under which we can swap the locations of

two nodes, we need the following definition.

Definition 3.5.1. We call a pair of nodes (a, π(a)) a transition pair if exactly one

of the nodes a, π(a) is in T .

Definition 3.5.2. Suppose π is an odd-even pairing and ρ is a black-white pairing.

Let a and b be two nodes of the same parity. If

– a and b are in different components,

– a and b are the same color and a path from a to b contains an even number of

transition pairs, or
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– a and b are different colors and a path from a to b contains an odd number of

transition pairs,

let π′ be the pairing obtained from π by swapping the locations of a and b in π.

We say that (π′, ρ) and (π, ρ) differ by a move of type AOE. See Figure 3.8 for an

example.

If a and b are two nodes in the same component of π ∪ ρ, there are two

paths from a to b. We note that moves of type AOE are well-defined because the

algorithm in Lemma 3.3.6 is well-defined, so the parity of the number of transition

pairs is independent of the path.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

FIGURE 3.8. Left: The diagram of π ∪ ρ, where π = ((1, 2), (3, 4), (5, 8), (7, 6)) and
ρ = ((1, 6), (2, 8), (4, 5), (7, 3)). Nodes that are in T are underlined and arcs between
transition pairs are red. Center: Since 1 and 7 are two nodes of the same parity
and color and a path from 1 to 7 contains an even number of transition pairs, if we
let π′ = ((1, 6), (3, 4), (5, 8), (7, 2)) then (π, ρ) and (π′, ρ) differ by a move of type
AOE. Right: Since 1 and 4 are two nodes of the same color and a path from 1 to 4
contains an even number of transition pairs, if we let ρ′ = ((1, 5), (2, 8), (4, 6), (7, 3))
then (π, ρ) and (π, ρ′) differ by a move of type ABW .

Definition 3.5.3. Let π be an odd-even pairing and let ρ be a black-white pairing.

Suppose a and b are the same color and either a and b are in different components,

or a path in π ∪ ρ from a to b contains an even number of transition pairs.
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Suppose we swap the locations of a and b in ρ to obtain the pairing ρ′. Then

we say that (π, ρ′) and (π, ρ) differ by a move of type ABW . See Figure 3.8 for an

example.

Lemma 3.5.4. Let π, π′ be odd-even pairings and let ρ be a black-white pairing

such that (π, ρ) and (π′, ρ) differ by a move of type AOE. Then the number of

components in π ∪ ρ and the number of components in π′ ∪ ρ differ by one.

Proof. If a and b are in different components of π ∪ ρ, swapping the locations of a

and b in π merges these two components, so the number of components decreases

by one.

If a and b are in the same component, without loss of generality assume that

node a is white. Consider the following path from a to b, which starts by traversing

the edge connecting a to π(a):

a− π(a)− · · · − b.

We claim that we always reach b before π(b). This follows from the observation

that because ρ is black-white and π is odd-even, a path in π ∪ ρ alternates between

black and white nodes unless a pair (d, π(d)) in the path is a transition pair. So

since our path starts at a white node by traversing the edge in π, if we consider an

edge d _ π(d) of the path, d is white and π(d) is black if and only if we traverse

this edge after passing through an even number of transition pairs. So, if we

were to reach π(b) before b, b is black if and only if there are an even number of

transition pairs between a and b, a contradiction since a is white. It follows that we

must reach b before π(b).

84



Thus we have the following path in π ∪ ρ:

a− π(a)− · · · − b− π(b)

When we replace the pairs (a, π(a)) and (b, π(b)) in π with (a, π(b)) and (b, π(a))

to obtain π′ the middle portion of the path above π(a) − · · · − b becomes a new

component, so the number of components increases by one.

Corollary 3.5.5. A move of type AOE does not change the right hand side of

equation (3.5.1).

Proof. If (π, ρ) and (π′, ρ) differ by a move of type AOE, then (−1)# comp in π∪ρ =

−(−1)# comp in π′∪ρ by Lemma 3.5.4 and signOE(π) = −signOE(π′), so replacing π

with π′ does not change the right hand side of equation (3.5.1).

Corollary 3.5.6. A move of type ABW does not change the right hand side of

equation (3.5.1).

Proof. The proof that a move of type ABW changes the number of components in

π ∪ ρ by one is analogous to the proof of Lemma 3.5.4. The claim follows as it did

in the proof of Corollary 3.5.5.

Proof that equation (3.5.1) is well-defined. By Corollaries 3.5.5 and 3.5.6, moves of

type AOE and type ABW do not change the right hand side of equation (3.5.1). So

to prove that the formula for sign(S) is well-defined, it suffices to show that these

two types of moves are enough to get from a pair (π1, ρ1) such that π1 does not

bridge S4T to (S4T )c and ρ1 does not bridge S to Sc to any other pair (π2, ρ2)

with this property.
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We can get from any pairing of nodes in S to any other pairing of nodes in

S using moves of type ABW because type ABW moves allow us to exchange any

nodes of the same color in S. By the same reasoning, we can get from any pairing

of nodes in Sc to any other pairing of nodes in Sc. So, if ρ and ρ′ are two pairings

that both do not bridge S to Sc, then we can get from ρ to ρ′ using a sequence of

moves of type ABW .

Similarly, we can get from any odd-even pairing of nodes in S4T to any

other odd-even pairing of nodes in S4T by swapping nodes of the same parity in

S4T . We can also get from any odd-even pairing of nodes in (S4T )c to any other

odd-even pairing of nodes in (S4T )c. So if π and π′ are two odd-even pairings that

both do not bridge S4T to (S4T )c, then we can get from π to π′ using a sequence

of moves of type AOE.

We have thus shown if we have two pairs of pairings (π1, ρ1) and (π2, ρ2) such

that πi is odd-even and does not bridge S4T to (S4T )c and ρi is black-white and

does not bridge S to Sc, that the right hand side of equation (3.5.1) is unchanged

when we replace (π1, ρ1) with (π2, ρ2).

3.5.2. Proof That Equation (3.5.1) Holds

The argument that equation (3.5.1) holds is relatively long, so we break it

into three sections: an introduction, where we explain the proof strategy, several

lemmas, and the proof itself.
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3.5.2.1. Overview of Proof

First assume that S is a balanced set of size 2j such that there is a planar

black-white pairing ρ that does not bridge S to Sc. Although it may not be obvious

that such a set always exists, recall from Lemma 3.1.14 that regardless of the node

coloring of N, there exists a planar black-white pairing ρ of N. So we choose S to

be 2j of the arcs of ρ.

Then by definition, sign(S) = (−1)# crosses of ρ = 1. Let π = ρ. Since π

is odd-even and black-white, for all pairs in π, either both nodes of the pair are

in T or both are not in T , so π does not bridge S4T to (S4T )c. Since π = ρ,

(−1)
#nodes

2 = (−1)# comp in π∪ρ. Also, signOE(π) = signBW (ρ) by Lemma 3.1.26, so

equation (3.5.1) holds.

We can obtain any balanced set of size 2j from S by making a sequence of the

following types of replacements:

(1) Replace x ∈ S with x + 1 ∈ Sc, where (x, x + 1) is a couple of consecutive

nodes of the same color. (Or replace x+ 1 ∈ S with x ∈ Sc).

(2) Replace x ∈ S with y ∈ Sc, where x < y are the same color and all ` nodes in

the interval [x + 1, x + 2, . . . , y − 1] are the opposite color of x and y (` ≥ 1).

(Or replace y ∈ S with x ∈ Sc).

Therefore it suffices to show the following. Assume we’re given a balanced

set S, an odd-even pairing π that does not bridge S4T to (S4T )c, and a black-

white pairing ρ that does not bridge S to Sc such that ρ|S and ρ|Sc are planar.

After making either of the above two types of replacements to obtain S ′, we can

construct an odd-even pairing π′ that does not bridge S ′4T to (S ′4T )c and a

black-white pairing ρ′ that does not bridge S ′ to S ′c such that ρ′|S′ and ρ′|S′c are
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planar. After replacing S, π, ρ in equation (3.5.1) with S ′, π′ and ρ′, equation

(3.5.1) still holds.

3.5.2.2. Lemmas

Lemma 3.5.7. Let S be a balanced subset of nodes. Let x and y be two nodes of

the same color and opposite parity with x < y such that x ∈ S and y /∈ S. Let ρ be

a black-white pairing such that ρ does not bridge S to Sc and let π be an odd-even

pairing such that π does not bridge S4T to (S4T )c. Let S ′ = S \ {x} ∪ {y} and let

ρ′ be the pairing obtained by swapping the locations of x and y in ρ. Then

(a) if π(x) = y,

(i) π does not bridge S ′4T to (S ′4T )c, and

(ii) when ρ is replaced with ρ′, the right hand side of equation (3.5.1)

changes sign.

(b) if π(x) 6= y, let π′ be the pairing obtained from π by pairing x with y, π(x)

with π(y), and leaving the remaining pairs the same. Then

(i) π′ does not bridge S ′4T to (S ′4T )c.

(ii) when ρ is replaced with ρ′ and π is replaced with π′, the right hand side

of equation (3.5.1) changes sign.

Proof. We will first prove part (a). The fact that π does not bridge S ′4T to

(S ′4T )c follows from the observation that since π(x) = y, both x and y are in

S4T or both are in (S4T )c. If both x, y are in S4T then since we assumed x ∈ S

and y /∈ S, y must be in T , so both x, y are in (S ′4T )c. So π does not bridge S ′4T

to (S ′4T )c.
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Since we obtained ρ′ from ρ by swapping the locations of x and y,

signBW (ρ′) = −signBW (ρ). The number of components in π ∪ ρ is the same as

the number of components in π ∪ ρ′ because when we replace ρ with ρ′ the path

π(ρ(x))− ρ(x)− x− y − ρ(y) is replaced with π(ρ(x))− ρ(x)− y − x− ρ(y). So the

right hand side of equation (3.5.1) changes sign.

Next, we prove part (b). The proof of (i) relies on the observation that since

x and y are the same color but opposite parity, exactly one of the nodes x, y is in

T . This implies that x and y are both in S4T or both in (S4T )c and that x and y

are both in S ′4T or both in (S ′4T )c.

Since x and y are both in S4T or both in (S4T )c, π(x) and π(y) are both in

S4T or both in (S4T )c. Since neither π(x) nor π(y) is x or y, π(x) and π(y) are

both in S ′4T or both in (S ′4T )c. We conclude that π′ does not bridge S ′4T to

(S ′4T )c.

For the proof of (ii), first note that pairing x and y and π(x) with π(y) is

the same as swapping the locations of y and π(x). It follows that signOE(π′) =

−signOE(π), and since signBW (ρ′) = −signBW (ρ), it remains to show that the

number of components in π′ ∪ ρ′ and the number of components in π ∪ ρ differ

by 1.

By letting a = π(x) and b = y in Definition 3.5.2, we see that (π′, ρ) and

(π, ρ) differ by a move of type AOE. If π(x) and y are in different components,

this is clear, since π(x) and y have the same parity. If π(x) and y are in the same

component, we must show that they are the same color if and only if there are an

even number of transition pairs between them. This is because

– y and x are the same color,
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– a path from y to x contains an odd number of transition pairs (since x ∈ S

and y /∈ S), and

– x and π(x) are the same color if and only if (x, π(x)) is a transition pair.

So, by Lemma 3.5.4, the number of components in π′ ∪ ρ and the number of

components in π ∪ ρ differ by one. Then, since π′(x) = y, by the proof of part

(a), the number of components in π′ ∪ ρ′ is the same as the number of components

in π′ ∪ ρ.

We conclude that when ρ is replaced with ρ′ and π is replaced with π′ the

right hand side of equation (3.5.1) changes sign.

Lemma 3.5.8. Let S ⊆ N be a balanced set. Let x, y be nodes of the same color

such that x ∈ S, y ∈ Sc, x < y and all ` nodes in the interval [x+ 1, x+ 2, . . . , y− 1]

are the opposite color of x and y (` ≥ 1).

Let ρ be a black-white pairing such that ρ does not bridge S to Sc and ρ|S and

ρ|Sc are planar.

(1) If ρ(x) is not in the interval [x + 1, . . . , y − 1] and there is a node in this

interval that is in S, let k be the smallest integer such that x + k is in S and

let ρ′ be the pairing obtained from ρ by replacing the pairs (x, ρ(x)) and (x +

k, ρ(x + k)) with the pairs (x, x + k) and (ρ(x), ρ(x + k)). Then ρ′|S and ρ′|Sc

are planar. Also, replacing ρ with ρ′ does not change the right hand side of

equation (3.5.1).

(2) If ρ(y) is not in the interval [x + 1, . . . , y − 1] and there is a node in this

interval that is in Sc, let k be the smallest integer such that y − k is in Sc

and let ρ′ be the pairing obtained from ρ by replacing the pairs (y, ρ(y)) and
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(y − k, ρ(y − k)) with the pairs (y, y − k) and (ρ(y), ρ(y − k)). Then ρ′|S and

ρ′|Sc are planar. Also, replacing ρ with ρ′ does not change the right hand side

of equation (3.5.1).

Proof. Since the proofs of (1) and (2) are completely analogous, we will only prove

(1).

We first show that ρ′|S is planar. Since we chose the smallest integer k such

that x + k is in S, there are no chords connecting two nodes in S that cross the

chord x_ (x + k). We need to check that there are no chords connecting two nodes

in S that cross the chord ρ(x)_ρ(x + k). If there was such a crossing, that means

that there is a node a ∈ S such that one of the following holds:

(1) a < ρ(x+ k) < ρ(a) < ρ(x),

(2) ρ(x+ k) < a < ρ(x) < ρ(a),

(3) a < ρ(x) < ρ(a) < ρ(x+ k), or

(4) ρ(x) < a < ρ(x+ k) < ρ(a).

We use the facts that if a > x then a > x + k (since otherwise a ∈ Sc, a

contradiction) or, similarly, if ρ(a) > x then ρ(a) > x+ k, to show that if any of the

inequalities in (1), (2), (3), or (4) hold, then ρ|S is not planar.

For example, in case (1), if a > x then a > x+ k. So we have

x+ k < a < ρ(x+ k) < ρ(a),

which contradicts that ρ|S is planar. If a < x then there are two cases. If ρ(a) < x,

we have a < ρ(x + k) < ρ(a) < x + k. If instead ρ(a) > x, we have a < x < ρ(a) <

ρ(x). In both cases, we have a contradiction.
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In case (2), if a > x, then we have x < a < ρ(x) < ρ(a). If a < x and ρ(a) < x,

then a < ρ(x) < ρ(a) < x. If a < x and ρ(a) > x, then ρ(x+ k) < a < x+ k < ρ(a).

In all cases, we have a contradiction.

Case (3) is similar to case (2), and case (4) is similar to case (1).

We conclude that ρ′|S is planar. Since ρ|Sc was planar and the nodes x, x +

k, ρ(x), ρ(x+ k) are all in S, ρ′|Sc is also planar.

Next, we observe that the number of components in π ∪ ρ and the number

of components in π ∪ ρ′ differ by 1. This is because to obtain the pairing ρ′ from

ρ, we swapped the locations of x and ρ(x + k). Since x and ρ(x + k) are both in

S and both the same color, (π, ρ′) and (π, ρ) differ by a move of type ABW . So by

Corollary 3.5.6, the number of components in π ∪ ρ and the number of components

in π ∪ ρ′ differ by 1. Since sign(ρ′) = −sign(ρ), replacing ρ with ρ′ does not change

the right hand side of equation (3.5.1).

The following useful observation is immediate from the definitions.

Remark 3.5.9. Let σ be a pairing such that x and y are two nodes that are not

paired in σ, and let σ′ be the pairing obtained by swapping the locations of x and

y in σ. Suppose S is a balanced subset of nodes such that x ∈ S and y ∈ Sc. Let

S ′ = (S \ {x})∪ {y}. If σ does not bridge S to Sc, then σ′ does not bridge S ′ to S ′c.

3.5.2.3. Proof That Equation (3.5.1) Holds

Throughout this proof, we assume that we are given a balanced set S, an

odd-even pairing π that does not bridge S4T to (S4T )c, and a black-white

pairing ρ that does not bridge S to Sc and is planar when restricted to S and when

restricted to Sc.
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For both types of replacements described in the overview of the proof, we will

make the replacement to obtain S ′, and then construct a black-white pairing ρ′

that does not bridge S ′ to S ′c such that ρ|S′ and ρ|S′c are planar and an odd-even

pairing π′ that does not bridge S ′4T to (S ′4T )c. We will show that after replacing

S, π, ρ in equation (3.5.1) with S ′, π′ and ρ′, equation (3.5.1) still holds.

(1) Replace x ∈ S with x+ 1 ∈ Sc.

Suppose we replace x ∈ S with x + 1 ∈ Sc to obtain S ′. There are two cases

to consider based on whether or not π(x) = x + 1. In both cases, we let ρ′ be the

pairing obtained by swapping the locations of x and x+ 1 in ρ. By Remark 3.5.9, ρ′

is a black-white pairing that does not bridge S ′ to S ′c. Also note that since ρ|S and

ρ|Sc are planar, ρ′|S′ and ρ′|S′c are planar.

Case 1. If π(x) = x + 1, π does not bridge S ′4T to (S ′4T )c and when we replace

ρ with ρ′, the right hand side of equation (3.5.1) changes sign by Lemma 3.5.7.

Since we swapped the locations of x and x+ 1 in ρ to obtain ρ′, (−1)# of crosses of ρ =

−(−1)# of crosses of ρ′ . So equation (3.5.1) holds.

Case 2. If π(x) 6= x + 1, let π′ be the pairing obtained from π by pairing x

with x + 1, π(x) with π(x + 1), and leaving the remaining pairs the same. By

Lemma 3.5.7, π′ does not bridge S ′4T to (S ′4T )c and when we replace π with π′

and ρ with ρ′, the right hand side of equation (3.5.1) changes sign. As in Case 1,

(−1)# of crosses of ρ = −(−1)# of crosses of ρ′ , so equation (3.5.1) holds.

(2) Replace x with y, where x < y are the same color and all ` nodes in

the interval [x+ 1, x+ 2, . . . , y − 1] are the opposite color of x and y (` ≥ 1).

Suppose we replace x ∈ S with y ∈ Sc to obtain S ′. There are several cases to

consider based on whether x and y are paired with nodes in the interval [x + 1, x +

2, . . . , y − 1].
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Case 1. We first consider the case when both x and y are paired with a node in

the interval [x+ 1, x+ 2, . . . , y − 1].

Construction of ρ′. Let ρ(1) be the pairing obtained by swapping the locations of x

and y. By Remark 3.5.9, ρ(1) does not bridge S ′ to S ′c.

We observe that if ` > 2, at least one of the pairings ρ(1)|S′ , ρ(1)|S′c is not

planar. To see this, observe that since ρ|S and ρ|Sc are planar, the nodes in the

interval [x+1, . . . , ρ(x)−1] are in Sc and the nodes in the interval [ρ(y)+1, . . . , y−1]

are in S (see Figure 3.9).

ρ(x)

x

ρ(y)

y
S

∈ Sc

FIGURE 3.9. A possible
configuration of the
nodes in Case 1.

Suppose towards a contradiction that ρ(1)|S′ and

ρ(1)|S′c are planar. Since ρ(1)|S′c is planar, all nodes in

the interval [x + 1, . . . , ρ(y) − 1] are in S ′. This means

that either

(1) ρ(y) = x+ 1, or

(2) ρ(x) = x+ 1 and ρ(y) = x+ 2.

If (1) holds, there is at least one node in the interval

[ρ(y) + 1, . . . , y − 1] other than ρ(x). By the observation

in the previous paragraph, this node is in S ′. If it is in

the interval [ρ(x) + 1, . . . , y − 1] its chord crosses the ρ(x)_y chord, contradicting

the assumption that ρ(1)|S′ is planar. If it is in the interval [x + 1, . . . , ρ(x) − 1] it

crossed the ρ(x)_x chord, contradicting the planarity of ρ|S. If (2) holds, there is

at least one node in the interval [ρ(y)+1, . . . , y−1], this node is in S ′, and its chord

crosses the ρ(x)_y chord, contradicting the assumption that ρ(1)|S′ is planar.

Observe that since ρ pairs x and y with nodes in the interval [x + 1, x +

2, . . . , y − 1], any crossings in ρ(1)|S′ must involve nodes in the interval [x + 1, x +

2, . . . , y − 1].
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We claim that we can undo the crossings in ρ(1)|S′ one at a time without

changing the right hand side of equation (3.5.1). To prove the claim, we will

describe a procedure for constructing ρ(m+1) from ρ(m) so that ρ(m+1)|S′ has one

fewer crossing than ρ(m)|S′ .

Procedure 3.5.10. (Illustrated in Figure 3.10). Let ρ(1) be the pairing described

above, so ρ(1)(y) = ρ(x). For m ≥ 1, we construct ρ(m+1) as follows. Choose the

smallest numbered node im ∈ S ′ with im > ρ(m)(y) such that im_ρ(m)(im) crosses

the chord y _ ρ(m)(y). Since im and ρ(m)(y) are the same color and both in S ′,

we can swap the locations of im and ρ(m)(y) in ρ(m) to obtain ρ(m+1), and this is a

move of type ABW . By Corollary 3.5.6, replacing ρ(m) with ρ(m+1) does not change

the right hand side of equation (3.5.1). We claim that ρ(m+1)|S′ has exactly one

fewer crossing than ρ(m)|S′ .

Swapping the locations of im and ρ(m)(y) undoes the crossing of the chords

im _ ρ(m)(im) and y _ ρ(m)(y). Next observe that since all the nodes x + 1, x +

2, . . . , y − 1 are the same color, any chord that crosses the chord im_y must have

also crossed the chord y_ρ(m)(y). By the minimality of im, any chord that crossed

the chord y _ ρ(m)(y) (other than the chord im _ ρ(m)(im)) must also cross the

chord im_y.

So we just need to check that pairing ρ(m)(y) with ρ(m)(im) did not create

any crossings or undo any additional crossings. We claim that a black-white chord

a_ ρ(m)(a) with a, ρ(m)(a) ∈ S ′ crosses ρ(m)(y)_ρ(m)(im) if and only if it crossed

im_ρ(m)(im). This follows from the observation that neither one of a, ρ(m)(a) can

be in the interval [ρ(m)(y) + 1, . . . , im − 1] by the minimality of im.
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Note that if ρ(m) does not bridge S ′ to S ′c, then ρ(m+1) does not bridge S ′

to S ′c. We repeat Procedure 3.5.10 until we have a pairing ρ(n) such that ρ(n)|S′ is

planar.

i1 ∈ S ′

ρ(x)

x

i2 ∈ S ′

y

ρ(i2) ρ(i1)

i1 ∈ S ′

ρ(x)

x

i2 ∈ S ′

y

ρ(i2) ρ(i1)

i1 ∈ S ′

ρ(x)

x

i2 ∈ S ′

y

ρ(i2) ρ(i1)

FIGURE 3.10. Illustration of the procedure for undoing the crossings in ρ(1)|S′ .
Left: Choose the smallest node i1 in S ′ greater than ρ(1)(y) = ρ(x) whose chord
crosses the chord y_ρ(x). Center: Swap the locations of i1 and ρ(x) in ρ(1) to
obtain ρ(2). Right: Repeat this procedure to obtain ρ(2).

Similarly, we can undo the crossings in ρ(n)|S′c one at a time without changing

the right hand side of equation (3.5.1). The resulting pairing is ρ′.

Construction of π′ and analysis of equation (3.5.1).

We break into subcases based on the parity of `.

Case 1a. ` is odd

Analysis of LHS of (3.5.1). Since x and y are both paired with black nodes in the

interval [x + 1, x + 2, . . . , y − 1], (−1)# crosses of ρ(1) = −(−1)# crosses of ρ by Lemma

3.1.25. We will show that when we undo crossings to obtain ρ′ as described, we

apply Procedure 3.5.10 an odd number of times. Recall that every node between x

and ρ(x) is in Sc and every node between ρ(y) and y is in S. It follows that ρ(x) <

ρ(y) or ρ(x) = ρ(y) + 1. Putting these facts together, we see that every node in S ′c

crosses the x_ ρ(y) chord, and every node in S ′ crosses the y _ ρ(x) chord. Since

there are an odd number of nodes in {x+ 1, . . . , y− 1} \ {ρ(x), ρ(y)}, we must apply
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Procedure 3.5.10 an odd number of times. We conclude that (−1)# crosses of ρ′ =

(−1)# crosses of ρ.

Construction of π′ and analysis of RHS of (3.5.1). Since ` is odd, x and y are the

same parity, so we let π′ be the pairing obtained by swapping the locations of x and

y. We claim that π′ does not bridge S ′4T to (S ′4T )c. Since x and y are the same

parity and the same color, either both of x, y are in T or neither x nor y are in T .

Since x, y are either both in T or both not in T , exactly one of x, y is in S4T . So

by Remark 3.5.9, π′ does not bridge S ′4T to (S ′4T )c.

Also, π′ ∪ ρ(1) has the same number of components as π ∪ ρ because when we

replace π with π′ and ρ with ρ(1), the path · · · − π(x) − x − ρ(x) − · · · in π ∪ ρ is

replaced with · · · − π(y)− x− ρ(y)− · · · in π′ ∪ ρ(1) and the path · · · − π(y)− y −

ρ(y)− · · · in π ∪ ρ is replaced with · · · − π(x)− y − ρ(x)− · · · .

Since we applied Procedure 3.5.10 an odd number of times and each

application of Procedure 3.5.10 is a move of type ABW , by Lemma 3.5.4,

(−1)# comp in π′∪ρ′ = −(−1)# comp in π′∪ρ(1) = −(−1)# comp in π∪ρ.

Since signBW (ρ(1)) = −signBW (ρ) and signBW (ρ(m+1)) = −signBW (ρ(m)),

signBW (ρ′) = signBW (ρ). Finally, since signOE(π′) = −signOE(π), we conclude

that equation (3.5.1) holds when π is replaced with π′ and ρ is replaced with ρ′.

Case 1b. ` is even

Analysis of LHS of (3.5.1). As in Case 1a, (−1)# crosses of ρ(1) = −(−1)# crosses of ρ. If

` = 2 then we let ρ′ = ρ(1) and both ρ′|S′ and ρ′|S′c are planar. If ` > 2, then we will

show that when we undo crossings in ρ(1) to obtain ρ′ we apply Procedure 3.5.10 an

even number of times. The reasoning is analogous to the ` is odd case: the claim
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follows from the fact that there are an even number of nodes in {x + 1, . . . , y − 1} \

{ρ(x), ρ(y)}. We conclude that (−1)# crosses of ρ′ = −(−1)# crosses of ρ.

Construction of π′ and analysis of RHS of (3.5.1). We break into cases based on

whether π(x) = y or π(x) 6= y. If π(x) = y, we let π′ = π. If π(x) 6= y, we let

π′ be the pairing obtained from π by pairing x with y, π(x) with π(y), and leaving

the remaining pairs the same. In both cases π′ does not bridge S ′4T to (S ′4T )c

and signOE(π)(−1)# comp in π∪ρ = signOE(π′)(−1)# comp in π′∪ρ(1) by Lemma 3.5.7.

Since we applied Procedure 3.5.10 an even number of times and each application

of Procedure 3.5.10 is a move of type ABW , by Lemma 3.5.4, (−1)# comp in π′∪ρ(1) =

(−1)# comp in π′∪ρ′ . Finally, since signBW (ρ(1)) = −signBW (ρ) and signBW (ρ(m+1)) =

−signBW (ρ(m)), signBW (ρ′) = −signBW (ρ). We conclude that when ρ is replaced

with ρ′ and π is replaced with π′, the right hand side of equation (3.5.1) changes

sign. Thus equation (3.5.1) holds.

Case 2. We next consider the case where exactly one of x or y is paired with a

black node in the interval [x+ 1, x+ 2, . . . , y − 1].

Without loss of generality, suppose that x is the node that is paired with a

black node in the interval [x+ 1, . . . , y − 1]. There are two subcases to consider.

Case 2a. If one of the ` nodes between x and y is in Sc, then let k be the smallest

integer such that y − k is in Sc and let ρ′ be the pairing obtained by pairing y

with y − k and ρ(y) with ρ(y − k). By Lemma 3.5.8, ρ′|S and ρ′|Sc are planar, and

replacing ρ with ρ′ does not change the right hand side of equation (3.5.1).

To show that replacing ρ with ρ′ does not change the left hand side of

equation (3.5.1), we must show that (−1)# crosses of ρ′ = (−1)# crosses of ρ. This follows

from the observations that:
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– since ρ|Sc is planar, the chords (y − k)_ρ(y − k) and y_ρ(y) do not cross,

and

– a chord a_ρ(a) crosses exactly one of (y − k)_ρ(y − k), y_ρ(y) if and only

if it crosses exactly one of ρ(y − k)_ρ(y), (y − k)_y.

Thus we have reduced Case 2a to Case 1, where both x and y are paired with

nodes in the interval [x+ 1, x+ 2, . . . , y − 1].

Case 2b. If all of the ` nodes between x and y are in S (this includes the case

where the only node between x and y is x + 1), then since ρ|S is planar, x is paired

with x + 1. When we swap the locations of x and y to obtain ρ(1), ρ(1)|S′c is planar

but ρ(1)|S′ is not planar. In fact, every node between x + 1 and y is in S (and

therefore in S ′) and crosses the y _ (x + 1) chord. As in Case 1, we obtain ρ′ by

applying Procedure 3.5.10 to undo the crossings in ρ(1)|S′ , and this does not change

the right hand side of equation (3.5.1). We break into cases based on whether ` is

odd or ` is even before constructing π′.

Case 2bi. ` is odd

Since exactly one of x and y is paired with a node in the interval [x + 1, x +

2, . . . , y − 1], (−1)# crosses of ρ(1) = (−1)# crosses of ρ by Lemma 3.1.25. We claim

that when we undo crossings to obtain ρ′, there are an even number of crossings to

undo. This is because every node between x+ 1 and y crosses the (x+ 1)_y chord,

and since ` is odd there are an even number of such nodes. So (−1)# crosses of ρ′ =

(−1)# crosses of ρ.

We let π′ be the pairing obtained by swapping the locations of x and y.

By the type of arguments used in Case 1, π′ does not bridge S ′4T to (S ′4T )c,

(−1)# comp in π′∪ρ′ = (−1)# comp in π∪ρ, and signBW (ρ′) = −signBW (ρ). We conclude

that equation (3.5.1) holds when π is replaced with π′ and ρ is replaced with ρ′.
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Case 2bii. ` is even

As in Case 2bi, (−1)# crosses of ρ(1) = (−1)# crosses of ρ. When we undo crossings

to obtain ρ′, there are an odd number of crossings to undo, so (−1)# crosses of ρ′ =

−(−1)# crosses of ρ.

We break into cases based on whether π(x) = y or π(x) 6= y. If π(x) = y,

we let π′ = π. If π(x) 6= y, we let π′ be the pairing obtained from π by pairing

x with y, π(x) with π(y), and leaving the remaining pairs the same. In both

cases π′ does not bridge S ′4T to (S ′4T )c, and signOE(π)(−1)# comp in π∪ρ =

signOE(π′)(−1)# comp in π′∪ρ(1) . By the type of arguments used in Case 1,

(−1)# comp in π′∪ρ(1) = −(−1)# comp in π′∪ρ′ and signBW (ρ′) = signBW (ρ). We conclude

that when when ρ is replaced with ρ′ and π is replaced with π′, the right hand side

of equation (3.5.1) changes sign. Thus equation (3.5.1) holds.

Case 3. Finally, we observe that we can reduce the case where neither x nor y is

paired with a black node in the interval [x + 1, x + 2, . . . , y − 1] to the case where

exactly one of x or y is paired with a black node in the interval [x+ 1, . . . , y − 1].

First assume that at least one of the ` nodes between x and y is in S. Choose

the smallest integer k such that x+k is in S. Let ρ′ be the pairing that pairs x with

x + k and ρ(x) with ρ(x + k). By Lemma 3.5.8, ρ′|S is planar and ρ|Sc are planar

and replacing ρ to ρ′ does not change the right hand side of equation (3.5.1). The

argument that (−1)# crosses of ρ′ = (−1)# crosses of ρ is the same as the argument in

Case 2a.

Finally, if all of the ` nodes between x and y are in Sc, pair y with x + `. The

argument then proceeds identically.
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3.5.3. Proof That (π, ρ) Exists

We conclude by proving the existence of an odd-even pairing π and a black-

white pairing ρ such that π does not bridge S4T to (S4T )c and ρ does not bridge

S to Sc.

Recall that in Section 3.5.2.1 we showed that for all j there is a balanced set

S of size 2j with a planar black-white pairing ρ that does not bridge S to Sc, and

by choosing π = ρ we also have an odd-even pairing π that does not bridge S4T to

(S4T )c.

We also showed that any balanced set of size 2j can be obtained from S by

making a sequence of replacements of the form (1) and (2) from Section 3.5.2.1.

Additionally, we showed that given an odd-even pairing π and a black-white pairing

ρ such that π does not bridge S4T to (S4T )c and ρ does not bridge S to Sc, and

a set S ′ obtained from S by making a replacement of the form (1) or (2), we can

modify π and ρ to obtain π′ and ρ′ so that π′ does not bridge S ′4T to (S ′4T )c

and ρ′ does not bridge S ′ to S ′c.

We conclude that for each balanced subset S, there is an odd-even pairing π

and a black-white pairing ρ with the desired properties.
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CHAPTER IV

PROOF OF DOUBLE-DIMER CONDENSATION

In this chapter we prove our condensation theorem (Theorem 2.4.3). We

begin by generalizing Kenyon and Wilson’s determinant formula. Next, we use our

determinant formula and the Desnanot-Jacobi identity to prove Theorem 2.4.3.

We conclude with a special case of this theorem where all signs are positive

(Theorem 2.1.1).

4.1. Kenyon and Wilson’s Determinant Formula

In this section, we prove our generalization of Kenyon and Wilson’s

determinant formula for tripartite pairings. Recall the statement of their theorem

from Section 2.2:

Theorem 2.2.1. [12, Theorem 6.1] Suppose that the nodes are contiguously

colored red, green, and blue (a color may occur zero times), and that σ is the

(unique) planar pairing in which like colors are not paired together. We have

P̂r(σ) = signOE(σ) det[1i,j colored differently Xi,j]
i=1,3,...,2n−1
j=2,4...,2n .

Recall from Section 2.3 that the proof of Theorem 2.2.1 requires two of

Kenyon and Wilson’s results from their study of groves. The first is the fact that

when σ is a partition that is a tripartite pairing,
...
Pr(σ) can be expressed as a

Pfaffian (Theorem 2.3.6). The second is Theorem 2.3.7, which states that when

σ is a pairing, the double-dimer polynomials are a specialization of the grove

polynomials.
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Theorem 2.3.7. [13, Theorem 4.2] If a planar partition σ only contains pairs and

we make the following substitutions to the grove partition polynomial
...
Pr(σ):

Li,j →


0, if i and j have the same parity,

(−1)(|i−j|−1)/2Xi,j, otherwise,

then the result is signOE(σ) times the double-dimer pairing polynomial P̂r(σ), when

we interpret σ as a pairing.

We prove Theorem 2.4.2 (our version of Theorem 2.2.1) similarly. We can use

Theorem 2.3.6 as stated, but we need an analogue of Theorem 2.3.7 that allows us

to obtain our polynomials P̃r(σ) from the grove polynomials.

Theorem 4.1.1. If a planar partition σ only contains pairs and we make the

following substitutions to the grove partition polynomial
...
Pr(σ):

Li,j →


0, if i and j are the same color,

sign(i, j)Yi,j, otherwise,

then the result is signc(N)signOE(σ)P̃r(σ).

Proof. We proved in Section 3.4 that Q(DD)
π,ρ = signOE(π)signBW (ρ)P(t)

π,ρ (see

equation (3.4.6)). Recall that the matrix Q(DD) gives coefficients for the monomials

Yρ =
∏

(i,j)∈ρ
Yi,j weighted by (−1)# crosses of ρ and by Lemma 3.1.13,

signc(N)signBW (ρ)
∏

(i,j)∈ρ

sign(i, j) = (−1)# crosses of ρ.

The theorem follows.
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In addition to Theorems 2.3.6 and 4.1.1, we need the following lemma.

Lemma 4.1.2. Let N be a set of 2n nodes and let (n1, n1 + 1), . . . , (n2k, n2k + 1) be

a complete list of couples of consecutive nodes of the same color. Define (−1)i>j to

be −1 if i > j, and 1 otherwise, and let

M = [(−1)i>jsign(i, j)Yi,j]
i=b1,b2,...,bn
j=w1,w2,...,wn

,

where b1 < b2 < · · · < bn are the black nodes listed in increasing order and

w1 < w2 < · · · < wn are the white nodes listed in increasing order. Then M is

a block matrix where within each block, the signs of the entries are staggered in a

checkerboard pattern.

Furthermore, let t be the total number of rows and columns of M that we need

to multiply by −1 to obtain a matrix with entries whose signs are staggered in a

checkerboard pattern where the upper left entry is positive. If node 1 is black,

(−1)t = signc(N)(−1)

2k∑
i=1
bni

2
c

and if node 1 is white,

(−1)t = (−1)nsignc(N)(−1)

2k∑
i=1
bni

2
c
.

Proof. We will first prove the claim that M is a block matrix where within each

block, the signs of the entries are staggered in a checkerboard pattern.

We begin with an example. Suppose we have 20 nodes colored so there

are four couples of consecutive nodes of the same color: (4, 5), (8, 9), (13, 14),

and (17, 18). Then M is the matrix shown below. We see that the blocks of M
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correspond to consecutive nodes of the same color. More precisely, the last column

in a block corresponds to a white node that precedes at least two consecutive black

nodes. The first column in the next block corresponds to the first white node after

these consecutive black nodes. Similarly, the nodes corresponding to the last row

in a block and the first row in the next block are separated by consecutive white

nodes.



Y1,2 −Y1,4 Y1,5 −Y1,7 −Y1,10 Y1,12 Y1,15 −Y1,17 Y1,18 −Y1,20

−Y3,2 Y3,4 −Y3,5 Y3,7 Y3,10 −Y3,12 −Y3,15 Y3,17 −Y3,18 Y3,20

−Y6,2 Y6,4 −Y6,5 Y6,7 Y6,10 −Y6,12 −Y6,15 Y6,17 −Y6,18 Y6,20

Y8,2 −Y8,4 Y8,5 −Y8,7 −Y8,10 Y8,12 Y8,15 −Y8,17 Y8,18 −Y8,20

−Y9,2 Y9,4 −Y9,5 Y9,7 Y9,10 −Y9,12 −Y9,15 Y9,17 −Y9,18 Y9,20

Y11,2 −Y11,4 Y11,5 −Y11,7 −Y11,10 Y11,12 Y11,15 −Y11,17 Y11,18 −Y11,20

−Y13,2 Y13,4 −Y13,5 Y13,7 Y13,10 −Y13,12 −Y13,15 Y13,17 −Y13,18 Y13,20

Y14,2 −Y14,4 Y14,5 −Y14,7 −Y14,10 Y14,12 Y14,15 −Y14,17 Y14,18 −Y14,20

−Y16,2 Y16,4 −Y16,5 Y16,7 Y16,10 −Y16,12 −Y16,15 Y16,17 −Y16,18 Y16,20

−Y19,2 Y19,4 −Y19,5 Y19,7 Y19,10 −Y19,12 −Y19,15 Y19,17 −Y19,18 Y19,20



.

Since in the matrix above, row i does not correspond to node i, we introduce

the following notation. We define the map B : {1, 2, . . . , n} → {b1, . . . , bn}

by letting B(i) be the node corresponding to row i. Similarly, we define W :

{1, 2, . . . , n} → {w1, . . . , wn} by letting W (j) be the node corresponding to column

j. In the example above, B(4) = 8 and W (8) = 17.
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We will show that M has the form



W (j)<s1 s1<W (j)<s2 ··· sk−1<W (j)<sk

B(i)<u1 A1,1 A1,2 · · · A1,k

u1<B(i)<u2 A2,1 A2,2 · · · A2,k

...
...

...
. . .

...

uk−1<B(i)<uk Ak,1 Ak,2 · · · Ak,k


,

where the notation B(i) < u1 and W (j) < s1 means that the block A1,1 has rows

i such that B(i) < u1 and columns j such that W (j) < s1. In each block Ai,j,

the signs of the entries are staggered in a checkerboard pattern. Note that a block

could be empty.

We first show that within a block, rows i and i + 1 have opposite sign. There

are two cases to consider:

(1) B(i+ 1)−B(i) = 2, and

(2) B(i+ 1)−B(i) = 1.

These are the only cases because if B(i + 1) − B(i) > 2, then there is at least one

couple of consecutive white nodes between B(i) and B(i + 1), so rows i and i + 1

are in different blocks.

In case (1), there is not a couple of consecutive nodes of the same color

between B(i) and B(i + 1), so aB(i),w = aB(i+1),w for all w. It follows immediately

from the definition sign(b, w) = (−1)(|b−w|+ab,w−1)/2 that sign(B(i + 1), w) =

−sign(B(i), w) unless B(i) < w < B(i + 1). But if B(i) < w < B(i + 1), the

sign (−1)b>w flips. So in case (1), rows i and i+ 1 have opposite sign.
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In case (2), (B(i), B(i + 1)) is a couple of consecutive black nodes, so

|aB(i+1),w − aB(i),w| = 1. If B(i+ 1) > w,

sign(B(i+ 1), w) = (−1)(B(i+1)−w+aB(i+1),w−1)/2 = (−1)(B(i)+1−w+aB(i),w+1−1)/2

= −sign(B(i), w).

The case where B(i+ 1) < w is completely analogous.

We conclude that within a block, rows i and i + 1 have opposite sign. The

proof that within a block columns j and j + 1 have opposite sign is identical. So,

within each block, the signs of the entries are staggered in a checkerboard pattern.

Since M is a block matrix where the signs of each block are staggered in a

checkerboard pattern, we can always choose rows and columns to multiply by −1 so

that the signs of the matrix entries are staggered in a checkerboard pattern and the

upper left entry is positive. Let t be the total number of rows and columns we need

to multiply by −1. We claim that if node 1 is black, (−1)t = signc(N)(−1)

2k∑
i=1
bni

2
c

and if node 1 is white, (−1)t = (−1)nsignc(N)(−1)

2k∑
i=1
bni

2
c
.

We will prove the claim by induction on n, where 2n is the total number of

nodes. The base case is when there are 4 nodes. In this case, (−1)n = 1. We check

all possible node colorings in Table 4.1.

Now assume the claim holds when there are 2n − 2 nodes and suppose that

|N| = 2n. Choose the largest nodes x, x+ 1 such that x, x+ 1 are different colors.

Let N′ = {1, . . . , 2n− 2}. Define ψ : N− {x, x+ 1} → N′ by

ψ(`) =


` if ` < x

`− 2 if ` > x+ 1

.
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black nodes M t signc(N) (−1)
∑
bni

2
c

1, 2

(
−Y1,3 Y1,4

Y2,3 −Y2,4

)
2 −1 −1

1, 3

(
Y1,2 −Y1,4

−Y3,2 Y3,4

)
0 1 1

1, 4

(
Y1,2 −Y1,3

Y4,2 −Y4,3

)
1 1 −1

3, 4

(
Y3,1 −Y3,2

−Y4,1 Y4,2

)
0 −1 −1

2, 4

(
−Y2,1 Y2,3

Y4,1 −Y4,3

)
2 1 1

2, 3

(
−Y2,1 −Y2,4

Y3,1 Y3,4

)
1 1 −1

TABLE 4.1. The base case for the proof of Lemma 4.1.2. When a graph has 4

nodes, (−1)t = signc(N)(−1)

2k∑
i=1
bni

2
c
.

That is, ψ defines a relabeling of the nodes of N − {x, x + 1} so that node 1 is

labeled 1, . . . , node x − 1 is labeled x − 1, node x + 2 is labeled x, . . . , node 2n is

labeled 2n− 2.

Recall that (n1, n1 + 1), . . . , (n2k, n2k + 1) is a complete list of couples of

consecutive nodes of the same color in N. Let (n′1, n
′
1 + 1), . . . , (n′2j, n

′
2j + 1) be a

complete list of couples of consecutive nodes of the same color in N′.

Let M ′ denote the matrix corresponding to N′. Let t′ denote the total

number of rows and columns we need to multiply by −1 to get a matrix M ′
(1) with

entries whose signs are staggered in a checkerboard pattern so that the upper left

entry is positive. By the induction hypothesis,

(−1)t
′
= signc(N

′)(−1)

2j∑
i=1
bn
′
i
2
c
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if node 1 is black and

(−1)t
′
= (−1)n−1signc(N

′)(−1)

2j∑
i=1
bn
′
i
2
c

if node 1 is white.

There are several cases to consider based on whether or not N and N′

have the same number of couples of consecutive nodes of the same color. In each

case, we will assume that node 2n is white. When 2n is black, the argument is

completely analogous.

Each case will involve two steps:

(i) comparing signc(N
′) to signc(N) and (−1)

∑
bn
′
i
2
c to (−1)

∑
bni

2
c, and

(ii) comparing t to t′.

Case 1. In the first case, N′ has the same number of couples of consecutive nodes

of the same color as N. There are two ways this can occur: x + 1 < 2n, or x + 1 =

2n.

Case 1(a). x+ 1 < 2n

We first assume that node 1 is black.

(i) Comparing signc(N) to signc(N
′) and (−1)

∑
bn
′
i
2
c to (−1)

∑
bni

2
c.

Since N′ has the same number of couples of consecutive nodes as N,

signc(N) = signc(N
′). Since we assumed that x and x + 1 are the largest nodes

such that x and x+ 1 are different colors and N′ has the same number of couples of

consecutive nodes as N, node x − 1 and all nodes in the interval [x + 1, . . . , 2n] are

white. Since each node in the interval [x+ 1, . . . , 2n] of N is white, each node in the

interval [x− 1, . . . , 2n− 2] of N′ is white, and node 1 is black in both N and N′ we
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have

(−1)

2k∑
i=1
bn
′
i
2
c

= (−1)2n−x−1(−1)

2k∑
i=1
bni

2
c
.

We conclude that

signc(N
′)(−1)

2j∑
i=1
bn
′
i
2
c

= (−1)2n−x−1signc(N)(−1)

2j∑
i=1
bni

2
c
. (4.1.1)

(ii) Comparing t to t′.

Comparing the parity of t and t′ is a multi-step process. Recall that we

obtained M ′
(1) from M ′ by multiplying t′ rows and columns of M ′. We start by

returning the nodes of M ′
(1) to their original labels to obtain M ′

(2). Then, we add

the row and column corresponding to nodes x and x + 1 to M ′
(2) to get M ′

(3).

Finally, we let M̃ be the matrix obtained from M by doing all the row and column

multiplications we did to M ′ to get M ′
(1), and consider the relationship between M̃

and M ′
(3).

Previously we defined the map B : {1, 2, . . . , n} → {b1, . . . , bn} by letting

B(i) be the node corresponding to row i of M and we defined W : {1, 2, . . . , n} →

{w1, . . . , wn} by letting W (j) be the node corresponding to column j of M . It will

be convenient to let R := B−1 and C := W−1, so for example R(6) is the row

corresponding to the black node 6, and C(7) is the column corresponding to the

white node 7.

We define B′, W ′, R′ and C ′ analogously for M ′.

Because this portion of the proof is long, we will illustrate the main ideas

with an example. Let G be a graph with 8 nodes where nodes 1, 3, 4 and 6 are

colored black (see Figure 4.1). In this example, x = 6. So N′ = {1, 2, 3, 4, 5, 6}
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where nodes 1, 3, and 4 are black. This means that

M ′ =


Y1,2 Y1,5 −Y1,6

−Y3,2 −Y3,5 Y3,6

Y4,2 Y4,5 −Y4,6

 .

To obtain

M ′
(1) =


Y1,2 −Y1,5 Y1,6

−Y3,2 Y3,5 −Y3,6

Y4,2 −Y4,5 Y4,6


we multiply the second and third columns of M by −1, so t′ = 2.

In general, to get from M ′ to M ′
(1), either we multiply all of the columns in a

block or none of the columns in a block, because within each block, the signs of the

entries are staggered in a checkerboard pattern. The same is true for the rows.

1
2

3

4
5

6

7

8
1

2

3

4

5

6

FIGURE 4.1. Shown left is an example of a possible node coloring N that could
occur in Case 1(a) of the proof of Lemma 4.1.2. Nodes 6 and 7 are deleted from N
and relabeled to obtain N′, which is shown right.

Return the nodes of M ′
(1) to their original labels. Next, we return the nodes

to their original labels (equivalently, we apply the map ψ−1) to get M ′
(2). Note that

the only entries that are affected are the entries in the columns corresponding to

nodes ψ(x+ 2), . . . , ψ(2n).
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In the example, we return node 6 to its original label of 8, resulting in the

matrix

M ′
(2) =


Y1,2 −Y1,5 Y1,8

−Y3,2 Y3,5 −Y3,8

Y4,2 −Y4,5 Y4,8

 .

Add the row and column corresponding to nodes x and x + 1 to M ′
(2).

Now, add to M ′
(2) the column corresponding to node x + 1 (i.e. the column with

entries (−1)i>x+1sign(i, x+ 1)Yi,x+1) in between the columns corresponding to nodes

x− 1 and x+ 2. Also add the row corresponding to node x as the last row. Change

the sign of the entries in the new column in the rows of M ′ that we multiplied by

−1. Similarly, change the sign of the entries of the new row in the columns that we

multiplied by −1. Call the resulting matrix M ′
(3).

In the example, we get

M ′
(3) =


Y1,2 −Y1,5 −Y1,7 Y1,8

−Y3,2 Y3,5 Y3,7 −Y3,8

Y4,2 −Y4,5 −Y4,7 Y4,8

−Y6,2 Y6,5 Y6,7 −Y6,8

 ,

where note that we changed the sign of entries Y6,ψ−1(5) = Y6,5 and Y6,ψ−1(6) = Y6,8

because we multiplied the columns of M ′ corresponding to nodes 5 and 6 by −1.

Since we changed the signs of entries in the row R(x) and the column C(x +

1) as described above, M ′
(3) is a block matrix with checkerboard blocks with the

following additional properties:

(1) All columns strictly to the left of column C(x + 1) and all rows strictly above

row R(x) are in the same block.
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(2) The jth entry of C(x− 1) and C(x + 2) have opposite sign because they were

adjacent in M ′, which is checkerboard.

(3) All columns strictly to the right of C(x+ 1) are in the same block(s).

(4) C(x+ 1) is either in same block as C(x+ 2) or in the same block as C(x− 1).

(5) R(x) is either in the same block as all other rows, or in its own block.

Compare M̃ to M ′
(3) and conclusion. Observe that if i < x and j > x+ 1, then

sign(ψ(i), ψ(j)) = (−1)(ψ(j)−ψ(i)+aψ(i),ψ(j)−1)/2 = (−1)(j−i−2+ai,j−1)/2 = −sign(i, j),

(4.1.2)

so the entries in the columns C(x + 2), . . . , C(2n) in M are opposite in sign

compared to the entries in columns C ′(ψ(x+ 2)), . . . , C ′(ψ(2n)) in M ′.

Returning to our example, we see that

M =


Y1,2 Y1,5 −Y1,7 Y1,8

−Y3,2 −Y3,5 Y3,7 −Y3,8

Y4,2 Y4,5 −Y4,7 Y4,8

−Y6,2 −Y6,5 Y6,7 −Y6,8

 and M ′ =


Y1,2 Y1,5 −Y1,6

−Y3,2 −Y3,5 Y3,6

Y4,2 Y4,5 −Y4,6

 ,

so indeed each entry in column C(8) = 4 has sign opposite of the corresponding

entry of column C(6) = 3.

Now let M̃ be the matrix M obtained by doing all of the t′ row and column

multiplications we did to M ′ to obtain M ′
(1). In our example,

M̃ =


Y1,2 −Y1,5 −Y1,7 −Y1,8

−Y3,2 Y3,5 Y3,7 Y3,8

Y4,2 −Y4,5 −Y4,7 −Y4,8

−Y6,2 Y6,5 Y6,7 Y6,8

 .
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Since we changed the signs of entries in the row R(x) and the column C(x+1)

as described in the previous step, by equation (4.1.2) M̃ is identical to M ′
(3) except

for the columns C(x+ 2), . . . , C(2n). Combining this fact with observations (1), (2),

and (3) about M ′
(3) above, we conclude that that M̃ is checkerboard except possibly

for the row R(x) and column C(x + 1). Both the entries in R(x) and the entries in

C(x + 1) alternate in signs, so it remains to determine whether or not we need to

multiply R(x) and/or C(x+ 1) by −1.

Since (−1)x>x+1 = 1 and sign(x+ 1, x) = 1, the entry (R(x), C(x+ 1)) of M̃ is

positive. Also, since in a matrix with checkerboard entries, the entry (R(x), C(2n))

has positive sign, and all nodes x + 1, . . . , 2n are white, the entry (R(x), C(x + 1))

of the final checkerboard matrix we get after multiplying R(x) and/or C(x + 1) by

−1 has positive sign if and only if x is odd.

This means that x is odd if and only if we must multiply both R(x) and

C(x + 1) by −1 or neither by −1 to achieve a checkerboard matrix. We conclude

that x is odd if and only if the parity of t is the same as the parity of t′. Since x is

odd if and only if (−1)2n−x−1 = 1, by equation (4.1.1), t has the same parity as

signc(N)(−1)

2j∑
i=1
bni

2
c
,

as desired.

When node 1 is white, the argument is very similar, but we have

(−1)

2j∑
i=1
bn
′
i
2
c

= (−1)2n−x(−1)

2j∑
i=1
bni

2
c
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since (8, 1) is a couple of consecutive nodes of the same color. It follows that

(−1)n−1signc(N
′)(−1)

2j∑
i=1
bn
′
i
2
c

= (−1)n(−1)2n−x−1signc(N)(−1)

2j∑
i=1
bni

2
c
.

The rest of the argument is identical.

Case 1(b). x+ 1 = 2n.

If N′ has the same number of couples of consecutive nodes as N and x + 1 =

2n, there are two possibilities: either nodes 2n− 2 and 1 are black, or nodes 2n− 2

and 1 are white.

We first assume that node 1 is black.

(i) Comparing signc(N) to signc(N
′) and (−1)

∑
bn
′
i
2
c to (−1)

∑
bni

2
c.

Since N′ has the same number of couples of consecutive nodes as N and x +

1 = 2n, signc(N) = signc(N
′) and

(−1)

2k∑
i=1
bn
′
i
2
c

= (−1)

2k∑
i=1
bni

2
c
,

so

(−1)

2k∑
i=1
bni

2
c
signc(N) = (−1)

2k∑
i=1
bn
′
i
2
c
signc(N

′).

(ii) Comparing t to t′.

In this case ψ is the identity map, so M ′
(1) = M ′

(2). We obtain M ′
(3) as

described in Case 1(a). By the same reasoning as in Case 1(a), all columns to the

left of column C(2n) and all rows above row R(2n−1) are in the same block. C(2n)

is either in the same block as the other columns or in its own block, and similarly

for row R(2n− 1).
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Let M̃ be the matrix M obtained by doing all of the t′ multiplications we

did to M ′ to obtain M ′
(3). Since ψ is the identity map, M̃ = M ′

(3). It remains to

determine whether or not we need to multiply R(2n− 1) and/or C(2n) by −1.

Since (−1)2n−1>2n = 1 and sign(2n − 1, 2n) = 1, we need to multiply both

C(2n) and R(2n − 1) or neither in order for M̃ to be checkerboard. So t has the

same parity as t′ and therefore the same parity as

(−1)

2k∑
i=1
bni

2
c
signc(N).

This proves the claim when node 1 is black. If node 1 is white, the only difference

is that

(−1)

2k∑
i=1
bn
′
i
2
c

= −(−1)

2k∑
i=1
bni

2
c

because node 2n was the first in a couple of consecutive white nodes in N, and in

N′, node 2n− 2 is the first in a couple of consecutive white nodes. It follows that

(−1)n−1(−1)

2k∑
i=1
bn
′
i
2
c
signc(N

′) = (−1)n(−1)

2k∑
i=1
bni

2
c
signc(N).

The rest of the proof is the same.

Case 2. In the second case, N′ has two fewer couples of consecutive nodes of the

same color compared to N. Again, there are two ways this can occur: x + 1 < 2n,

or x+ 1 = 2n.

Case 2(a). x+ 1 < 2n

We first assume that node 1 is black. As in Case 1(a), we illustrate the main

ideas with an example. Let G be a graph with 8 nodes where nodes 1, 2, 5 and 6 are
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colored black (see Figure 4.2). In this example, x = 6, so N′ = {1, 2, 3, 4, 5, 6} where

nodes 1, 2, and 5 are black.

(i) Comparing signc(N) to signc(N
′) and (−1)

∑
bn
′
i
2
c to (−1)

∑
bni

2
c.

Since we assumed N′ has two fewer couples of consecutive nodes of the same

color compared to N, nodes x− 1 and x are both black.

1
2

3

4
5

6

7

8
1

2

3

4

5

6

FIGURE 4.2. Shown left is an example of a possible node coloring N that could
occur in Case 2(a) of the proof of Lemma 4.1.2. Nodes 6 and 7 are deleted from N
and relabeled to obtain N′, which is shown right.

Recall that (si, si + 1) denotes a couple of consecutive black nodes of the same

color and (ui, ui + 1) denotes a couple of consecutive white nodes of the same color.

By our assumptions, we have

· · · < sk < uk−(2n−x−2) < · · · < uk−1 < uk.

When we remove nodes x and x + 1, there is a one-to-one correspondence between

the inversions with respect to the node coloring of N and the inversions with

respect to the node coloring of N′ except for the inversions in N of the form (sk, ui)

for k − (2n− x− 2) ≤ i ≤ k. Thus we have that

signc(N) = (−1)2n−x−1signc(N
′).
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In our example, s1 < u1 < s2 < u2 in N and s′1 < u′1 in N′. There is one fewer

inversion in N′ compared to N and so signc(N) = −signc(N
′).

Next we compare (−1)

2k−2∑
i=1
bn
′
i
2
c

to (−1)

2k∑
i=1
bni

2
c
. We begin with our example.

Nodes 5 and 7 (nodes x − 1 and x + 1, respectively) are in {n1, . . . , n2k}. In N′,

the black node ψ(5) = 5 is adjacent to the white node ψ(8) = 6 and the couple of

consecutive white nodes (7, 8) is not replaced by a new couple of consecutive nodes,

so

(−1)

2k∑
i=1
bni

2
c

= (−1)b
1
2
c(−1)b

3
2
c(−1)b

5
2
c(−1)b

7
2
c = 1

while (−1)

2k−2∑
i=1
bn
′
i
2
c

= (−1)b
1
2
c(−1)b

3
2
c = −1.

In general, since the nodes x+ 1, . . . , 2n are white and x− 1 is black, the node

x − 1 and all nodes in the interval [x + 1, . . . , 2n − 1] are equal to ni for some i. In

N′, all nodes in the interval [ψ(x+ 2), . . . , ψ(2n− 1)] are equal to n′i for some i.

From the observations that

– to obtain N′ we deleted nodes x and x+ 1 from N,

– ψ(x− 1) is adjacent to the white node ψ(x+ 2) in N′, and

– ψ(y) = y − 2 for y > x+ 1,

we get

(−1)

2k−2∑
i=1
bn
′
i
2
c

= (−1)2n−x−2(−1)b
x−1
2
c(−1)b

x+1
2
c(−1)

2k∑
i=1
bni

2
c
.

It follows that

(−1)

2k−2∑
i=1
bn
′
i
2
c

= (−1)x+1(−1)

2k∑
i=1
bni

2
c
,

so we conclude that

signc(N
′)(−1)

2k−2∑
i=1
bn
′
i
2
c

= signc(N)(−1)

2k∑
i=1
bni

2
c
.
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(ii) Comparing t to t′. This portion of the proof is similar in structure to part

(ii) of Case 1(a). In our example,

M ′ =


−Y1,3 Y1,4 −Y1,6

Y2,3 −Y2,4 Y2,6

Y5,3 −Y5,4 Y5,6

 .

We multiply all three columns and the last row of M ′ by −1 to obtain M ′
(1) and

return node 6 to its original label of 8 to obtain M ′
(2), so

M ′
(1) =


Y1,3 −Y1,4 Y1,6

−Y2,3 Y2,4 −Y2,6

Y5,3 −Y5,4 Y5,6

 and M ′
(2) =


Y1,3 −Y1,4 Y1,8

−Y2,3 Y2,4 −Y2,8

Y5,3 −Y5,4 Y5,8

 .

Add the column and row corresponding to nodes x+1 and x to M ′
(2). Now,

add the column corresponding to node x + 1 immediately to the left of the column

corresponding to the node x + 2 in M ′
(2). Also add the row corresponding to node

x as the last row. Change the sign of the entries in the new column in rows R(a) if

R′(ψ(a)) was a row we multiplied by −1. Similarly, change the sign of the entries

in the new row in columns C(b) if C ′(ψ(b)) was a column we multiplied by −1, and

call the resulting matrix M ′
(3), which is a block matrix with checkerboard blocks

with properties (1)-(5) from Case 1(a). In our example,

M ′
(3) =


Y1,3 −Y1,4 Y1,7 Y1,8

−Y2,3 Y2,4 −Y2,7 −Y2,8

Y5,3 −Y5,4 Y5,7 Y5,8

Y6,3 −Y6,4 Y6,7 Y6,8

 .
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Compare M̃ to the entries of M ′
(3) and conclusion. Observe that if i < x and

j > x+ 1 then

sign(ψ(i), ψ(j)) = (−1)(ψ(j)−ψ(i)+aψ(i),ψ(j)−1)/2 = (−1)(j−2−i+ai,j−2−1)/2 = sign(i, j),

so unlike in Case 1(a), the entries in the columns C(x + 2), . . . , C(2n) are the same

sign in M as the entries in columns C ′(ψ(x+ 2)), . . . , C ′(ψ(2n)) in M ′.

Returning to our example, we see that the entries in column C(8) = 4 have

the same signs as the entries in column C(6) = 3, as

M =


−Y1,3 Y1,4 Y1,7 −Y1,8

Y2,3 −Y2,4 −Y2,7 Y2,8

Y5,3 −Y5,4 −Y5,7 Y5,8

−Y6,3 Y6,4 Y6,7 −Y6,8

 and M ′ =


−Y1,3 Y1,4 −Y1,6

Y2,3 −Y2,4 Y2,6

Y5,3 −Y5,4 Y5,6

 .

Let M̃ be the matrix M obtained by doing all of the t′ multiplications we did

to M ′ to obtain M ′
(3). We see that M̃ = M ′

(3), so M̃ is checkerboard except for the

columns C(x + 2), . . . , C(2n) and also possibly the row R(x) and/or the column

C(x+ 1).

There are two cases to consider. In the first case, C(x + 1) is not in the same

block as the first column to its left, so we need to multiply C(x + 1) by −1. Then,

since C(x + 1) is in the same block as C(x + 2), . . . , C(2n), we need to multiply the

remaining 2n − x − 1 columns by −1 as well. So we have done t′ + 2n − x total

multiplications. It remains to consider whether or not we need to multiply row

R(x) by −1. Recall from Case 1(a) that after we are finished multiplying rows and

columns and have obtained a checkerboard matrix, the entry (R(x), C(x + 1)) must
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have positive sign if and only if x is odd. Since (−1)x>x+1 = 1, sign(x + 1, x) = 1,

and we multiplied C(x + 1) by −1, we multiply R(x) by −1 if and only if x is odd.

Therefore if x is odd, we have done t′ + 2n− x + 1 multiplications, and if x is even,

we have done t′ + 2n − x multiplications. We have thus shown that t has the same

parity as t′.

If C(x + 1) is in the same block as the first column to its left, we do not need

to multiply C(x + 1) by −1 but we still need to multiply the remaining 2n − x − 1

columns by −1. So we have done t′ + 2n − x − 1 total multiplications. Since we

did not multiply C(x + 1) by −1, we multiply R(x) by −1 if and only if x is even.

Therefore, if x is even, we have done t′ + 2n− x total multiplications and if x is odd

we have done t′ + 2n− x+ 1 multiplications. Again, t has the same parity as t′.

In both cases, t has the same parity as signc(N)(−1)

2k∑
i=1
bni

2
c
, which completes

the proof when node 1 is black.

When node 1 is white, we have

· · · < sk < uk−(2n−x−1) < · · · < uk−1 < uk

but (sk, uk) is not an inversion since node 1 is white. So we still have signc(N) =

(−1)2n−x−1signc(N
′). Since (2n, 1) is a couple of consecutive white nodes,

(−1)

2k−2∑
i=1
bn
′
i
2
c

= (−1)2n−x−1(−1)b
x−1
2
c(−1)b

x+1
2
c(−1)

2k∑
i=1
bni

2
c
.

It follows that

(−1)

2k−2∑
i=1
bn
′
i
2
c

= (−1)x(−1)

2k∑
i=1
bni

2
c
,
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So

signc(N
′)(−1)

2k−2∑
i=1
bn
′
i
2
c

= −signc(N)(−1)

2k∑
i=1
bni

2
c
.

We conclude that

(−1)n−1signc(N
′)(−1)

2k−2∑
i=1
bn
′
i
2
c

= (−1)nsignc(N)(−1)

2k∑
i=1
bni

2
c
.

The rest of the argument is the same.

Case 2(b). x+ 1 = 2n

If N′ has two fewer couples of consecutive nodes of the same color and

compared to N and x + 1 = 2n, it must be the case that nodes 2n − 1 and 2n − 2

are both black and node 1 is white.

(i) Comparing signc(N) to signc(N
′) and (−1)

∑
bn
′
i
2
c to (−1)

∑
bni

2
c.

Removing nodes 2n and 2n − 1 does not remove any inversions with respect

to the node coloring of N (recall that (sk, uk) is not an inversion when node 1 is

white). Thus signc(N) = signc(N
′).

Next observe that

(−1)

2k−2∑
i=1
bn
′
i
2
c

= (−1)b
2n
2
c(−1)b

2n−2
2
c(−1)

2k∑
i=1
bni

2
c

= −(−1)

2k∑
i=1
bni

2
c
.

Since node 1 is white, we have

(−1)n−1signc(N
′)(−1)

2j∑
i=1
bn
′
i
2
c

= (−1)nsignc(N)(−1)

2j∑
i=1
bni

2
c
.

(ii) Comparing t to t′.

This argument is identical to (ii) in Case 1(b), and we conclude that t has the

same parity as t′, and therefore the same parity as (−1)nsignc(N)(−1)

2j∑
i=1
bni

2
c
.
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Now that we have established Lemma 4.1.2, the proof of Theorem 2.4.2 is

very similar to Kenyon and Wilson’s proof of Theorem 2.2.1.

Theorem 2.4.2. Suppose that the nodes are contiguously colored red, green, and

blue (a color may occur zero times), and that σ is the (unique) planar pairing in

which like colors are not paired together. We have

P̃r(σ) = signOE(σ) det[1i,j RGB-colored differently Yi,j]
i=b1,b2,...,bn
j=w1,w2,...,wn

,

where b1 < b2 < . . . < bn are the black nodes listed in increasing order and w1 <

w2 < . . . < wn are the white nodes listed in increasing order.

Proof. Without loss of generality1, we may assume that when we list the nodes in

counterclockwise order starting with the red ones, they are in the order 1, 2, . . . , 2n.

Combining Theorems 4.1.1 and 2.3.6 immediately gives a Pfaffian formula for the

double-dimer model. For example, let G be a graph with eight nodes where nodes

1, 3, 4, and 6 are black. Assume the nodes are colored red, green and blue as shown

in Figure 4.3, so σ = ((1, 8), (3, 4), (5, 6), (7, 2)). Then by Theorem 2.3.6,

1We can renumber the nodes while preserving their cyclic order in without changing the global
sign of the Pfaffian in Theorem 2.3.6. This is because if we move the last row and column to
be the first row and column, the sign of the Pfaffian changes. But since the entries above the
diagonal must be non-negative, we negate the new first row and column and the Pfaffian changes
sign again.
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FIGURE 4.3. The example from the proof of Theorem 2.4.2. When G has eight
nodes colored red, green, and blue as shown, the corresponding tripartite pairing is
((1, 8), (3, 4), (5, 6), (7, 2)).

...
Pr(18|34|56|72) =



0 0 0 L1,4 L1,5 L1,6 L1,7 L1,8

0 0 0 L2,4 L2,5 L2,6 L2,7 L2,8

0 0 0 L3,4 L3,5 L3,6 L3,7 L3,8

−L4,1 −L4,2 −L4,3 0 0 L4,6 L4,7 L4,8

−L5,1 −L5,2 −L5,3 0 0 L5,6 L5,7 L5,8

−L6,1 −L6,2 −L6,3 −L6,4 −L6,5 0 0 0

−L7,1 −L7,2 −L7,3 −L7,4 −L7,5 0 0 0

−L8,1 −L8,2 −L8,3 −L8,4 −L8,5 0 0 0


.

(4.1.3)

So making the substitution in Theorem 4.1.1 expresses P̃r(18|34|56|72) as a

Pfaffian, up to a global sign.

Presently, we explain how we can obtain a determinant formula from this

Pfaffian formula. We make the substitution Li,j → 0 when i and j are both black or

both white and we reorder the rows and columns so the black nodes are listed first.
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In the example, the above matrix becomes



0 0 0 0 0 L1,5 L1,7 L1,8

0 0 0 0 0 L3,5 L3,7 L3,8

0 0 0 0 −L4,2 0 L4,7 L4,8

0 0 0 0 −L6,2 −L6,5 0 0

0 0 L2,4 L2,6 0 0 0 0

−L5,1 −L5,3 0 L5,6 0 0 0 0

−L7,1 −L7,3 −L7,4 0 0 0 0 0

−L8,1 −L8,3 −L8,4 0 0 0 0 0


.

Simultaneous swaps of two different rows and corresponding columns changes

the sign of the Pfaffian. Assuming the graph has 2k couples of consecutive nodes of

the same color, we claim that the number of swaps needed so that the black nodes

are listed first has the same parity as

n(n− 1)

2
+

2k∑
i=1

⌊ni
2

⌋
,

if node 1 is black. If node 1 is white, the number of swaps needed has the same

parity as

n(n+ 1)

2
+

2k∑
i=1

⌊ni
2

⌋
.

To prove this, we will first show that the number of node swaps needed to get

from a node coloring with 2k couples of consecutive nodes of the same color to a

node coloring that alternates black and white has the same parity as
2k∑
i=1

⌊
ni
2

⌋
.

We will prove this by induction on k. When k = 0, 0 swaps are needed, so

the claim holds trivially. Assume the claim holds when N has 2(k − 1) couples of

consecutive nodes of the same color and suppose we have a set of nodes that has

2k couples of consecutive nodes of the same color. Let h be the smallest integer so
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that nh−1 and nh are different colors. Then nh−1 and nh are the same parity and

there are an even number of nodes in the interval [nh−1 + 1, . . . , nh], which alternate

in color. If we swap nh with nh− 1, nh− 2 with nh− 3 , . . . , nh−1 + 2 with nh−1 + 1,

we will have done nh−nh−1

2
swaps and we will have a node coloring with 2(k − 1)

couples of consecutive nodes of the same color. If nh and nh−1 are both even then

nh−nh−1

2
clearly has the same parity as

⌊
nh
2

⌋
+
⌊nh−1

2

⌋
. If nh and nh−1 are both odd

then by writing nh−nh−1

2
= nh−1−(nh−1−1)

2
we see that nh−nh−1

2
and

⌊
nh
2

⌋
+
⌊nh−1

2

⌋
have

the same parity. By the induction hypothesis, the number of swaps needed to get to

a node coloring that alternates black and white has the same parity as
∑

1≤i≤2k
i 6=h,h−1

⌊
ni
2

⌋
.

The claim follows.

Assume node 1 is black. If there are no couples of consecutive nodes of the

same color, the number of swaps needed to put the black nodes first is

1 + 2 + 3 + · · ·+ (n− 1) =
n(n− 1)

2

because the third node requires 1 swap, the fifth node requires 2 swaps, the seventh

node requires 3 swaps, . . . , and the (2n− 1)st node requires n− 1 swaps. So if there

are 2k couples of consecutive nodes of the same color, since
2k∑
i=1

⌊
ni
2

⌋
node swaps are

needed to get to a node coloring that alternates black and white, the number of

swaps needed so that the black nodes are listed first has the same parity as

n(n− 1)

2
+

2k∑
i=1

⌊ni
2

⌋
.

If node 1 is white, the number of swaps needed to put the black nodes first is

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
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because the second node requires 1 swap, the fourth node requires 2 swaps, . . . , and

the (2n)th node requires n swaps. So the number of swaps needed so that the black

nodes are listed first has the same parity as

n(n+ 1)

2
+

2k∑
i=1

⌊ni
2

⌋
.

Next, observe that after the rows and columns have been sorted, the matrix

has the form (
0 ±LB,W

∓LW,B 0

)

where B represents the black nodes, W the white nodes, and the signs of the

entries in ±LB,W are + if the black node has a smaller label than the white node

and − otherwise. The Pfaffian of this matrix is the determinant of the upper right

submatrix times (−1)
n(n−1)

2 . To summarize, after making the substitution Li,j → 0

when i and j are both black or both white and sorting the rows and columns so the

black nodes are listed first,

Pf


0 LR,G LR,B

−LG,R 0 LG,B

−LB,R −LB,G 0

 = (−1)

2k∑
i=1
bni

2
c
det
(
LB,W

)
,

when node 1 is black. When node 1 is white,

Pf


0 LR,G LR,B

−LG,R 0 LG,B

−LB,R −LB,G 0

 = (−1)n(−1)

2k∑
i=1
bni

2
c
det
(
LB,W

)
.
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In the example, after this substitution and reordering, the Pfaffian of matrix

(4.1.3) is equal to

(−1)1+3 det


0 L1,5 L1,7 L1,8

0 L3,5 L3,7 L3,8

−L4,2 0 L4,7 L4,8

−L6,2 −L6,5 0 0


because n1 = 3 and n2 = 7.

Next we do the substitution Li,j → sign(i, j)Yi,j. The result is the matrix

M = [1i,j RGB-colored differently (−1)i>jsign(i, j)Yi,j]
i=b1,b2,...,bn
j=w1,w2,...,wn

where b1 < b2 < · · · < bn are the black nodes listed in increasing order and w1 <

w2 < · · · < wn are the white nodes listed in increasing order. By Theorem 4.1.1,

P̃r(σ) = signOE(σ)signc(N)(−1)

2k∑
i=1
bni

2
c
det(M)

if node 1 is black and

P̃r(σ) = signOE(σ)signc(N)(−1)n(−1)

2k∑
i=1
bni

2
c
det(M)

is node 1 is white. By Lemma 4.1.2, M is a block matrix where within each block,

the signs of the entries are staggered in a checkerboard pattern. Next, we multiply

rows and columns of M by −1 so that the signs of the matrix entries are staggered

in a checkerboard pattern and the upper left entry is positive. Call the resulting
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matrix M̃ . By Lemma 4.1.2,

P̃r(σ) = signOE(σ) det(M̃)

regardless of whether node 1 is black or white. Then, if we multiply every other

row by −1 and every other column by −1, the signs of all matrix entries are

positive and the determinant is unchanged. We conclude that

P̃r(σ) = signOE(σ) det[1i,j RGB-colored differently Yi,j]
i=b1,b2,...,bn
j=w1,w2,...,wn

.

Returning to our example, we find that

P̃r(18|34|56|72) = signOE(18|34|56|72) det


0 Y1,5 Y1,7 Y1,8

0 Y3,5 Y3,7 Y3,8

Y4,2 0 Y4,7 Y4,8

Y6,2 Y6,5 0 0



= − det


0 Y1,5 Y1,7 Y1,8

0 Y3,5 Y3,7 Y3,8

Y4,2 0 Y4,7 Y4,8

Y6,2 Y6,5 0 0

 .

Before proceeding to the proof of Theorem 2.4.3, we make several remarks

about the matrix from Theorem 2.4.2, which we will denote M .

Remark 4.1.3. Recall that from the proof of Lemma 3.2.5 that Yi,j =

sign(i, j)K−1
i,j , where K is the Kasteleyn matrix of G. Thus the entries of M are

either 0 or signed entries of the inverse Kasteleyn matrix of G.
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In Kenyon and Wilson’s matrix (see Theorem 2.2.1), Xi,j = sign(i, j)K−1
i,j ,

where K is the Kasteleyn matrix of GBW rather than the Kasteleyn matrix of G.

Although the nonzero entries of M are signed entries of K−1, on a graph with

more than two vertices it is never the case that M = K−1. This is because M and

K are in general different sizes: M is a n × n matrix, where n is the number of

nodes, while K is a |V1| × |V2| matrix, where V1 is the number of black vertices and

V2 is the number of white vertices.

Remark 4.1.4. By Cramer’s rule, the entries of M−1 are ratios of double-dimer

partition functions.2 More precisely, Cramer’s rule says

M−1 =
1

det(M)

[
det(M i

j)
]i=b1,b2,...,bn
j=w1,w2,...,wn

Note that while the (i, j)th entry of M is Ybi,wj ,the (i, j)th entry of M−1 is

the determinant of the matrix M with row j and column i removed. Applying

Theorem 2.4.2,

det(M i
j) =

sign(σji)Z
DD
σji

(G,N− {bj, wi})
(Z(G))2

,

where σji denotes the unique tripartite pairing on the node set N− {bj, wi}. So,

M−1 =
sign(σ)

ZDD
σ (G,N)

[sign(σji)Z
DD
σji

(G,N− {bj, wi})]i=b1,b2,...,bnj=w1,w2,...,wn
.

4.2. Proof of Theorem 2.4.3

Now that we have proven Theorem 2.4.2, Theorem 2.4.3 follows quickly from

the proof method described in Section 2.4.

2We thank Gregg Musiker for making this observation.
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Theorem 2.4.3. Divide the nodes into three circularly contiguous sets R, G,

and B such that |R|, |G|, and |B| satisfy the triangle inequality and let σ be the

corresponding tripartite pairing. Let x,w be black nodes and let y, v be white

nodes. Then

signOE(σ)signOE(σ′xywv)Z
DD
σ (G,N)ZDD

σxywv(G,N− {x, y, w, v})

= signOE(σ′xy)signOE(σ′wv)Z
DD
σxy (G,N− {x, y})ZDD

σwv (G,N− {w, v})

−signOE(σ′xv)signOE(σ′wy)Z
DD
σxv (G,N− {x, v})ZDD

σwy (G,N− {w, y})

where for i, j ∈ {x, y, w, v}, σij is the unique planar pairing on N − {i, j} in which

like colors are not paired together, and σ′ij is the pairing after the the node set N−

{i, j} has been relabeled so that the nodes are numbered consecutively.

Proof. First we assume that all pairings in the theorem statement exist. Let

M = [1i,j RGB-colored differently Yi,j]
i=b1,b2,...,bn
j=w1,w2,...,wn

and let rx and rw denote the rows corresponding to nodes x and w, respectively.

We first move the columns corresponding to y and v (i.e. the columns with

entries Yi,y and Yi,v, respectively) to the columns rx and rw. We observe that we

can do this without exchanging the column with entries Yi,y with the column with

entries Yi,v. For example, if rx < cy < rw < cv, we swap column cy with column

cy − 1, then column cy − 1 with column cy − 2, . . . , and column rx + 1 with column

rx. Next, we swap column cv with column cv − 1, . . . , and column rw + 1 with

column rw. If instead cy < cv < rx < rw, we swap column cv with column cv + 1, . . . ,
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and column rw − 1 with column rw before swapping cy with column cy + 1, . . . , and

column rx − 1 with column rx.

Without loss of generality we assume that we move the column with entries

Yi,y to column rx and the column with entries Yi,y to column rw to obtain the

matrix M̃ . Let sy denote the number of column swaps we make in the process of

moving the column with entries Yi,y. Let sv denote the number of column swaps we

make in the process of moving the column with entries Yi,v. Note that sy and sv are

well-defined up to parity. Note also that after making these swaps, the columns are

still in ascending order, aside from the columns with entries Yi,y and Yi,v.

By the Desnanot-Jacobi identity,

det(M̃) det(M̃ rx,rw
rx,rw ) = det(M̃ rx

rx ) det(M̃ rw
rw )− det(M̃ rx

rw) det(M̃ rw
rx ), (4.2.1)

where recall that M t
s is the matrix M with row s and column t removed.

We apply Theorem 2.4.2 to each term in equation (4.2.1). First consider

det(M̃ rx
rx ). In order to apply Theorem 2.4.2 we must reorder the columns. Since

we have removed the column rx which had entries Yi,y, sv column swaps will put

the columns in the correct (ascending) order. This follows from the previous

observation that we moved the columns corresponding to y and v without

exchanging the column with entries Yi,y with the column with entries Yi,v.

We must also relabel the nodes N − {x, y} so that they are numbered

consecutively. Recall that σxy denotes the unique planar pairing of N − {x, y} in

which like colors are not paired together. When we relabel N − {x, y} we relabel

σxy as well. Call the resulting node set N′ and the resulting pairing σ′xy. Then by
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Theorem 2.4.2,

det(M̃ rx
rx ) = (−1)svsignOE(σ′xy)

ZDD
σ′xy

(G,N′)

(ZD(G))2
,

and thus

det(M̃ rx
rx ) = (−1)svsignOE(σ′xy)

ZDD
σxy (G,N− {x, y})

(ZD(G))2
.

Similarly, we have

det(M̃ rw
rw ) = (−1)sysignOE(σ′wv)

ZDD
σwv (G,N− {w, v})

(ZD(G))2
,

det(M̃ rw
rx ) = (−1)sysignOE(σ′xv)

ZDD
σxv (G,N− {x, v})

(ZD(G))2
, and

det(M̃ rx
rw) = (−1)svsignOE(σ′yw)

ZDD
σyw (G,N− {y, w})

(ZD(G))2
.

(4.2.2)

It follows that the right hand side of equation (4.2.1) is

(−1)sy(−1)sv
(

signOE(σ′xy)signOE(σ′wv)
ZDD
σxy (G,N− {x, y})

(ZD(G))2

ZDD
σwv (G,N− {w, v})

(ZD(G))2

−signOE(σ′xv)signOE(σ′yw)
ZDD
σxv (G,N− {x, v})

(ZD(G))2

ZDD
σyw (G,N− {y, w})

(ZD(G))2

)
.

Applying Theorem 2.4.2 to the left hand side of equation (4.2.1), we have

det(M̃) = (−1)sy(−1)svsignOE(σ)
ZDD
σ (G,N)

(ZD(G))2
, and

det(M̃ rx,rw
rx,rw ) = signOE(σ′xywv)

ZDD
σxywv(G,N− {x, y, w, v})

(ZD(G))2
.

(4.2.3)
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We conclude that

signOE(σ)signOE(σ′xywv)Z
DD
σ (G,N)ZDD

σxywv(G,N− {x, y, w, v})

= signOE(σ′xy)signOE(σ′wv)Z
DD
σxy (G,N− {x, y})ZDD

σwv (G,N− {w, v})

−signOE(σ′xv)signOE(σ′wy)Z
DD
σxv (G,N− {x, v})ZDD

σwy (G,N− {w, y}).

It is not necessarily the case that the pairings σxy, σwv, σxv, σwy, and σxywv all

exist. First consider the case where one of the pairings σxy, σwv, σxv, σwy does not

exist. Without loss of generality, assume that σxy does not exist. This means that

the number of nodes of different colors in N − {x, y} do not satisfy the triangle

inequality. Then det(M̃ rx
rx ) = 0 since every black-white pairing contains an RGB-

monochromatic pair. There are two possibilities in this case: either the theorem

statement holds trivially, or

ZDD
σ (G,N)ZDD

σxywv(G,N− {x, y, w, v}) = ZDD
σxv (G,N− {x, v})ZDD

σwy (G,N− {w, y}).

(4.2.4)

Since the numbers of nodes of different colors in N − {x, y} do not satisfy

the triangle inequality, without loss of generality, we may assume there are more

red nodes than the combined number of blue and green nodes in N − {x, y}. Since

we assumed that in N, |R|, |G|, and |B| satisfy the triangle inequality, it follows

that |R| = |G| + |B| in N. Assuming without loss of generality that when we

list the nodes in counterclockwise order starting with the red ones, they are in the

order 1, 2, . . . , 2n, this means σ is the pairing ((1, 2n), (2, 2n − 1), . . . , (n, n + 1)). It

must be the case that x and y are both green or blue, so if either w or v is green,

then σxywv does not exist and either σxv or σwv does not exist, so the equality holds
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trivially. If both w and v are red, then σxv, σwv and σxywv all exist. In this case, the

rest of the proof proceeds as above and we have

signOE(σ)signOE(σxywv)Z
DD
σ (G,N)ZDD

σxywv(G,N− {x, y, w, v})

= −signOE(σxv)signOE(σwy)Z
DD
σxv (G,N− {x, v})ZDD

σwy (G,N− {w, y}).

Recall that inversions in a planar pairing correspond to nestings (see

Remark 3.1.17). Because σ is the pairing ((1, 2n), (2, 2n − 1), . . . , (n, n + 1)),

sign(σxv) = sign(σwy) and sign(σxywv) = sign(σ) · (−1)n−1 · (−1)n−2. Equation

(4.2.4) follows.

If σxywv does not exist, then this means that the numbers of nodes of different

colors in N − {x, y, w, v} do not satisfy the triangle inequality. Without loss of

generality, we may assume there are more red nodes than the combined number

of blue and green nodes in N − {x, y, w, v}. By the same reasoning as above,

det(M̃ rx,rw
rx,rw ) = 0. There are two possibilities. There are either four more red nodes

than the combined number of blue and green nodes in N − {x, y, w, v}, or there

are two more red nodes than the combined number of blue and green nodes in

N − {x, y, w, v}. If there are four more red nodes than the combined number of

blue and green nodes, the equation holds trivially. If there are two more red nodes

than the combined number of blue and green nodes, there are two possibilities. If

any one of x, y, w, or v is red, then the equation holds trivially. If all of x, y, w, and

v are green or blue, then in the original node set N, |R| + 2 = |G| + |B|. So each of
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the pairings σxy, σwv, σxv, and σwy are ((1, 2n− 2), (2, 2n− 1), . . .). Then we have

signOE(σxy)signOE(σwv)Z
DD
σxy (G,N− {x, y})ZDD

σwv (G,N− {w, v})

= signOE(σxv)signOE(σwy)Z
DD
σxv (G,N− {x, v})ZDD

σwy (G,N− {w, y}).

Since inversions in a planar pairing correspond to nestings, all pairings have the

same sign. So in this case,

ZDD
σxy (G,N− {x, y})ZDD

σwv (G,N− {w, v}) = ZDD
σxv (G,N− {x, v})ZDD

σwy (G,N− {w, y}).

Remark 4.2.1. To simplify the expression in Theorem 2.4.3, it suffices to know the

RGB-coloring of the nodes x, y, w, v.

Without loss of generality, assume that when we list the nodes in

counterclockwise order starting with the red ones, they are in the order 1, 2, . . . , 2n.

Let |RG(σ)| be the number of red-green pairs in σ. Define |GB(σ)| and |RB(σ)|

similarly. Assume that |RG(σ)|, |GB(σ)|, and |RB(σ)| are all nonzero.

If the set of nodes {x, y} contains one red node and one blue node, then σxy

has one fewer red-blue pair than σ, but the number of red-green and green-blue

pairs is the same (see Figure 4.4). By Remark 3.1.17, to determine the relationship

between signOE(σ) and signOE(σ′xy) it suffices to count the number of nestings in

the diagram of σ that involve a red-blue pair (nr, nb). There is one nesting for

each red-blue pair other than (nr, nb), one nesting for each red-green pair, and one

nesting for each green-blue pair (see Figure 4.5). Therefore,

sign(σ′xy) = sign(σ) · (−1)|RG(σ)| · (−1)|GB(σ)| · (−1)|RB(σ)|−1.
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FIGURE 4.4. The tripartite pairing on N − {4, 12} (shown center) has one fewer
red-blue pair than the tripartite pairing on N (shown left). The tripartite pairing
on N − {7, 11} (shown right) has one fewer red-green pair, one fewer green blue
pair, and one more red-blue pair compared to the pairing on N.

If the set of nodes {x, y} contains one red node and one green node, then σxy

has one fewer red-green pair than σ, but the number of red-blue and green-blue

pairs is the same. So we count the number of nestings in the diagram of σ that

involve a red-green pair (nr, ng). There is one nesting for each red-green pair other

than (nr, ng), and one nesting for each red-blue pair. Therefore,

signOE(σ′xy) = signOE(σ) · (−1)|RB(σ)| · (−1)|RG(σ)|−1.

Similarly, if the set of nodes {x, y} contains one green node and one blue

node, then

signOE(σ′xy) = signOE(σ) · (−1)|RB(σ)| · (−1)|GB(σ)|−1.

If both x and y are green nodes, then σxy has one fewer red-green pair,

one fewer green-blue pair, and one more red-blue pair, as shown in Figure 4.4.

Removing a red-green pair from σ removes |RB(σ)| + |RG(σ)| − 1 nestings. Then,

removing a green-blue pair removes |RB(σ)| + |GB(σ)| − 1 nestings. After these

pairs have been removed, adding a red-blue pair results in |RB(σ)|+ |GB(σ)| − 1 +
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FIGURE 4.5. When a red-blue pair is removed from σ, the number of nestings in
the diagram of σ decreases by |RB(σ)| − 1 + |RG(σ)|+ |GB(σ)|.

|RG(σ)| − 1 additional nestings. Therefore,

sign(σ′xy) = sign(σ) · (−1)|RB(σ)|.

If both x and y are red nodes, σxy has one fewer red-blue pair, one fewer red-

green pair, and one more green-blue pair. Removing a red-blue pair from σ removes

|RG(σ)|+ |GB(σ)|+ |RB(σ)|− 1 nestings. Then, removing a red-green pair removes

|RB(σ)| − 1 + |RG(σ)| − 1 nestings. After these pairs have been removed, adding a

green-blue pair results in |RB(σ)| − 1 + |GB(σ)| additional nestings. Thus

sign(σ′xy) = sign(σ) · (−1)|RB(σ)|.

Similarly, if both x and y are blue,

sign(σ′xy) = sign(σ) · (−1)|RB(σ)|.
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If we assume that the nodes x, y, w, v alternate black and white and the set

{x, y, w, v} contains at least one node of each RGB color, we can use Remark 4.2.1

to show that the all the signs in Theorem 2.4.3 are positive.

Theorem 2.1.1. Divide the nodes into three circularly contiguous sets R, G,

and B such that |R|, |G| and |B| satisfy the triangle inequality and let σ be the

corresponding tripartite pairing. Let x, y, w, v be nodes appearing in a cyclic order

such that the set {x, y, w, v} contains at least one node of each RGB color. If x and

w are both black and y and v are both white, then

ZDDσ (G,N)ZDDσxywv(G,N− {x, y, w, v}) = ZDDσxy (G,N− {x, y})ZDDσwv (G,N− {w, v})

+ZDDσxv (G,N− {x, v})ZDDσwy (G,N− {w, y}).

Proof. Without loss of generality, assume that when we list the nodes in

counterclockwise order starting with the red ones, they are in the order 1, 2, . . . , 2n.

Assume also that one of the nodes x, y, w, v is red, two are green, and one is blue.

The other cases are very similar. By the assumption that the nodes are in cyclic

order, there are two possibilities3:

(i) One of the sets {x, y}, {w, v} consists of a red node and a green node and

the other consists of a green node and a blue node. Also, one of the sets

{x, v}, {y, w} consists consists of one red node and one blue node, and the

other consists of two green nodes.

(ii) One of the sets {x, v}, {y, w} consists of a red node and a green node and

the other consists of a green node and a blue node. Also, one of the sets

3The assumption that the nodes x, y, w, v are in cyclic order is required. Otherwise, it would
be possible for x to be red, y to be green, w to be blue, and v to be green. In this case, the sets
{x, y} and {x, v} consist of one red node and one green node, and the sets {w, v} and {y, w}
consists of one green node and one blue node.
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{x, y}, {w, v} consists consists of one red node and one blue node, and the

other consists of two green nodes.

We only prove case (i), as case (ii) is essentially the same. By Remark 4.2.1,

signOE(σ′xy)signOE(σ′wv) = (−1)|RB(σ)|(−1)|RG(σ)|−1(−1)|RB(σ)|(−1)|GB(σ)|−1

= (−1)|RG(σ)|(−1)|GB(σ)|, and

signOE(σ′xv)signOE(σ′wy) = (−1)|RG(σ)|(−1)|GB(σ)|(−1)|RB(σ)|−1(−1)|RB(σ)|

= −(−1)|RG(σ)|(−1)|GB(σ)|.

Since we can obtain σxywv by first removing the nodes x, y (which removes a red-

green pair) and then removing the nodes w, v (which removes a green-blue pair),

signOE(σ′xy)signOE(σ′wv) = (−1)|RB(σ)|(−1)|RG(σ)|−1(−1)|RB(σ)|(−1)|GB(σ)|−1

= (−1)|RG(σ)|(−1)|GB(σ)|.

Thus by Theorem 2.4.3,

ZDDσ (G,N)ZDDσxywv(G,N− {x, y, w, v}) = ZDDσxy (G,N− {x, y})ZDDσwv (G,N− {w, v})

+ZDDσxv (G,N− {x, v})ZDDσwy (G,N− {w, y}).
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APPENDIX

ANOTHER PROOF OF KUO CONDENSATION

Recall Kuo’s recurrence from Section 1.1:

Theorem 1.1.1. [14, Theorem 5.1] Let G = (V1, V2, E) be a planar bipartite

graph with a given planar embedding in which |V1| = |V2|. Let vertices a, b, c, and d

appear in a cyclic order on a face of G. If a, c ∈ V1 and b, d ∈ V2, then

ZD(G)ZD(G−{a, b, c, d}) = ZD(G−{a, b})ZD(G−{c, d})+ZD(G−{a, d})ZD(G−{b, c}).

We give a non-bijective proof of Theorem 1.1.1 in the case where a, b, c, and

d are on the outer face of G using the Desnanot-Jacobi identity and the Kasteleyn

matrix. This proof uses ideas from the proof of [13, Lemma 3.2].

Proof. Fix a Kasteleyn weighting of the graph G and let K be the corresponding

Kasteleyn matrix, with rows and columns ordered so that the first two rows

correspond to vertices a and c and the first two columns correspond to vertices b

and d. By the Desnanot-Jacobi identity (Theorem 1.1.2),

det(K1,2
1,2)

det(K)
=

det(K1
1) det(K2

2)− det(K2
1) det(K2

2)

(det(K))2
(A.0.1)

where recall that Kj
i is the matrix obtained from K by deleting the ith row and the

jth column.

Let i ∈ {a, c} and j ∈ {b, d}. Adjoin an edge of weight W connecting i to

j so that it separates the outer face of G into two faces. Choose the sign of ei,j so

that one of the faces bounded by ei,j is flat. Let KW denote the Kasteleyn matrix

141



K with the additional entry corresponding to the edge ei,j. By Lemma 3.2.9, KW is

a Kasteleyn matrix of the graph G ∪ {ei,j}.

Observe that ZD(G−{i, j}) = ±[W ] det(KW ), where [W ] det(KW ) denotes the

coefficient of W in the polynomial det(KW ). (This is because [W ] det(KW ) is, up to

a sign, the weighted sum of dimer configurations that include the edge of weight W,

which is exactly the weighted sum of dimer configurations of G − {i, j}.) Similarly,

ZD(G) = ±[W 0] det(KW ). Since each term of det(KW ) has the same sign,

ZD(G− {i, j})
ZD(G)

=
[W ] det(KW )

[W 0] det(KW )
. (A.0.2)

Let ri denote the row corresponding to vertex i and let cj denote the column

corresponding to vertex j. By Lemma 3.2.10, K
cj
ri is a Kasteleyn matrix of G −

{i, j}. The sign of det(K
cj
ri ) and the sign of [W j] det(KW ) differ by the sign of the

edge ei,j. So, noting that [W 0] det(KW ) = det(K), we have

[W ] det(KW )

[W 0] det(KW )
= sign(ei,j)

det(K
cj
ri )

det(K)
. (A.0.3)

Combining equations (A.0.2) and (A.0.3), we have

det(K1
1)

det(K)
= sign(ea,b)

ZD(G− {a, b})
ZD(G)

,

det(K2
2)

det(K)
= sign(ec,d)

ZD(G− {c, d})
ZD(G)

,

det(K2
1)

det(K)
= sign(ea,d)

ZD(G− {a, d})
ZD(G)

, and

det(K1
2)

det(K)
= sign(eb,c)

ZD(G− {b, c})
ZD(G)

.
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By repeating the preceding argument with two edges of weight W connecting

vertices a to b and c to d, we find that

ZD(G− {a, b, c, d})
ZD(G)

= sign(ea,b)sign(ec,d)
det(K1,2

1,2)

det(K)
.

So by equation (A.0.1),

sign(ea,b)sign(ec,d)Z
D(G− {a, b, c, d})

ZD(G)

=
sign(ea,b)sign(ec,d)Z

D(G− {a, b})ZD(G− {c, d})
(ZD(G))2

−sign(ea,d)sign(eb,c)Z
D(G− {a, d})ZD(G− {b, c})
(ZD(G))2

.

Next, we multiply each term in the equation above by sign(ea,b)sign(ec,d) so that

the first two terms have positive sign. Finally, we observe that when we adjoin

edges connecting a to b, b to c, c to d, and d to a as previously described, the outer

face of the modified graph has 4 edges, so

sign(ea,b)sign(ec,d)sign(ea,d)sign(eb,c) = −1,

which completes the proof.
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