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Container-orchestration software such as Kubernetes make it easy to deploy and manage modern cloud
applications based on microservices. Yet, its network abstractions pave the way for "unexpected attacks”
if we approach cloud network security with the same mental model of traditional network security.

M icroservices have become the template for

cloud-native applications: easy to develop, deploy,
debug, scale, and share. When an application is decom-
posed into independent microservices, ensuring that the
services can communicate with one another in a secure
way introduces new challenges, particularly when the
decomposition results in many services. Even rudimen-
tary cloud applications contain a few tens of microservices,
and some of the largest (e.g,, Netflix and Uber platforms)
contain hundreds or thousands of microservices, possibly
running on several containers. Container-orchestration
software such as Kubernetes (K8s)! provide a simplified
interface or model to address these challenges.

At the same time, abstractions make it easy to overlook
security threats. For example, (in)secure practices con-
cerning use of K8s default configuration have been well
studied.>® Security issues in software-defined networking
(SDN) solutions used for managing cloud infrastructure
have also been investigated.*> Nam et al.® present an over-
view of security challenges in container networks and the
limitations of common networking plug-ins.

In particular, the security implications of K8s net-
working components (e.g., how K8s configures connec-
tivity between services and enforces network-security
policies) are largely unexplored. Indeed, when we think
about networking between microservices, we have a

Digital Object Identifier 10.1109/MSEC.2021.3094726
Date of current version: 27 July 2021

Copublished by the IEEE Computer and Reliability Societies

“mental model” of networking derived from physical
networks, with switches and interfaces interconnected
with physical cables—a model that we show signifi-
cantly departs from reality.

As a result, when thinking about (cloud) network
security, we may picture “digitally unbridgeable moats”
that do not really exist. The correct analogy with tradi-
tional networking would be that as one is able to esca-
late within a switching device, then one can start laying
cables between different devices. The key takeaway is
not that K8s is insecure, but that it is insecure to apply
the “mental extension” of traditional network security
terminology to a different world.

A Playground for “Unexpected Attacks”
To understand the issues, consider some typical
deployment scenarios in which a company is wishing
to use K8s.

A K8s-single-cluster consists of one master and one
or more (i.e., a customizable number of ) worker nodes.
The applications aimed at the users are deployed on
two clusters—“development” and “production”—both
of which contain the same set of applications, but with
different levels of security (typically, more restricted
for the production than the development cluster). A
network-security policy separates the nodes.

A K8s-multicluster setup consists of two clusters
composed of one master and at least one worker node
for each. To add a layer of security, one cluster can be

This work is licensed under a Creative Commons

Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/deed.ast.



“development” and the other can be in the “produc-
tion,” each deployed in different network subnets not
meant to access one another.

A K8s-custom-multicluster is a fully customizable
setup, which allows the user to specify both the num-
ber of master nodes and worker nodes to be used,
where etcd database containing the clusters information
should be deployed (within the master nodes or as an
external cluster for high availability) and other segrega-
tion information available through Linux namespaces.
It is also possible to specify, for each K8s component,
the release version to be installed (this setup is suitable
to replicate production-like environments).

Figure 1 provides an overview of the multicluster
setup and its main components. Different application
services, possibly segregated by security policies at the
operating system level, are typically present even in a
single-cluster setup:

= longhorn: providing distributed storage

= nfs server: providing persistent storage

= development: three applications—Wordpress (with
MariaDB), Nginx, and Guestbook (with a Redis
leader, Redis follower, and front end)

= production: same applications as for development.

We provide a practical testbed,” built on Vagrant for
reproducibility reasons, where the above scenarios can
be replicated through containers and virtual Machines
(VMs). VMs are created and deployed created from a
host machine in a private network, not accessible from
the internet. VMs can, however, reach the Internet via a
network address translator (NAT).

The “Unexpected Threats” Model

In this testbed scenarios, we consider sample attack
scenarios from either external or internal attackers. So,
we assume that all attacks start by compromising a pod
in some way (the Initial Access of MITRE ATT&CK
framework as adapted by Microsoft for K8s®).

With the traditional mental model of network
security, such attacks should remain confined to the
initial compromised pod: network-security measures
are in place. Additional exploits would be needed to
move around. Yet, exploiting the connectivity of K8s
components, the cluster may still be compromised.
We will return to them with more precise details in
Table 1 after describing the network functionality.

FirewallHole (bypassing security barriers of an over-
lay network): An attacker launches a SYN flood
denial-of-service (DoS) attack against a service
bypassing an (apparent) firewall by mimicking the
encapsulation of the plug-in in charge of networking
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that at each node mimics the existence of an over-
lay network.

= Hit&Spread [container shell through remote code exe-
cution (RCE) vulnerability in the web application]:
An attacker can exploit an RCE in a web application
to get a reverse shell on a container and then access
sensitive information, laterally move within the clus-
ter, and escalate privileges.

= Replace&Propagate (supply chain attack through malicious
container image): An attacker can deceive developers into
deploying a malicious container, which then contacts a
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Figure 1. An overview of the multicluster components.
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command-and-control server and hijacks the whole cluster
including services running on other containers.

A Primer on Containers and Kubernetes
To explain why these attacks are feasible, some back-
ground material on containers and key components of
K8s is useful.

A container emulates the operating system layers to
offer a virtualized and self-contained environment with
its own subprocesses and resources. Container isolation
in a typical Linux environment is implemented through
namespaces, which allow a kernel to partition resources

Table 1. Details of the example attack scen

amonga set of processes. Specifically, a network namespace
isa copy of the network stack, including network interfaces,
routing and firewall rules, which can be assigned to each
process or container. The longhorn, nfs server, dev, and
prod namespaces shown in Figure 1 implement a similar
resources isolation at a K8s cluster level.

Deployment and management of containers is typi-
cally automated with orchestration engines such as K8s,
Docker Swarm, and AWS ECS. In this article we focus only
on K8s, the most widely used orchestration software.’

An application running on K8s is deployed within
a cluster, a set of machines (either virtual or physical)
for running containerized applications. As shown in

K8s cluster.

Attack Scenario Alternative Steps or Scenarios

FirewallHole:

« The target is a web application (front end, database,
and back-end server); firewall policies allows only the
back end to send packets to the database, and pods
without NET_RAW capability (i.e. no source IP address
spoofing).

+ The attacker wants to run a SYN flood DoS attack
on the database, by crafting User Datagram Protocol
(UDP) packets to mimic Virtual Extensible LAN
(VXLAN) encapsulation.

» The attacker, miming the Flannel VXLAN encapsulation
(i.e., UDP packets with VXLAN header, destination IP
set to the node’s IP, and destination port set to 8472—
default VXLAN UDP port), can bypass the firewall and
send packets from the front-end pod to the database.

Hit&Spread:

« Consider a web application containing a remote
code execution (RCE) vulnerability in the code or a
third-party dependency, that allows obtaining a reverse
shell in a container.

+ The attacker can communicate with the API server via
kubectl with tokens and certificates mounted on the
compromised pod.

« The attacker can also perform malicious actions like
mounting the host’s file system on new containers,
accessing other pods in the cluster, asking the API server
to modify containers or intercepting network traffic.

Replace&Propagate:

« Consider the deployment of a malicious image
controlled by the attacker and able to open a reverse
shell or communicate with a command-and-control
server.

« The attacker gets a reverse shell on the malicious
container and, similarly as before, can install custom
scripts or malicious programs, access other pods and
secrets, intercept network traffic, and escape on the
node.
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» Deploying a malicious CNI plug-in, which could
allow malicious requests and enable MITM attacks.

» K8s objects dynamically created and located in a
CIDR not covered by the firewall.

«  CVE-2020-10749 vulnerability found in affected
container networking implementations allowing
malicious containers in a cluster to perform MITM
attacks.

+  CNI plug-in that does not handle network policies
(e.g. Flannel) or network policies not defined by the
user.

« Transport Layer Security (TLS) authentication
disabled for any component on the master node: API
server, controller-manager, scheduler, and etcd server.

« Interaction with the cloud provider: obtaining the
node’s credentials from the metadata AP, gaining
K8s authentication tokens from cloud storage
buckets, modifying or creating compute instances,
and modifying or duplicating storage.

« Exploiting users with a large set of permissions (e.g.,
for accessing secrets, creating pods or deployments).

« Secrets management: accessing secrets stored as
environment variables or in other insecure ways.

« The attacker can deceive the developers in deploying
the malicious image either by sharing it on public
registries (e.g., Docker Hub) with misleading names
(i.e, typosquatting attacks), by gaining access to a
repository and directly modifying the source code,
or exploit a registry’s vulnerability and hijack the
images (e.g., CVE-2019-16097).

» Given attacker’s access to the cluster through a
compromised container image, which developers
can also reuse as a base image for other containers,
enlarging the attack surface.
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Figure 1, in every cluster there is (at least) one master
node and several worker nodes. Master nodes have the
task of managing all cluster (i.e., K8s objects and worker
nodes) and keeping it at the desired state, scheduling
the application containers on the worker nodes, which
are the computing units. To provide high availability,
both the master and worker nodes can be replicated,
either physically or virtually (e.g., through VMs).
The main components of a worker node are:

= pod: the smallest deployable object containing at
least one container; a pod (or the containers running
within it) is attacked and initially compromised in all
our scenarios

= kubelet: managing and checking running pods

= kube-proxy: implementing NAT for new services; this
is the component implementing the network policies
through iptables rules retrieved from the etcd datas-
tore available in the Master node

= container runtime: container engine that runs
containers.

Instead, the main components of a master node are:

= API server: REST API control manager that controls
the whole cluster; K8s users can interact with the clus-
ter through kubect], a command-line tool, or the web
dashboard, by sending commands to the API server

controller-manager: controller loops on cluster objects

scheduler: scheduling pods on worker nodes

= etcd: key-value distributed database storing cluster
configurations; a faulty network analogy would be a
dynamic host configuration protocol server database.
More properly, it is an identity database for workers
and pods. Should it fail or be compromised, there is
no longer a proper distinction between pods and net-
work policies cannot be retrieved anymore.

By default, the K8s network among worker nodes
and pods is all flat: to provide network segmentation
and to restrict the communication between different
objects, K8s allows defining network policies.

A network policy (which is actually a misnomer as
will be coming apparent) allows specifying how a pod is
allowed to talk to other networking components, such
as other pods, services, and so on. Such policy is not
enforced by K8s itself, but by network plug-in, a container
network interface (CNI) aiming to connect a container
engine to a network, providing connectivity specifications
for the running containers. Kumar and Trivedi et al.\° pro-
vide an extensive performance comparison of common
CNI plug-ins. By default, all policies are stored in the etcd
database and retrieved by the plug-in agent running on
each node. How these policies are enforced depends on
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the plug-in (e.g, through iptables rules or admission con-
trollers). In fact, creating a network policy without a CNI
plug-in will have no effect on the cluster traffic.

Contrary to common belief, a CNI plug-inis not a K8s
component, it is not bound to it in any way, and it does
not depend on K8s. In a K8s cluster, a CNI simply acts
as a middleware between pods and the container engine
being used. Specifically, the kubelet contacts the CNI
plug-in providing a JavaScript Object Notation config file
containing the network specifications that a worker node
should use (e.g, the network subnet) with its pods. This
has strong implications on the way networking is imple-
mented using CNIs. A security policy enforced by CNIis
only enforced if a K8s component queries the appropri-
ate CNI for policy and interfaces mapping and does what
is told.

Kubernetes Networking: Bottom-Up
Within a K8s cluster, every CNI plug-in must guarantee
the following properties:

= a container (and pod) can communicate with any
other container (and pod) on any worker node with-
out using NAT

= aworker node can communicate with any pod on any
worker node without NAT

= each pod is assigned a unique IP address across the
entire cluster (i.e., an [P-per-pod model).

In this section, we elucidate various communica-
tion scenarios between the key K8s entities (shown
in Figure 2) and highlight security issues relevant to
each scenario.

Container-to-Container Networking

The simplest scenario consists of communication
between containers within the same pod, which is rep-
resented by the green line in Figure 2. Containers within
the same pod share the same network namespace (abbre-
viated, henceforth, as netns). They share, hence, the same
(virtual) network stack (i.e., network interfaces, routing
table, and so on), and they can communicate over loc-
alhost. Thus, a compromised container has (network)
access to the other containers running in the same pod.
The CNI plug-in, invoked by the kubelet, and in charge of
setting up network interfaces does not disallow (or even
monitor) communication over localhost.

Pod-to-Pod Networking

Moving up one layer, pods can “talk” to each other. We
distinguish between two cases: two pods communicate
within the same worker node (yellow line in Figure 2),
or they are on different nodes (purple line in Figure 2).
Nodes may also not be part of the same subnet (e.g,
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when nodes are in different datacenters or clouds), in
which case they, usually, use an overlay network. The
CNI plug-in tracks which pods are on which subnets,
and on which nodes, and updates the routing rules in the
network namespace of each node such that the pod-to-
pod traffic can be forwarded through the right node.
Connectivity between nodes is, however, not managed
by K8s, and we omit concerned scenarios, since they are
beyond the scope of this article. Pod-to-pod communi-
cation on the same node is implemented via virtual Eth-
ernet devices (veth pairs in Figure 2) and a bridge (cbr0
in the illustration). Therefore, multiple pods running on
the same worker node can exchange network packets
via the virtual bridge.
When a container is
compromised, CNI
plug-ins using a bridge
become vulnerable
to common L2 net-
work attacks [such as
Address Resolution
Protocol (ARP) and
Domain Name Sys-
tem (DNS) spoof-
ing]. Other plug-ins,
instead of the bridge,
use a virtual router in each node or IP in IP encapsulation
to avoid such problems.

Pod-to-Service Networking

A KS8s service is an abstract way to expose an application
running on a set of pods. All pods used by an applica-
tion share a common label that K8s uses for grouping
the pods. K8s also uses labels to automatically keep
track of newly instantiated pods and maintains a list
of pod IP addresses associated with each service in an
EndpointSlice resource. K8s supports three different
types of services:

The ClusterIP service assigns the concerned applica-
tion a cluster-wide unique virtual IP address, only
reachable from within the cluster.

The NodePort service assigns the service to a static port
on every node in the cluster. It can be accessed from out-
side the cluster using the node’s IP address and the stati-
cally assigned port number. K8s also routes requests to
NodePort services to a clusterIP services (to load bal-
ance traffic across the pods).

In the Load Balancer case, K8s exposes the ser-
vice through a cloud-provider’s load balancer
(red line in the Figure 2). Requests arriving at the
cloud-provider’s load balancer are subsequently
routedtoaNodePortservice,whichinturnroutesittoa
ClusterIP service.
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Therefore, multiple pods running on the
same worker node can exchange network
packets via the virtual bridge.

A Summary of Network-Security
Implications

In this section, we highlight a list of network-security
issues that may arise within a K8s cluster and that every
K8s user and developer should keep in mind.

Pod netns by a Pause Container

The pod netns is held by a special container, called
a pause container. Every container scheduled on a pod
will share the netns with the pause container. Thus,
escaping from the pod netns means escaping from the
pause container netns, ending up in the host netns (the
pause container is not shown in Figure 2, but the same
can be thought as
escaping from the pod
square). An attacker
who is able to get on
the host netns can
potentially see network
interfaces, routing
rules, other pods ne-
tns: if the attacker
has privileged access,
the worker-node netns
is fully compromised.

CNI Plug-Ins Jeopardy

CNI plug-ins run as (privileged) programs on worker
nodes. Subverting these objects automatically results in
privileged access to the worker nodes, compromising the
whole network. Also, an attacker can compromise the net-
work interfaces or other components of the CNI plug-in
itself. Layer 2 plug-ins that use the Linux bridge may be
susceptible to man-in-the-middle (MITM) attacks (e.g,,
ARP spoofing and DNS spoofing); routing daemons of
layer 3 plug-ins (e.g,, CVE-2021-26928 affecting Border
Gateway Protocol) and eBPF (e.g., CVE-2021—31440)
may also be vulnerable.

Software Isolation of Resources

By default, the K8s network is flat. K8s isolates resources
in this flat architecture through network policies, while
also introducing new security implications. Within a clus-
ter, network policies are enforced by the CNI plug-in and
not K8s itself. Subverting the plug-in may result in invali-
dating all policies. The policies are also usually stored in
the CNI-plug-in datastore (e.g., etcd): Compromising
this database will result in another point of failure.

Network Policies Limitations

K8s base network policies that do not depend on the par-
ticular CNI plug-in do not support logs and drop/block
options. There is no support for fully qualified domain
name filtering in network rules, limiting the security
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options available. Furthermore, network policies offer
protection for layer 3 network controls between pod IP
addresses, but attacks over trusted IP addresses can only
be detected with layer 7 network filtering, which requires
additional components. Finally, to the best of our knowl-
edge, there is no methodology or tool yet to automatically
compare network policies with the business logic of appli-
cations, other than manually verifying them.

Multitenant K8s Clusters

CVE-2020-8554, affecting multitenant K8s clusters, is
not fully patched in K8s yet. An attacker who has per-
mission to create or edit services and pods can intercept
network traffic from other pods or nodes, by creating a
ClusterIP service with an arbitrary IP address to which
traffic is forwarded. Some plug-ins offer few counter-
measures, but an attacker might still be able to succeed.

Dynamic Nature of K8s Objects

It is a common practice to segment a network by
assigning subnets and separating them with firewalls in
between. This approach cannot cope with the ephem-
eral nature of K8s objects: network rules based on IP
addresses are not very effective, since IP addresses of
resources may keep changing; a classic firewall should at
least define rules based on classless interdomain routing
(CIDR) ranges and not specific addresses. Referring to
Figure 2, a firewall has the same network visibility of the
switch: It can be used to monitor ingress traffic, but it has
no internal visibility over intrazones traffic.

Virtual Network Infrastructure

As we explained in §IV, the K8s network infrastructure
is all virtual (i.e., software-defined via veth pairs or the
Linux bridge), with no physical interfaces or cables con-
necting the different components. The attack surface
and security issues of SDN have been widely studied
(e.g, Dabbagh et al.* and Yoon et al.%), but, to the best
of our knowledge, similar studies on the K8s network
do not exist. As an example, the K8s master node, by
default, is not replicated, which makes it a single-point-
of-failure, affecting other components, like the API
server, the controller-manager, the scheduler, and the
etcd database. The database is also not replicated, by
default: if it becomes unavailable, it may not be possible
to retrieve network policies or other settings. An outage
or attack on a single master node cluster would not stop
the cluster from working, but the cluster itself would
become unmanageable (i.e., it would be impossible to
change configurations or create new objects).

Distributed Tracing Not Embedded
By default, K8s does not allow distributed tracing of

resources usage or networking requests. Keeping track

IEEE Security & Privacy

of these events, such as network traffic, system calls, and
CPU and memory usages is useful both to identify attacks
and to improve the overall performance of the cluster.
As an example, sophisticated attacks consist of several
steps (e.g., malicious network traffic, CPU overload, and
mounting sensitive directories): resources tracing may
allow detecting these steps or identifying attack patterns.
As of today, correlation of data from different sources
remains complex and has to be done with external tools.

No Audit of the Level of Security of Policies
K8s does not automatically audit the security level of
policiesin a cluster and the potential risks and vulnerabil-
ities that may result from them. In particular, authentica-
tion and authorization such as role-based access control
(RBAC) and service accounts, secrets management, net-
work policies, pod security policies, general policies han-
dling the use of namespaces, and security options should
be analyzed before deploying the cluster and exposing
its services to the outside. As an example, sensitive files
to audit include configuration files (/etc/K8s) of both
the master and worker nodes and user-defined policies.

Mapping Attacks and Defenses

The ATT&CK (adversarial tactics, techniques, and
common knowledge) framework, created by MITRE
in 2013, describes common techniques used by attack-
ers to gain access into a system as well as their behavior
(e.g., lateral movement and privilege escalation) follow-
ing the intrusion, based on real-world observations of
attacks. MITRE also recently published the D&FEND
framework for security defenses. The ATT&CK frame-
work has also been specialized to address security
threats relevant to containers.!! Albeit MITRE has not
yet released a more specialized K8s-related matrix, most
K8s attack techniques can be mapped to the MITRE
framework. Indeed, Microsoft published in April 2020
a K8s threat matrix® based on the structure of MITRE's
ATT&CK framework that has been widely adopted to
study and secure K8s deployments. Given prior collab-
orations between Microsoft and MITRE, and the over-
lap between the Microsoft and the MITRE ATT&CK
matrices, we suppose that the Microsoft matrix will be
included in the MITRE ATT&CK framework, in the
near future. We opted, hence, to choose the Microsoft
matrix to describe the attack scenarios, as shown in
Figure 3.In Table 2, we also summarize the security issues,
and propose solutions for hardening K8s deployments
and link them to the MITRE D&FEND framework.

n this article, we analyzed the Kubernetes networking
infrastructure, highlighting the key low-level abstractions,
and offered a glimpse into the security implications
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of these abstractions. Understanding the design choices in
implementing these abstractions” as well as their ramifica-
tions for security is a key first step toward securing a K8s
(or any container-based) platform. We present a number
of open challenges for the security community and hope
that this article spurs the community to address them.m
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