KUBERNETES NETWORKING

Understanding the Security Implications
of Kubernetes Networking

Francesco Minna and Balakrishnan Chandrasekaran | Vrije Universiteit Amsterdam
Agathe Blaise and Filippo Rebecchi | Thales SIX GTS France
Fabio Massacci | University of Trento and Vrije Universiteit Amsterdam

46

September/October 2021

Container-orchestration software such as Kubernetes make it easy to deploy and manage modern cloud
applications based on microservices. Yet, its network abstractions pave the way for "unexpected attacks”
if we approach cloud network security with the same mental model of traditional network security.

M icroservices have become the template for

cloud-native applications: easy to develop, deploy,
debug, scale, and share. When an application is decom-
posed into independent microservices, ensuring that the
services can communicate with one another in a secure
way introduces new challenges, particularly when the
decomposition results in many services. Even rudimen-
tary cloud applications contain a few tens of microservices,
and some of the largest (e.g,, Netflix and Uber platforms)
contain hundreds or thousands of microservices, possibly
running on several containers. Container-orchestration
software such as Kubernetes (K8s)! provide a simplified
interface or model to address these challenges.

At the same time, abstractions make it easy to overlook
security threats. For example, (in)secure practices con-
cerning use of K8s default configuration have been well
studied.>® Security issues in software-defined networking
(SDN) solutions used for managing cloud infrastructure
have also been investigated.*> Nam et al.® present an over-
view of security challenges in container networks and the
limitations of common networking plug-ins.

In particular, the security implications of K8s net-
working components (e.g., how K8s configures connec-
tivity between services and enforces network-security
policies) are largely unexplored. Indeed, when we think
about networking between microservices, we have a

Digital Object Identifier 10.1109/MSEC.2021.3094726
Date of current version: 27 July 2021

Copublished by the IEEE Computer and Reliability Societies

“mental model” of networking derived from physical
networks, with switches and interfaces interconnected
with physical cables—a model that we show signifi-
cantly departs from reality.

As a result, when thinking about (cloud) network
security, we may picture “digitally unbridgeable moats”
that do not really exist. The correct analogy with tradi-
tional networking would be that as one is able to esca-
late within a switching device, then one can start laying
cables between different devices. The key takeaway is
not that K8s is insecure, but that it is insecure to apply
the “mental extension” of traditional network security
terminology to a different world.

A Playground for “Unexpected Attacks”
To understand the issues, consider some typical
deployment scenarios in which a company is wishing
to use K8s.

A K8s-single-cluster consists of one master and one
or more (i.e., a customizable number of) worker nodes.
The applications aimed at the users are deployed on
two clusters—“development” and “production”—both
of which contain the same set of applications, but with
different levels of security (typically, more restricted
for the production than the development cluster). A
network-security policy separates the nodes.

A K8s-multicluster setup consists of two clusters
composed of one master and at least one worker node
for each. To add a layer of security, one cluster can be

This work is licensed under a Creative Commons

Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/deed.ast.

“development” and the other can be in the “produc-
tion,” each deployed in different network subnets not
meant to access one another.

A K8s-custom-multicluster is a fully customizable
setup, which allows the user to specify both the num-
ber of master nodes and worker nodes to be used,
where etcd database containing the clusters information
should be deployed (within the master nodes or as an
external cluster for high availability) and other segrega-
tion information available through Linux namespaces.
It is also possible to specify, for each K8s component,
the release version to be installed (this setup is suitable
to replicate production-like environments).

Figure 1 provides an overview of the multicluster
setup and its main components. Different application
services, possibly segregated by security policies at the
operating system level, are typically present even in a
single-cluster setup:

= longhorn: providing distributed storage

= nfs server: providing persistent storage

= development: three applications—Wordpress (with
MariaDB), Nginx, and Guestbook (with a Redis
leader, Redis follower, and front end)

= production: same applications as for development.

We provide a practical testbed,” built on Vagrant for
reproducibility reasons, where the above scenarios can
be replicated through containers and virtual Machines
(VMs). VMs are created and deployed created from a
host machine in a private network, not accessible from
the internet. VMs can, however, reach the Internet via a
network address translator (NAT).

The “Unexpected Threats” Model

In this testbed scenarios, we consider sample attack
scenarios from either external or internal attackers. So,
we assume that all attacks start by compromising a pod
in some way (the Initial Access of MITRE ATT&CK
framework as adapted by Microsoft for K8s®).

With the traditional mental model of network
security, such attacks should remain confined to the
initial compromised pod: network-security measures
are in place. Additional exploits would be needed to
move around. Yet, exploiting the connectivity of K8s
components, the cluster may still be compromised.
We will return to them with more precise details in
Table 1 after describing the network functionality.

FirewallHole (bypassing security barriers of an over-
lay network): An attacker launches a SYN flood
denial-of-service (DoS) attack against a service
bypassing an (apparent) firewall by mimicking the
encapsulation of the plug-in in charge of networking

www.computer.org/security

that at each node mimics the existence of an over-
lay network.

= Hit&Spread [container shell through remote code exe-
cution (RCE) vulnerability in the web application]:
An attacker can exploit an RCE in a web application
to get a reverse shell on a container and then access
sensitive information, laterally move within the clus-
ter, and escalate privileges.

= Replace&Propagate (supply chain attack through malicious
container image): An attacker can deceive developers into
deploying a malicious container, which then contacts a

Development Cluster

Master
Node

VM 172.16.2.10

1

1

1

1

]

]

: 1

1

. !

1

! Worker Worker Worker
. Node 1 Node 2 Node 3
1

]

X VM 172.16.2.11 VM 172.16.2.12 VM 172.16.2.13

Private Network 172.16.2.0/24

Production Cluster

Master O

el B3

VM 172].16.3.10

Worker Worker Worker
Node 1 Node 2 Node 3

VM 172.16.3.11 VM 172.16.3.12 VM 172.16.3.13

Private Network 172.16.3.0/24

Testbed Namespaces

By Default: DNS, Scheduler, Kube-Proxy, Calico, etc..
By Default: For Objects Created Without Namespace
E/AVINT - IRZIPNTNT - T S/IN] - 12
E/AVINT - IR NTNT -~ LI S/IN] - 12

Worker Node 1 Worker Node 2 Worker Node 3

Kube-System

Default

Longhorn

nfs-Server

dev

prod

Figure 1. An overview of the multicluster components.

47

B KUBERNETES NETWORKING

command-and-control server and hijacks the whole cluster
including services running on other containers.

A Primer on Containers and Kubernetes
To explain why these attacks are feasible, some back-
ground material on containers and key components of
K8s is useful.

A container emulates the operating system layers to
offer a virtualized and self-contained environment with
its own subprocesses and resources. Container isolation
in a typical Linux environment is implemented through
namespaces, which allow a kernel to partition resources

Table 1. Details of the example attack scen

amonga set of processes. Specifically, a network namespace
isa copy of the network stack, including network interfaces,
routing and firewall rules, which can be assigned to each
process or container. The longhorn, nfs server, dev, and
prod namespaces shown in Figure 1 implement a similar
resources isolation at a K8s cluster level.

Deployment and management of containers is typi-
cally automated with orchestration engines such as K8s,
Docker Swarm, and AWS ECS. In this article we focus only
on K8s, the most widely used orchestration software.’

An application running on K8s is deployed within
a cluster, a set of machines (either virtual or physical)
for running containerized applications. As shown in

K8s cluster.

Attack Scenario Alternative Steps or Scenarios

FirewallHole:

« The target is a web application (front end, database,
and back-end server); firewall policies allows only the
back end to send packets to the database, and pods
without NET_RAW capability (i.e. no source IP address
spoofing).

+ The attacker wants to run a SYN flood DoS attack
on the database, by crafting User Datagram Protocol
(UDP) packets to mimic Virtual Extensible LAN
(VXLAN) encapsulation.

» The attacker, miming the Flannel VXLAN encapsulation
(i.e., UDP packets with VXLAN header, destination IP
set to the node’s IP, and destination port set to 8472—
default VXLAN UDP port), can bypass the firewall and
send packets from the front-end pod to the database.

Hit&Spread:

« Consider a web application containing a remote
code execution (RCE) vulnerability in the code or a
third-party dependency, that allows obtaining a reverse
shell in a container.

+ The attacker can communicate with the API server via
kubectl with tokens and certificates mounted on the
compromised pod.

« The attacker can also perform malicious actions like
mounting the host’s file system on new containers,
accessing other pods in the cluster, asking the API server
to modify containers or intercepting network traffic.

Replace&Propagate:

« Consider the deployment of a malicious image
controlled by the attacker and able to open a reverse
shell or communicate with a command-and-control
server.

« The attacker gets a reverse shell on the malicious
container and, similarly as before, can install custom
scripts or malicious programs, access other pods and
secrets, intercept network traffic, and escape on the
node.

IEEE Security & Privacy

» Deploying a malicious CNI plug-in, which could
allow malicious requests and enable MITM attacks.

» K8s objects dynamically created and located in a
CIDR not covered by the firewall.

« CVE-2020-10749 vulnerability found in affected
container networking implementations allowing
malicious containers in a cluster to perform MITM
attacks.

+ CNI plug-in that does not handle network policies
(e.g. Flannel) or network policies not defined by the
user.

« Transport Layer Security (TLS) authentication
disabled for any component on the master node: API
server, controller-manager, scheduler, and etcd server.

« Interaction with the cloud provider: obtaining the
node’s credentials from the metadata AP, gaining
K8s authentication tokens from cloud storage
buckets, modifying or creating compute instances,
and modifying or duplicating storage.

« Exploiting users with a large set of permissions (e.g.,
for accessing secrets, creating pods or deployments).

« Secrets management: accessing secrets stored as
environment variables or in other insecure ways.

« The attacker can deceive the developers in deploying
the malicious image either by sharing it on public
registries (e.g., Docker Hub) with misleading names
(i.e, typosquatting attacks), by gaining access to a
repository and directly modifying the source code,
or exploit a registry’s vulnerability and hijack the
images (e.g., CVE-2019-16097).

» Given attacker’s access to the cluster through a
compromised container image, which developers
can also reuse as a base image for other containers,
enlarging the attack surface.

September/October 2021

Figure 1, in every cluster there is (at least) one master
node and several worker nodes. Master nodes have the
task of managing all cluster (i.e., K8s objects and worker
nodes) and keeping it at the desired state, scheduling
the application containers on the worker nodes, which
are the computing units. To provide high availability,
both the master and worker nodes can be replicated,
either physically or virtually (e.g., through VMs).
The main components of a worker node are:

= pod: the smallest deployable object containing at
least one container; a pod (or the containers running
within it) is attacked and initially compromised in all
our scenarios

= kubelet: managing and checking running pods

= kube-proxy: implementing NAT for new services; this
is the component implementing the network policies
through iptables rules retrieved from the etcd datas-
tore available in the Master node

= container runtime: container engine that runs
containers.

Instead, the main components of a master node are:

= API server: REST API control manager that controls
the whole cluster; K8s users can interact with the clus-
ter through kubect], a command-line tool, or the web
dashboard, by sending commands to the API server

controller-manager: controller loops on cluster objects

scheduler: scheduling pods on worker nodes

= etcd: key-value distributed database storing cluster
configurations; a faulty network analogy would be a
dynamic host configuration protocol server database.
More properly, it is an identity database for workers
and pods. Should it fail or be compromised, there is
no longer a proper distinction between pods and net-
work policies cannot be retrieved anymore.

By default, the K8s network among worker nodes
and pods is all flat: to provide network segmentation
and to restrict the communication between different
objects, K8s allows defining network policies.

A network policy (which is actually a misnomer as
will be coming apparent) allows specifying how a pod is
allowed to talk to other networking components, such
as other pods, services, and so on. Such policy is not
enforced by K8s itself, but by network plug-in, a container
network interface (CNI) aiming to connect a container
engine to a network, providing connectivity specifications
for the running containers. Kumar and Trivedi et al.\° pro-
vide an extensive performance comparison of common
CNI plug-ins. By default, all policies are stored in the etcd
database and retrieved by the plug-in agent running on
each node. How these policies are enforced depends on

www.computer.org/security

the plug-in (e.g, through iptables rules or admission con-
trollers). In fact, creating a network policy without a CNI
plug-in will have no effect on the cluster traffic.

Contrary to common belief, a CNI plug-inis not a K8s
component, it is not bound to it in any way, and it does
not depend on K8s. In a K8s cluster, a CNI simply acts
as a middleware between pods and the container engine
being used. Specifically, the kubelet contacts the CNI
plug-in providing a JavaScript Object Notation config file
containing the network specifications that a worker node
should use (e.g, the network subnet) with its pods. This
has strong implications on the way networking is imple-
mented using CNIs. A security policy enforced by CNIis
only enforced if a K8s component queries the appropri-
ate CNI for policy and interfaces mapping and does what
is told.

Kubernetes Networking: Bottom-Up
Within a K8s cluster, every CNI plug-in must guarantee
the following properties:

= a container (and pod) can communicate with any
other container (and pod) on any worker node with-
out using NAT

= aworker node can communicate with any pod on any
worker node without NAT

= each pod is assigned a unique IP address across the
entire cluster (i.e., an [P-per-pod model).

In this section, we elucidate various communica-
tion scenarios between the key K8s entities (shown
in Figure 2) and highlight security issues relevant to
each scenario.

Container-to-Container Networking

The simplest scenario consists of communication
between containers within the same pod, which is rep-
resented by the green line in Figure 2. Containers within
the same pod share the same network namespace (abbre-
viated, henceforth, as netns). They share, hence, the same
(virtual) network stack (i.e., network interfaces, routing
table, and so on), and they can communicate over loc-
alhost. Thus, a compromised container has (network)
access to the other containers running in the same pod.
The CNI plug-in, invoked by the kubelet, and in charge of
setting up network interfaces does not disallow (or even
monitor) communication over localhost.

Pod-to-Pod Networking

Moving up one layer, pods can “talk” to each other. We
distinguish between two cases: two pods communicate
within the same worker node (yellow line in Figure 2),
or they are on different nodes (purple line in Figure 2).
Nodes may also not be part of the same subnet (e.g,

49

‘paresedas Ajpuasedde seadde Jeya s1ax10m 01 ss3308 J00PIRq JpIroid pue (dol uo 13]aqny Y3noaya) mojj |04auod [edi30] aya
31IMal P|N0D JaXEIIE UE ‘Saliepunoq [edisAyd awos Jo aduasaid aya Ul uaag "adeylaiul 3jqeydeal Aue 01 Adalip jje, pue ul-3nid |[ND aya a1ousi pjnod ad1A1as pasiwoidwod e ‘AjaAneusal|y
"(uondas ,s313u4agny| pUE SIBUILIUOD) UO IaWlL] v, Y1 33s) A|dde sa8uo] ou saidijod A11nJas-10MIau SNYI ‘pue aieq ple| si 19ISN|D Y1 ‘SUIdU IPOU-I3¥10M SUIPUNOLINS 3Y1 01, | 3DIAIIS, JO
sulau pod a3 Jo N0 sxealq Jaxde1le Ue Ji ‘9|dwexa 104 ‘adedsaweu 1y aya 01 sadedsa auo se uoos se Jeaddesip saliepunoq asayl aemiyos ui paruawddwi ase (saijod A1uNndas-y1omiau

pue suoideisqe dedsaweu 3y “a'1) saliepunoq uoie|os! |je 1eya si aulodpuels A11n2as e woly Aemeadyed 433 ay | L 24n314 jo 1red doa aya wouy 133sn|> padeurw-sgy| 3|3uls e Jo
34N12321Y2JE }I0MI3U [BNIDE 33 JO UONLIUSIIASI IBINDI. 2I0W B SMOYS 2NB1y SIY | 49ISN|D 3|3UIS B Ul SIDIAIIS JUIYIP USIMIQ SUOIIDEIAUI 3|qIssod pue dIomaau Jeal, sg| * a4nSi4

September/October 2021

B KUBERNETES NETWORKING

Jooueleg
peOT YIoMIEN

slo

adelaU| ERLEIET] 1 Sujeu
YIOMISN [ENUIA YHomieN , Saweupod X apou JaXIO e e
L
p 9L/009LeLt |—————————
| UoUMS j
LbgolelLL LLgolzeLL
oue oue

| ©JIAI8S

)
1
1
1
1
1
1
1
08 :aureuon | 1
1
1

=== == ===

awiuny Jaureluon ﬁ

[

| Axoig-aqnyy

A

%

22 :Jaurejuon

€G :laureluo) _ _ 08 :leureluon _

1
1
.
1
| ®0IAIBS 1
1
1
1
1
{

_ mE_Esm_Hmc_mEoo ﬁ

[

1Blegny ,|A

90IAI8S-0}-pOd

(sepoN usiayiq)

pod-01-pod

pod-01-pod

Jaurejuo)-o}-1aurejuo)
ceeesseess UIT [BNMIA
——— ur[edisAyd

MO|4 |0J1u0D
puaber

A

Axoid-aqny|

19eany T

| 1onieg |4V [

Jabeuep
-1ajj0u0)

la|npayos

A

(

[oagny|

sdoneQg

O

IEEE Security & Privacy

50

when nodes are in different datacenters or clouds), in
which case they, usually, use an overlay network. The
CNI plug-in tracks which pods are on which subnets,
and on which nodes, and updates the routing rules in the
network namespace of each node such that the pod-to-
pod traffic can be forwarded through the right node.
Connectivity between nodes is, however, not managed
by K8s, and we omit concerned scenarios, since they are
beyond the scope of this article. Pod-to-pod communi-
cation on the same node is implemented via virtual Eth-
ernet devices (veth pairs in Figure 2) and a bridge (cbr0
in the illustration). Therefore, multiple pods running on
the same worker node can exchange network packets
via the virtual bridge.
When a container is
compromised, CNI
plug-ins using a bridge
become vulnerable
to common L2 net-
work attacks [such as
Address Resolution
Protocol (ARP) and
Domain Name Sys-
tem (DNS) spoof-
ing]. Other plug-ins,
instead of the bridge,
use a virtual router in each node or IP in IP encapsulation
to avoid such problems.

Pod-to-Service Networking

A KS8s service is an abstract way to expose an application
running on a set of pods. All pods used by an applica-
tion share a common label that K8s uses for grouping
the pods. K8s also uses labels to automatically keep
track of newly instantiated pods and maintains a list
of pod IP addresses associated with each service in an
EndpointSlice resource. K8s supports three different
types of services:

The ClusterIP service assigns the concerned applica-
tion a cluster-wide unique virtual IP address, only
reachable from within the cluster.

The NodePort service assigns the service to a static port
on every node in the cluster. It can be accessed from out-
side the cluster using the node’s IP address and the stati-
cally assigned port number. K8s also routes requests to
NodePort services to a clusterIP services (to load bal-
ance traffic across the pods).

In the Load Balancer case, K8s exposes the ser-
vice through a cloud-provider’s load balancer
(red line in the Figure 2). Requests arriving at the
cloud-provider’s load balancer are subsequently
routedtoaNodePortservice,whichinturnroutesittoa
ClusterIP service.

www.computer.org/security

Therefore, multiple pods running on the
same worker node can exchange network
packets via the virtual bridge.

A Summary of Network-Security
Implications

In this section, we highlight a list of network-security
issues that may arise within a K8s cluster and that every
K8s user and developer should keep in mind.

Pod netns by a Pause Container

The pod netns is held by a special container, called
a pause container. Every container scheduled on a pod
will share the netns with the pause container. Thus,
escaping from the pod netns means escaping from the
pause container netns, ending up in the host netns (the
pause container is not shown in Figure 2, but the same
can be thought as
escaping from the pod
square). An attacker
who is able to get on
the host netns can
potentially see network
interfaces, routing
rules, other pods ne-
tns: if the attacker
has privileged access,
the worker-node netns
is fully compromised.

CNI Plug-Ins Jeopardy

CNI plug-ins run as (privileged) programs on worker
nodes. Subverting these objects automatically results in
privileged access to the worker nodes, compromising the
whole network. Also, an attacker can compromise the net-
work interfaces or other components of the CNI plug-in
itself. Layer 2 plug-ins that use the Linux bridge may be
susceptible to man-in-the-middle (MITM) attacks (e.g,,
ARP spoofing and DNS spoofing); routing daemons of
layer 3 plug-ins (e.g,, CVE-2021-26928 affecting Border
Gateway Protocol) and eBPF (e.g., CVE-2021—31440)
may also be vulnerable.

Software Isolation of Resources

By default, the K8s network is flat. K8s isolates resources
in this flat architecture through network policies, while
also introducing new security implications. Within a clus-
ter, network policies are enforced by the CNI plug-in and
not K8s itself. Subverting the plug-in may result in invali-
dating all policies. The policies are also usually stored in
the CNI-plug-in datastore (e.g., etcd): Compromising
this database will result in another point of failure.

Network Policies Limitations

K8s base network policies that do not depend on the par-
ticular CNI plug-in do not support logs and drop/block
options. There is no support for fully qualified domain
name filtering in network rules, limiting the security

B KUBERNETES NETWORKING

52

options available. Furthermore, network policies offer
protection for layer 3 network controls between pod IP
addresses, but attacks over trusted IP addresses can only
be detected with layer 7 network filtering, which requires
additional components. Finally, to the best of our knowl-
edge, there is no methodology or tool yet to automatically
compare network policies with the business logic of appli-
cations, other than manually verifying them.

Multitenant K8s Clusters

CVE-2020-8554, affecting multitenant K8s clusters, is
not fully patched in K8s yet. An attacker who has per-
mission to create or edit services and pods can intercept
network traffic from other pods or nodes, by creating a
ClusterIP service with an arbitrary IP address to which
traffic is forwarded. Some plug-ins offer few counter-
measures, but an attacker might still be able to succeed.

Dynamic Nature of K8s Objects

It is a common practice to segment a network by
assigning subnets and separating them with firewalls in
between. This approach cannot cope with the ephem-
eral nature of K8s objects: network rules based on IP
addresses are not very effective, since IP addresses of
resources may keep changing; a classic firewall should at
least define rules based on classless interdomain routing
(CIDR) ranges and not specific addresses. Referring to
Figure 2, a firewall has the same network visibility of the
switch: It can be used to monitor ingress traffic, but it has
no internal visibility over intrazones traffic.

Virtual Network Infrastructure

As we explained in §IV, the K8s network infrastructure
is all virtual (i.e., software-defined via veth pairs or the
Linux bridge), with no physical interfaces or cables con-
necting the different components. The attack surface
and security issues of SDN have been widely studied
(e.g, Dabbagh et al.* and Yoon et al.%), but, to the best
of our knowledge, similar studies on the K8s network
do not exist. As an example, the K8s master node, by
default, is not replicated, which makes it a single-point-
of-failure, affecting other components, like the API
server, the controller-manager, the scheduler, and the
etcd database. The database is also not replicated, by
default: if it becomes unavailable, it may not be possible
to retrieve network policies or other settings. An outage
or attack on a single master node cluster would not stop
the cluster from working, but the cluster itself would
become unmanageable (i.e., it would be impossible to
change configurations or create new objects).

Distributed Tracing Not Embedded
By default, K8s does not allow distributed tracing of

resources usage or networking requests. Keeping track

IEEE Security & Privacy

of these events, such as network traffic, system calls, and
CPU and memory usages is useful both to identify attacks
and to improve the overall performance of the cluster.
As an example, sophisticated attacks consist of several
steps (e.g., malicious network traffic, CPU overload, and
mounting sensitive directories): resources tracing may
allow detecting these steps or identifying attack patterns.
As of today, correlation of data from different sources
remains complex and has to be done with external tools.

No Audit of the Level of Security of Policies
K8s does not automatically audit the security level of
policiesin a cluster and the potential risks and vulnerabil-
ities that may result from them. In particular, authentica-
tion and authorization such as role-based access control
(RBAC) and service accounts, secrets management, net-
work policies, pod security policies, general policies han-
dling the use of namespaces, and security options should
be analyzed before deploying the cluster and exposing
its services to the outside. As an example, sensitive files
to audit include configuration files (/etc/K8s) of both
the master and worker nodes and user-defined policies.

Mapping Attacks and Defenses

The ATT&CK (adversarial tactics, techniques, and
common knowledge) framework, created by MITRE
in 2013, describes common techniques used by attack-
ers to gain access into a system as well as their behavior
(e.g., lateral movement and privilege escalation) follow-
ing the intrusion, based on real-world observations of
attacks. MITRE also recently published the D&FEND
framework for security defenses. The ATT&CK frame-
work has also been specialized to address security
threats relevant to containers.!! Albeit MITRE has not
yet released a more specialized K8s-related matrix, most
K8s attack techniques can be mapped to the MITRE
framework. Indeed, Microsoft published in April 2020
a K8s threat matrix® based on the structure of MITRE's
ATT&CK framework that has been widely adopted to
study and secure K8s deployments. Given prior collab-
orations between Microsoft and MITRE, and the over-
lap between the Microsoft and the MITRE ATT&CK
matrices, we suppose that the Microsoft matrix will be
included in the MITRE ATT&CK framework, in the
near future. We opted, hence, to choose the Microsoft
matrix to describe the attack scenarios, as shown in
Figure 3.In Table 2, we also summarize the security issues,
and propose solutions for hardening K8s deployments
and link them to the MITRE D&FEND framework.

n this article, we analyzed the Kubernetes networking
infrastructure, highlighting the key low-level abstractions,
and offered a glimpse into the security implications

September/October 2021

Somawely Y31 1V SIYLIW Woiy paidepe (xiew 1eaiyl sg) 3JOsodIw 3yl 03 | 3[qe] Wodj soleuads yoeile ajdwexa ay3 Suiddeyy *¢ ainsiy

90IAI8S
10 [elUBQg

BunioeliH
92In0say

uononiseq Ansibay areaud
eleq e wo.4 abew|

1oedw|

uonos|jo9

Buyoods 4| pue
Buluosiod dyv
Buiuosiod
SNQ@s109
julodpug
I8 L
SS900Y
pJeoqyseq
sejaulagnyy
SS900Y
1SOH BlEpEIS
8y} UO SJUNOA _n_Mohmcwh N
SWN|OA SIgEIIM Isul
S9|ld4
pJeoqyseq
uoneinblyuo) sejPUIBANY
ul sjenuspal) <5000
suoneol|ddy v
BuniomiaN Buiddepy
[eusaiu| Jaisn|n MlomieN
el IdV 1818dny
SoIMeS $S900Y
Jaureuo)
$92IN0SaYy JoNIBS |dVY

pnojD $s800y S8M 8Y} $5800Y

JUBSWIBAO|A

A1anoasiq
|esare]

€ 0lBUdIS
2 OleUddS
| oleuads
Ja|jou0)
uoissiwpy
SnoIoleN
lenuspal)
Amuep|
pabeuel) ssaooy
sa|i} "Biyuod £
Ul s[enuspain) Janlag Axold
suoneoiddy woi4 108uu0)

JUNooOY BOINIBS AJB|IWIS BWEN
JBUIBJUOD) SSB00Y JBUIBIU0D/POd

jediound SJUSA]
99IAI8S JUNO S8y d1919Q

s}a108s sbo

S8M 1sI1 Jaurejuo) Jes|n

$S900Y uoisens

asualeg

[enuapai)

puabaT

$92In0osay

pnoio
$S800Yy

unopy
UlediISoH

Buipuig
ulwpy-i81sn|n

Jauleuon
pabajinld

uone|eosy
abajinLg

i S90BBIU|
uonoalu) SANISUSS
1809pIS pasodx3

Jaurejuo) apisu
mc_cw:w_v ! p.eoquseq
JONISS HSS pesodx3

IR (@om) o Aungeseuinn

Dy dd uoiyeondd

snoloIeN uoneolday neojjdaay

qoluoin Jaureuon a4
sajaulagnyy MON Byuooagnyy

Juno Jaurejuo) Ansibay
UredisoH apisu| ul sebew|
a|geIIM pwo/yseg pesiwoldwo)

Jaurejuo) Jaurejuod s|enuapal)

1oopxoeg oju| 99x3 pnojp Buisn

aouv)sisiod

uonnoexg

SS90V [BlIU|

53

www.computer.org/security

B KUBERNETES NETWORKING

(panunuo)

SunsijAusp/Sunsimoje SNQ *
Sun)ly

dlyjes1 punoganQ/punoqu e

UOI3B|OS] UIRLIOP 1SBJpROIg *

sisAjeue

uJaired ssadde DUNOSAY -
Suipjoysaiya

1UIA3 UONEZLIOYINY o
Suipjoysaiya

JU3A3 UonedUAYINY o
(19A9] > domaau 1e)
|03U0d ssad0e A1oJRpUBYY .

siskjeue 21edy11U3) -«

(493sn)> 210315RIRP
ay3 1oj “8-3) uondApua ysig -
uondAious agessapy o
uonednuayine agessa|y -

AaN348ad JYLIW

"spod u2am13q d1yye.1 JUSWIZSS 01 |NJasN SN H10MIaU
[eNJIA 2121/ dX2—S5192SN|D SPISUl S3|NI $HIOMIDU [BNLIIA
“1)Jel1 ay3 12adsul Jo0uued y3noya Diyyesd Juswgss

01 djay ued pue uake| uonedijdde sy 18 dIom—ysaw DIAISS
*S92IN0SAI JAISN|D PUB 3410MI3U JO UOIIL|OS]

342 U0 123)J3 Aue dAeY 10U OP A3y | USYI0 YoBa Wol)
SIUSWIUOUIAUD S3DINOS3 | S| dYI 9e|osi—sadedsawieN
‘(sanijod jo Auenueld jaas)-pod aya

se (ons) suoneliwi| maj e pue Aixajdwod ysiy sauasaid 1y
*S9|NJ dAIEIR|DIP I|-|[eM3lly SpIroid—|dY Ad1|0d>omIBN

"SIDIAIDS
paniwiad usamiaq Ajuo suonedIunwWwod mojje pue spod
U92M13q $S3DDB 1D111S21—SIISN|D dPIsul $3|n4 1dx]
'sain1es)

Sunipne pue Suniodai Suipnjpul ‘sadijod ssadde pue s3|os
JO JuaWaSeuRW PazI[eIIUdd MO|[e—S|00] siaplroid A1nuap)
*S13U1eIU0D

Suowe SUOIEdIUNWWOD IO YIOMIWEL) UO[IBZIIOYINE
PazZI[e1IUIDIP © 3PN[OUI—SUOIIN|OS YSAW 3DIAIIS
‘(saoedsawreu 01 spod wouy) s324n0sa

s8] $$9228 01 suoissiwad a1en3ai—Iygy s8yf ul-a|ing

‘suoIeINSuod pue saJed1114ad

‘sA] Jo JuawaBeuew aya Suikyijdwis ‘uonednuayine
310dsues) 10j ST |ENINW 3SN—SUOIIN|OS YSaW DIAIIS
'$321235 01

$$920B JUBI3 pUE 21015 01 JUBWSSeURW 13135 (Pazi[esIua)d)
"A103150da1 pazi[esuad diignduou e ulylim uonewLIojul
[ennuaplyuod pa1dAIdua 21015—Ss12103S S8 UI-1|Ing

U9AI3S |V S8 Y3 S$9DD8 0] SIUIBIUOD JO UoIRINGUOD
Pue uonedIUaYINE SZBUBW—SIUNOIDY DIAIIS S| Ul-|ing

(sqou)] joa3u0)) sjoo)

‘syed s>10m1au palisap
nq xa|dwod Supyeaiq
anoyaim uonen3yuod

$11 9210jU3 U3 pue
sad1A43s pako|dap aya
U39M13q UONIDRIAIUI JO
|]opow pa13adxa aya ‘Aem

SAIIRJIR|D3P B Ul 3PIAOI{

‘Aepo3

pamoj[e sl Jeym ueyl
Aiuenuesd Ja3eald yam
|043u0D d3eurW pue s3|0.
aulap 03 siojeAsIuIpE
J0 A3111qe 3Y1 3pInoi(

‘saiijod A11an2as 139.140
Kojdap 01 awin aya pue
510113 UBWINY 3oNpal 01
Se 0S S|aA3] ADIAIIS pue
J1235N)2 38 Y304 sedndeid
4oNSs JO JU3WADI0JUS pue
Supjpayd aya azewoIny

aSuajjey) A3y

10108
SNOIDI[eW B JO SIUIWSAOW
Jesare| 3y Suniwi| ‘yadap
-UI-35U3J3P 3A3IYDY

'sa|dpuid

983|1A11d-1s€3] Sutpiroid
Aq s1335n)> 03 sadijod
ssadde -uonedijdde pue
-1sn paures8-auly adio4ug

‘saue|d-eiep

pUE -|03U0D 3431 1B Y10q
uoiredUaYINE [EMNW
y3nouaya dyjead aya 123104d

uoneudwsas
dlyjed)

]043U0D SS3IDY

£311nd3s d1yyea]

“jIomawely ANI4’2d S, JYLIW 03 Sunjiomiau sgy ui suonnjos 3jqissod Suiddew pue saSuajjeys £314n33s urey z 3jqel

September/October 2021

IEEE Security & Privacy

54

sisAeue ||ed wsAg

sisA[eue

ui13ed 53208 924N0SIY
siskjeue K11A110e

>10MI3U 3ARRASIUILPY
(4338NJ> 31035RIRP

aya 10y “83) uondAioua ysig
a1epdn asemiyos

sisAjeue [|ed waisAg
sisAjeue

uJa13ed ss302® 32UN0SAY
sisA[eue A11A110®
>40MIDU SANBAISIUILIPY

uondaldp
A[ewoue eyepelaw [030104d

uoneiAsp

A3unwiwod dyjesd J10MIdN

sisAjeue ey SNQ

sisAjeue 1dwia11e uondsUUOD)
sisAjeue K11A110e

>A0MIBU SANBIISIUIWPY

AaN348a RLIW

S1U3A3 SWIUNI UO S101edIpUl
apiroad—sauidus Sui33o| pue Surioaiuow a3inos uadQ
SUOI1DBJSIUI J3SN Pale[al PUB IAISN|D S8 331 JO

93B15 33 U0 dU3PIAS paduieisawil apiroid—s30] Ipny sgy|
$321A13s pako|dap Jo A11undas1agAd aya Jo

uonedYI11Id 3Ya Suipnppul ‘Aem aandas e ul sgy Suundyuod
J10J SUOIIBPUILILLODA JO 135 B—SaWaYDS UONBIIIIIaD

pUE suolIEpUaWILIOda 9d130eAd 353 pUuE SHieWYdUg

sapou sgy| 03
Sundauuod pue pajpuey ale sJUaA3 A31ndas moy SuiSeuew
s 0oqAe|d ay1 aulyap—saNpow pue sauiSua uoiIeWOoINY
pawuioyad aq 03 suonde

PajewoIne ay3 Yiim 3103uuod ‘dwif-[eas ul diysuorie[as 103442
pue asned azAjeue pue Aj3uapi—ssadoid Juand xajdwod
SJUA3 dWIUNU JO sSulUIeM pue S1Ide

Suipiroad-sauiSua Suid3o| pue Suioliuow adunos uado

sa[n4 A11un23s Jsurede Suriedwod pue sjed waisks
Sunioaiuow Aq awuna Je s1e3IY3 UO S1J3|8 PUE I0IABY3q
uonedidde paidadxaun s13319p—sauiBua A11Ndas swnuny
swajqo.ad Sundaiap

pue s3UaA3 3uneja.i0d 10j A1olisodas pazijesnuad e uipiroad
$32N0S JUAI3YIP WOy sJ1I3W pue s30| ssadoid pue
1e8a133e-sauiSua Suid30| pue uioliuow 3dunos uadQ
$213513815

a8esn Jaureuod [eNpIAIPUI U219)—IaAI95-SILIaW S8 Ul-d|ing
o3

aueld [043U0D 3y pue ‘|dy S8 Suisn suonedidde ‘siasn

Aq paiesauad saniande sy aipne—13330| apne sgy ul-ajing

(sqouy] [o13u0)) sjoo

ssad0.d uonda|j0d
3DU3PIAS pUE S3I3YD Yyons
JO UonEWOINE JUIDIYS
33 pUE ‘S103BDIPUI SHSLL
‘9dueljdwod a1ensuowap
01 3DUIPIAS 10B1IXT

'saijod A11undas [eusnul
pue ‘spsepueis ‘sadnoeid
153 A1asnpul moj|o4

(s13ureauod uiipisas
uayy 3uiddos Ajpannseold
pue Ajjeuonuajui

“8-3) s149]e A3uNd3s 03
puodsas 03 uonewoIne
JuawiAo|dap puaix3j

*SUOIIE|OIA
A>110d pue syuapidul
‘s119]e A111ndas Suljpuey
pue a8eL pajewony

SI01ABYSq PP
Aynuapi 01 saydeoidde
paiednsaaul A|nj 1ou

334 Suisiwoud juasaidas
awnunu Je SunuudiaSuly
pue Suiuies| |opow se
yons sanbiuyzaa dojanasg

'siolneyaq
snopidsns pue snojewoue
19A02sIp 03 WU 38
SSaUaJEME UOIIEBNIIS 3PIAOI

aSuajey) A3y

ipne
1) dueldwo)

uoieIpawal
pajewoiny

Apqisia
JAomiaN

(panunuos) »Hjaomaweldy dNI473d S, TYLIW 03 Supjpiomiau sgy ui suonnjos 3jqissod Suiddew pue saSuajjeys £31an33s ureyy ‘g ajqel

55

www.computer.org/security

B KUBERNETES NETWORKING

56

of these abstractions. Understanding the design choices in
implementing these abstractions” as well as their ramifica-
tions for security is a key first step toward securing a K8s
(or any container-based) platform. We present a number
of open challenges for the security community and hope
that this article spurs the community to address them.m

Acknowledgments

We thank the reviewers and IEEE Security & Privacy’s

Editor in Chief Sean Peisert for their comments that greatly
helped to improve this article. Any remaining error is our
fault. This work has received funding by the European
Union under the H2020 grant 952647 (AssureMOSS).

in Proc. ICAS 2019 Adv. Intell. Syst. Comput., vol. 1158,
pp. 99-109, 2021.

11. “Containers matrix,” MITRE. Accessed: June 28, 2021.
[Online]. Available: https:// attack.mitre.org/matrices/

enterprise/containers/

Francesco Minna is a Ph.D. candidate at Vrije Univer-
siteit Amsterdam, 1081 HV, The Netherlands. His
research interests include cloud security and dynamic
risk analysis for free and open source software. Minna
received a double master’s in cybersecurity in from
the University of Trento and the University of Rennes.
Contact him at f minna@vu.nl.

References

1. Kubernetes. Accessed: June 1S, 2021. [Online]. Avail-
able: https://kubernetes.io/

2. M. S.Islam Shamim, F. Ahamed Bhuiyan, and A. Rahman, “XI
Commandments of Kubernetes security: A systematization of
knowledge related to Kubernetes security practices,” in Proc.
IEEE Secure Development (SecDev 2020), 2020, pp. $8-64.

3. D. D’Silva and D. D. Ambawade, “Building a zero trust
architecture using Kubernetes,” in Proc. 6th Int. Conf. Con-
vergence Technol. (I2CT), 2021, pp. 1-8. doi: 10.1109/
12CT51068.2021.9418203.

4. M. Dabbagh, B. Hamdaoui, G. Mohsen, and R. Ammar,
“Software-defined networking security: Pros and cons,”
IEEE Commun. Mag., vol. 53, no. 6, pp. 48-54, 2015. doi:
10.1109/MCOM.2015.7120048.

S. C.Yoon et al,, “Flow wars: Systemizing the attack surface
and defenses in software-defined networks,” IEEE/ACM
Trans. Netw., vol. 25, no. 6, pp. 3514-3530, 2017. doi:
10.1109/TNET.2017.2748159.

6. J. Nam, S. Lee, H. Seo, P. Porras, V. Yegneswaran, and S.
Shin, “BASTION: A security enforcement network stack
for container networks,” in Proc. USENIX Annu. Techn.
Conf. (ATC 2020), 2020, pp. 81-95.

7. AssureMOSS Kubernetes Security Testbed. Accessed:
July 19, 2021. [Online]. Available: https:// github.com/
assuremoss/Kubernetes-testbed

8. “Secure containerized environments with updated threat
matrix for Kubernetes,” Microsoft, Mar. 23, 2021. Accessed:

June 15, 2021. [Online]. Available: https://www.microsoft
.com/security/blog/2021/03/23/secure-containerized
-environments-with-updated-threat-matrix-for-kubernetes/

9. “Kubernetes documentation,” Kubernetes. Accessed:
June 15, 2021. [Online]. Available: https://kubernetes
.io/docs/home/

10. R. Kumar and M. C. Trivedi, “Networking analysis and

performance comparison of Kubernetes CNI plugins,”

IEEE Security & Privacy

Balakrishnan Chandrasekaran is a tenure-track assis-
tant professor at the Vrije Universiteit Amsterdam,
1081 HV, The Netherlands. His research focuses on
the performance and security aspects of networked
systems. Chandrasekaran received a Ph.D. from
Duke University. Contact him at b.chandrasekaran@
vu.nl.

Agathe Blaise is a research engineer at Thales, Gennevil-
liers, 92230, France. Her research interests focus on
cybersecurity, data analysis applied to networks, and
programmable networks. Blaise received a Ph.D. in
computer science from Sorbonne University. Contact
her at agathe.blaise@thalesgroup.com.

Filippo Rebecchi is a research engineer at Thales,
Gennevilliers, 92230, France. His current research
interests are in software-defined networking, cyber-
security, and next-generation mobile networking.
Rebecchi received a Ph.D. from Pierre & Marie Curie
University. Contact him at filippo.rebecchi@thales
group.com.

Fabio Massacci is a professor at the University of Trento,
Trento, 38123, Italy, and Vrije Universiteit, Amster-
dam, 1081 HV, The Netherlands. Massacci received a
Ph.D. in computing from the University of Rome “La
Sapienza.” He received the IEEE Requirements Engi-
neering Conference Ten Year Most Influential Paper
Award onsecurityinsociotechnical systems. He partic-
ipatesin the FIRST special interest group on the Com-
mon Vulnerability Scoring System and the European
pilot CyberSec4Europe on the governance of cyber-
security. He coordinates the European AssureMOSS
project. He is a Member of IEEE. Contact him at fabio
.massacci@ieee.org.

September/October 2021

