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Abstract 

Background:  Clinically, behavior, cognitive, and mental functions are affected during the neurodegenerative disease 
progression. To date, the molecular pathogenesis of these complex disease is still unclear. With the rapid development 
of sequencing technologies, it is possible to delicately decode the molecular mechanisms corresponding to different 
clinical phenotypes at the genome-wide transcriptomic level using computational methods. Our previous studies 
have shown that it is difficult to distinguish disease genes from non-disease genes. Therefore, to precisely explore the 
molecular pathogenesis under complex clinical phenotypes, it is better to identify biomarkers corresponding to dif-
ferent disease stages or clinical phenotypes. So, in this study, we designed a label propagation-based semi-supervised 
feature selection approach (LPFS) to prioritize disease-associated genes corresponding to different disease stages or 
clinical phenotypes.

Methods:  In this study, we pioneering put label propagation clustering and feature selection into one framework 
and proposed label propagation-based semi-supervised feature selection approach. LPFS prioritizes disease genes 
related to different disease stages or phenotypes through the alternative iteration of label propagation clustering 
based on sample network and feature selection with gene expression profiles. Then the GO and KEGG pathway 
enrichment analysis were carried as well as the gene functional analysis to explore molecular mechanisms of specific 
disease phenotypes, thus to decode the changes in individual behavioral and mental characteristics during neurode-
generative disease progression.

Results:  Large amounts of experiments were conducted to verify the performance of LPFS with Huntington’s gene 
expression data. Experimental results shown that LPFS performs better in comparison with the-state-of-art meth-
ods. GO and KEGG enrichment analysis of key gene sets shown that TGF-beta signaling pathway, cytokine-cytokine 
receptor interaction, immune response, and inflammatory response were gradually affected during the Huntington’s 
disease progression. In addition, we found that the expression of SLC4A11, ZFP474, AMBP, TOP2A, PBK, CCDC33, APSL, 
DLGAP5, and Al662270 changed seriously by the development of the disease.
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Background
Neurodegenerative disease is a type of chronic pro-
gressive disease with complex pathogenic mechanisms 
caused by neuronal degeneration, leading to abnormal 
behavior, mental dysfunction and ultimately death [1–3]. 
Motor ability, cognitive ability, memory ability and other 
functions are gradually impaired during the disease pro-
gression [4, 5]. It has been reported that there are many 
pathogenic factors of neurodegenerative disease, such as 
neurotrophasthenia, impairments of axon transmission, 
impairments of metabolic pathways, protein misfolding, 
inflammation, and intestinal microorganism [6–9]. How-
ever, single pathogenic factor cannot fully explain the 
pathogenesis of the disorder. The pathogenesis is still not 
well understood, and there is no effective treatment for it.

Meanwhile, Huntington’s disease (HD) is a representa-
tive neurodegenerative disease, which is caused by a tri-
plet (CAG) repeat elongation in huntingtin (HTT) gene 
on chromosome 4 that codes for polyglutamine in the 
huntingtin protein [10]. The mutant protein can enter the 
nucleus and alter gene transcription [11]. With the accu-
mulation of the mutant protein, numerous interactions 
between molecules and pathways can be affected, result-
ing in neuronal dysfunction and degeneration [12, 13]. 
With the connections between neurons get sparse, the 
neurons finally died during the disease deterioration, and 
the volume of striatum tissue decreased markedly [14]. 
Clinically, motor ability, cognitive, and mental functions 
are gradually affected.

With the rapid development of high-throughput 
sequencing technology, large amounts of omics data and 
biomedical data have been accumulated, providing both 
opportunities and challenges to develop computational 
methods for mining biomarkers, such as functional ele-
ments and locus in DNA sequences. Further decoding 
regulatory relationships of those biomarkers to clinical 
phenotypes is helpful for understanding physiopatho-
logic mechanisms under the abnormal behavior, pro-
moting early diagnosis and interventional treatment for 
neurodegenerative disease.

Generally, at the transcriptomic level, research-
ers select key genes affected by diseases based on the 
hypothesis that disease genes tend to differentially 
expressed between case samples and normal samples. 
Nevertheless, the relationship between genes and their 

functions is complex and multifaceted, namely the same 
gene can play a role in many different functions. In liv-
ing organisms, genes interact with each other to produce 
high-level biological functions, such as motor ability, 
cognitive ability, memory, emotion, etc. It has been well 
established that genes that have synergistic effects usu-
ally have similar expression patterns, and participate in 
a same biochemical reaction or in a same pathway [15]. 
Therefore, searching for gene clusters that are severely 
affected, and analyzing the biological pathways involved 
in can be helpful to understand the dynamic molecu-
lar process during the degeneration of the disease. The 
screened key genes and pathways can further be used to 
decode molecular mechanisms related to clinical abnor-
mal behaviors.

Because of the critical of some essential genes, the 
annotation of many genes that maintain the normal 
function of central nervous system is still unclear [16]. 
Besides, our previous studies shown that the expression 
level of most lethal phenotype genes are not significantly 
changed during Huntington’s disease degeneration [17, 
18]. Therefore, traditional statistical-based differentially 
expressed gene selection methods can not effectively 
select clinical phenotype associated genes for complex 
neurodegenerative disease. Nevertheless, clustering algo-
rithms often used to detect gene modules. Genes that 
belong to a same module would have similar function or 
expression pattern, while genes that belong to different 
modules usually have very different properties. Moreo-
ver, we can use clustering methods to detect high-order 
biological signals, deepen the understanding of biological 
process which are seriously affected by the disease.

Based on the objects to be clustered, clustering 
algorithms can be classified into three categories: 
gene-based clustering, sample-based clustering, and 
bi-clustering [19, 20]. Gene-based clustering methods 
classify the genes with similar expression patterns into 
one category, such as label propagation algorithm [21], 
and fuzzy clustering algorithm [22], etc., to get mean-
ingful gene modules. Sample-based clustering methods 
take the samples as cluster objects, and gene expres-
sion is seen as a feature of the sample, which can be 
used to measure and identify the subtypes of patients. 
Supervised machine learning technology are often used 
to conduct cluster analysis of samples. Bi-clustering 

Conclusions:  In this study, we designed a label propagation-based semi-supervised feature selection model to 
precisely selected key genes of different disease phenotypes. We conducted experiments using the model with 
Huntington’s disease mice gene expression data to decode the mechanisms of it. We found many cell types, including 
astrocyte, microglia, and GABAergic neuron, could be involved in the pathological process.
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algorithms cluster genes and samples at the same time, 
mining genes with similar expression patterns, and fur-
ther exploring the dynamic changes of gene module 
function under different sample states [23–25]. Since 
the function of clustered gene module can be seen as 
high order biological signal, bi-clustering algorithms 
are usually used to analyze the changes of biological 
process during disease degeneration [26].

Meanwhile, label propagation clustering algorithm is a 
graph-based semi-supervised machine learning method. 
It is based on guilt-by-association to predict the label 
information of unlabeled nodes with a few labeled nodes 
[21]. When the labels of the nodes in the network tend 
to be stable, the nodes with the same label identity are 
divided into a same category. Since it is costly to make 
tags of the samples for big biomedical data, unsuper-
vised and semi-supervised methods have great prospect 
in this type of applications. According to the above dis-
cussion, to identify key genes which could be matched 
to the complex clinical phenotypes of different disease 
stages, we designed a semi-supervised feature selection 
method based on label propagation clustering algorithm 
(LPFS). LPFS includes two parts: one part is label propa-
gation clustering based on the sample network which is 
constructed with gene expression data, the other part is 
the feature selection process based on the feature selec-
tion matrix. By conducting alternative iteration of the 
two steps, we select key genes which could be matched 
to the complex clinical phenotypes of different disease 
stages. To our best knowledge, this is the first time to put 
gene selection and sample clustering into one framework 
to prioritize disease genes.

To investigate the effectiveness of the biomarkers 
selected by the LPFS, we also conducted experiments 
with DESeq2 [27], edgeR [28], limma [29], t-test [30], 
fold change method (FC) [30], joint non-negative matrix 
factorization meta-analysis method (jNMFMA) [31], 
and flexible non-negative matrix factorization method 
(FNMF) [18]. Finally, we performed GO and KEGG path-
ways enrichment analysis of key genes identified by LPFS, 
to explore the affected gene functions underlying the 
complex clinical phenotypes, gaining a deep understand 
of the dynamic molecular mechanisms during the disease 
progression.

The rest of this paper is organized as follows: In “Meth-
ods” section, we present the proposed LPFS in detail. In 
“Results and discussion” section, we illustrate experi-
ments of different methods with RNA-seq data of Hun-
tington’s disease. The enrichment analysis of key genes 
obtained by LPFS are performed and reported. And the 
overall discussion of experimental results of various 
methods are also reported. In “Conclusions” section, 
conclusions are presented.

Methods
In this section, we present LPFS approach in detail and 
discuss the parameter setting of it.

Label‑propagation based semi‑supervised feature 
selection
The gene expression data is denoted as X = [xij]n×m , 
where xij represents the expression level of gene j in 
sample i, xi· denotes sample i, and x·j denotes gene j. 
L = {1, . . . , c} represents the set of labels, c is the num-
ber of cluster number, and li is the label for sample xi· , 
li ∈ L . The initial category label matrix is denoted as 
Y = [yij]n×c , where

Yi is the i-th row in matrix Y, representing the initial cat-
egory label of sample xi·.

H denotes a vector function H : X → Rc . xi· corre-
sponds to a Hi . H = [HT

1 , . . . ,HT
n ] is a n× c clustering 

indicator matrix. The category label of xi· is 
li = argmaxj≤chij . F = [fij]m×c is feature selection matrix. 
In this study, we define ||A||F =

√

∑

i

∑

j a
2
ij  , and the l2,1 

of matrix A is ||A||2,1 =
∑

j(
√

∑

i a
2
ij).

To make precision diagnosis of a patient, one key point 
is to identify biomarkers corresponding to the illness 
state of the patient correctly. To address the problem, 
we designed a feature selection method based on label 
propagation clustering namely, LPFS. LPFS conduct key 
gene selection during the sample clustering process, filter 
out redundant features, and select key genes that would 
well represent and distinguish different category sam-
ples. The selected genes should make the sample distance 
within one class close, and the sample distance between 
classes farther. Biologically, to identify severely affected 
genes corresponding to different clinical stages or pheno-
types, it is important to select key genes that can distin-
guish different stages of the disease. Since not all genes 
have positively contribute to sample classification, there-
fore, we put l2,1 constraint on feature selection matrix to 
sparse each column of it and filter out noise factors [32]. 
According to mathematical meaning, LPFS can be for-
mulated as the following optimization problem:

(1)yij =
{

1, if li = j,
0, otherwise.

(2)

min(H ,F)

n
∑

i,j=1

wij||
1

√
dii

Hi −
1

√

djj
Hj||

+ µ

n
∑

i=1

||Hi − Yi||2 + ||XF −H ||2F + β||F ||2,1
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Here, µ and β are hyper-parameters. The parameter µ 
balances the importance of the final label and the initial 
label of a node during label propagation. The parameter β 
constraints the sparse penalty on the feature selection 
matrix. µ,β ∈ (0, 1) . It should be noted that 
||F ||2,1 =

∑c
j (
√

∑m
i=1 f

2
ij ) . There only cluster indicator 

matrix H is unknown by fixing F in the first three terms 
of Eq.  (2), and there only feature selection matrix F is 
unknown by fixing H in the last two terms of Eq. (2). So, 
we compute the solution for the LPFS via an iterative 
updating algorithm that alternatively updates H and F. 
The detailed solving processes are shown below.

Step 1. Define an undirected graph G = (V ,E) using 
gene expression data X. We use Gaussian kernel function 
to measure the relationship between two nodes. The weight 
matrix of G is W = [wij]n×n , where

Step 2. Normalize the weight matrix. Let D = diag{dii} , 
where dii =

∑n
j=1 wij . Therefore the normalized weight 

matrix is

Step 3. Initialize the initial category label matrix Y, and 
initialize cluster indicator matrix H to Y.

Step 4. According to the last two terms in Eq.  (2), we 
solve feature selection matrix F

In this study, each row in the feature selection matrix F 
is randomly initialized in (0, 1). The elements in F should 
be non-negative to keep the contribution of genes not 
be systematically offset. φij is the Lagrangian multiplier 
of fij ≥ 0 . So, we can construct Lagrangian function as 
below:

Here, U = diag( 1
2||F1||2

, . . . , 1
2||Fc||2 ) is an Auxiliary 

matrix, and Fi denotes the i-th column of matrix F, 
� = [ψij].

The derivation of F is

Based on the KKT condition ψij fij = 0 , we can get

(3)wij =
{

exp(−||xi· − xj·||2/(2δ2)), if i �= j,
0, otherwise.

(4)Z = D−1/2WD−1/2.

(5)min(F) ||XF −H ||2F + β||F ||2,1.

(6)
L(F) = αTr(XFFTXT − 2XFHT +HHT )

+ βTr(FUFT )+ Tr(�FT ).

(7)
∂L

∂F
= 2XTXF − 2XTH + 2βFU +� .

(8)
∂L

∂F
= 2XTXF − 2XTH + 2βFU +� = 0.

Equation (9) can be written as

Then, we can get the update role of F

Step 5. According to the first three terms in Eq. (2), we 
solve cluster indicator matrix H.

Equation (12) is a convex function. The derivation of H 
is

We can get the global optimal solution at the stationary 
point.

The category of sample i is

Therefore, we update the cluster indicator matrix 
H = [hij]n×c , where

Step 6. Repeat Step 4 until the objective function of 
Eq.  (5) converges. Then we can get the feature selection 
matrix F.

Step 7. Repeat Step 5 until the objective function of 
Eq.  (12) converges. At this point, we obtain the cluster 
indicator matrix H.

Step 8. Conduct loop iteration of Step 3 to Step 7, until 
the objective function of Eq. (2) converges. At this points, 
we get both the feature selection matrix F and cluster 
indicator matrix H.

Step 9. Based on rank-product method [30], we calcu-
late the element fluctuation of each row in the feature 
selection matrix. If the elements in k-th row fluctuate 

(9)(2XTXF − 2XTH + 2βFU)ij fij = −ψij fij = 0.

(10)(XTH)ij fij = (XTXF + βFU)ij fij .

(11)fij ← fij
(XTH)ij

(XTXF + βFU)ij
.

(12)

Q(H) = min(H)

n
∑

i,j=1

wij

∥

∥

∥

∥

∥

1
√
dii

Hi −
1

√

djj
Hj

∥

∥

∥

∥

∥

+ µ

n
∑

i=1

||Hi − Yi||2 + ||XF −H ||2F .

(13)

∂Q

∂H
= 2[(H − ZH)+ 2µ(H − Y )] − 2(XF −H).

(14)[(H − ZH)+ µ(H − Y )] − (XF −H) = 0.

(15)H∗ = ((1+ µ)I − Z)−1(µY + XF).

(16)li = argmaxj≤ch
∗
ij .

(17)hij =
{

1, if li = j,
0, otherwise.
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significantly, the rank-product value of that row is larger, 
representing that the corresponding feature gene k has 
a stronger ability to distinguish samples of different 
categories.

Sorting the rank-product value of each row of the fea-
ture selection matrix in descending order, high ranking 
rows are reserved and low ranking rows are removed 
from the feature selection matrix.

Low ranking row indicates the elements in that row 
change very little through different columns, i.e. the cor-
responding gene has no discrimination ability of different 
category samples. Therefore, to improve prediction pre-
cision and reduce computational complexity, we filter out 
low ranking genes to conduct next iteration.

Step 10. Repeat aforementioned steps from Step 1 to 
Step 9.

Let function top(vs) represents the s larger elements of 
vector v.

Since greater elements in Fj contribute more to the 
identification of the specific category j, the genes, whose 
column number in the gene expression matrix equals to 
the row number of the greater elements in the feature 
selection matrix, are seen as key features of category j, 
i.e., the genes that could be severely affected under this 
condition.

In this study, we use keyj to denote the key gene set for 
category j.

The detailed process of LPFS is summarized in 
Algorithm 1.

It should be noted that when the number of features 
is too large, it becomes hard to distinguish connections 
between samples and to detect modules on sample net-
work. It is difficult to get accurate clustering results since 
there is no obvious clustering patterns, resulting in unsta-
ble and invalid key gene sets. Besides, when the number 
of clusters is less than the categories, i.e., samples belong 

(18)keyj = argi≤mtopsfij .

to two categories are classified into one cluster in exper-
imental results, it will result in one column of the clus-
ter indicator matrix to be 0. Then, some columns in the 
feature selection matrix will be all equal to 0, eventually 
leading to instability of the solution.

Theoretically, the computational process tends to stable 
as the number of features decreases. In addition, increase 
the number of samples is helpful to clarify the module 
structure in the network.

To ensure the convergence of Eq.  (2), we first solve 
feature selection matrix, and then solve cluster indica-
tor matrix. Through the alternative iteration strategy, the 
Eq.  (2) can be convergent to a stable solution. Accord-
ing to experience and suggestions in paper [33], we set 
µ = 0.2 , and β = 0.2 . Besides, we set δ = 200 to ensure 
||xi − xj||2/(2δ2) ∈ (0, 1) , to get a reasonable connection 
between genes. In each iteration, low ranking 1000 genes 
are removed to modify the gene expression data for next 
iteration. To accurately prioritize the clinical phenotype 
related genes, 5 iterations were conducted to end the 
process. Finally, 100 times of the total process were run 
to get statistical significant result.

Results and discussion
First, we briefly introduced the gene expression dataset 
of Huntington’s disease. Second, we demonstrated the 
experimental results of LPFS. Then, to verify the effec-
tiveness of LPFS, we also conducted experiments with 
DESeq2, edgeR, limma, t-test, FC, jNMFMA, and FNMF. 
We further analyzed and discussed the disease gene pre-
diction accuracy of different methods. Finally, we con-
ducted GO and KEGG pathway enrichment analysis of 
the selected key genes, thus to get a deep understanding 
of the pathological mechanisms under complex clinical 
phenotypes of different disease phenotypes.

Gene expression data
The gene expression data were downloaded from http://​
www.​hdinhd.​org, which were obtained from the stria-
tum tissue of Huntington’s disease mice through RNA-
seq technology. The experimental mice in this data set 
are of 2-month-old, 6-month-old, and 10-month-old. 
The genotypes include ploy Q20, poly Q80, poly Q92, 
poly Q111, poly Q140, and poly Q175. The ploy Q20 
is normal one, while the rest genotypes are disease 
ones. There are 16 2-month-old mice of ploy Q20, 16 
10-month-old mice of ploy Q20, and 8 mice for other 
genotypes at each age. The data set contain 23,351 
genes. Since the genes expressed robustly across all 
samples have little contribution to sample classifica-
tion, we selected top 6000 genes based on the mean 
(Fig. 1) and variance (Fig. 2) of gene expression data to 
reduce computational complexity. Besides, to test the 

http://www.hdinhd.org
http://www.hdinhd.org
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accuracy of the selected genes by different methods, we 
collected 520 modifier genes from the literature [34], 
including 89 disease genes and 431 non-disease genes. 
The detailed information of the data set is illustrated in 
Table 1.

Prediction performance of LPFS
To get robust gene sets of different disease stage, we 
designed the following experimental pipeline, see Fig. 3. 
First, we used normal samples with genotype of ploy 
Q20 under 3 different time points and case samples 
with genotype of ploy Qx under 3 different time points, 
Qx ∈ {Q80,Q92,Q111,Q140,Q175} , to conduct LPFS. 
Samples of a genotype at a time point belonged to one 
category. Thus, there are 6 categories in each experiment. 
Finally, we ranked genes in descending order according 
to the elements in each column of the feature selection 
matrix. Top ranking genes are seen as the key gene set 
for each category. During the label-propagation based 
feature selection process, low ranking 1000 genes were 
removed out from the original gene expression matrix. 
5 times iteration have been conducted in each experi-
ment. Finally, 1375 genes were left for each category. To 
get a robust key gene set, we run each experiment for 100 
times. Then, through the intersection of 100 key gene 
sets for each category, genes that appeared more than 
50 times were selected as the key genes for that category. 
The number of key genes for each category is shown in 
Table 2.

The selected key gene set for each category could be 
used to describe functional changes during the develop-
ment of the disease. In summary, we selected 397 marker 
genes, including 133, 73, 101 specific marker genes for 
2-month-old, 6-month-old, 10-month-old normal mice, 
and 38, 22, 30 specific marker genes for 2-month-old, 
6-month-old, 10-month-old case mice, respectively.

The GO and KEGG pathway enrichment analysis of 
those key gene sets help to get a deep understanding 
of the intermediate phenotypes and molecular activ-
ity of different disease stages [35, 36]. We conducted 

Fig. 1  Ranking of the means of gene expression values in all samples

Fig. 2  Ranking of the variances of gene expression values in all 
samples

Table 1  Gene expression data of Huntington’s disease mice

Tissue Striatum

Age 2-Month-old 6-Month-old 10-Month-old

Genotype Poly Q20 Poly Q80 Poly Q92

Poly Q111 Poly Q140 Poly Q175

Fig. 3  The flowchart of LPFS with Huntington’s disease RNA-seq data
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Table 2  The number of key genes for each category

Normal samples Case samples

2-Month-old 6-Month-old 10-Month-old 2-Month-old 6-Month-old 10-Month-old

Num. 133 73 101 38 22 30

Table 3  The GO and KEGG pathway enrichment analysis of normal mice marker genes by LPFS

GO Category Description Log10(P)

2-Month-old

R-MMU-176412 Reactome Gene Sets Phosphorylation of the APC/C − 4.11

GO:0021983 GO Biological Processes Pituitary gland development − 3.16

GO:0022412 GO Biological Processes Cellular process involved in reproduction in multicellular 
organism

− 3.11

R-MMU-500792 Reactome Gene Sets GPCR ligand binding − 2.78

R-MMU-2980736 Reactome Gene Sets Peptide hormone metabolism − 2.60

GO:0097305 GO Biological Processes Response to alcohol − 2.55

6-Month-old

R-MMU-500792 Reactome Gene Sets Aromatic amino acid family metabolic process − 3.64

GO:0048589 GO Biological Processes Steroid hormone biosynthesis − 2.05

10-Month-old

GO:0009072 GO Biological Processes Arachidonic acid metabolic process − 6.52

mmu00140 KEGG Pathway Steroid hormone biosynthesis − 4.54

GO:0019369 GO Biological Processes Arachidonic acid metabolic process − 3.97

GO:0002819 GO Biological Processes Regulation of adaptive immune response − 3.60

mmu04610 KEGG Pathway Complement and coagulation cascades − 3.35

GO:0001580 GO Biological Processes Response to alcohol − 3.02

R-MMU-174824 Reactome Gene Sets Response to alcohol − 2.76

GO:0010466 GO Biological Processes Response to alcohol − 2.50

Table 4  The GO and KEGG pathway enrichment analysis of case mice marker genes by LPFS

GO Category Description Log10(P)

2-Month-old

GO:0007605 GO Biological Processes Sensory perception of sound − 2.63

6-Month-old

GO:0002021 GO Biological Processes Response to dietary excess − 3.84

R-MMU-2559586 Reactome Gene Sets DNA Damage/Telomere Stress Induced Senescence − 2.66

GO:0007568 GO Biological Processes Aging − 2.22

GO:0051092 GO Biological Processes Positive regulation of NF-kappaB transcription factor activity − 2.17

GO:0003007 GO Biological Processes Heart morphogenesis − 2.04

10-Month-old

GO:0046631 GO Biological Processes Alpha–beta T cell activation − 4.14

GO:0050878 GO Biological Processes Regulation of body fluid levels − 3.54

GO:0006820 GO Biological Processes Anion transport − 2.48

GO:0090277 GO Biological Processes Positive regulation of peptide hormone secretion − 2.39

GO:0050728 GO Biological Processes Negative regulation of inflammatory response − 2.13
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enrichment analysis with Metascape [37]. The enrich-
ment analysis results for specific marker genes are shown 
in Tables 3 and 4. From Table 3, we can see that the func-
tions, such as pituitary gland development, aromatic 
amino acid family metabolic process, arachidonic acid 
metabolic process, and regulation of adaptive immune 
response, change greatly during the growth process. 
From Table 4, we can see that the functions, such as sen-
sory perception of sound, aging, positive regulation of 
NF-kappaB transcription factor activity, negative regu-
lation of inflammatory response are affected during the 
disease degeneration.

The GO and KEGG pathway enrichment results for all 
the 397 marker genes are shown in Fig. 4. Figure 4 shows 
that the functions, such as metabolic process, immune 
system process, developmental process, growth, etc. 
change significantly between different disease state.

Prediction performance of FC, t‑test, DESeq2, edgeR, 
limma, jNMFMA, FNMF, and LPFS
To verify the effectiveness of LPFS, we also conducted 
experiments with FC, t-test, DESeq2, edgeR, limma, 
jNMFMA, and FNMF. Hamming accuracy, one-error, 
coverage, area under ROC curve (AUC) and area under 
precision-recall (AUPR) curve were used as evaluative 
criteria of prediction accuracy. The experimental results 
of LPFS were shown in Table 5. The comparison results 
of the 8 methods were shown in Table  6, which indi-
cates that the performance of LPFS was comparable to 
that of the-state-of-art methods. We further choose the 
best performed result of each method to draw the ROC 
curves and PR curves. The ROC curves and PR curves of 
the 8 methods were shown in Figs. 5, and 6, respectively. 
We could know that LPFS performs better than other 
methods.

In addiation, we statistices the overlap degree of top 
1000 genes obtained by any two methods (397 genes 
for LPFS). The details are shown in Table  7. Finally, we 
get intersection genes of the top 1000 genes obtained 
by the 8 methods. There are 9 overlapped genes in 
total, i.e., SLC4A11 (Solute Carrier Family 4 Member 
11, GOTERM_BP_DIRECT: cellular cation homeosta-
sis, fluid transport), ZFP474 (zinc finger protein 474, 
GOTERM_MF_DIRECT: metal ion binding), CD209G 

(CD209g antigen, GOTERM_MF_DIRECT: carbohy-
drate binding), AMBP (alpha 1 microglobulin/bikunin, 
GOTERM_BP_DIRECT: negative regulation of peptidase 
activity, protein-chromophore linkage, protein catabolic 
process, protein maturation), TOP2A (topoisomer-
ase (DNA) II alpha 170kDa, GOTERM_MF_DIRECT: 
ATP binding, DNA binding), PBK (PDZ binding kinase, 
GOTERM_BP_DIRECT: negative regulation of protea-
somal ubiquitin-dependent protein catabolic process, 
negative regulation of stress-activated MAPK cascade, 
cellular response to UV, negative regulation of inflamma-
tory response), CCDC33 (coiled-coil domain containing 
33, COG_ONTOLOGY: cell division and chromosome 
partitioning), CAPSL (calcyphosine like, GOTERM_
MF_DIRECT: calcium ion binding), DLGAP5 (DLG 

Fig. 4  The enrichment analysis of 397 specific gene markers

Fig. 5  The ROC curves of FC, t-test, DESeq2, edgeR, limma, jNMFMA, 
and LPFS

Fig. 6  The precision recall curves of FC, t-test, DESeq2, edgeR, limma, 
jNMFMA, and LPFS
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associated protein 5, GOTERM_BP_DIRET: cell cycle, 
signaling), and Al662270 (have no annotation informa-
tion yet), annotated with DAVID [38, 39]. The annota-
tions of these genes indicate that the function of fluid 
transport, metal ion binding, the regulation of inflam-
matory response, cell division, cell cycle, and calcium 
ion binding are severally affected with the progress of 
the disease. Moreover, by investigating the human pre-
frontal cortex single cell expression files, we found that 
Ccdc33 mainly expressed in astrocytes and GABAergic 
neurons, Capsl mainly expressed in neurons and GABAe-
rgic neurons, while Dlgap5 can expressed in astrocytes, 
neurons, microglia, OPC, stem cells, and GABAergic 
neurons. This indicates that the neuron, astrocyte, micro-
glia, GABAergic neuron, and OPC may be involved in the 
pathological process.

Conclusions
Precisely decode the pathological mechanism of neuro-
degenerative disease is the prerequisite for the diagno-
sis and treatment of it. Recently, with the accumulation 

of omics data and clinical data, we could conduct more 
detailed analysis of the phenotype of the disease at differ-
ent pathological stages.

In this study, to screen key genes associated with dif-
ferent disease stages or clinical phenotypes, we designed 
LPFS to screen key genes that specific identify or distin-
guish different disease stages. Large amounts of experi-
ments have been conducted to investigate and verify the 
performance of LPFS. Then, GO and pathway enrich-
ment analysis was been conducted to make a deep under-
standing of biological functions of key genes for each 
disease stage. Finally, by intersecting top ranking genes 
of the 8 methods, we found 9 novel genes, including 
SLC4A11, ZFP474, CD209G, TOP2A, PBK, CCDC33, 
CAPSL, DLGAP5, and AL662270, are seriously affected 
with the progressive of Huntington’s disease. Moreover, 
we found that the neuron, astrocyte, microglia, GABAer-
gic neuron, and OPC could be involved in the pathologi-
cal process.

Table 5  The performance of LPFS for disease gene selection and sample label prediction

Experiment Hamming loss One-error Coverage AUC​ AUPR

Q20 versus Q80 0.210 ± 0.027 0.676 ± 0.081 0.382 ± 0.404 0.513 ± 0.064 0.193 ± 0.024

Q20 versus Q92 0.220 ± 0.021 0.707 ± 0.063 0.397 ± 0.313 0.524 ± 0.060 0.211 ± 0.024

Q20 versus Q111 0.229 ± 0.024 0.733± 0.071 0.410 ± 0.353 0.556 ± 0.058 0.186 ± 0.020

Q20 versus Q140 0.226 ± 0.016 0.724 ± 0.048 0.406 ± 0.241 0.570 ± 0.066 0.210 ± 0.031

Q20 versus Q175 0.226 ± 0.015 0.726 ± 0.046 0.407 ± 0.232 0.605 ± 0.067 0.226 ± 0.015

Table 6  The AUC and AUPR of different methods

Methods FC t-test DESeq2 edgeR limma jNMFMA FNMF LPFS

AUC​ 0.570 0.509 0.524 0.531 0.497 0.547 ± 0.033 0.548 ± 0.019 0.554 ± 0.063

AUPR 0.227 0.166 0.179 0.180 0.160 0.188 ± 0.02 0.196 ± 0.01 0.205 ± 0.023

Table 7  The overlap degree of the top 1000 genes obtained by any two methods (397 genes for LPFS)

DESeq2 edgeR limma t-test FC jNMFMA FNMF

edgeR 523

limma 312 457

t-test 463 539 435

FC 230 362 304 221

jNMFMA 175 252 304 192 546

FNMF 120 141 246 147 215 213

LPFS 36 77 242 80 121 81 71
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Abbreviations
FC: Fold change; FNMF: Flexible non-negative matrix factorization; jNMFMA: 
Joint non-negative matrix factorization meta-analysis method; ROC: Receiver 
operating characteristic; PR: Precision-recall; AUC​: The area under the ROC 
curve; AUPR: The area under the PR curve.
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