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Abstract
Benford’s law became a prevalent concept for fraud and anomaly detection. It

examines the frequencies of the leading digits of numbers in a collection of data and

states that the leading digit is most often 1, with diminishing frequencies up to 9. In

this paper we propose a multivariate approach to test whether the observed fre-

quencies follow the theoretical Benford distribution. Our approach is based on the

concept of compositional data, which examines the relative information between the

frequencies of the leading digits. As a result, we introduce a multivariate test for

Benford distribution. In simulation studies and examples we compare the multi-

variate test performance to the conventional chi-square and Kolmogorov-Smirnov

test, where the multivariate test turns out to be more sensitive in many cases. A

diagnostics plot based on relative information allows to reveal and interpret the

possible deviations from the Benford distribution.

Keywords Benford’s Law � Compositional data � Fraud detection � Multivariate

testing

1 Introduction

Nowadays, Benford’s law is a well established concept for detecting fraudulent

activities in economics, politics and natural sciences. Its application ranges from

forensic accounting to auditing or investigating election and insurance fraud

(Nigrini and Wells 2012; Nigrini and Miller 2007; Deckert et al. 2011; Maher and

Akers 2002). In the underlying paper, we examine the frequencies of the first as well
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as the first two digits of a number. The resulting Benford distribution is defined as

follows, see Benford (1938):

bj ¼ log 1 þ 1

j

� �
; ð1Þ

where ‘‘log’’ refers to the base 10 logarithm, for j ¼ 1; . . .; 9 in case of analyzing the

first digits, or j ¼ 10; . . .; 99 if the first two digits are analyzed. In either case, the

sum of bj over all j is 1, and thus bj represents the theoretical probability of

occurrence of the j-th digit.

The empirical distribution is obtained from a sample with N numbers, and by

recording the frequencies xj of the first (two) digits of these numbers. If the

frequencies follow Benford’s law, they should be close to the theoretical frequencies

Nbj. A test for determining whether there is a significant difference between the

theoretical and observed frequencies in one or more categories is the chi-square (v2-

) test. The test statistic is defined as

v2 ¼
X
j

ðxj � NbjÞ2

Nbj
; ð2Þ

where the sum is over all j in f1; . . .; 9g in case of a first-digit test, or over j in

f10; . . .; 99g for the first-2-digit test. The critical value is the quantile 1 � a of a chi-

square distribution with D� 1 degrees of freedom, where D ¼ 9 for 1-digit, and

D ¼ 90 for 2-digit tests, and a is the significance level. Another popular test with a

higher power in this context is the Kolmogorov-Smirnov (KS-) test, with the test

statistic

D ¼ sup
j

Xj

i¼1

xi
N
� bi

� ������
�����: ð3Þ

The p-value can be obtained by simulating under the null hypothesis. In more detail,

N numbers are generated from a Benford distribution, and the resulting digit fre-

quencies are used in the KS-test test to result in a value of the test statistic. This is

replicated many times (in our applications 10.000 times), and the p-value is

obtained by comparing with the value of the test statistic from the original digit

distribution. We refer to Cinelli (2018) for more details and alternative tests.

In this paper we propose a multivariate approach to test whether observed digit

frequencies correspond to Benford’s law or not. This approach makes use of the

concepts of compositional data analysis, a methodology that has been developed

mainly in the context of geochemistry, but is widely used nowadays also in other

disciplines, such as economics, ecology, bioinformatics, official statistics, etc.

(Aitchison 1986; Baxter 1999; Quinn et al. 2018; Fry et al. 2000; Larrosa 2003).

Sect. 2 provides a brief introduction into these concepts, broken down to the

problem at hand. Based on these ideas, Sect. 3 introduces a multivariate test for

Benford distribution. Up to the best of our knowledge, this is the first multivariate

treatment of the Benford problem. Section 4 investigates the performance of the
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new test on simulated data, and compares with the results from a v2-test and a KS-

test. Since the practitioner also wants to know in which digits the data at hand might

deviate from a Benford distribution, we introduce a diagnostic plot in Sect. 5.

Section 6 demonstrates the developed tools at some real data examples from the

literature and from digital music streaming, and the final Sect. 7 summarizes and

concludes.

2 Compositional data analysis

In contrast to traditional ways of data analysis, compositional data analysis focuses

on analyzing relative rather than absolute information. The most established

approach for this purpose is called log-ratio methodology for compositions

(Aitchison 1986; Pawlowsky-Glahn et al. 2015), and it is based on logarithms of

ratios between the variables x1; . . .; xD forming the composition. The variables – in

this context usually called compositional parts – are in our case the frequencies of

the first (two) digits, and the interest is in analyzing log-ratios of the digit

frequencies, thus values lnðxj=xkÞ for two compositional parts xj and xk. Here, ‘‘ln’’

refers to the natural logarithm, but a base 10 logarithm could be used as well.

Log-ratios do not depend on the number of values underlying the digit

distribution, if we assume that the relative frequencies xj=N do not change with

different N. This principle is also called scale invariance, and it is one of the main

principles of the log-ratio approach (Aitchison 1986). However, it is clear that with

increasing N, the relative frequencies get closer to the theoretical Benford values bj,

and thus it will be important that N enters a test on Benford distribution somehow.

We will come back to this issue in Sect. 3.

It turns out that all possible pairwise log-ratios lnðxj=xkÞ, for j; k 2 f1; . . .;Dg can

be represented in a D� 1-dimensional real Euclidean space (Filzmoser et al. 2018).

It has been shown that there is a convenient way to construct D� 1 coordinates in

this space by making use of the log-ratio information (Egozcue et al. 2003), and the

resulting coordinates are called isometric log-ratio (ilr) coordinates. One out of

infinitely many possibilities for such a coordinate system are so-called pivot

coordinates (Filzmoser et al. 2018), defined as z ¼ ðz1; . . .; zD�1Þ0, with

zj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� j

D� jþ 1

s
ln

xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQD
k¼jþ1 xk

D�j

q for j ¼ 1; . . .;D� 1; ð4Þ

forming an orthonormal coordinate system. A closer look at z1, for instance, shows

that

z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

DðD� 1Þ

s
ln
x1

x2

þ ln
x1

x3

þ . . .þ ln
x1

xD

� �
;

which indeed involves relative information, here in terms of an aggregation of all

(different and relevant) pairwise log-ratios with the first part x1. One can also see

that information about x1 is only contained in coordinate z1, but in none of the other
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coordinates. Thus, z1 can be interpreted in terms of x1, but it is not so straightfor-

ward to find an interpretation for the other coordinates.

The orthonormal basis vectors corresponding to pivot coordinates are

vj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� j

D� jþ 1

s
0; . . .; 0; 1;� 1

D� j
; . . .;� 1

D� j

� �0
ð5Þ

for j ¼ 1; . . .;D� 1, with j� 1 zero entries. Collecting these basis vectors as col-

umns in the matrix V ¼ ðv1; . . .; vD�1Þ of dimension D� ðD� 1Þ allows to repre-

sent pivot coordinates as so-called centered log-ratio (clr) coefficients

y ¼ ðy1; . . .; yDÞ0 ¼ Vz, where

yj ¼ ln
xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQD
k¼1 xk

D

q ð6Þ

for j ¼ 1; . . .D. The denominator in Equation (6) is the geometric mean, and it is the

same for all j. Note again that yj can be represented by aggregated pairwise log-

ratios, and it is not difficult to see that y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� 1Þ=D

p
z1 (Filzmoser et al. 2018).

This link, however, only exists to the first pivot coordinate z1, and thus y1 has an

equivalent interpretation, containing all relative information about x1. Since x1 is

involved in the geometric mean, also the remaining clr coefficients contain infor-

mation of x1 (in fact also of every other clr coefficient), and thus it is no longer

possible to extract all relative information about one compositional part in only one

clr coefficient. The clr coefficients are not even forming a basis system, because

y1 þ . . .þ yD ¼ 0, and this singularity may cause difficulties for methods where full

rank is required (Filzmoser et al. 2018).

In the next section we will introduce a multivariate test which makes use of

relative information, and also requires the inverse of the correlation matrix. Thus,

we will represent the compositions in ilr coordinates, and our choice for this purpose

are pivot coordinates. In Sect. 5 we will introduce diagnostics plots, focusing on the

interpretability of the results, and thus we will present the results by clr coefficients.

3 Multivariate Benford test

A representation of the digit distribution in isometric logratio coordinates leads to

multivariate information, and thus a multivariate statistical test for Benford

distribution needs to be developed. According to Equation (1), the Benford

distribution results in probabilities for each digit, which are collected in the D-

dimensional vector b, for the digits 1 to 9 (or 10 to 99). Denote the pivot coordinate

representation of b by zb, with length D� 1.

Consider a new data set which needs to be tested according to Benford’s law. The

data set consists of N numbers, and tabulating the data into the leading digits 1 to 9

(or 10 to 99) results in the frequencies collected in the D-dimensional vector x. After

using the same ilr coordinate representation as before, we obtain a vector z of length
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D� 1, representing the composition in the real Euclidean space. The task is to

compare z and zb within a multivariate statistical test.

A conventional test for this purpose would be Hotelling’s T2-test, which assumes

an underlying multivariate normal distribution with a certain mean l and covariance

R, testing the hypothesis if l ¼ l0, for some l0 under consideration (Anderson

2003). In our case, l0 would be equal to zb, and l would correspond to the random

vector which we observe as realization z. However, it is unclear how R could be

determined. A theoretical derivation of the covariance of the Benford distribution

expressed in coordinates seems infeasible. A further difficulty is that the test statistic

of Hotelling’s T2-test includes the sample size, since usually l is estimated as the

arithmetic mean from a sample. Here, we only know that the underlying number of

data values is N, leading to only one ‘‘sample’’ with the digit distributions. Of

course, N should play an important role in a test, because more underlying data

values will yield less uncertainty.

We thus will consider a sampling-based test procedure, which is made up of two

steps. In Step 1 we estimate the covariance matrix R out of a large number of

simulated digits sampled from a Benford distribution. The corresponding correlation

matrix is decomposed and used as an input for the test proposed in Step 2. Thus,

Step 1 results in the following procedure:

1a. Simulate observations bi, for i ¼ 1; . . .; 100:000, following a Benford distri-

bution. This is done by taking the frequency distributions of the first (or first

two) digits of the values 10ul , where ul are random numbers from a uniform

distribution on [0, 1], and l ¼ 1; . . .; 100:000 (Hill 1995; Berger and Hill

2011).

1b. Represent bi in pivot coordinates, and estimate the sample covariance matrix S
from these transformed observations. Denoting L ¼ diag ðSÞ as the diagonal

matrix with the sample variances in the diagonal, the sample correlation matrix

is R ¼ L�1=2SL�1=2.

1c. Perform a spectral decomposition of R as

R ¼ GAG0

with the eigenvectors G ¼ ðg1; . . .; gD�1Þ of R, and the diagonal matrix A with

the corresponding eigenvalues a1; . . .; aD�1. Compute a rank-k approximation

of the inverse of R as

R�1
k ¼ GkA

�1
k G0

k

with Gk ¼ ðg1; . . .; gkÞ and A�1
k ¼ Diag ð1=a1; . . .; 1=akÞ, for

k 2 f1; . . .;D� 1g.

Step 1 is only carried out once, and it is not yet related to a frequency distribution

under investigation. This step provides the multivariate relationships between the

digit frequencies if they originate from a Benford distribution.

The actual test consists of the following procedure, formulated as Step 2:
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2. For testing the null hypothesis using the realization z, where z is based on N
numbers, simulate n ¼ 1:000 observations bi as in Step 1a, based on N random

numbers. Express these values in pivot coordinates, yielding observations zbi ,
and compute the values

Ti ¼ ðzbi � zbÞ0L�1=2R�1
k L�1=2ðzbi � zbÞ ð7Þ

for i ¼ 1; . . .; n, and

T ¼ ðz� zbÞ0L�1=2R�1
k L�1=2ðz� zbÞ: ð8Þ

The p-value is defined as the relative frequency of values Ti exceeding T, thus

as

#fTi [ T; i ¼ 1; . . .; ng=n ð9Þ

If z ¼ zb in Equation (8), the resulting p-value is 1 and the null hypothesis will

never be rejected. For a manipulated frequency distribution, T is supposed to be

larger than Ti in Equation (7) for many or most observations, yielding a small p-

value. It is important for the accuracy of the test that the estimated correlation

matrix R is close to the theoretical one, and thus the numbers used in Step 1 to

generate the observations and to estimate the covariance matrix should be chosen

sufficiently high.

This test does not depend on distributional assumptions, and it accounts for the

number of values N used for constructing the digit distribution. Since only relative

information is used in the log-ratio approach, z and zbi , both constructed with N
observations, can be directly compared to zb which is based on the probabilities for

the Benford distribution. The scaling in Equations (7) and (8) by the square-root of

the diagonal elements of L gives the same importance to each pivot coordinate.

Using a reduced rank for the inverse correlation matrix allows to focus on

differences in a sub-space rather than in the full D� 1-dimensional space, which

may lead to higher accuracy in case of only small deviations from the Benford

distribution.

As a final remark we emphasize that the principle of permutation invariance of

the log-ratio approach is not of importance in this context. This principle states that

any permutation of the compositional parts should give the same results (Aitchison

1986). Here we assume that the digit distribution is available in the natural order of

the digits. Moreover, it is important that for the coordinate representations of the

simulated, the empirical and the theoretical digit distributions always the same ilr

coordinates are used. In all our numerical experiments we used pivot coordinates for

this purpose, but another choice is also possible. When sticking to pivot coordinates,

it is not necessary to repeat the simulations in Step 1a-c for carrying out a new test,

but one can simply use the obtained sample correlation matrix R, with the

decomposition from Step 1c. Thus, for the hypothesis test of a new digit

distribution, only Step 2 needs to be performed.
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4 Numerical experiments

In the following experiments we consider different scenarios of digit manipulations.

In all scenarios, we start from a frequency distribution according to the Benford

distribution, and then manipulate the frequencies. We compare the performance of

the v2-test and the KS-test with the multivariate test introduced in Sect. 3, which is

called M-test in the following.

Figure 1 shows an example of two modifications of data values. In both

examples, the number of underlying data values was N ¼ 500, which leads to

Benford frequencies of 151, 88, 62, 48, 40, 33, 29, 26 and 23 for the digits 1 to 9. In

the left plot of Fig. 1, the Benford frequencies have been modified by reducing the

frequencies of digit 1 and adding frequencies to digit 9, in steps of one. In total, 29

such modifications are done, one after the other, and after the 29th modification, the

Benford frequencies are 122, 88, 62, 48, 40, 33, 29, 26 and 52. The horizontal axis

represents the single steps of the modifications. In each step, the v2-test, the KS-test,

and the M-test with rank k ¼ 1; . . .; 8 are carried out, and the corresponding p-values

are shown, together with a horizontal line, representing the significance level of 5%.

It can be seen that the v2-test rejects after 18 modifications, and the KS-test after 26

modifications. The performance of the M-test depends on the rank k used to

compute the inverse of the correlation matrix. For k ¼ 1, the M-test rejects after 15

steps, while for k ¼ 8 it rejects after 26 steps.

The right plot of Fig. 1 follows the same idea, but the modifications are done

from digit 9 to digit 1, starting again from the Benford frequencies 151, 88, 62, 48,

40, 33, 29, 26 and 23. Obviously, after the 23rd modification, the frequency for digit

9 is zero. In the subsequent steps, we keep this frequency at zero, but continue

increasing the frequency for digit 1, until 180. Since the M-test cannot work with

frequencies of zero, we replace these values by random uniformly distributed values

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of modified values

p−
va

lu
e

0 2 4 6 8 11 14 17 20 23 26 29

M_1
M_2
M_3
M_4
M_5
M_6
M_7
M_8
χ2

KS

N = 500; modify values from 1 to 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of modified values

p−
va

lu
e

0 2 4 6 8 11 14 17 20 23 26 29

M_1
M_2
M_3
M_4
M_5
M_6
M_7
M_8
χ2

KS

N = 500; modify values from 9 to 1

Fig. 1 Starting from the Benford frequency distributions, frequencies are modified by moving step-by-
step (horizontal axes) one count from digit 1 to 9 (left plot) and from 9 to 1 (right plot), respectively. The

plots show the corresponding p-values of the M-test using different rank k (denoted by M k), the v2-test,
and the KS-test, together with a horizontal line for the significance level 0.05
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in the interval [0.5, 1]. Depending on k, the M-test rejects after the 11th-13th

modification, so even before zeros had to be replaced, while the v2-test rejects only

after step 18, and the KS-test after step 27.

The above experiments are extended in the following by modifying the number N
of values underlying the Benford frequency distribution. As before, the frequencies

are modified step-by-step by one count. Moreover, additional scenarios are

considered to modify the frequencies of Benford, such as moving frequencies from

digit 1 to 9, from 9 to 1, from 1, 2, 3, 4 to 6, 7, 8, 9, etc., see Table 1, top two rows.

The results of these experiments are shown in the rows of Table 1. The row blocks

represent different numbers N, and the values in the table show at which

manipulation step the tests lead to significance according to a level of 0.05. For the

M-test we report the range of values obtained for all ranks from k ¼ 1; . . .; 8. In all

experiments, k ¼ 1 or k ¼ 2 led to the smallest numbers, and k ¼ 8 to the biggest

values.

The table shows that in almost all experiments, the M-test with small k leads to

earlier detection of the manipulation than the v2-test and the KS-test. Bigger k
usually leads to worse performance. For N ¼ 100 and manipulation from digit 9 to 1

we do not report results because of the low digit-9 frequencies. The bigger N, the

more pronounced is the performance difference between the M-test (using small k)

and the two alternative tests. The performance difference also depends on the type

of manipulation. The most common type might be manipulations to digits 9, thus

column 3 or 7 of the results. Note that a manipulation from digits 1 to 4 to digit 9

means that in each step the frequencies of digits 1-4 are reduced by one, and that of

digit 9 is increased by four.

Table 1 Step-wise

modifications of the Benford

frequencies for different

numbers of underlying values N,

and different types of

modifications of the digit

frequencies (rows refer to these

digits). Shown are the steps

where the M-test, the v2-test,

and the KS-test reach

significance for the first time

from 1 9 1:4 6:9 1:4 6:9

N to 9 1 6:9 1:4 9 1

100 M 11–15 – 3–6 3–4 3–6 3–4

v2 8 – 4 5 2 4

KS 11 – 3 4 3 3

500 M 15–26 11–13 6–10 5–9 4–7 5–8

v2 18 18 9 9 5 8

KS 26 27 7 7 7 7

1,000 M 21–31 16–20 8–14 7–12 6–9 7–11

v2 25 26 13 13 7 12

KS 36 37 10 10 10 10

5,000 M 44–61 37–51 17–29 16–27 11–17 16–25

v2 56 56 28 28 15 25

KS 81 82 21 21 21 21

10,000 M 58–83 54–73 22–40 22–38 15–23 21–36

v2 79 79 40 40 21 36

KS 114 114 29 29 29 29
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Figure 2 shows two examples of manipulations in case of a two-digit Benford

distribution. The left plot is based on a frequency distribution with N ¼ 500

numbers, and the Benford distribution has been modified by reducing step-by-step

one count in the digits 90-99, and adding one count in the digits 10-19. The M-test

results are computed for the ranks k 2 f2; 3; 5; 10; 20; 50; 80; 89g, referring to the

abbreviations M 1 to M 8 in the plot legend. After the 2nd manipulation, the

frequencies of digits 90-99 are already zero, and we keep them at zero also in the

next manipulations, but add counts to digits 10-19. Thus, the total number of counts

changes, and the manipulation only gets more extreme in the first digits. This is also

the reason of the big variability in the results for the M-test, depending on k.

However, for small k, this test already rejects after the second manipulation, the KS-

test after 4 steps, and the v2-test rejects only after 15 steps. Table 2 also shows this

particular case, and the symbol ‘‘*’’ refers to this problem with zero frequencies.

The right plot of Fig. 2 is for N ¼ 50:000 and a manipulation from the digit range

10-54 (reduction) to 55-99 (increase). Again, with a small rank k one can obtain

significance much earlier, already after 7 manipulations; the same happens for the

KS-test, while the v2-test rejects only after 23 steps.

Similar as in Fig. 2, Table 2 shows results also for other values of N, and for

other types of manipulations (top two rows). There are no results reported if the

frequencies were too low for the manipulation, and the symbol ‘‘*’’ indicates that

frequencies already reached zero with this reported number. The numbers in the

table refer to the number of manipulation steps where significance was obtained for

the first time. In case of the M-test, the indicated range refers to the rank k, taken in

the interval 2-89. Here, k ¼ 2 always gave the smallest value, and k ¼ 89 the

largest. The only cases where the v2-test is competitive to the M-test or sometimes

even gave better results are manipulations where frequencies from a range of digits

are reduced, and the frequency of one particular digit is increased, here from 10-39

0.
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0.
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0.
4

0.
6

0.
8

1.
0

Number of modified values

p−
va

lu
e

0 2 4 6 8 11 14 17 20 23 26 29

M_1
M_2
M_3
M_4
M_5
M_6
M_7
M_8
χ2

KS

N = 500; modify values from 90:99 to 10:19
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0.
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1.
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Number of modified values

p−
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e

0 2 4 6 8 11 14 17 20 23 26 29
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M_5
M_6
M_7
M_8
χ2

KS

N = 50000; modify values from 10:54 to 55:99

Fig. 2 Starting from the Benford frequency distributions for the first 2 digits, frequencies are modified by
moving step-by-step (horizontal axes) one count from digits 90:99 to 10:19 (left plot) and from 10:54 to
55:99 (right plot), respectively. The plots show the corresponding p-values of the M-test with different

values of k, the v2-test, and the KS-test, together with a horizontal line for the significance level 0.05
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to 89, and from 80:99 to 19. In all other cases, the M-test is superior, especially with

small k. The KS-test gives comparable results to the M-test in case of large ranges of

manipulations (last two columns of the table), and for smaller N. For bigger N, the

M-test usually outperforms the KS-test.

In a final simulation study we simulate N digit frequencies from a Benford

distribution, and replace a fraction of the N frequencies by digit frequencies derived

from random uniformly distributed data. We call this fraction ‘‘contamination’’, and

the interest is again in comparing the test outcomes for different N and different

levels of contamination. Every simulation setting is replicated 1,000 times, and we

count for each test the proportion of rejections at a significance level of 0.05. For the

M-test, only the results for the smallest rank (k ¼ 1 for 1-digit, k � 2 for 2-digit) are

reported.

Figure 3 shows the results of this study. The top row refers to experiments with

the first digit, the bottom row to those with the first two digits. The different plots

are for different N, and the horizontal axes show the level of contamination, starting

from zero, thus from uncontaminated Benford data, up to a level of 0.5. The lines in

the plots refer to the different tests, and the horizontal lines show the significance

level 0.05. It can be seen that with zero contamination, all tests result in the correct

size 0.05. Exceptions are for the M-test if N is small, which is due to the need to

replace zero frequencies by positive values. The KS-test generally has a higher

Table 2 Step-wise modifications of the Benford 2-digit frequencies for different numbers of underlying

values N, and different types of modifications of the digit frequencies. Shown are the steps where the tests

reach significance for the first time. For the M-test we report the range for the first significance depending

on the rank k. In some situations, indicated by *, the digit frequency goes down to zero

from 19:20 89:90 10:39 80:99 10:19 90:99 10:54 55:99

N to 79:88 20:29 89 19 90:99 10:19 55:99 10:54

500 M 3–6 – 3-5 1–4 3-8 2–24* 1–3 1–2

v2 5 – 1 2 5 15* 3 1

KS 4 – 1 2 3 4* 3 1

1,000 M 4–4 – 4–7 2–4 4-12 3–5 2–5 2–3

v2 7 – 1 3 7 17* 4 4

KS 4 – 2 3 4 5 1 1

5,000 M 7–12 4–4 5–6 3–6 5–20 5–12 3–8 2–7

v2 12 26* 2 6 15 15 8 7

KS 10 14* 3 5 9 10 3 3

10,000 M 10–16 6–7 6–7 4–8 7–26 6–18 4–11 3–10

v2 17 18* 3 8 22 21 10 10

KS 13 16* 5 7 13 13 3 3

50,000 M 21–36 16–19 8–9 9–18 15–52 14–43 7–23 7–23

v2 37 23 6 16 48 47 23 23

KS 29 29 10 15 29 29 7 7

123

828 N. Mumic, P. Filzmoser



power than the v2-test, and with increasing N, the power of the M-test is very

comparable to that of the KS-test.

5 Diagnostics

In Sect. 2 we have argued that clr coefficients are convenient for the interpretation,

because they represent all relative information about a particular compositional part.

Using the same notation as in Sect. 3, we consider a composition x and express it in

pivot coordinates to obtain z. This coordinate is centered and scaled in the same way

as in Sect. 2, see Equations (7) and (8), and expressed in clr coefficients, i.e.

y ¼ VL�1=2ðz� zbÞ: ð10Þ

In the diagnostics plots in Figs. 4–7 we visualize the clr coefficients of the simulated

Benford numbers bi, see Step 4 in Sect. 3, by connected gray lines. Further, we

show the clr coefficients of those modified Benford distributions, where significance

was first obtained by the M-test with k ¼ 2 (green solid line), the v2-test (blue

dashed line), and by the KS-test (brown dot-dashed line). In particular, Fig. 4 shows

the same scenario as in Fig. 1 left, with N ¼ 500 and modification of frequencies

from digit 1 to 9. The v2-test was significant after 18 manipulations, the KS-test after

26, and the M-test with k ¼ 2 after 15. The corresponding frequency distributions

are shown as clr coefficients in the left plot, and in terms of absolute frequencies in

the right plot. The dashed lines correspond to the exact Benford distribution. The
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Fig. 3 Simulation for the size and power of the tests, by adding contamination to the Benford distribution
with uniform numbers. For the M-test, the smallest ranks have been taken: k ¼ 1 for first digit on top row,
k ¼ 2 for first two digits on bottom row
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plots with clr coefficients show more clearly (and normed) the reduction in the 1st

digit and the addition to the 9th digit.

Figure 5 presents the diagnostics plots for the situation shown in Fig. 1 (right).

Here, indeed the v2-test and the KS-test yielded significance only after much more

pronounced modifications, compared to the M-test.

Even clearer differences between the three tests are seen in the diagnostics plots

of Figs. 6 and 7, which correspond to the situations shown in Fig. 2 (left and right,

respectively). In the first situation, the M-test with k ¼ 2 already gave significance

after 2 manipulations, which is almost indistinguishable from the Benford

distribution in the diagnostic plots. Also for the second situation (Fig. 7), the

different performance of the tests gets clearly visible in the clr coefficients, where

the v2-test required many more manipulations before yielding significance.
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Fig. 4 Diagnostics plots referring to the setting of Figure 1 (left). The gray lines show the simulated
Benford data, and the green solid, blue dashed, and brown dot-dashed lines the modified data where the

M-test with k ¼ 2, the v2-test and the KS-test, respectively, indicated significance for the first time. Left
for clr coefficients, right for absolute frequencies
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Fig. 5 Diagnostics plots referring to the setting of Fig. 1 (right). The gray lines show the simulated
Benford data, and the green solid, blue dashed, and brown dot-dashed lines the modified data where the

M-test with k ¼ 2, the v2-test and the KS-test, respectively, indicated significance for the first time. Left
for clr coefficients, right for absolute frequencies
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6 Examples

6.1 Examples from the literature

The R package benford.analysis (Cinelli 2018) contains several data sets

with digit frequency distributions, where the underlying data have either been

manipulated, or the frequency distributions are spoiled by considering only specific

data subsets. All these data are explained in detail in Nigrini and Wells (2012). Here

we just refer to the data files in the R package, present diagnostic plots, and report

the test results, see Figs 8–14.

The results from Fig. 8 refer to quite complex irregularities. Here, the v2-test

clearly rejects Benford distribution, but the M-test only rejects with k ¼ 80

components – otherwise the p-value is even quite high. The KS-test does not reject.

Figures 9–11 in contrast show very pronounced irregularities, partly also caused by
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Fig. 6 Diagnostics plots referring to the setting of Fig. 2 (left). The gray lines show the simulated
Benford data, and the green solid, blue dashed, and brown dot-dashed lines the modified data where the

M-test with k ¼ 2, the v2-test and the KS-test, respectively, indicated significance for the first time. Left
for clr coefficients, right for absolute frequencies
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Fig. 7 Diagnostic plots referring to the setting of Fig. 2 (right). The gray lines show the simulated
Benford data, and the green solid, blue dashed, and brown dot-dashed lines the modified data where the

M-test with k ¼ 2, the v2-test and the KS-test, respectively, indicated significance for the first time. Left
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Fig. 8 Data set sino.forest (N ¼ 772) with financial statement numbers of Sino-Forest
Corporation’s 2010 Report. Several irregularities have been identified in these statements. The p-value

for the v2-test is zero, th KS-test gives a p-value of 0.48. The M-test yields 0.761 (k ¼ 2), 0.870 (k ¼ 3),
0.952 (k ¼ 5), 0.776 (k ¼ 10), 0.371 (k ¼ 20), 0.165 (k ¼ 50), 0.037 (k ¼ 80), 0.069 (k ¼ 89)
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Fig. 9 Data set corporate.payment (N ¼ 185:083) with data of invoices from 2010 processed by a
publicly traded utility company. Manipulations are clearly visible by a spike at 50, but also at 10, 11, 98,
and 99. All p-values are zero
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Fig. 10 Data set taxable.incomes.1978 (N ¼ 150:760) from 1978 with individual tax income
reports in the US. A reduction of the taxable income leads to an increase of the digits 47, 48, 49, 97, and
98. All p-values are zero

123

832 N. Mumic, P. Filzmoser



0
20

40
60

80

10 19 28 37 46 55 64 73 82 91

−5
0

−3
0

−1
0

10

Digits

cl
r c

oe
ffi

ci
en

ts

10 19 28 37 46 55 64 73 82 91

Fig. 12 Data set census.2000_2010$pop.2000 (N ¼ 3:137) with population numbers in the US

from 2000. The p-value for the v2-test is 0.521, for the KS-test it is 0.147. The M-test yields 0.125 (k ¼ 2),
0.202 (k ¼ 3), 0.424 (k ¼ 5), 0.348 (k ¼ 10), 0.146 (k ¼ 20), 0.568 (k ¼ 50), 0.317 (k ¼ 80), 0.395
(k ¼ 89)

0
20

00
40

00
60

00

10 19 28 37 46 55 64 73 82 91

−4
0

−2
0

0
20

Digits

cl
r c

oe
ffi

ci
en

ts

10 19 28 37 46 55 64 73 82 91

Fig. 11 Data set lakes.perimeter (N ¼ 248:607) from a database reporting the perimeter of lakes
with an area of at least 1 hectare. The perimeter range from 3 to 5 km dominates. All p-values are zero
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Fig. 13 Data set census.2000_2010$pop.2010 (N ¼ 3:143) with population numbers in the US

from 2010. The p-value for the v2-test is 0.665, for the KS-test it is 0.258. The M-test yields 0.106 (k ¼ 2),
0.178 (k ¼ 3), 0.267 (k ¼ 5), 0.552 (k ¼ 10), 0.754 (k ¼ 20), 0.504 (k ¼ 50), 0.587 (k ¼ 80), 0.694
(k ¼ 89)
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constraints in the data selection, and all tests deliver p-values of zero. According to

Nigrini and Wells (2012), the population data used in Figures 12–14 conforms to

Benford’s law. Indeed, for the v2-test the p-values are exceeding 0.05. Also the M-

test does not indicate significance, although it seems more sensitive than the v2-test.

The KS-test rejects in the last example.

6.2 Application for music streaming auditing

Music streaming has been increasing tremendously over the past few years.

According to IFPI (International Federation of the Phonographic Industry), the

digital music market covered a volume of 11.1bn US Dollars in 2018, which makes

up 59% of the total music market (IFPI 2018). With the increasing amount of data

related to music streaming and downloading, a strong urge arises for control and

transparency, as ‘‘data provided to artists with royalty payments is often opaque and
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Fig. 14 Data set census.2009 (N ¼ 19:509) with population numbers in the US from 2009. The p-

value for the v2-test is 0.092, for the KS-test it is 0.044. The M-test yields 0.177 (k ¼ 2), 0.108 (k ¼ 3),
0.213 (k ¼ 5), 0.220 (k ¼ 10), 0.273 (k ¼ 20), 0.505 (k ¼ 50), 0.365 (k ¼ 80), 0.165 (k ¼ 89)
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Fig. 15 Digit distribution of revenues of a particular Digital Service Provider, aggregated for 300 titles
(left), and frequencies for each title as line plot (right)
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artists often do not understand the payments and accountings they receive.’’

(Rethink Music 2015)

The Recording Industry Accounting Practices Act was a response to the

continuing outcry against royalty accounting practices in the music business and

granted artists a statutory right to audit their record labels (Sorensen 2005). When it

comes to auditing and forensic accounting, Benford’s law is an established tool and

even accepted by courts of law (Nigrini 2019; Pomykacz et al. 2017).

In this section we illustrate a possible use case for music streaming auditing.

Therefore, we examine real streaming accounting data provided by Rebeat Digital

GmbH, an Austria based music distribution company.
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Fig. 16 Pairwise comparisons of the p-values for the v2-test (p-chi2) and the KS-test (p-KS) with the
M-test (p-M) for the digit distributions of the number of streams per month for 15 selected titles and 6
DSPs. For the M-test, the results for k ¼ 1 are shown by pink þ symbols, and for k ¼ 8 by light blue �
symbols, which are connected by dotted lines. The right plots zoom into the left plot for small p-values
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For this purpose we analyze the download revenues of a sample of 300 music

titles that are featured on different DSPs (Digital Service Providers). The data base

goes back to the year 2013, but most titles existed only for a shorter period. Each

observation represents multivariate information containing the music title, DSP,

date, units and revenue. As an example, we focus on one particular DSP, and

consider the monthly aggregated revenues for each of the 300 music titles. In total,

this gives 2.683 monthly revenue numbers. Figure 15 (left) shows the resulting

frequency distribution of the first two digits for the monthly revenues of this DSP. It

is obvious that the frequencies deviate strongly from the Benford distribution

(dashed line). The largest peak is visible at digit 61, but there are very pronounced

peaks also at digits 12, 18, 24, 30, 36, 42, 48, 49, 54, 55, 67, 68, 73, 79, 85, 91, and

97.

Since the frequencies are aggregated over 300 titles, it is unclear if the peaks are

caused by single titles, or if this is structural in all titles. Figure 15 (right) shows line
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Fig. 17 Selection of some test results from Fig. 16, with visual comparisons to the Benford distribution
(dashed line)
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plots with the frequencies of each individual title (300 lines), and the peaks

discovered in the left plot are indicated by vertical dashed lines. It can be seen that

many of the titles have high frequencies at these indicated digits, and thus this is a

structural phenomenon. Looking more closely into the data, we found that there

seems to be a ‘‘revenue unit’’ of 0.61 Euros, referring to one download per month.

Multiples of 0.61 are 1.22, 1.83, 2.44, 3.05, 3.66, 4.27, 4.88, 5.49, 6.10, 6.71, 7.32,

7.93, 8.54, 9.15, 9.76, etc. This exactly corresponds to the previously identified

peaks.

We conclude from this experiment that revenues may lead to particular

discretizations of the digit distributions, especially in case of small frequencies, and

if single DSPs are investigated (which usually is of major interest), because they

have ‘‘normed’’ unit prices. For the purpose of fraud detection it might thus be better

to directly investigate the original frequencies rather than revenues, and to look at

the first-digit distributions, especially in case of small frequencies.

The next example refers to the number of 300 monthly aggregated streams of

different titles, separately investigated for six different DSPs. We select only titles

where the total frequency per DSP exceeds 100, ending up with 15 titles, and

compare the first-digit distribution with the Benford distribution. Figure 16

compares the p-values from the three tests for all 90 experiments. The upper plots

compare the results of the v2-test with the M-test, and the bottom plots compare the

KS-test with the M-test. The plots on the right-hand side zoom into the interesting

part with small p-values. For the M-test we report the results for k ¼ 1 (pink þ
symbols) and k ¼ 8 (light blue � symbols), and they are connected by dotted lines.

It can be seen that the M-test yields significance in many more cases than the v2-test,

and if not significant, it is usually more strict, mostly for the choice k ¼ 1. The KS-

test and the M-test lead to quite comparable results. Only in few cases, the KS-test

yields significance, while the M-test does not, but there are also cases where the

M test is weakly significant, while the KS-test is not.

Finally, Fig. 17 shows a selection of the 90 results reported in Fig. 16 with visual

comparisons of the digit distributions with the Benford distribution. In the upper

plots, all three tests agree in their outcome: left not significant, right weakly

significant. In the remaining plots they disagree, and often this happens in case of

small numbers N.

7 Discussion and summary

A multivariate version of a test for Benford distribution has been introduced. This

test is based on the ideas of compositional data analysis, investigating relative

information between the digit frequencies. To the best of our knowledge, this is the

first proposal of a multivariate test, called M-test, in this context. In simulated data

experiments, but also in applications to data sets from the literature and to data from

digital music streaming it turned out that the M-test is usually more sensitive

compared to a v2-test, and in many cases also more sensitive than the KS-test, which

are standard tests used for this purpose.
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Since standard approaches for compositional data analysis do not account for the

‘‘total’’, i.e. for the sum N of all digit frequencies, the M-test is constructed as a

sampling-based test, where the frequency distribution under investigation is

compared to frequency distributions sampled from a Benford distribution with

N observations. The test works according to the principle of Mahalanobis distances,

and the involved covariance matrix is estimated through simulation. This only needs

to be done once, and the computational task is thus only to simulate from the

Benford distribution, and to compare the distance-outcome with the result from the

investigated data, yielding the p-value of the test. The M-test is thus nonparametric

and does not rely on distributional assumptions.

An important issue in fraud detection is the false positive rate (FPR), which is the

proportion of rejections of the null hypothesis that turn out to be wrong, see also

discussion in Cerioli et al. (2019) in this context. The size and power comparisons

in Fig. 3 have shown that if we can assume that the model holds, and thus the

frequency distribution follows Benford’s law in the case when no fraud happens, the

M-test still delivers the correct size – with slight deviations if the underlying number

N of observations is very low. The higher N gets, the closer is the power of the M-

test to the KS-test, which itself is generally higher than that of the v2-test.

A critical point for compositional data analysis is the occurrence of zeros. Here,

zeros occur typically if the number N of observations is low, resulting in zero counts

in the digit distribution. We have replaced zero frequencies by small numbers,

simulated from a uniform distribution. The simulation experiments have shown that

the test is still reliable, but the size and power can be lower (Fig. 3). In case of many

zero frequencies it can thus be advisable to double-check with the results an

alternative test.

The v2-test seems to have slight advantages if the manipulation is done in a

specific digit, such as changing data values to the leading digit 9, for instance.

However, potential fraudsters would probably apply a more clever scheme, and

manipulate the numbers in order to modify multiple (leading) digits. This is the

situation where the M-test shows its strength, and where fraud is detected already

when the manipulated frequencies only slightly deviate from a Benford distribution,

as the simulation experiments have shown. In general, the numerical experiments

revealed that the M-test is more sensitive than the v2-test to small deviations from

the Benford distributions, and it works for a wide range N of underlying values. The

simulations have also shown that the M-test is preferable to the KS-test if the

number of underlying values is high – in particular for the first-digit testing

problem. If testing is done with the first two digits, the performance of the tests

depends on the type of manipulation.

We have also developed a diagnostics plot for the M-test, which can provide

deeper insight into the type of manipulation. The diagnostics based on clr

coefficients seem to make possible deviations much clearer visible than diagnostics

based on absolute frequencies.
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