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1 Introduction

The observed light neutrino masses and the baryon asymmetry of the Universe (BAU)
remain some of the biggest hints pointing at physics beyond the Standard Model (SM).
One of the simplest answers to both questions could be the existence of gauge-singlet Ma-
jorana fermions — also known as right-handed neutrinos, sterile neutrinos, or heavy neu-
tral leptons (HNLs). HNLs can provide neutrino masses via the seesaw mechanism [1–6].
Right-handed neutrinos can also be responsible for the generation of the BAU through
the process known as leptogenesis, see, e.g. [7–9] for reviews and [10, 11] for a recent up-
date. The neutrino oscillation data requires at least two right-handed neutrinos. It turns
out that the same HNLs with masses in MeV–GeV range can successfully generate the
BAU [10, 12, 13].1

As a result of the seesaw mechanism, the SM neutrinos (flavor eigenstates) mix with
the light (νi) and heavy (NI) mass eigenstates:

νLα = V PMNS
αi νi + θαIN

c
I , (1.1)

1This model can be viewed as a part of the νMSM, where the third singlet fermion plays a role of dark
matter candidate [12, 14]. Dark Matter in the νMSM can be produced resonantly [15–19], which requires
large lepton asymmetry (see, e.g. the recent work [19] and references therein). Alternatively, it can be
produced during preheating [20, 21].
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where V PMNS
αi is the PMNS matrix (see, e.g. [22]) and the matrix θαI characterizes the

mixing between the HNLs and flavor states. These mixings are subject to a number of
constraints:

• The ratios of the mixing angles θαI are constrained by the neutrino oscillation
data (see e.g. [23–26]). Somewhat surprisingly, the values θαI themselves are not
bounded from above by the neutrino oscillation data, provided that certain cancella-
tions between these elements ensure the smallness of neutrino masses [27–34].

• If HNLs are sufficiently light (below the electroweak scale), their existence can be
probed directly [35–56]. A partial list of the searches at the existing experiments
is [57–69]. HNL searches are an important part of the physics program of many pro-
posed experiments, see, e.g. [70–79]. In the absence of positive results, one establishes
upper limits on the mixing angles.

• The HNLs can be copiously produced in the early Universe. Their subsequent decays
can affect light element abundances and establish an upper bound on the lifetime of
HNLs, i.e. a lower bound on their mixing angles [80–92].

• Finally, as we already mentioned, HNLs can be responsible for the generation of
the BAU. Leptogenesis in this model has attracted significant interest of theoretical
community and several groups have performed studies of the parameter space [10,
11, 18, 25, 93–105]. The requirement of successful leptogenesis limits the values of
the mixings θαI from above and from below.

Experimental studies usually report their results in terms of a single HNL mixing
with a single flavor. While convenient for comparison between studies, such a model of
HNL does not solve per se any of the BSM problem outlined above — neutrino masses
require at least two HNLs, these HNLs should be mixed with several flavors to explain
oscillations; low-scale leptogenesis also requires at least two HNLs with sufficient mass
degeneracy to enhance the production of the baryon asymmetry. The simplest HNL model
capable of incorporating the above BSM phenomena, is the model with two HNLs, having
approximately equal masses (MN1 ≈ MN2 = MN ). It turns out that the parameter space
of such a model looks quite different from a parameter space of a toy-model with a single
HNL. To correctly combine different constraints one has to reanalyze different experimental
data. Our work is devoted to such a reanalysis for the model with two degenerate HNLs.

Similar reinterpretation works have been performed in the past. In ref. [106] collider
searches were combined with the constraints from the seesaw mechanism for three heavy
neutrinos, as well as the limits on HNL lifetime from BBN (see also [107] for a recent
analysis using the GAMBIT [108] framework). The minimal model with two HNLs is more
restrictive and leads to stronger bounds on the properties of HNLs, even more so when
combined with the condition of successful leptogenesis as was done in ref. [25]. Ref. [98] also
discussed constraints on the parameter space of the two HNL model, taking into account
leptogenesis as well as potential future searches for the HNLs and for the neutrinoless
double beta decay signal.
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In this work we revise and improve upon the existing studies in a number of ways:

1. There has been a significant improvement of the Big Bang Nucleosynthesis con-
straints, based on the meson driven conversion effect [92] (as compared to τ < 0.1 s
bound in refs. [25, 106, 107]). This drastically affects our study rendering out a
significant portion of the parameter space.

2. We include the state-of-the-art leptogenesis calculations that incorporate important
processes, neglected in previous studies (see e.g. [109, 110]).

3. The allowed mixing angles are significantly affected by the improved bounds on the
CP violating phase δCP [111], which was not constrained in the previous studies.

4. We include the latest results of the direct searches from the NA62 experiment [66].

Given the impact of the works from recent years, it is important to see how the combination
of these constraints is affected, and to reevaluate the remaining parameter space, especially
given the attention of the community towards feebly interacting particles (FIPs) [112].
In this work we present the most up-to-date bounds on the properties of HNLs in the
minimal model.

The paper is organized as follows: in section 2 and 3 we discuss constraints on the
model from the neutrino oscillation data and accelerator searches. In section 4 we discuss
constraints from BBN, taking into account the effects of mesons produced from the HNL
decays, while in section 5 we present the parameter region where BAU could be successful.
We combine these limits in section 6 and give a discussion in section 7.

2 Constraints from neutrino oscillations

The experimentally observed neutrino oscillations cannot be explained within the Standard
Model of particles physics where neutrinos are massless and the flavor lepton number is
conserved. One of the possible ways to solve this problem is to add two right-handed
neutrinos to the model. In addition to the Dirac masses mD = vF , which couple the
left-handed and right-handed neutrinos, the right-handed neutrinos, being gauge-singlet
states, can also have Majorana masses MM , unrelated to the SM Higgs field. To find the
physical states we need to diagonalise the full mass matrix of the left- and right-handed
neutrinos

L ⊃ 1
2
(
νL νcR

)( 0 mD

mT
D MM

)(
νcL
νR

)
. (2.1)

If the Dirac masses are small compared to the Majorana masses, we can block-diagonalise
this matrix to find two sets of masses,

mν ' mDM
−1
M mT

D and MM '
(
M1 0
0 M2

)
. (2.2)
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This is the famous seesaw formula [1–6], in which the smallness of the light neutrino
masses mν is explained by the parametrically small ratio of the Dirac and Majorana masses
mD/M1,2 � 1. Another consequence of the seesaw mechanism is that the heavy states
(henceforth heavy neutral leptons – HNLs) are mixtures of the left-handed and right-handed
neutrinos, and can interact with the rest of the SM — in particular with the W and Z

bosons. The strength of this interaction is given by the mixing angle:

θ ' mDM
−1
M mν = θMMθ

T . (2.3)

The modulus squared of the mixing angle quantifies how suppressed the HNL interac-
tions are compared to the interactions of the light neutrinos. It is often useful to introduce
the quantities

U2
αI ≡ |θαI |2 , U2

I ≡
∑
α

U2
αI , (2.4a)

U2
α ≡

∑
I

U2
αI , U2 ≡

∑
αI

U2
αI , (2.4b)

which quantify the overall suppression of the HNL interactions. If the HNLs are degenerate
in mass, it is also useful to consider the sum over the HNL flavors (2.4b).

It is important to note that the size of the observed neutrino masses mν does not
constrain the mixing angles θ, nor the Majorana mass MM , but only their combination
from eq. (2.3). This suggests that the seesaw mechanism does not imply a mass scale
for the heavy neutrinos. Nonetheless, using the seesaw relation (2.2), we can connect the
HNL mixing angles θ to the known neutrino oscillation data through the Casas-Ibarra
parametrization [113]:

θ = iV PMNS
(
mdiag
ν

)1/2
R
(
Mdiag
M

)−1/2
, (2.5)

where V PMNS is the PMNS matrix, mdiag
ν is the light neutrino mass matrix with m1 = 0

for normal hierarchy (NH),2 and m3 = 0 for inverted hierarchy (IH). The complex matrix
R satisfies the relation RTR = 12×2, and depends on the neutrino mass hierarchy

RNH =

 0 0
cosω sinω
−ξ sinω ξ cosω

 , RIH =

 cosω sinω
−ξ sinω ξ cosω

0 0

 , (2.6)

where ω is a complex-valued angle, and ξ = ±1. The symmetry ξ ↔ −ξ, N1 ↔ N2,
ω ↔ ω + π

2 allows to consider only the ξ = +1 case.
While this parametrization cannot provide a limit on the individual mixing angles

U2
αI [115], in the degenerate mass limit it gives a lower bound on the summed mixing

angles, see e.g. [23, 103]. If the HNL mixing angle is large U2
α � mν/MN ,3 two HNLs

2In the model with two HNLs which we consider here the lightest active neutrino is massless at tree
level [114] and therefore we use the term hierarchy rather than ordering.

3If |mD|2/M2
N ≈ U2 = O(1), the seesaw expansion breaks down, and one should go beyond Casas-

Ibarra parametrization [116]. Given the strong experimental constraints on U2, we can safely neglect such
a correction in the present analysis.
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form a quasi-Dirac pair with mixing angles that are approximately equal up to a phase
θα2 ≈ iθα1, and the expression for U2

α is given by [16, 23, 25, 98, 117]:

U2
α = |Uα1|2 + |Uα2|2 ≈

e2|Im ω|

2MN

(
m2|V PMNS

α2 |2 +m3|V PMNS
α3 |2

− sgn(Imω) · 2√m2m3Im[V PMNS
α2 (V PMNS

α3 )∗]
)
, (2.7)

for the NH while for the IH case the r.h.s. of the corresponding equations are obtained
by replacing 2 → 1 and 3 → 2. When we normalize the flavored mixing angles U2

α to the
total mixing angle U2, the dependence on the unknown HNL parameters drops out, and
the ratios U2

α/U
2 depend only on the PMNS parameters [25, 26]. In what follows we will

encounter these ratios very often, so we introduce

xα ≡ U2
α/U

2, xe + xµ + xτ = 1. (2.8)

The Majorana phases entering the PMNS matrix, α21 and α31 (in PDG conventions),
which also affect the ratios (2.8), cannot be determined in oscillation experiments, but
could instead be measured indirectly through neutrinoless double beta decay experiments
in the near future (see, e.g. [98, 118–120]). In the limit of two HNLs, there is effectively
only one Majorana phase which we denote η. The phase η is equal to (α21 − α31)/2 in the
case of normal hierarchy and α21/2 in the case of inverted hierarchy.

To determine the allowed mixing patterns, we take the latest neutrino oscillation pa-
rameters from nuFIT 5.0 [111] (without Super-Kamiokande atmospheric data). We perform
a numerical scan for the different values of the Dirac phase of the PMNS matrix δCP, an-
gle θ23 and η, as for the remaining parameters the experimental uncertainty is sufficiently
smaller and their variation only slightly change the allowed parameter space. For each
point in the xe–xµ plane we find the smallest possible ∆χ2(δCP, θ23) and take only the
points with ∆χ2 < 6 which correspond to the 95% region for 2 degrees of freedom.

The result of this procedure is shown in figure 1. We see that for normal hierarchy xe
can reach small values, while for inverted hierarchy all three xα can be small. As we will
see later, the results for the minimal allowed HNL mass depend on these small numbers, so
one needs to determine them with high accuracy. Therefore, we analyzed minimal values
of all xα, using the two-dimensional ∆χ2 projection from nuFIT data for the two most
relevant parameters for each case. The minimal values within 2σ bounds are given in
table 1, cf. [23].

3 Constraints from accelerator experiments

There exist two types of accelerator experiments capable of searching for MeV-GeV mass
HNLs. The first type is missing energy experiments searching for decays π/K → e/µ +
(invisible) . The probability of these decays depends solely on U2

e/µ, directly probing mix-
ing angles independently on the mixing pattern. The bounds obtained in this type of
experiments are generally stronger than for other types of experiments, however, they can
only constraint HNLs with mass lower than kaon mass. In addition, they are not sensi-
tive to combinations UαUβ (α 6= β) and cannot constrain U2

τ (because of large tau-lepton

– 5 –



J
H
E
P
0
7
(
2
0
2
1
)
1
9
3

Figure 1. 95% bounds for xα = U2
α/U

2 for normal hierarchy (left) and inverted hierarchy (right)
in the e2 Im ω � 1 limit. The Majorana phase takes values η ∈ [0, 2π), while ∆χ2 is taken for the
measured values of the PMNS angles θ23 and δ, that affect the region most strongly. Gray area
corresponds to the forbidden region of the parameter space xe + xµ > 1, see eq. (2.8).

NH IH
rel. param. min value rel. param. min value

xe θ12, θ13 0.0034 θ12,∆msol 0.026
xµ θ23, δCP 0.11 θ12, δCP 3.2 · 10−4

xτ θ23, δCP 0.11 θ12, δCP 0.0011

Table 1. Minimal values of xα = U2
α/U

2 allowed by neutrino oscillation data for both normal
(NH) and inverted (IH) hierarchies. The column “rel. param.” shows the most relevant neutrino
oscillation parameters that change the minimal xα values.

mass mτ > mK). We use explicit bounds from: PIENU [121], TRIUMPH [122] (π → e),
KEK [123], NA62 [66, 67] (K → e/µ), E949 [58] (K → µ). For NA62 K → µ decay only
30% of the current data has been processed [67].

The second type of experiments is displaced vertices search for appearance of SM par-
ticles in the decays of long-lived HNLs. This type of experiments can probe combinations
U2
αU

2
β because production and decay channels can be governed by different mixing angles.

The relevant experiments are PS-191 [124, 125],4 CHARM [127], NuTeV [128] as well as
DELPHI [129]. The experimental bounds for pure U2

e and U2
µ mixings are shown in figure 2.

4We note that constraints from PS-191 used here should be considered with caution. Using simple
estimates according to [126], we were not able to reproduce the claimed sensitivity of the PS-191 and
suspect that the number of kaons in the original analysis was overestimated. However, as constraints from
PS-191 do not significantly change the results of our analysis we leave this question for the future analysis.
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Figure 2. Accelerator bounds for U2
e (left panel) and U2

µ (right panel) for the HNL mass below
5GeV. Also, the expected DUNE sensitivity [130] is shown (dashed line).
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Figure 3. Full set of bounds used in this work for normal hierarchy (left panel) and for inverted
hierarchy (right panel). For the UαUβ 6=α and U2

τ bounds we use only GAMBIT results [107] starting
from mN = 0.2 GeV.

The displaced vertex experiments typically report bounds only on some mixings. The
reanalysis including bounds was done using GAMBIT in [107] for the general case of 3
HNLs. We use these results from mN > 0.2 GeV and combine them with results from
missing energy experiments. Also, to cover the small window mN ≈ 0.13 − 0.14 GeV in
the U2

e bound we have included explicitly PS-191 results for U2
e reanalyzed following the

prescriptions given in [23]. The full set of bounds used in this work is shown in figure 3.

To combine accelerator limits with other constraints for a given mixing pattern xα we
estimate the actual upper bounds on U2. To find it we need to take into account that
U2
τ is typically less constrained compared to U2

e , U2
µ, however large values of U2

τ � U2
e,µ

(i.e. xτ ≈ 1) are not allowed by neutrino oscillation data. Therefore, for each mixing
pattern we compute the maximal mixing angle that does not contradict to any of the
UαUβ bounds using:

U2
upper(xα) = min

(
U2
e,acc
xe

,
(UeUµ)acc√

xexµ
,
U2
µ,acc
xµ

, . . .

)
(3.1)

– 7 –



J
H
E
P
0
7
(
2
0
2
1
)
1
9
3

4 Constraints from Big Bang Nucleosynthesis

Accelerator searches provide upper bound on HNL mixing angles (3.1). On the other
hand, a requirement that the presence of HNLs in the primordial plasma would not lead
to the over-production of light elements (Deuterium, Helium-4) provides a lower bound
on the HNL mixing angles. For HNLs heavier than π±-mesons the strongest BBN bound
of the HNL lifetime is due to n ↔ p meson driven conversion [92]. Pions and kaons
produced in HNL decays at the time when free neutrons are present in the plasma modify
the resulting freeze-out ratio of neutron to proton abundances, leading to a larger values
of 4He abundance as compared to the Standard Model BBN. If meson production is
kinematically allowed, the following constraint can be derived [92]:

τN .
0.023 s

1 + 0.07 ln
(
Pconv
0.1

BrN→h
0.1

YNζ

10−3

) , (4.1)

where Pconv is the probability for meson to interact before decaying, BrN→h is the branch-
ing fraction of semileptonic HNL decays producing a given meson h, YN is the initial HNL
abundance, and ζ ≡ (aSM/aSM+HNLs)3 < 1 is the dilution factor. In the combination
PconvBrN→h a summation over meson species is assumed. Note the logarithmic depen-
dence on these parameters, since for τN � 0.1 s HNLs and consequently mesons have
exponentially small abundances at the time of interest.

Implementation of different mixing patterns changes the value of BrN→h only, since
YNζ depends on processes at high temperature, where all lepton species are in equilibrium,
and Pconv is solely related to mesons. The value of YNζ varies in 10−3 − 10−2, there-
fore we use the conservative lower bound YNζ = 10−3 [92]. In terms of (U2

e , U
2
µ, U

2
τ ) =

U2(xe, xµ, xτ ), the branching ratio can be parametrized in the following way:

BrN→h =
∑

X∈states with h

nh(X)xeΓ(Ne → X) + xµΓ(Nµ → X) + xτΓ(Nτ → X)
xeΓ(Ne) + xµΓ(Nµ) + xτΓ(Nτ ) (4.2)

where the notation Nα corresponds to an HNL with the mixing angles U2
α = 1 and

U2
β 6=α = 0, Γ(Nα) is the total decay width, Γ(Nα → X) is the HNL decay width into state

X, and nh(X) is the meson h multiplicity for the final state X. For a given mixing pattern
it is straightforward to compute the corresponding PconvBrN→h and substitute in (4.1).

For pure mixing cases the bound is applicable only for HNL masses exceeding meson
production threshold:

mN > mπ +me ≈ 130 MeV for electron mixing,
mN > mπ +mµ ≈ 240 MeV for muon mixing,
mN > mη ≈ 550 MeV for tau mixing.

However, even small fraction of U2
e can relax this restriction to mN > mπ + me due to

logarithmic dependence on the total branching ratio, see examples in figure 4.
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Figure 4. Top panel: the lifetime bounds for the pure mixing cases. Left panel: muon mixing with
a small contribution of U2

e . Right panel: tau mixing with a small contribution of U2
e .

For the parameter region where the meson constraint does not work we use a conser-
vative estimate τN < 0.1 s from [91].5 Taking this into account the resulting expression for
the lower bound for U2 is

U2
lower(xα) = 1

τBBN
N (xα) ·∑α xαΓ(Nα)

(4.3)

where τBBN
N is given by the minimal value between the r.h.s. of (4.1) and 0.1 s.

5 Constraints from leptogenesis

The smallness of the light neutrino masses is not the only problem HNLs can solve, they can
also explain the observed BAU through leptogenesis [131]. The condition of reproducing
the observed BAU [22, 132],

nB
nγ

= (5.8− 6.5)× 10−10 , (5.1)

imposes further constraints on the properties of the HNLs. When combined with the
bounds from the seesaw mechanism, leptogenesis imposes a strong constraint on mass

5The actual estimate on the HNL lifetime depends on the maximally admissible value of ∆YHe/YHe.
Here we use ∆YHe/YHe ≤ 4.35% used in [92] and adopted in this work. Ref. [91] refers a twice stronger
bound, because it adopts tighter margin for YHe.
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Figure 5. Flavor patterns consistent with both the neutrino oscillation data (as in figure 1), and
leptogenesis for MN ∼ 140 MeV. The upper bound on U2 depends on the ratios U2

α/U
2, as this

can prevent a large washout of the lepton asymmetries. The color coding indicates the maximal
U2 for which baryogenesis via leptogenesis remains possible. We note here that the experimental
and BBN bounds on the mixing angles are not included in these figures, as in this range of HNL
masses they completely dominate over the constraints from leptogenesis, as shown in figure 9.

spectrum of the HNLs, namely it forbids hierarchical HNL masses if the lightest mass is
below 109 GeV [133]. This implies that (in the minimal model) any HNLs we can observe
in the near future are degenerate in mass, and that leptogenesis is realized either via a
resonant enhancement in HNL decays [134–143], or via HNL oscillations [12, 144]. If we
combine these two mechanisms, leptogenesis is possible for all HNL masses larger than
∼ 100MeV [10].

Nonetheless, leptogenesis can also provide other interesting constraints on the HNL
properties. Phenomenologically, the most important constraint is the limit on the maximal
size of the HNL mixing angles U2 [10, 16, 18, 25, 97, 98, 101, 103]. This limit arises from
the fact that for large mixing angles the HNL interactions become too fast, and the lepton
number reaches thermal equilibrium before the sphalerons freeze-out at T ∼ 130GeV.

Allowed flavor mixing patterns. The upper bounds on U2 can have a strong depen-
dence on the choice of flavor mixing pattern [25, 101, 103], as shown in figure 5. A tiny
mixing with a particular lepton flavor means that lepton flavor will equilibrate more slowly
in the early Universe, and can thus prevent complete equilibration of lepton number. The
allowed mixing patterns are almost completely determined by the low-energy phases as
shown in figure 1. This means that the leptogenesis bounds can also shift as the neutrino
oscillation data is updated. For example, in the case of inverted hierarchy, the choice of
optimal phases corresponded to δCP = 0 [25, 103], which is disfavored by the latest fits of
the light neutrino parameters [111].

The HNL Mass splitting. The mass splitting between the HNLs is one of the key
parameters determining the size of the BAU. The condition of successful leptogenesis
constrains the maximal size of the mass splitting (see, e.g. [10, 18, 25, 97, 98, 101, 103]),

– 10 –
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Figure 6. The allowed range of HNL mass splittings consistent with leptogenesis for a benchmark
mass MN = 140 MeV. All points are consistent with the experimental constraints. Interestingly,
relatively large (1 MeV) mass splittings are allowed, which could potentially be resolved at exper-
iments. It is interesting that all mass splittings are large enough that the rates of lepton number
violating and conserving decays are approximately equal.

which can have direct consequences for the various lepton number violating signatures at
direct search experiments [45, 145–151], or for the indirect signatures such as neutrinoless
double beta decay [98, 119]. As an example, for MN ≈ 140MeV, we show how leptogenesis
constrains the remaining parameters after we apply all the other cuts. The allowed range
of mass splittings ∆MN = |M2 −M1|/2, consistent with leptogenesis depends on U2 and
is shown in figure 6.

6 Results

6.1 Numerical procedure

Our procedure of finding viable HNLs models (green points) is as follows. We consider two
HNLs degenerate in mass that pass all of the following constraints:

1. The mixing angles U2
α(x) are chosen such that neutrino oscillation data is satisfied.

This is ensured by the Casas-Ibarra parametrization (2.7). By varying the CP phase
δ and θ23 within their 95% confidence region (∆χ2 < 6.0) and by changing the
unconstrained Majorana phase η ∈ [0, 2π) we determine the region of parameters
(xe, xµ) admissible by the neutrino oscillation data.

2. All U2
α(x) must be smaller than the corresponding accelerator limits for the flavor α.

To ensure this we scan over the points in the (xe, xµ) plane consistent with neutrino
oscillation data and for each mass MN compute the upper bound U2(x) from the
accelerator experiments

U2
upper(xα) = min

(
U2
e,max
xe

,
(UeUµ)max√

xexµ
,
U2
µ,max
xµ

, . . .

)
(6.1)

The admissible mixing angles U2
α should be below xαU

2
upper(xα).
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3. All U2
α(x) must be larger than the corresponding BBN bounds for the given flavor.

To this end we find

U2
lower(xα) = 1

τBBN
N (xα) ·∑α xαΓ(Nα)

(6.2)

(where the quantities in eq. (6.2) are defined in section 4) and compute admissible
U2
α(x) = xαU

2
lower(x)

4. All U2
α are minimized/maximized independently with respect to xα.

5. When we start to approach the seesaw line (MU2
α ≈

∑
imi) two HNLs may in

principle have different mixing angles, i.e. Uα1 6= Uα2 and, correspondingly, different
lifetimes. To probe the region near the seesaw bound, i.e. when U2M ∼ (m1 + m2)
or, equivalently, when 2 Imω → 0 we used the general expression (2.5) to generate a
large sample of points in the range 2 Imω ∈ [0, ln 100],Reω ∈ [0, 2π) to ensure that
the above conditions are satisfied by each of the HNLs.

6. Finally we ensure that the observed value of BAU can be reproduced. To this end we
numerically solve the quantum kinetic equations of ref. [10].

6.2 The space of viable 2 HNL models

Our results are present in figures 7 (for the normal hierarchy) and 8 (for the inverted
hierarchy). For each mass and each flavor we show a set of admissible models (green
points). A model is selected as viable (a green point) if it explains neutrino oscillations,
provides correct baryon asymmetry of the Universe and satisfies accelerator and BBN
constraints, see section 6.1 for details. The blue curve shows minimal U2

α (U2) compatible
with BBN in the model with 2 HNLs explaining neutrino masses and oscillations. The blue
curve does not take into account whether other mixing angles pass selection conditions or
whether BBN curve is below the accelerator curve. The red curve shows the upper limit on
U2
α (correspondingly, U2) compatible with accelerator searches and neutrino oscillations.

Several comments are in order:

1. Although most of the parameter space below ≈ 330−360 MeV is closed, there remains
an open window of viable models for the normal hierarchy of neutrino masses (see
insets in figure 7). The corresponding HNLs have masses

0.12 GeV ≤MN ≤ 0.14 GeV (6.3)

and the mixing angles (without describing the actual shape of the region)

3 · 10−6 ≤ U2 ≤ 15 · 10−6

10−8 ≤ U2
e ≤ 28 · 10−8

4 · 10−7 ≤ U2
µ ≤ 26 · 10−7

10−6 ≤ U2
τ ≤ 12 · 10−6

– 12 –
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MN [GeV] U2
e U2

µ U2
τ

NH
0.12 3 · 10−8 2 · 10−6 7 · 10−6

0.14 2 · 10−8 1 · 10−6 8 · 10−6

0.33 8 · 10−10 5 · 10−9 3 · 10−8

IH
0.14 7 · 10−7 8 · 10−7 1 · 10−6

0.36 2 · 10−9 2 · 10−8 2 · 10−8

Table 2. Benchmark models for the boundary masses of the allowed regions.

The existence of this window follows from the fact that the missing energy experi-
ments do not provide strong constraints in this mass region. Experiments based on
pion decays lack sensitivity due to the shrinking of available phase space, while exper-
iments with kaon decays suffer in this region from large backgrounds, see e.g. recent
discussion in [69]. Finally, the meson driven conversion effect which dominates the
BBN constraint is not applicable in this mass range. To close the window completely
one would need to improve the bounds on U2 by a factor of 5–10.

The shape of the region can be seen in figure 7 with the relevant experiments, while
the specific (benchmark) points are listed in table 2. The flavor ratios U2

α/U
2, and the

PMNS parameters realized in this region of parameter space are shown in figure 9.
Note that a precise determination of the PMNS parameters may be sufficient to
determine the viability of this region.

For the inverted hierarchy the procedure also predicts a small region atMN ≈ 0.137−
0.14 GeV with U2 changing slightly (we list the values for a benchmark point in
table 2).

2. Apart from this window, the lower mass of viable HNLs is given by

MN > 0.33 GeV normal hierarchy
MN > 0.36 GeV inverted hierarchy

(6.4)

3. For each individual flavor there are regions where accelerator bounds (red) are above
the BBN limits (blue), yet the point is white. This means that such a mass is excluded
by the combination of lower and upper boundaries for some other flavor.

6.3 Future searches

The results including the future constraints from the NA62, DUNE, and SHiP are present
in figure 10.

To estimate the future sensitivity of the NA62 experiment, we assume that the ex-
periment will collect 8 times more data than has been published.6 Assuming that both

6Indeed, the goal of NA62 is to collect 80 rare kaon decay K+ → π+νν̄ events [152]. The existing HNL
constraint [66] are based on the dataset where only 9.5 rare kaon events are expected [153].
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Figure 7. The parameter space of the model with two HNLs. Green points are consistent with
all experimental bounds, explain neutrino data for the normal neutrino mass hierarchy (NH) and
generate the correct BAU. Independent bounds for each flavor from the accelerator experiments
(red) and BBN (blue) are also shown.

data collection and analysis strategy will not significantly change in the future and that
no HNLs will be detected, the current limit can be scaled down as

√
8, taking into ac-

count that the HNL analysis is background dominated [66]. We see that for the normal
hierarchy future NA62 measurement will not explore the HNL mass “window” beyond the
pion mass. The remainder of the allowed parameter space is pushed to a lower mass of
MN & 0.38(0.39) GeV for NH(IH).

The DUNE near detector will be very sensitive to HNLs [77, 130, 154]. In particular,
it will be able to push the lower bound to MN = 0.39 GeV for both hierarchies and cover
the open window at lower masses. When estimating the sensitivity for DUNE we took U2

e ,
U2
µ bounds as reported in [130] and derived U2, U2

τ bounds consistent with oscillation data.
The SHiP experiment [155] at CERN will provide unprecedented sensitivity for heavy

neutral leptons in the mass range of interest. Using the sensitivity matrix, provided by
the SHiP collaboration [78] we have performed a full scan in the (MN , U

2, xe, xµ) space
to find the allowed region (determined by the number of events nevents < 2.3). The SHiP
experiment will fully explore the “window” at low masses and push the low mass beyond
the kaon threshold: MN & 0.43(0.60) GeV for NH(IH). We note that this is a conservative
estimate and the actual sensitivity will be even higher as our analysis only included HNLs
coming from D-mesons [78], while the HNLs originating from kaon decays will significantly
increase the sensitivity [156].
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Figure 8. The parameter space of the model with two HNLs. Green points are consistent with
all experimental bounds, explain neutrino data for the inverted neutrino mass hierarchy (IH) and
generate the correct BAU. Other notations are the same as in figure 7.

Δχ2
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Figure 9. Left: the allowed mixing angles in the open window MN ≈ 140MeV for NH, with
all of the constraints applied (red line). Right: ∆χ2 distribution in (δCP, θ23) plane taken from
the nuFIT 5.0 [111]. The region inside the red curve corresponds to the allowed HNL models for
NH and MN ≈ 140MeV. The CP-violating angle δCP is in degrees. If δCP and θ23 are measured
to be outside the red boundary, the allowed window is excluded without a need for a dedicated
search experiment.

– 15 –



J
H
E
P
0
7
(
2
0
2
1
)
1
9
3

NA62 ×8
DUNE
SHiP

0.05 0.10 0.50 1 5
10-13

10-11

10-9

10-7

10-5

mN, GeV

U
2

Seesaw

BBN

Baryogenesis

NH
NA62 ×8
DUNE
SHiP

0.05 0.10 0.50 1 5
10-13

10-11

10-9

10-7

10-5

mN, GeV

U
2

Seesaw

BBN

Baryogenesis

IH

Figure 10. Parameter space of the models with two HNLs, including the projected increase of
the sensitivity due to the NA62 (×8 collected data), DUNE, or SHiP experiments. The allowed
points are consistent with all experimental bounds, explain neutrino data for the normal (NH) or
inverted (IH) mass hierarchy, and generate correct BAU. For NA62, the minimal mass after the
pion mass window MN ≈ mπ (for NH) becomes MN = 0.38(0.39) GeV for NH(IH). For DUNE,
the projections are based on [130]; the minimal mass will be pushed up to MN ' 0.39 GeV for both
hierarchies. For SHiP, the minimal mass is MN ≈ 0.43(0.60) GeV for NH(IH).

7 Discussion and outlook

The idea that new particles need not be heavier than the electroweak scale, but rather
can be light and feebly interacting draws increasing attention of both theoretical and ex-
perimental communities [see e.g. 76, 157, 158]. In particular, the idea that heavy neutral
leptons are responsible for (some of the) beyond-the-Standard-Model phenomena has been
actively explored in recent years, see e.g. [41, 49, 157, 159] and refs. therein. This idea is
motivated in the first place by the type-I seesaw model that explains neutrino oscillations.
Furthermore, the same HNLs with nearly degenerate masses in MeV–TeV range can explain
the BAU [see e.g. 10] and refs. therein.

However, while theoretical developments have been focusing on the models with two
or more HNLs that are mixing with different flavors, the experimental searches were con-
centrating on a model with a single HNL mixing with a single flavor [57–61, 63, 64, 66, 68,
71, 78]. Such a model is simple for analysis and provides a number of useful benchmarks.
Nevertheless, taken at face value it is incompatible with the observed neutrino masses and
cannot generate BAU.

In this paper we address this issue. We recast the existing accelerator and cosmo-
logical bounds to the model with 2 HNLs with degenerate masses. We perform a scan
over all parameter sets of the two HNL model, that simultaneously: (a) explain neutrino
oscillations; (b) are consistent with all previous non-detections at accelerators; (c) do not
spoil predictions of Big Bang nucleosynthesis; (d) allow for the generation of the baryon
asymmetry of the Universe.

Our main findings are as follows.

1. For the normal neutrino mass hierarchy, we have found an open window for masses
0.12− 0.14GeV and then for MN & 0.33 GeV.
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2. For the inverted neutrino mass hierarchy, the open window around 0.14GeV is very tiny
with U2 varying by a factor ∼ 2 around the value 2× 10−6. The majority of the viable
models have MN & 0.36 GeV.

3. Future experiments, DUNE or SHiP, will be able to fully cover the region of parameter
space 0.12− 0.14GeV for all values of the mixing angle.

4. The upper mass limit above 300MeV will be pushed only slightly by DUNE or NA62,
but will be moved beyond the kaon threshold by the SHiP experiment.

5. A precise determination of the PMNS parameters δ and θ23 may be sufficient for closing
the 0.12− 0.14GeV window for the normal mass ordering.
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A BBN constraints on long-lived HNLs

If HNLs possess semi-leptonic decay channels and have lifetimes τN & 0.02 sec, the mesons
from HNL decays completely dominate n-p conversion rates, driving neutron-to-baryon
ratio Xn ' 1

2 . The resulting abundance of Helium-4 Yp ' 2Xn is then Yp ≈ 1, incompatible
with observations that give Yp < 0.2573 [92]. The HNLs with lifetimes near the seesaw
bound and masses above the pion production threshold can have lifetimes in the range
O(102 − 103) sec. For such lifetimes the HNL decay products may not only affect the
neutron abundance, but also destroy already synthesized light elements (whose production
starts at Hubble times around 40 sec) — the case that has not been analyzed in [92].

Below we demonstrate that for all values of HNL masses/lifetimes compatible with
neutrino oscillations, such HNLs lead to an overproduction of Helium-4 or other light
elements and therefore the region τN & 40 sec and MN > mπ is also excluded from BBN.
The details of the analysis will be presented elsewhere [160].

Indeed, all the neutrons in the primordial plasma will either decay or bind into light
elements (deuterium, Helium-3, Helium-4, etc). The presence of pions in the plasma ef-
fectively “prevents” neutrons from decaying because the rate of n+ π+ → p+ π0 exceeds
both the Hubble expansion rate and the decay rate n → p + e− + ν̄e. As a result, decays
(and other weak processes) can be ignored until Hubble times ∼ 106 sec, leading to the
following equation of neutron balance:

X(free)
n +XD +X3He + 2X4He + · · · ≈ 1

2 (A.1)
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The cross-sections of all reactions that change abundances in (A.1) (n ↔ p conversion
by pions, nucleosynthesis, dissociation of light nuclei by pions, etc) are of the same or-
der. Therefore, the rates of various reactions are determined solely by the concentrations.
Without going into details (see [160]) there are two qualitative regimes: if the instanta-
neous concentration of pions is nπ & nB — the pions will efficiently destroy the synthe-
sized nuclei and all terms in the l.h.s. of eq. (A.1) will end up being of the same order
X

(free)
n ∼ XD ∼ X3He ∼ X4He ∼ O(1). If, on the other hand, the instantaneous concentra-

tion of pions is small, nπ < nB, — most of the neutrons will bind into the nuclei, leading
to X4He ∼ 1 and X(free)

n � 1. Both cases are incompatible with experimentally observed
abundances XD ∼ X3He ∼ 10−5 and X4He ∼ 0.0643.7

Finally, few words should be said about long-lived HNLs withMN < mπ. The influence
of such particles on BBN has been analyzed in a number of recent works [see e.g. 84, 91],
providing an upper bound on the HNL lifetime that is below the seesaw limit. Near the
seesaw boundary the HNLs are long-lived, so they can survive till the onset of nuclear
reactions and their decay products can dissociate light nuclei. The recent analysis of [161]
based on [162] (see also [163]) demonstrated that MeV mass HNLs with lifetimes exceed-
ing the seesaw bound are excluded from cosmological observations (BBN plus CMB) and
therefore no “open window” exists below the seesaw line but above the limits of [84, 91].

7We remind that the mass fraction Yp = 4X4He = 2Xn.
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