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Abstract
For a graph G, LðGÞ2

is the square of the line graph of G – that is, vertices of LðGÞ2

are edges of G and two edges e; f 2 EðGÞ are adjacent in LðGÞ2
if at least one vertex

of e is adjacent to a vertex of f and e 6¼ f . The strong chromatic index of G, denoted

by s0ðGÞ, is the chromatic number of LðGÞ2
. A strong clique in G is a clique in

LðGÞ2
. Finding a bound for the maximum size of a strong clique in a graph with

given maximum degree is a problem connected to a famous conjecture of Erd}os and

Nešetřil concerning strong chromatic index of graphs. In this note we prove that a

size of a strong clique in a claw-free graph with maximum degree D is at most

D2 þ 1
2
D. This result improves the only known result 1:125D2 þ D, which is a bound

for the strong chromatic index of claw-free graphs.

Keywords Strong chromatic index � Strong clique � Strong edge coloring

1 Introduction

For a graph G, by LðGÞ2
we denote the square of the line graph of G – that is,

vertices of LðGÞ2
are edges of G and two edges e; f 2 EðGÞ are adjacent in LðGÞ2

if

at least one vertex of e is adjacent to a vertex of f and e 6¼ f . The strong chromatic

index of G, denoted by s0ðGÞ, is the chromatic number of LðGÞ2
. This notion was

introduced in 1983 by Fouquet and Jolivet [18].
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We are motivated by a line of research that asks for maximum possible value of

the strong chromatic index of a graph with given maximum degree D. In 1985,

Erd}os and Nešetřil formulated the following conjecture [13]; see also [2].

Conjecture 1 If G is a graph with maximum degree D, then

s0ðGÞ�

5

4
D2; for evenD;

5

4
D2 � 2D� 1

4
; for oddD:

8
><

>:

Conjecture 1 would be sharp, as wittnessed by the graph obtained from 5-cycle

by blowing each vertex up to an independent set of size roughly D
2

– note that the

square of the line graph of such graphs is always a clique. Conversely, if LðGÞ2
is a

clique for some graph G of maximum degree D, then the number of edges of G is at

most the bound from Conjecture 1, and equality holds only for aforementioned

blowups of C5 [8].

A simple greedy argument shows that s0ðGÞ� 2D2, and even a small improve-

ment over the constant 2 is nontrivial. Molloy and Reed in 1997 gave an upper

bound of 2 � �ð ÞD2 for � � 0:002 [26], which was subsequently improved by Bruhn

and Joos [6] to 1:93D2, by Bonamy, Perrett and Postle [5] to 1:835D2, and recently

by Hurley, de Joannis de Verclos and Kang [23] to 1:772D2; those results apply only

for sufficiently large D.

This problem has also been studied for restricted classes of graphs, including:

bipartite graphs [15, 16], C4-free graphs [25], random graphs [17], graphs of

bounded degeneracy [4, 7, 11], planar graphs [16, 22, 24], unit distance graphs [10]

and graphs of maximum degree 3 and 4 [1, 9, 19–21]. In particular, the strong

chromatic index of a claw-free graph with maximum degree D is at most 1:125D2 þ
D [12].

We study a related problem of bounding the clique number of the square of the

line graph. For a graph G, a strong clique in G is a clique in L2ðGÞ; the maximum

size of a strong clique is x L2ðGÞð Þ. Proving an upper bound on the size of strong

cliques should be easier than giving an upper bound on the strong chromatic index,

because x L2ðGÞð Þ� s0ðGÞ, and it would provide supporting evidence for the

conjecture of Erd}os and Nešetřil; it is also a challenging problem on its own.

Consider the following relaxation of Conjecture 1, posed by Faudree, Gyárfás,

Schelp and Tuza [16]; see also [2].

Conjecture 2 If G is a graph with maximum degree D, then

x L2ðGÞ
� �

�

5

4
D2; for evenD;

5

4
D2 � 2D� 1

4
; for oddD:

8
><

>:
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Conjecture 2 remains open, but is closer to being proved than Conjecture 1. The

second author proved that x L2ðGÞð Þ� 3
2
D2 [28], which was improved to 4

3
D2 by

Faron and Postle [14]. There are also sharp results for specific classes of graphs: for

bipartite graphs the upper bound is D2 [16] (sharp for complete bipartite graphs),

and for triangle-free graphs it is 5
4
D2 [3, Theorem 4.1.5] (sharp for blowups of C5).

Since the strong chromatic index of claw-free graphs is at most 1:125D2 þ D
[12], Conjecture 2 is obviously true for this class of graphs (for D� 12 and

D ¼ 8; 10). However, the constant 1.125 is probably far from optimal; we would

like to know the sharp bound. Our contribution is that we reduce the upper bound to

around D2.

Theorem 1 If G is a claw-free graph with maximum degree D, then

x L2ðGÞ
� �

�D2 þ 1

2
D:

2 Proof of Theorem 1

Let us define some basic notions. We say that two edges e, f (e 6¼ f ) of a graph G are

joined in G if they are adjacent in G or there is some other edge which is adjacent to

both of them in G. Note that in a strong edge-coloring of G any two edges which are

joined must have distinct colors.

Let G be a graph and S be a subset of the vertex set of G. G[S] denotes the

subgraph of G induced by S. We say that a graph G is H-free if G does not contain H
as an induced subgraph. A claw is a complete bipartite graph K1;3. K1;3-free graphs

are called claw-free.

We start by proving auxiliary lemmas that are variations of Turan’s Theorem,

adapted to our setting. Proofs are inspired by the classic proofs of Turan’s

Theorem (the first one uses induction and the second one uses equivalence classes).

Lemma 1 Let A, B be disjoint sets such that Aj j � Bj j. Let G be a graph with the
vertex set VðGÞ ¼ A [ B. Denote by EA, EB and EAB respectively the set of edges
with both endpoints in A, the set of edges with both endpoints in B and the set of
edges with one endpoint in A and one endpoint in B; let eA, eB and eAB be the size of
the respective set.

If every two edges e 2 EA, f 2 EB are joined, then eA þ eB � eAB � Aj j
2

� �
.

Proof We will proceed by induction on Bj j. Note that the lemma is true for Bj j\2,

because in this case eB ¼ 0 and eA � Aj j
2

� �
. Now suppose that the lemma is true if the

two sets have size Aj j � 2 and Bj j � 2 respectively.

Let G be a graph that maximizes the sum eA þ eB � eAB. Consider two cases.

Case 1: eA ¼ 0 or eB ¼ 0. Note that eA þ eB � Aj j
2

� �
, because Bj j � Aj j, and

eAB � 0, so eA þ eB � eAB � Aj j
2

� �
as desired.

Case 2: eA [ 0 and eB [ 0. We claim that there are vertices u; v 2 A and w; x 2
B such that uv; vx;wx 2 EðGÞ and uw; ux; vw 62 EðGÞ. Indeed, if this was not the
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case, then every edge inside A would be joined to every edge inside B by at least two

edges, so removing from G an edge contributing to eAB would not violate the

required condition – contradicting the maximality of G.

Let A0 ¼ A n fu; vg and B0 ¼ B n fw; xg. By eA0 , eB0 and eA0B0 we denote the

number of edges with both endpoints in A0, the number of edges with both endpoints

in B0 and the number of edges with one endpoint in A0 and one endpoint in B0,
respectively. Also, for a vertex y 2 A0 [ B0, by s(y) we denote the contribution of

edges incident with y and a vertex from fu; v;w; xg towards the sum eA þ eB � eAB –

that is, for y 2 A0, s(y) is the number of neighbors of y in fu; vg minus the number of

neighbors of y in fw; xg and for y 2 B0, s(y) is the number of neighbors of y in fw; xg
minus the number of neighbors of y in fu; vg. Using this notation, we can write

eA þ eB � eAB � eA0 þ eB0 � eA0B0 þ
X

y2A0[B0
sðyÞ þ 1: ð1Þ

Now we claim that sðyÞ� 1 for all y 2 A0 [ B0. Suppose for the contrary that

sðyÞ� 2 for some y 2 A0. It implies that y is adjacent to both u and v and not

adjacent to w and x – it follows that the edge uy is not joined to the edge wx, which

contradicts the assumption on G. The same argument hold for y 2 B0 when (u, v)

and (w, x) are exchanged. Therefore, from inequality 1 we obtain

eA þ eB � eAB � eA0 þ eB0 � eA0B0 þ Aj j þ Bj j � 3: ð2Þ

By the induction assumption eA0 þ eB0 � eA0B0 � Aj j�2
2

� �
, therefore

eA þ eB � eAB �
Aj j � 2ð Þ Aj j � 3ð Þ

2
þ Aj j þ Bj j � 3 ¼ Aj j

2

� �

þ Bj j � Aj j; ð3Þ

which completes the proof by Aj j � Bj j. h

Lemma 2 Let A, B be disjoint sets. If G is a graph with VðGÞ ¼ A [ B such that

(i) A does not contain an independent set of size 3,

(ii) for every three vertices x, y, z, such that x; y 2 A and z 2 B, if xy 62 EðGÞ,
then xz 2 EðGÞ or yz 2 EðGÞ,

then the number of edges incident to a vertex from A in G is at least
a
2

� �
if a\b;

a
2

� �
� a� bð Þ2

4
if a� b:

8
<

:

Proof Let A and B be fixed. Let G be a graph on A [ B that satisfies (i) and (ii) and

has the minimum possible number of edges.

Claim There are no three vertices u; v;w 2 A such that uv 62 EðGÞ and
uw; vw 2 EðGÞ.

Suppose for the contrary that there are three such vertices u, v, w. We will

construct a graph G0 with fewer edges, contradicting the minimality of G.
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Case 1: Either u or v has smaller degree than w. Without loss of generality we

assume that it is u. We obtain G0 by removing all edges incident to w and adding an

edge from w to each neighbor of u except w and to u. Note that

EðG0Þj j ¼ EðGÞj j � �
GðwÞ þ �

GðuÞ\ EðGÞj j.
Note that G0 satisfies (i) – if there existed an independent set S of size 3 in G0,

then S would contain w, because only edges incident to w were changed, and would

not contain u, because uw 2 EðG0Þ. But S n fwg [ fug would be an independent set

in G of the same cardinality, which is a contradiction.

G0 also satisfies (ii). To see this, consider a vertex z 2 B and x 2 A such that

xw 62 EðG0Þ. We have xu 62 EðGÞ, so either xz 2 EðGÞ or uz 2 EðGÞ – then we have

xz 2 EðG0Þ or wz 2 EðG0Þ respectively.

Case 2: Both u and v have at least as large degree as w. In this case we obtain G0

by removing all edges incident to u and v, adding edges from u and v to every

neighbor of w and adding edges uv, uw and vw. Note that the degrees of u, v and w
in G0 are equal to �

GðwÞ, but an edge uv counts towards both �
G0 ðuÞ and �

G0 ðvÞ.
Therefore, we have EðG0Þj j ¼ EðGÞj j � �

GðuÞ � �
GðvÞ þ 2�

GðwÞ � 1\ EðGÞj j.
Note that G0 satisfies (i) because – as in the previous case – for every independent

set S in G0 either S n fu; vg [ fwg is an independent set in G of the same cardinality

or S is disjoint from fu; v;wg.

G0 satisfies (ii) because for every z 2 B and x 2 A such that xu 62 EðG0Þ or xv 62
EðG0Þ we have xw 62 EðGÞ, so either xz 2 EðG0Þ or uz; vz;wz 2 EðG0Þ. This

completes the proof of the claim.

Consider a relation � 	 A2 such that x� y iff xy 2 EðGÞ or x ¼ y. From Claim 2

it follows that � is an equivalence relation on A. Since there are no independent

sets of size 3 in A, � has at most two equivalence classes.

Let X be the second largest equivalence class of � – note that X may be an

empty set. Set x :¼ Xj j, a :¼ Aj j and b :¼ Bj j.

Claim Each vertex from B has at least x neighbors in A.

Let z 2 B. Note that either z is adjacent to all vertices from A n X – which gives at

least a� x� x neighbors of z in A – or z is not adjacent to some v 2 A n X. In the

latter case z must be adjacent to all vertices from X by (ii), which again gives at least

x neighbors in A – therefore, the proof of the claim is complete.

Now we can count the number of edges of G incident to a vertex from A. By the

definition of X, there are exactly x
2

� �
þ a�x

2

� �
edges with both endpoints in A and, by

Claim 2, there are at least bx edges from A to B, which totals to at least

f ðxÞ :¼ a

2

� �
þ x2 þ b� að Þx

edges. Note that f is a quadratic function in x that has minimum in point xmin ¼ a�b
2

and in increasing for x[ xmin. Therefore, we have

f ðxÞ�
f ðxminÞ; for xmin � 0;

f ð0Þ; for xmin\0:

�

Therefore, we get
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f ðxÞ�
a
2

� �
� a� bð Þ2

4
; for a� b;

a
2

� �
; for a\b;

8
<

:

which completes the proof. h

Now we are ready to prove Theorem 1.

Proof of Theorem 1 Let v1; v2 2 VðGÞ be vertices of G such that e ¼ v1v2 2 EðGÞ
and e is an edge from a strong clique H with maximum size in G; we will think of

H as a subgraph of G induced by the edges of the maximum strong clique.

Let D1 be a set of vertices of G which are adjacent to v1 in G and are not adjacent

to v2 in G, D2 be a set of vertices of G which are adjacent to v2 in G and are not

adjacent to v1 in G and D3 be a set of vertices of G which are adjacent to both v1 and

v2 in G (see Fig. 1). Let jD1j ¼ d1, jD2j ¼ d2, and jD3j ¼ d3. We have:

d1; d2; d3 � 0; ð4Þ

d1; d2; d3 �D� 1; ð5Þ

d1 þ d3 �D� 1; ð6Þ

d2 þ d3 �D� 1: ð7Þ

Without loss of generality, we can assume that d1 � d2.

Note that G½D1
 is a clique – if there where two vertices x; y 2 D1, such that

xy 62 EðGÞ, then edges xv1; yv1; v1v2 would form an induced claw in G. Similarly

G½D2
 is a clique. Moreover, G½D3
 contains no independent set of size 3, as it would

form an induced claw in G together with v1.

Note that every edge of H except e is joined to e, so it is incident to at least one

vertex from D1 [ D2 [ D3. Now we will count the number of edges in H. We claim

that this number is at most

v1 v2

D1

D3

D2

Fig. 1 Sets D1;D2;D3
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D d1 þ d2 þ d3ð Þ � d1

2

� �

� 2
d2

2

� �

� d3

2

� �

þ 1 þ Id3 [ d1þd2

ðd3 � d1 � d2Þ2

4
;

ð8Þ

where Id3 [ d1þd2
is 1 when d3 [ d1 þ d2 and 0 otherwise. We obtain (8) as follows.

First we count the number of edges with exactly one endpoint in D1 [ D2. All

vertices from D1 are incident to at most Dd1 edges. We know that G½D1
 is a clique,

so all its edges have two endpoints in D1 – we should not count them here, but we

did it twice. Similarly for D2. In H there are also some edges with one endpoint in

D1 and one in D2. We counted them twice as well. Let eD1D2
mean the number of

such edges. Therefore the number of edges with exactly one endpoint in D1 [ D2 is

at most

Dðd1 þ d2Þ � 2
d1

2

� �

� 2
d2

2

� �

� 2eD1D2
: ð9Þ

Now we add edges with both endpoints in D1 [ D2. Let eD1
mean the number of

edges of H from G½D1
, and eD2
mean the number of edges of H from G½D2
. The

number of edges in H with both endpoints in D1 [ D2 is

eD1
þ eD2

þ eD1D2
: ð10Þ

The sum of (9) and (10) is

Dðd1 þ d2Þ � 2
d1

2

� �

� 2
d2

2

� �

þ eD1
þ eD2

� eD1D2
: ð11Þ

Let S be a graph with the vertex set D1 [ D2 such that xy 2 EðSÞ if x 2 D1; y 2 D2

and xy 2 EðGÞ or x; y 2 Di and xy 2 EðHÞ. The graph S fulfills the assumptions of

Lemma 1 with A ¼ D1 and B ¼ D2. So eD1
þ eD2

� eD1D2
� d1

2

� �
. Therefore (11) is

at most

Dðd1 þ d2Þ �
d1

2

� �

� 2
d2

2

� �

: ð12Þ

Next we add to (12) edges from H that are incident to at least one vertex from D3;

there are at most Dd3 of them. We obtain

Dðd1 þ d2 þ d3Þ �
d1

2

� �

� 2
d2

2

� �

: ð13Þ

Edges with one endpoint in D1 [ D2 and one endpoint in D3 and edges with both

endpoints in D3 are counted twice in (13) and will be subtracted. We can calculate

their number by Lemma 2. Let S be a subgraph of G induced by

VðSÞ ¼ D1 [ D2 [ D3. Note that for every three vertices x; y 2 D3 and z 2 D1 [ D2

if xy 62 EðSÞ, then xz 2 EðSÞ or yz 2 EðSÞ, as it would form an induced claw together

with z. Moreover, we have that D3 contains no independent set of size 3. Thus the

graph S fulfills the assumptions of Lemma 2 with A ¼ D3 and B ¼ D1 [ D2.
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Therefore, the number of edges in question is at least d3

2

� �
� Id3 [ d1þd2

d3�d1�d2ð Þ2

4
.

After subtracting it from (13) we obtain

Dðd1 þ d2 þ d3Þ �
d1

2

� �

� 2
d2

2

� �

� d3

2

� �

þ Id3 [ d1þd2

d3 � d1 � d2ð Þ2

4
: ð14Þ

To obtain (8) we add 1 to (14) – because e has not been counted.

Claim The expression (8), subject to constraints (4, 5, 6, 7), is at most D2 þ 1
2
D.

We prove Claim 2 in the appendix.

By Claim 2 the proof is complete. h

3 Further Research

We proved that the size of a strong clique in a claw-free graph with maximum

degree D is at most D2 þ 1
2
D. The constant next to delta is less than 5

4
from

Conjecture 2 but we believe that the optimal constant is much smaller than that. A

size of the biggest strong clique which we were able to construct is around 9
16
D2.

The example for any D can be obtained from the graph G1, presented in Fig. 2, by

blowing up each vertex to a clique of size D
4
. In the constructed graph every two

edges with endpoints in different cliques are joined, so all them create a strong

clique. We want to construct a claw-free graph with a bigger strong clique or

improve our upper bound.

We do not have any results for the maximum size of a strong clique in K1;t-free

graphs with maximum degree D for t[ 3. The only known result is 2 � 1
t�2

� �
D2,

which is an upper bound for the strong chromatic index of K1;t-free graphs. Is it

possible to tell something more about strong cliques in such graphs? Maybe for unit

disks graphs? For them we know that the strong chromatic index is at most 1:625D2.

Appendix: Proof of Claim 2

Claim 2 asserts that the following expression

v1 v2

v3v4v5

v6
Fig. 2 The graph G1
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D d1 þ d2 þ d3ð Þ � d1

2

� �

� 2
d2

2

� �

� d3

2

� �

þ 1 þ Id3 [ d1þd2

ðd3 � d1 � d2Þ2

4
;

ð8Þ

subject to constraints (4, 5, 6, 7), is at most D2 þ 1
2
D.

The partial derivative of (8) with respect to d1 is equal to

D� d1 þ
1

2
þ Id3 [ d1þd2

d1 þ d2 � d3

2
: ð15Þ

If d3 � d1 þ d2 then (15) is greater than 0 by (5). Otherwise (15) equals

Dþ 1
2
þ d2 þ d3, which is greater than 0 by (7). Thus (8) is increasing in d1. By (6) it

follows that (8) is maximized for d1 ¼ D� d3 � 1, so it is at most

DðD� 1 þ d2Þ �
D� d3 � 1

2

� �

� 2
d2

2

� �

� d3

2

� �

þ 1 þ Id3 [D�d3�1þd2

� ðd3 � Dþ d3 þ 1 � d2Þ2

4

¼ DðD� 1 þ d2Þ �
1

2
ðD� d3 � 1Þ2 þ 1

2
ðD� d3 � 1Þ � d2

2

þ d2 �
1

2
d2

3 þ
1

2
d3 þ I

d3 [
Dþd2�1

2

ð2d3 � d2 � Dþ 1Þ2

4

¼ �d2
2 þ d2 þ Dd2 � d2

3 � d3 þ Dd3 þ
1

2
D2 þ 1

2
D

þ I
d3 [

Dþd2�1

2

ð2d3 � d2 � Dþ 1Þ2

4
:

ð16Þ

Consider the following cases:

Case 1: d3 [ Dþd2�1
2

, so

d2\2d3 � Dþ 1: ð17Þ

The partial derivative of (16) with respect to d2 is

�2d2 þ 1 þ Dþ 1

2
d2 � d3 þ

1

2
D� 1

2
¼ � 3

2
d2 � d3 þ

3

2
Dþ 1

2
; ð18Þ

which is greater than 0 by (7). Therefore, the maximum value of 18 is attained for

maximum possible value of d2. We distinguish two cases.

Case 1.1: 2d3 � Dþ 1�D� d3 � 1. Equivalently, we have

d3 �
2D� 2

3
: ð19Þ

In this case we use upper bound on d2 from the condition of Case 1, i.e. substitute

d2 ¼ 2d3 � Dþ 1: It follows that (16) is at most
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� ð2d3 � Dþ 1Þ2 þ 2d3 � Dþ 1 þ Dð2d3 � Dþ 1Þ � d2
3 � d3 þ Dd3 þ

1

2
D2 þ 1

2
D

¼ �5d2
3 � 3d3 þ 7Dd3 �

3

2
D2 þ 5

2
D:

ð20Þ

The derivative of (20) with respect to d3 is

�10d3 � 3 þ 7D: ð21Þ

It is greater than 0 by (19), so its maximum value is attained for d3 ¼ 2D�2
3

and is

equal to

� 5
2D� 2

3

� �2

�3
2D� 2

3

� �

þ 7D
2D� 2

3

� �

� 3

2
D2 þ 5

2
D

¼ � 20

9
D2 þ 40

9
D� 20

9
� 25

6
Dþ 2 þ 19

6
D2

¼ 17

18
D2 þ 5

18
D� 2

9
:

ð22Þ

Case 1.2: d3 [ 2D�2
3

. In this case we use the inequality 7, i.e. substitute d2 ¼
D� d3 � 1: It follows that (16) is at most

� ðD� d3 � 1Þ2 þ D� d3 � 1 þ DðD� d3 � 1Þ � d2
3 � d3 þ Dd3 þ

1

2
D2

þ 1

2
Dþ 3d3 � 2Dþ 2ð Þ2

4

¼ 1

4
d2

3 � d3 � Dd3 þ
3

2
D2 þ 1

2
D� 1:

ð23Þ

The derivative of (23) with respect to d3 is

1

2
d3 � 1 � D: ð24Þ

It is smaller than 0 by (5), so its maximum value is attained for the smallest value of

d3, d3 ¼ 2D�2
3

, and is equal to

1

4

2D� 2

3

� �2

� 2D� 2

3
� D

2D� 2

3
þ 3

2
D2 þ 1

2
D� 1

¼ 1

9
D2 � 2

9
Dþ 1

9
� 2

3
Dþ 2

3
� 2

3
D2 þ 2

3
Dþ 3

2
D2 þ 1

2
D� 1

¼ 17

18
D2 þ 5

18
D� 2

9
:

ð25Þ

Case 2: d3 � Dþd2�1
2

: Equivalently,
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d2 � 2d3 � Dþ 1: ð26Þ

In this case I
d3 [

Dþd2�1

2

is 0, so (16) becomes

�d2
2 þ d2 þ Dd2 � d2

3 � d3 þ Dd3 þ
1

2
D2 þ 1

2
D: ð27Þ

Note that (27) is a sum of two functions

f1ðd2Þ ¼ �d2
2 þ d2 þ Dd2 ð28Þ

and

f2ðd3Þ ¼ �d2
3 � d3 þ Dd3 þ

1

2
D2 þ 1

2
D: ð29Þ

The derivative of f1 is equal to �2d2 þ 1 þ D. Thus the unique global maximum of

f1 is attained for d2 ¼ Dþ1
2

, and is equal to

� 1

4
D2 � 1

2
D� 1

4
þ 1

2
D2 þ 1

2
Dþ 1

2
Dþ 1

2
¼ 1

4
D2 þ 1

2
Dþ 1

4
: ð30Þ

The derivative of f2 is equal to �2d3 � 1 þ D. Thus the unique global maximum of

f2 is attained for d3 ¼ D�1
2

, and is equal to

� 1

4
D2 þ 1

2
D� 1

4
þ 1

2
D2 � 1

2
D� 1

2
Dþ 1

2
þ 1

2
D2 þ 1

2
D ¼ 3

4
D2 þ 1

4
: ð31Þ

Therefore the unique maximum value of (27) is at most

D2 þ 1

2
Dþ 1

2
: ð32Þ

Note that d2 ¼ Dþ1
2

and d3 ¼ D�1
2

do not satisfy (7). We know that (27) has a unique

global maximum equal to (32), so the maximum value of (27) in d2, d3 bounded by

(7) is strictly smaller than (32). Moreover, we are interested only in D with integer

values. Thus the maximum value of (27), constrained by (7), is at most

D2 þ 1

2
D: ð33Þ

Since the expressions (22), (25) and (33) are all smaller than or equal to D2 þ 1
2
D,

the value of (8) is also at most D2 þ 1
2
D, which completes the proof of the claim.
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