
Distributed Computing (2021) 34:239–258
https://doi.org/10.1007/s00446-021-00397-4

Improved distributed1-coloring

Mohsen Ghaffari1 · Juho Hirvonen2 · Fabian Kuhn3 · Yannic Maus4

Received: 1 October 2018 / Accepted: 29 May 2021 / Published online: 9 July 2021
© The Author(s) 2021

Abstract
We present a randomized distributed algorithm that computes a�-coloring in any non-complete graph with maximum degree
� ≥ 4 in O(log�) + 2O(

√
log log n) rounds, as well as a randomized algorithm that computes a �-coloring in O((log log n)2)

rounds when � ∈ [3, O(1)]. Both these algorithms improve on an O(log3 n/ log�)-round algorithm of Panconesi and
Srinivasan (STOC’93), which has remained the state of the art for the past 25years. Moreover, the latter algorithm gets
(exponentially) closer to an �(log log n) round lower bound of Brandt et al. (STOC’16).

1 Introduction and related work

This paper presents faster distributed algorithms, in the
LOCAL model, for computing a �-coloring of any non-
clique graph with maximum degree � ≥ 3. Moreover, we
also provide certain structural results on the locality of the
�-coloring problem. To formally present our results and put
them in the context of the area, let us start with recalling the
model.

The LOCAL model of distributed computing [25,32]. The
graph is abstracted as an n-node network G = (V , E) with
maximum degree at most �. Communications happen in
synchronous rounds. Per round, each node can send one
(unbounded size) message to each of its neighbors. At the
end, each node should know its own part of the output, e.g.,
its own color.

Partly supported by ERC Grant No. 336495 (ACDC) and Ulla
Tuominen Foundation.

B Fabian Kuhn
kuhn@cs.uni-freiburg.de

Mohsen Ghaffari
ghaffari@inf.ethz.ch

Juho Hirvonen
juho.hirvonen@aalto.fi

Yannic Maus
yannic.maus@campus.technion.ac.il

1 ETH Zurich, Zürich, Switzerland

2 Aalto University, Espoo, Finland

3 University of Freiburg, Freiburg im Breisgau, Germany

4 Technion, Haifa, Israel

1.1 Background and state of the art

Graph coloring—assigning colors to the vertices of the graph
such that no two adjacent vertices have the same color—
has been a central problem in the study of distributed graph
algorithms.We refer to theDistributed Graph Coloring book
by Barenboim and Elkin [4].

Much of the focus in this area has been on computing
a coloring with � + 1 colors. Notice that in any graph, a
(� + 1) coloring can be computed via a trivial sequential
greedy method: Iterate through the vertices in an arbitrary
order and a node picks a color that is not used by any of
its at most � already colored neighbors. Hence, in a sense,
distributed � + 1 coloring algorithms can all be viewed as
attempts at parallelizing this greedy method. We are getting
a better and better understanding of the complexity of this
problem, see e.g., the very recent work of Chang et al. [13],
which provides a 2O(

√
log log n)-round randomized algorithm

for (� + 1)-coloring, and the references therein.
On the other hand, �-coloring is a problem of a very

different nature. By a beautiful result of Brooks from 1941
[10,11], every connected graph admits a � coloring, unless
it is exactly a complete graph or an odd cycle. The proof is of
course far less trivial compared to that of (� + 1)-coloring.
See the 1975 work of Lovász [26] for a simplified proof,
which also supplies a polynomial-time centralized algorithm
for computing a �-coloring.

Why should we care about �-coloring? General aspects.
One can argue that this single color of difference between
�-coloring and (� + 1)-coloring is not relevant in practice.
While that is probably true, we believe that there is a strong
enough theoretical interest in investigating �-coloring. We

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-021-00397-4&domain=pdf
http://orcid.org/0000-0002-1025-5037


240 M. Ghaffari et al.

view �-coloring as a clean and classic graph problem which
reaches just outside the problems that we understand, and
thus hopefully enables us to extend our understanding of
the LOCAL model and to develop new algorithmic tools
and techniques for it. The study of �-coloring has previ-
ously provided theoretical insight: (1) In the existential sense,
Brooks’ theorem and proofs of it are widely studied and
covered throughout graph theory textbooks (see e.g., [29,
Theorem1.4] and [8, Theorem14.4]), while (�+1)-coloring
is usually passed over as a triviality. (2) There is a sizable lit-
erature on sequential and also parallel (PRAM) algorithms
for computing �-colorings. However, the sequential variant
of (�+1)-coloring is again ignored as being amere triviality.
Moreover, the study of (�+1)-coloring in the PRAMmodel
effectively stoppedwith theMIS algorithms of Luby [27] and
Alon et al. [2], which led to an O(log n)-round algorithm for
(� + 1)-coloring.

We also note that the relation between (� + 1)-coloring
and �-coloring is similar to the relation between the two
problems of �(1 + o(1))-coloring and (� + 1)-coloring.
One can argue that practically both are equally useful. How-
ever, the former can be solved easily in 2O(

√
log log n) rounds

using methods of Barenboim et al. [6], while there is still
ongoing research on (� + 1)-coloring [13,23], which only
very recently led to a 2O(

√
log log n)-round algorithm [13].

Why should we care about �-coloring? Technical distributed
aspects. A concrete way of pointing out the difference
between the two problems of �-coloring and (� + 1)-
coloring is as follows: any partial coloring of vertices with
� + 1 colors can be extended to a full coloring. However,
this is not true for �-coloring: we cannot extend any partial
�-coloring to a full coloring without changing the colors of
some of the already colored vertices. This issue is one of the
roots of our interest in understanding the complexity of this
problem.

More concretely, many of the fast randomized algorithms
for local graph problems developed over the past few years
rely on the so-called shattering technique [6,13,17,20,22,23].
In a rough sense, thismethod performs some randomized step
which computes a partial solution such that the remaining
part of the problem ismade of several (disconnected) compo-
nents, each of which is small, e.g., think of size poly(log n).
Then, one can solve these smaller connected components
using deterministic algorithms for graphs of sizepoly(log n).
A crucial part here is that the partial solution is such that one
can readily extend it to a full solution, in fact independently
in each component, without needing to alter the already
computed partial solution. The problem of �-coloring gives
us one clean local problem that reaches outside this cir-
cle. In particular, it is not clear if one can do shattering
for �-coloring, i.e., it is not clear whether there is a way
of computing a partial �-coloring such that the remaining

components are small and they can be colored on their own
without altering the already colored part.

Furthermore, in contrast to (� + 1)-coloring, �-coloring
has an ω(log∗ n) lower bound, even for constant-degree
graphs [9,12]. The nature of this problem is very different
from (� + 1)-coloring which can be computed in O(log∗ n)

rounds in bounded degree graphs. Recently, in the context of
lower bounds for the Lovász Local Lemma problem, Brandt
et al. [9] proved that�(log log n) rounds are required by any
randomized �-coloring algorithm, even in constant-degree
graphs. These results led to two problems which exhibit an
exponential separation between their randomized and deter-
ministic complexity. Sinkless orientation has an�(log log n)

randomized lower bound [9] and an �(log n) deterministic
lower bound [9,12], with matching randomized and deter-
ministic upper bounds [22]. The other problem is�-coloring,
which also has an �(log log n) randomized lower bound [9]
and an �(log n) deterministic lower bound [12]; however,
finding matching upper bounds has remained mostly open.

State of the art for distributed �-coloring. Panconesi
and Srinivasan [30,31] gave a randomized distributed algo-
rithm for computing a �-coloring in O(log3 n/ log�)

rounds. They also provided a deterministic variant of their
algorithm with complexity O(� log2 n). Recently, Aboulker
et al. [1] gave a more general algorithm for d-list coloring
graphs of maximum average degree d in time O(�4 log3 n).
In the special case of trees of large enough maximum degree,
Chang et al. [12] give an O(log log n)-round randomized
algorithm for computing a �-coloring. This, combined with
their deterministic lower bound�(log n) [12], gives an expo-
nential separation on trees. Our algorithms establish this
separation in the general bounded-degree case.

1.2 Our results

Our first result is tailored to �-coloring constant-degree
graphs.

Theorem 1 There exists a randomized distributed algo-
rithm that, in any non-complete graph G with maxi-
mum degree � ≥ 3 computes a �-coloring in time
O

(√
� log� · log∗ � · log2 log n

)
, w.h.p.1

Theorem 1 immediately implies an O
(
(log log n)2

)
round

algorithm for constant-degree graphs.

Corollary 1 There exists a randomized distributed algorithm
that, in any non-complete graph G with maximum degree
� ≥ 3, computes a �-coloring of G in time O((log log n)2),
w.h.p.

1 As standard, we use the phrase with high probability (w.h.p.) to indi-
cate that an event happens with probability 1 − 1/nc for a desirably
large constant c ≥ 2

123



Improved distributed�-coloring 241

We comment that the condition of � ≥ 3 is necessary as
2-coloring graphs with � = 2 needs �(n) rounds, even
if possible, e.g., in the case of an even cycle [25,30]. The
round complexity of Corollary 1 gets significantly closer to
the�(log log n) round lower bound of Brandt et al. [9]. Even
in constant-degree graphs, the previous best known bound
was the O(log2 n)-round algorithm of Panconesi and Srini-
vasan [30,31].

Our second result applies to all graphs with � ≥ 4 and
improves on the O(log3 n/ log�) round complexity of Pan-
conesi and Srinivasan [30,31]:

Theorem 2 There exists a randomized distributed algorithm
that, in any non-complete graph G = (V , E) with maximum
degree � ≥ 4, computes a �-coloring in time O(log�) +
2O(

√
log log n), w.h.p.

We also improve the deterministic complexity of �-
coloring for graphs with � = 2o(

√
log n).

Theorem 3 (Deterministic �-coloring) Non-clique graphs
of maximum degree � ≥ 3 can deterministically be �-
colored in O

(√
� · log−3/2 � · log∗ � · log2 n

)
rounds.

Note that Theorem 3 is only a logarithmic factor away from
the �(log� n) deterministic lower bound of [12] when � =
O(1).

1.3 Our methods

Our algorithms are based on a structural result that essentially
says that either a graph is easy to�-color locally, or it expands
locally. This also yields a newproof of the distributedBrooks’
Theorem by Panconesi and Srinivasan.

Theorem 4 (Distributed Brooks’ Theorem) Let G be a graph
that is not a clique with maximum degree � ≥ 3, and let G be
�-colored except for one node v. Now G can be �-colored by
recoloring the (2 log�−1 n)-neighborhood of v and keeping
the color of all nodes outside this neighborhood unchanged.

Our algorithms are based on a layering technique. In this
technique we carefully choose a base layer B0 ⊆ V that
is easy to color after everything else is colored, and layers
B1, . . . , Bs where Bi consists of the nodes in distance i to
B0. To �-color all layers one can iteratively color the layers
in reverse order while always respecting the already fixed
colors. To �-color layer Bi , i �= 0 we solve list coloring on
the graph G[Bi ]. Lists are of size (degG[Bi ] +1) as each node
has an uncolored neighbor on a lower index layer. At the end
layer B0 is (usually) colored with different techniques.

The best way to understand the technique is the algorithm
for Theorem 3. There the base layer B0 consists of the nodes
of a ruling set of G with large enough distance between the
nodes. The ruling property of B0 implies that we only need
few layers to cover the whole graph and due to their large

distance the nodes in B0 can be colored independently with
Theorem 4.

Let H denote the graph of remaining nodes after the base
layer and all remaining layers have been removed. In the
algorithm explained above H is empty. In our randomized
algorithms the layers do not always cover the whole graph
and thus H might not be empty. However, the base layer is
chosen such that our structural results (cf. Sect. 2.2) show that
H expands: In particular, we identify all small node-induced
subgraphs that are colorable regardless of colors outside the
subgraphs, compute a ruling set of these subgraphs and put
their nodes in the base layer B0. Then the remaining graph H
does not have any small subgraphs that are easy to color and
our structural results show that H has to expand.We leverage
the expansion by randomly placing ’slack’ in the graph, i.e.,
so called T -nodes (each T -node picks two of its neighbors
(non adjacent) and colors themwith the same color; this intro-
duces slack at the T -node as it can always find a valid color
after every other node of the graph is colored). Then we use
those T -nodes as a new base layer and remove—again with
the layering technique—all nodes that have a T -node close
by. Due to the expansion we can show that the probability to
remain after the slack placement is 1/nc for constant �; for
non constant � a node has to be much closer to a node with
slack (than in the constant degree case) to be removed and
we can only bound the probability to remain by 1/poly(�)

for a suitable polynomial. However, then standard shattering
techniques (cf. Lemma 13) show that only small connected
components remain which we color with a similar layering
technique.

We emphasize that—to the best of our knowledge—our
shattering is different fromall previous shattering algorithms.
Previous shattering algorithms compute a partial solution to
shatter the graph into small unsolved components which are
then solved to complete the partial solution. Here, the nodes
in the small components are the last nodes to compute their
output. Our algorithms shatter in a fundamentally different
way. We shatter the graph by removing nodes from it. The
nodes in remaining components are the first to compute their
output. Only afterwards we add the removed nodes to the
graph and let them compute their output last. The idea of
putting nodes away to be colored in the end has already been
used in the deterministic coloring algorithm in [4] where
graphs with bounded arboricity are colored. However, we
are not aware of any randomized algorithm that uses this
technique.

1.4 Outline

Section 2 provides our core structural results for �-coloring
and its proofs are most involved. In particular, we show
that

123



242 M. Ghaffari et al.

– A partial �-coloring of a graph with a single uncolored
vertex v can be completed to a �-coloring of all vertices
by only recoloring the vertices in a O(log� n) neighbor-
hood of v (Distributed Brooks Theorem, Theorem 4),

– A partial �-coloring of a graph with an uncolored con-
nected componentC can be completed to a�-coloring of
the whole graph without changing the colors of already
colored vertices ifC is a so called degree choosable com-
ponent,

– Graphs that do not contain small diameter degree choos-
able components expand quickly,

– The uncolored part of a graph without small diameter
degree choosable components expands quickly even if
we randomly place T -node’s. (Sect. 2.3)

We recommend to skip Sect. 2.3 when reading the paper for
the first time.

Section 3 introduces algorithmic preliminaries and state
of the art results for problems such as network decompo-
sition, (deg+1) list coloring and ruling sets that we use
as subroutines in our algorithms. In Sect. 4 we use the
Distributed Brooks Theorem to provide two deterministic
algorithms for�-coloring. These algorithms already contain
much of the high level structure of our randomized algo-
rithms that we present in Sect. 5. We end in Sect. 6 with
a conclusion.

2 Graph colorability and structural results

In this section we study structural properties of graphs
that are not degree-list colorable, at least locally. We will
show several structural results about such graphs, which
essentially tell that these graphs must expand exponentially.
This will lead to a simplified proof of the “distributed”
Brooks’ theorem due to Panconesi and Srinivasan [31] in
Sect. 2.4.

2.1 Gallai-trees and degree choosability

Definition 1 (Degree-Choosability) A graph G is degree-
choosable, if for every assignment of lists L , such that
|L(v)| ≥ deg(v) for all v, there exists a proper coloring
of G with colors from L .

Definition 2 (Gallai-Trees) A graph is a Gallai-tree if each
of its maximal 2-connected components is a clique or an odd
cycle.

Gallai-trees are exactly those graphswhich are not degree-
choosable.

Theorem 5 [16,35] A graph is not degree-choosable if and
only if it is a Gallai-tree.

Now, consider the problem of �-coloring. Assume that
we color the graph partially but leave a 2-connected subgraph
that is neither a clique nor an odd cycle uncolored. Then the
coloring can be completed in this subgraph due to Theorem5.
These 2-connected subgraphs are called degree-choosable
components (see Figs. 1 and 2).

Definition 3 (Degree-ChoosableComponent)Anode-induced
subgraph is a degree-choosable component (DCC) if it is 2-
connected and not a clique nor an odd cycle.

We often write DCC instead of degree choosable com-
ponent and the usual graph notions can be extended to
degree-choosable components. For example, the diameter of
a degree-choosable component is the diameter of the node-
induced subgraph. A connected graph is a nice graph if it is
neither a path, a cycle, nor a clique [31]. Note that a degree
choosable subgraph (DCC) can be � colored regardless of
how other nodes outside theDCC are colored (see Fig. 2). All
nice graphs are �-colorable and we assume that all graphs
throughout the paper are nice graphs. A T -node is a node
with two neighbors that have the same color. In a partially
colored graph, node u is a T -node of v if u is a T -node and
there is an uncolored path from u to v. For several (central-
ized) proofs of Brooks’ Theorem and further work on Gallai
trees and degree choosabilitywe refer to [15].We alsowant to
point out that degree choosable components recently became
important for the distributed coloring of sparse and planar
graphs [1,14].

2.2 Graphs with no small degree-choosable
components

In this section we study graphs with no small degree-
choosable components. Our goal is to prove that if such
graphs are locally regular (and thus not easy to color locally),
then these graphs must expand. Our general tool is to count
the number of nodes in breadth-first search trees inside these
graphs. Given a BFS tree BFS(v) rooted at node v of a graph
G, we denote by Bt (v) the set of nodes at distance t from
v in this tree and for two nodes u, w of a BFS tree let Pu,w

denote the unique path from u to w in the BFS tree.

Lemma 1 (Unique BFS Tree) Let G be a graph with no
degree-choosable components of radius r or less. The depth-
r BFS tree rooted at an arbitrary v ∈ V (G) is unique. In
particular, any node u �= v on level t ≤ r has exactly one
edge to the nodes on level t − 1 of the BFS tree.

Proof It is immediate that the zero and depth one BFS trees
are unique. For larger depth consider the following proof by
contradiction. For t < r assume that u and u′ are two nodes
on the t-th level of the BFS tree that connect to the same node
w /∈ Bt−1∪ Bt , i.e., we assume that the next level of the BFS
tree cannot be built uniquely. Then w is on level t + 1. Let v′

123



Improved distributed�-coloring 243

Fig. 1 Degree list coloring of
degree choosable graphs

Fig. 2 If a degree choosable
component (DCC) appears in a
graph and all nodes around it are
colored then this induces a
degree list coloring problem for
the degree choosable
component. By the definition of
a DCC one can always find a
valid coloring of the DCC

t

t+ 1

t− 1

t′

Fig. 3 Uniqueness of the BFS-tree. Assuming a unique BFS-tree up to
level t , assume that a node on the next level t + 1 can be reached via
two distinct nodes u, v on level t . This creates an even cycle via the last
common ancestor of u and v on some level t ′ < t . The cycle does not
induce a clique since nodes of the cycle are on at least three different
levels of the BFS-tree

be the least common ancestor of u and u′. Then there is the
even cycle {w, u′}, Pu′,v′ , Pv′,u, {u, w} that does not induce
a clique as the nodes u, w, u′ and v′ lie on three different
levels, a contradiction. ��

The following simple but useful result shows that the
neighborhood of a node decomposes into cliques if there
are no small degree-choosable components.

Lemma 2 Let G be a graph with no degree-choosable com-
ponents of radius 1. Then for every v ∈ V (G) the connected
components of G[�(v)] are cliques.

Proof Let u1, u2 andw be neighbors of v with {u1, u2} ∈ E .
If {u2, w} ∈ E we also have that {u1, w} ∈ E as otherwise
the graph induced by v, u1, u2 and w would be a degree
choosable component of radius one, a contradiction. ��
Note that all neighbors of any node v with degree � have to
induce more than one clique as otherwise v and its neighbors
would form a (� + 1)-clique and the graph does not admit a
�-coloring.

For a node u in a BFS tree let N+(u) denote the set of
children of u in the BFS tree and let d(u) = |N+(u)| be the
number of children in the tree.

Lemma 3 (BFS Expansion Lemma) Let G be a graph with-
out any DCC of radius at most r and B F S(v) the unique

123



244 M. Ghaffari et al.

depth-r BFS tree rooted at some node v ∈ V (G). Let u′ be
a node of B F S(v) with deg(u′) ≥ 3 and u its parent. Then
d(u) + d(u′) ≥ min{deg(u), deg(u′)} holds.

Proof Assume that the node u is on some level j ≤ r − 1
of the BFS tree. Then u′ is on level j + 1 ≤ r . If u = v the
statement holds trivially as d(u) = deg(u). So assume that
u �= v. Due to the uniqueness of the BFS tree (cf. Lemma 1)
u �= v has a single neighbor on level j − 1 and deg(u) −
1 neighbors on level j and j + 1. Similarly u is the only
neighbor of u′ on level j . For two nodes u, u′ of the BFS tree
let P(u, u′) denote the unique path in the BFS tree between
u and u′. Let α = min{deg(u), deg(u′)}. The result holds if
d(u) ≥ α. We consider two cases for d(u) < α.

Case d(u) = α−1: Assume that u′ has at least one neigh-
bor in N (u) that is on level j +1 and let u′′ be such a neighbor
of u′. We show that u′ does not have a neighbor on its level
that is not connected to u. For contradiction, assume that u′
also has a neighbor w on level j + 1 that is not a child
of u. Let v′ denote the least common ancestor of u′ and
w in the BFS tree. The subgraph induced by the union of
{u′, w} ∪ {u′, u′′} ∪ {u, u′′} ∪ P(v′, w) ∪ P(v′, u) is a DCC
of radius at most r , a contradiction. Thus, if u′ has one neigh-
bor in N (u) it has at most α − 2 neighbors on its own level
andwe have d(u′) ≥ deg(u′)−1−(α−2) = deg(u′)−α+1.
This implies d(u) + d(u′) ≥ deg(u′) ≥ α.

Now assume that u′ has no neighbor in N (u) on level
j + 1. We show that it can have at most one neighbor on
its own level. Assume that it has two neighbors w,w′ on its
own level. Let v′ denote the least common ancestor of w and
w′. Then the union of edges P(v,w) ∪ {w, u′} ∪ {u′, w′} ∪
P(w′, v) forms an even cycle that does not induce a clique, a
contradiction. In this case we have d(u′) ≥ deg(u′) − 2 ≥ 1
where the last inequality holds due to deg(u′) ≥ 3. This
implies d(u) + d(u′) ≥ α.

Case d(u) < α − 1: Because d(u) < deg(u) − 1 node
u must have a neighbor on level j that we denote by w. We
first prove the following subclaim. ��

Subclaim: Node u′ has no neighbor on level j + 1 which
is not connected to u.

Proof Assume by contradiction that such a neighbor denoted
with w′ exists. Note that the edge {w,w′} does not exist
because otherwise the nodes u, u′, w′ and w would form a
4-cycle which does not induce a clique as {u, w′} /∈ E .

Let v′ be the least common ancestor of w and w′. Then

{u′, w′}, Pw′v′, Pv′w, {w, u}, {u, u′}

form an even cycle. The path Pw′v′ neither goes through w

nor through u as the edges {w,w′} and {u, w′} do not exist.
Thus the even cycle actually is a proper cycle and does not
collapse. Furthermore, it does not induce a clique as the nodes

u, u′ and v′ lie on three different levels of the BFS tree. Thus
it induces a short even cycle, i.e., a DCC with radius at most
r , a contradiction. ��

Due to the subclaim all neighbors of u′ in G that are on
the same level as u′ in the BFS tree are also connected to u in
the BFS tree. As u has d(u) children u′ has at most d(u) − 1
neighbors on the same level and one neighbor in the level
above. This implies d(u′) ≥ deg(u′) − 1 − (d(u) − 1) =
deg(u′) − d(u). That is, d(u) + d(u′) ≥ deg(u′) ≥ α. ��

Informally, this lemma holds because if there are toomany
edges inside the local neighborhood of a node, then these
edges must create a degree-choosable component. Lemma 3
implies that the BFS tree in the graph G (without themarking
process) expands exponentially in�−1 with every two hops
(see the proof of Lemma 8 for more details).

2.3 Exponential expansion after themarking
process

Next, we define a randomizedmarking process and show that
the BFS tree of unmarked nodes either contains a T -node or
expands exponentially as well.

Marking process. In our algorithms we apply the follow-
ingmarking process. Each node v selects itself independently
and uniformly at random with some probability p. Then, if
there is another selected node within distance b (the backoff
distance), the node unselects itself. Otherwise v picks two
non-adjacent neighbors and colors them with color one. We
call these neighbors marked and say v marked them. In this
case node v becomes a T -node. Lemmas 5, 7 show that if
we apply the marking process, the graph of the unmarked
nodes expands regardless of the randomness in the marking
process or there was a DCC. The proof is based on the pre-
vious Lemma 3. Due to the backoff distance b marked nodes
cannot exist too close to each other if they are not neighbors
of the same T -node. Thus, for every node that is blocked
from expanding due to marked nodes, there are many other
nodes that are not blocked on that level of the BFS tree. These
expansion results are used in the randomized algorithms for
Theorems 1, 3; in particular we use the two main results of
this section Lemmas 5 and 7 in Sect. 5.2 (to bound the fail-
ure probability in a shattering type argument) and Sect. 5.4
(to bound the failure probability in a union bound type argu-
ment).

We begin with a useful lemma on the structure of BFS
trees in graphs without small degree choosable components.
Note that the lemma can be applied to G itself but also to
the graph that one obtains by removing marked nodes from
G. Lemma 2 shows that the connected components of the
neighborhood of a node are cliques; the next lemma shows
related but even stronger statements about the graph induced
by the children in an BFS tree in such graphs. Let w be a

123



Improved distributed�-coloring 245

node of a BFS tree. We say that a maximal clique of children
ofw in the BFS tree is of the odd cycle type if it has one node
that has a neighbor on the same level of the BFS tree which
is not connected tow. We say a degree choosable component
is small if it is of radius at most r .

Lemma 4 Let G be a graph with maximum degree � ≥ 3
such that G does not contain any DCCs of radius at most
r and consider an induced subgraph H of G and a depth-r
BFS tree in H. Then the following hold:

1. If u is a node in the BFS tree that has at least two neigh-
bors on the same level of the BFS tree, then � > 3 and
u together with all of its neighbors on the same level of
the BFS tree form a clique and all these nodes have the
same parent as u.

2. If a node u in the BFS tree is adjacent to a child of its
parent w, then every neighbor of u on the same level of
the BFS tree is a child of w.

3. Any clique of the odd cycle type consists of at most one
node. If w is a node on some level t < r of the BFS tree,
then among its children there is at most one clique of the
odd cycle type.

Proof We separately prove the three claims.

1. Let u1 and u2 be two neighbors on the same level of the
BFS tree and let w be the parent of u. Further, let v′ be
the least common ancestor of u, u1 and u2. If any of the
edges {u1, u2}, {w, u1}, and {w, u2} does not exist then
the graph induced by the edges {w, u}, {u, u1}, and {u, u2}
and the paths Pv′,w, Pv′,u1 and Pv′,u2 implies a small DCC
that is neither a clique nor an odd cycle, a contradiction.

2. Assume that u2 is a second neighbor on the same level of
the BFS tree and let v′ be the least common ancestor of
u, u1 and u2. Assume that u2 is not a neighbor ofw. Then
the nodes u, u1, u2 and the paths Pv′,u1 , Pv′,u2 induce a
small DCC, a contradiction.

3. The first claim follows as (2) implies that a clique with
more than two nodes cannot have a neighbor with a dif-
ferent parent on the same level of the BFS tree.
To prove the second claim, assume for contradiction that
there are two odd cycle type cliques (on level t + 1 of
the BFS tree) with parent w. Because of the first claim,
both odd cycle type cliques consist of a single node that
we denote by vi and v j , respectively. Let ui (u j ) be vi ’s
(v j ’s) neighbor on level t + 1 that exists by the definition
of a clique of the odd cycle type. Then vi , v j , ui , u j and
the respective path to their least common ancestor form a
DCC of radius at most r .

��

We now show, that the BFS tree around a node after the
marking process has been applied expands exponentially in
�−2 with every two hops if we do not encounter a T -node.

Lemma 5 Let G = (V , E) be a graph with maximum degree
� ≥ 4 and such that G does not contain any DCCs of radius
at most r , for an even r. Let H be a graph obtained from
G by applying the marking process to G with b = 6 and
removing all marked nodes, and let v ∈ V (H) be a node
in H. If degG(u) = � for each u ∈ Nr (v), then the r-
hop BFS tree around node v ∈ V has at least (� − 2)r/2

nodes on level r that are reachable from v through paths of
lengths r consisting of unmarked nodes or this depth-r BFS
tree contains a T -node reachable from v through a path of
unmarked nodes.

Proof Consider the BFS tree in H around an arbitrary node
v. By Lemma 1 (applied to H ) this BFS tree is unique and
due to Lemma 3 (applied to H ) we have d(u) + d(u′) ≥
min{degH (u), degH (u′)} for any node u of the BFS tree and
its child u′. If we encounter a node with two marked neigh-
bors in G during this process the lemma holds as the node is
a T -node. Thus we assume that any encountered node has at
most one marked neighbor.

We perform an induction on the depth of the BFS tree.
The root v has at least �−1 unmarked neighbors. Let Bt (v)

denote the set of nodes at distance t from v in the BFS tree
in H and let u �= v be a node in Bt (v). The proof is divided
into two cases based on the number of children of u in the
BFS tree.

1. d(u) = 0. Claim: u has a marked neighbor. As u �= v

it has a parent w in the BFS-tree. If u had no marked
neighbor it would have �− 1 ≥ 2 neighbors on level t of
theBFS tree and its parentw on level t−1. ByLemma4 u,
w and these neighbors would form a clique of size �+1,
a contradiction.
Instead u has a marked neighbor and only k = � − 2
neighbors on level t of the BFS tree. Let u1, . . . , uk be
these neighbors. As k ≥ 2 Lemma 4 implies that all these
neighbors form a clique and are neighbors of w as well.
Claim: None of the nodes u1, . . . , uk has a marked neigh-
bor. Let vT be the T -node with the marked neighbors
vM1 and vM2 such that vM1 is neighbor of u. Let j ∈
{1, . . . , k}. As the distance between two T−nodes is at
least b = 6 node u j cannot have a marked neighbor other
than vM1 or vM2 . Any u j is not a neighbor of vM2 as then
vT , vM1 , vM2 , u, u j , w induces a small DCC (the edge
{vM1 , vM2} does not exist). If w is not a neighbor of vM1

then none of the nodes u j , j = 1, . . . , k can have vM1 as a
neighbor because otherwise w, vM1 , u, u j would induce
a small DCC. If w is a neighbor of vM1 then vM1 is on
the same level of the BFS tree as u and the other nodes

123



246 M. Ghaffari et al.

and, by Lemma 4, they all form a (� + 1) clique with w,
a contradiction.
Due to the claim each u j , j = 1, . . . , k does not have a
marked neighbor. We deduce that d(u j ) = 1 holds for
j = 1 . . . , k as u j only has � − 2 neighbors on level t ,
i.e., u, u1, . . . , u j−1, u j+1, . . . uk , (any further neighbor
on this level would also be part of the clique, cf. Lemma 4)
and w is the only neighbor of u j on level t − 1. Let u′

j
denote the single unmarked neighbor of u j on level t + 1
of the BFS tree.
Claim: Node u′

j cannot have a marked neighbor. With
the notation from before u has the marked neighbor vM1 .
Node u′

j cannot have a marked neighbor that was created
by a T -node other than vT due to b = 6. If u′

j was con-
nected to uM2 the nodes vT , vM1 , vM2 , u, u j , u′

j would
form a small DCC. If u′

j was connected to uM1 the nodes
u, uM1 , u, j, u′

j would form a small DCC.
We have degH (u j ) = � and degH (u′

j ) = � and d(u j ) =
1 for all j = 1, . . . , k. Now, we apply Lemma 3 to each
u j and each of their children u′

j and obtain that d(u′
j ) ≥

�−d(u j ) = �−1, i.e., u′
j has�−1 unmarked neighbors

on level t + 2.
Therefore these nodes (u and its neighbors on the same
level of the BFS tree) contribute a total of at least (� −
1)(� − 2) nodes to the BFS tree at level t + 2.

2. d(u) ≥ 1. There are two subcases based on whether the
children of u form a clique of size � − 1 or not; here we
consider the topology of the children of u including the
children of u that potentially are marked.
First assume that they do form a clique of size � − 1.
Each node in the clique has � − 2 nodes on the same
level of the BFS tree, one parent and one further unique
neighbor (on the next level) that potentially is marked.
Due to the uniqueness of the BFS tree (cf. Lemma 1) all
these further neighbors are distinct. At most one of the
nodes of the clique can have its subtree blocked because
it is marked itself or because its unique child is marked.
In any case there are at least � − 2 nodes in the clique
that each have one distinct unmarked child on level t + 2
of the BFS tree.
Now, assume that the children of u do not form a (�−1)-
clique (this paragraph is still considering the topology
including children of u that potentially are marked).
Instead, let C1, C2, . . . , Ck form the maximal cliques
formed by the children of u (cf. Lemma 2). Recall that
a clique is of the odd cycle type if it is of size one and
closes an odd cycle, i.e., it has 1 edge to another node on
the same level that is not a neighbor of its parent u. Also
recall that if |Ci | ≥ 2, there are no edges from Ci to other
nodes on the same level of the BFS tree (cf. Lemma 4).
Let Ci be a clique that is not of the odd cycle type. Then
the only edges of node of the clique Ci to nodes on level

t + 1 are the |Ci | − 1 edges inside Ci . Furthermore, each
vertex of the clique has one edge to level t (to u). Thus we
obtain that any u′ in such a clique has d(u′) ≥ degH (u′)−
(|Ci | − 1)− 1 ≥ �− 1− (|Ci | − 1)− 1 = �− |Ci | − 1.
Thus any such clique contributes

∑

u′∈Ci

d(u′) ≥ |Ci |(� − |Ci | − 1)

unmarked nodes on level t +2 of the BFS tree. This value
is always greater than � − 2. Thus as soon as there is a
clique that is not of the odd cycle type there are at least
�−2 unmarked nodes on level t +2 of the BFS tree. Now,
assume that all cliques are of the odd cycle type. Then,
there is actually just one clique due to Lemma 4, (3).
Thus d(u) = 1 holds. Let u′ be the only node of the
single clique of odd cycle type. Lemma 3 implies that
d(u′) ≥ min{degH (u′), dH (u)} − d(u) ≥ � − 2, i.e., u′
has at least �− 2 unmarked children on level t + 2 of the
BFS tree.

To bound the total number of nodes in Bt+2(v) let x denote
the number of nodes u ∈ Bt (v) of the first type, that is, with
d(u) = 0. The analysis for those nodes contributes (� −
1)(� − 2) nodes on level t + 2 of the BFS tree but also uses
the other (�−2) nodes on level t of the BFS tree that form a
cliquewith u. Thus there are at least |Bt (v)|−x(�−1) nodes
ũ ∈ Bt (v) of the second type, that is, nodes with d(ũ) ≥ 1,
for which we can independently count their contribution of
at least (� − 2) nodes on level t + 2 per node of the second
type. Thus the total number of nodes on level t + 2 can be
bounded by

|Bt+2(v)| ≥ x(� − 1)(� − 2)

+(|Bt (v)| − x(� − 1))(� − 2)

= (� − 2)|Bt (v)|. ��

If � = 3 an expansion that is exponential in � − 2 = 1
is not useful and we cannot guarantee that we expand by a
factor of �−1 every two hops after the marking process has
been applied. Instead we prove that we expand by a factor of
� − 1 every six hops or encounter a T -node. We first need a
simple but useful lemma.

Lemma 6 Let � ≥ 3 and consider a depth-r BFS tree with
root v in some graph without DCCs of radius at most r . Then
the following hold:

1. Any node of the BFS tree at distance at most r − 1 from
the root and with degree � in G has at least one child in
the BFS tree.

123



Improved distributed�-coloring 247

2. Let u be a node of the BFS tree and k + dist(v, u) ≤ r .
If all nodes of the k-hop subtree rooted at u have degree
� and are unmarked then the subtree contains at least
(� − 1)
k/2� unmarked nodes on level k and all of them
are reachable from u through paths of length at most k
consisting of unmarked nodes.

Proof 1. This is trivially satisfied for the root of the BFS
tree. Let u be a node that is not the root of the BFS tree
and let w be its parent in the tree. To prove the claim we
only need to show that u cannot have �− 1 neighbors on
the same level of the BFS tree. For contradiction, assume
that it has neighbors u1, . . . , u�−1 on the same level of
the tree. Due to Lemma 4 all these nodes must be also
connected to w which implies that u, w, u1, . . . , u�−1

form a (� + 1)-clique, a contradiction.
2. If u = v the result follows with Lemma 5. If u �= v let

Bt (u) be the nodes on level t of the BFS tree rooted at
u. Due to (1) we have 1 ≤ d(w) ≤ � − 1 for all nodes
the BFS tree rooted at u. The statement holds trivially for
k = 0 and we show the result by induction on k. Now
consider some level k. For each node w ∈ Bk(u), we get
via Lemma 3 (we can apply the lemma as there are no
marked nodes) that the number of descendants of w in
Bk+2(u) is at least

∑

w′∈N+(w)

d(w′) ≥ d(w)(� − d(w)) ≥ � − 1.

Since each node has a unique ancestor in the BFS tree,
we get that
|Bk+2(v)| ≥ (� − 1)|Bk(v)|. ��

Lemma 7 Let � = 3 and G = (V , E) be a graph such that
G does not contain any DCCs of radius at most r , for an r
divisible by 6. Apply the marking process to G with b = 15.
Let v ∈ V be an arbitrary unmarked node. If degG(u) = �

for each u ∈ Nr (v) then the r-hop connected component of
unmarked nodes around v contains a T -node or at least 4r/6

nodes.

Proof We consider the tree T around v that one obtains by
cutting the BFS tree around v in G whenever a marked node
is encountered. Let Tt (v) denote the nodes on level t of T.
We show by induction on t that Tt (v) contains at least 4t/6

nodes if we do not encounter a T -node (note that the marked
nodes that make a node of Tt (v) a T -node are not part of
Tt (v)). If we encounter a node with two marked neighbors
during the induction the lemma holds as it forms a T -node.
Thus we assume that any encountered node has at most one
marked neighbor.

Base case: There are at least 4 unmarked nodes on level
6 of T. Due to b = 15 at most two of the 5-hop subtrees

rooted at the children of v are cut off due to a marked node.
The remaining 5-hop subtree rooted at the third child cannot
be cut off due to a marked node. Thus it contributes at least
(� − 1)2 = 4 (unmarked) nodes on level 6 of the tree T due
to Lemma 6, (2).

Inductive step. Consider the set Tt (v) for some t ≥ 6. We
split the proof in three cases: for each node u ∈ Tt (v) either
d(u) = 2, d(u) = 1, or d(u) = 0 holds where d(u) denotes
the number of children of u in the tree T.

Case d(u) = 2. As u has a parent and two children, say
u1 and u2, in T it does not have a marked neighbor. Due to
b = 15 there can be at most two marked nodes in the 6-hop
subtree rooted at u and both stem from the same T -node.
If the 5-hop subtree of any of u’s children has no marked
nodes it contributes at least 4 unmarked nodes to Tt+6 due to
Lemma 6, (2). If both 5-hop subtrees rooted at u1 and u2 have
a marked node, say uM1 and uM2 , then they stem from the
same T -node vT . Then {vT , vM1}, {vT , vM2}, Pu,vM1

, Pu,vM2
must induce an odd cycle as otherwise it induces a small
DCC, in particular, the edge {u1, u2} does not exist. Thus u1

has a neighbor u′
1 that lies not on the path Pu,vM1

and the
4-hop subtree rooted at u′

1 does not contain a marked node.
Further, note that the 4-hop subtree rooted at u′

1 is part of the
subtree rooted at u as u′

1 must be a child of u1 in T: Assume
u′
1 is not a child of u1, that is it is on level t+1 of the BFS tree.

Then {vT , vM1}, {vT , vM2}, Pu,vM1
, Pu,vM2

and Pv′,u′
1
, Pv′,u ,

{u1, u′
1} induce a small DCC where v′ is the least common

ancestor of u and u′
1. Hence Lemma 6, (2) implies that the

4-hop subtree rooted at u′
1 contributes at least 4 unmarked

nodes to Tt+6.
Case d(u) = 1. First consider the case that u has amarked

neighbor: Let u′ be the single child of u in T. If the 5-hop
subtree rooted at u′ does not contain a marked node it con-
tributes at least 4 nodes to Tt+6(v) due to Lemma 6, (2).
So assume that it contains a marked node vM2 and let vM1

be the marked neighbor of u. Note that vM1 �= vM2 as the
subtree rooted at u′ does not contain vM1 . Then u′ cannot be
a neighbor of vM1 as otherwise D := {u, vM1}, {vM1 , vT },
{vT , vM2}, and Pu′,vM2

induces a small DCC. u′ can also not
have another neighbor u′′ on level t + 1 of the BFS tree as
then D together with {u′, u′′}, Pv′,u, Pv′,u′′ induces a small
DCC where v′ is the least common ancestor of u and u′′.
Thus u′ has a further child w that does not lie on the path
Pu′,vM2

and the 4-hop subtree rooted at w does not contain
any marked nodes. Hence Lemma 6, (2) implies that this
subtree contributes at least 4 nodes to Tt+6.

If u has no marked neighbor, the 6-hop subtree rooted
at u may contain a marked node. If the subtree does not
contain a marked node, it contributes at least (� − 1)3 = 8
nodes to Tt+6 due to Lemma 6, (2). If the subtree rooted
at u contains a marked node let u′ be the unique neighbor
on level t that u must have. We show that the 6-hop subtree

123



248 M. Ghaffari et al.

rooted at u′ does not contain a marked node: Let vM1 be the
marked node in the subtree of u created by T -node vT . The
subtree rooted at u′ cannot contain vM1 as otherwise Pu,vM1

,
Pu′,vM1

, {u, u′}, Pv′,u, Pv′,u′ induces a small DCC where v′
is the least common ancestor of u and u′. The subtree also
cannot contain a marked node that stems from any T -node
other than vT due to b = 15. Thus let vM2 be the other
marked node that vT created. Node vM2 cannot be a node in
the 6-hop subtree rooted at u′ because then Pu,vM1

, {vM1, vT },
{vM2 , vT }, Pu′,vM2

, {u, u′}, Pv′,u, Pv′,u′ induces a small DCC
where v′ is the least common ancestor of u and u′. Hence
the 6-hop subtree rooted at u′ does not contain any marked
nodes and contributes 8 nodes to Tt+6(v) due to Lemma 6,
(2). Therefore u and u′ together contribute at least 8 nodes
to Tt+6(v).

Case d(u) = 0. Node u must have one marked neighbor
(on level t + 1), one parent and one unmarked neighbor u′
on level t of the BFS tree. The 6-hop subtree rooted at u′
does not contain a marked node: Assume that it does contain
a marked node vM2 and let vM1 be the marked neighbor of
u. First note that vM1 �= vM2 and let vT be the T -node that
marked both nodes. Let v′ be the least common ancestor
of u and u′. Then Pv′,u, Pv′,u′ , {u, u′}, {u, vM1}, {vM1 , vT },
{vT , vM2}, and PvM2 ,u′ induces a small DCC, a contradiction.

Then Lemma 6, (2) implies that the 6-hop subtree rooted
at u′ contributes at least (� − 1)3 = 8 unmarked nodes on
level t + 6, that is, u and u′ together contribute at least 8
nodes.

In every case we obtain at least 4 unmarked reachable
nodes on level Tt+6 per node on level Tt , which proves the
claim. ��

2.4 A simplified proof for the distributed Brooks’
theorem

Panconesi and Srinivasan proved a distributed version of
Brooks’ Theorem (cf. Theorem 4). The goal of this section
is to provide a simplified proof of the result. We begin by
observing that if a graph does not have any small degree-
choosable components, it is locally expanding. This result
is easier to prove than Lemma 5 as it does not include the
marking process.

Lemma 8 Let G be a graph and v ∈ V (G) be a node
such that inside the r-radius neighborhood of v there are
no degree-choosable components and every node has degree
�. Then for each even r there are at least (� − 1)r/2 nodes
at distance r from v.

Proof Consider the BFS tree around node v. The 1-hop
neighborhood of v consists of � nodes that form disjoint
cliques due to Lemma 2. As not all neighbors can form a sin-
gle clique each such neighbor has at least one edge to level
two of the BFS tree. This implies that |B2(v)| ≥ � ≥ �−1.

Now consider some level t . For each node u ∈ Bt (v),
we get via Lemma 3 that the number of descendants of u in
Bt+2(v) is at least

∑

u′∈N+(u)

d(u′) ≥ d(u)(� − d(u)) ≥ � − 1.

Since each node has a unique ancestor in the BFS tree, we
get that

|Bt+2(v)| ≥ (� − 1)|Bt (v)| ��
Now we can use previous lemmas to show that the uncol-

ored node in the statement of Theorem 4 can fix its color as it
sees a degree-choosable component or a node of degree< �

inside its O(log� n)-neighborhood.

Lemma 9 Let G be a graph with maximum degree � ≥
3. The (2 log�−1 n)-neighborhood of any node contains a
degree-choosable component or it contains a node of degree
smaller than �.

Proof Fix a node v ∈ V (G) and assume that its r =
2 log�−1 n neighborhood does not contain a degree-choos-
able component and that nodes in this neighborhood have
degree �. By Lemma 8, the BFS tree has |Br (v)| ≥ (� −
1)r/2 ≥ n nodes. Therefore the BFS tree cannot expand, and
there is an edge to a lower level of BFS(v) from Br (v), or
there is a node of degree < � in Br (v). ��

Now we are ready for the proof of the distributed Brooks’
theorem.

Proof of Theorem 4 Let c denote the partial coloring G, with
c(v) = ⊥. We say that v has a token. We can always do the
following operation: let u be an arbitrary neighbor of v. If
v does not have a free color, that is, all of its � neighbors
have � different colors, then we can move the token to u
and color the node v with color c(u). If v has a free color, it
can choose that color and the token is eliminated. Now, if the
(2 log�−1 n)-neighborhood of v contains a node of smaller
degree, we can move the token to that node, and it is guar-
anteed to have a free color. Now assume that no such node
exists. By Lemma 9, there exists a degree-choosable compo-
nent in the (2 log�−1 n)-neighborhood of v. Let u be one of
the closest nodes to v in the degree-choosable component B.
We move the token from v to u by the shortest path. Next we
uncolor the whole B. By definition there exists a �-coloring
of B compatible with the existing coloring in the rest of the
graph. ��
Remark 1 Theorem 4 implies an SL OC AL(O(log� n))

algorithm (see [21] for the model). This combined with [21,
Theorem 1.11] immediately implies the existence of a ran-
domized polylogarithmic round algorithm for �-coloring.
Note that [31] explicitly gives such an algorithm and we pro-
vide a faster randomized algorithm in Theorem 1.

123



Improved distributed�-coloring 249

3 Algorithmic preliminaries and notation

Given a subset C ⊆ V of nodes of a graph G = (V , E), C
has weak diameter d if dG(v,w) ≤ d for all v,w ∈ C .

Definition 4 (Network Decomposition [3]) A weak
(
d(n),

c(n)
)
-network-decomposition of an n-node graph G =

(V , E) is a partition of V into clusters such that each clus-
ter has weak diameter at most d(n) and the cluster graph is
properly colored with colors 1, . . . , c(n).

One can compute a decomposition with d(n), c(n) =
2O(

√
log n) in 2O(

√
log n) rounds [30].

In the (deg+1) list coloring problem each node v has a
list L(v) of available colors with |L(v)| ≥ deg(v) + 1. The
objective is to properly color the graph such that each node
picks a color from its list.

Theorem 6 [18] + [5] There is a deterministic distributed
algorithm that solves the (deg+1) list coloring problem in
time O

(√
� log� · log∗ �

)
given a O(�2) coloring of the

graph.

By iterating through the color classes and greedily picking
colors we obtain the following.

Theorem 7 [30] Given a weak
(
d(n), c(n)

)
-network-

decomposition one can solve the (deg+1) list coloring prob-
lem in time O(c(n) · (d(n) + 1)). In particular (deg+1) list
coloring can be solved in 2O(

√
log n) rounds.

Theorem 8 (List Coloring [20]) There is a randomized dis-
tributed algorithm that solves the (deg+1)-list coloring
problem in O

(
log� + 2O(

√
log log n)

)
rounds.

For some graph G and an integer R ≥ 1, we define G R =
(V (G), {{u, v} | distG(u, v) ≤ R}). An (α, β) ruling set of
a graph G is a subset M ⊆ V (G) of the nodes such that
dist(v, M \ {v}) ≥ α for all v ∈ M and dist(v, M) ≤ β for
all v ∈ V . If α = 1, we also omit the parameter speak of
β-ruling sets. Usually, when computing a ruling set it comes
with a so called ruling forest.

Definition 5 (Ruling Forest, [3]) Given a graph G = (V , E)

and a set V ′ ⊆ V , we say that a forest Fr = (Vr , Er ) with
Vr ⊇ V ′ is an (α, β)-ruling forest with respect to V ′ if the
following conditions holds:

1. The root of the trees, i.e., the connected components of
Fr , are in V ′,

2. the distance in G between any two roots is ≥ α,
3. the depth of each tree in the forest is ≤ β.

Note that by definition the forest Fr spans its vertex set Vr .
The following lemma summarizes the known distributed rul-
ing set algorithms that we use.

Lemma 10 For any integers k, β ≥ 1 there are the following
ruling set algorithms.

1. (2, β) in time O(β�2/β + log∗ n) [34]
2. (k, k2β) in time O(k2 · β�2/β + k · log∗ n) [34] + [7]
3. (2, O(log log n)) in time O(log log n) [19] + [34]
4. (2, β) in time O(log1/β �) + 2O(

√
log log n) [20]

5. (2, 1) in time 2O(
√
log n) [3,30]

Algorithms (1), (2), and (5) are deterministic, algorithms
(3) and (4) are randomized.

Proof We only provide a proof for the deterministic (k, k2β)

algorithm which is alike the words in [7, Section 1.1]. Con-
sider Gk−1 and note that the maximum degree of Gk−1 can
be upper bounded by�k . Then apply Lemma 10 (1) on Gk−1

with β ′ = kβ. Note that each step of the algorithm can be
executed in k steps in G leading to a running time of

O(k · (β ′�2k/β ′ + log∗ n)) = O(k2 · β�2/β + k · log∗ n).
��

4 Deterministic1-coloring (Theorem 3)

In this section we present our deterministic�-coloring algo-
rithm, exemplifying our layering technique.

Layering Technique. In the layering technique there is a
carefully chosen base layer B0 that is easy to color and layers
B1, . . . , Bs where Bi consists of the nodes in distance i to
B0. This is particularly helpful for �-coloring as we can �-
color the layers in reverse order while respecting the colored
neighbors in layers with a larger index. To �-color layer
Bi , i �= 0 we need to solve a (deg+1) list coloring on the
graph G[Bi ]: A node v ∈ Bi builds its list by removing the
colors of neighbors in Bi+1∪. . .∪Bs from the set {1, . . . ,�}.
The size of this list is at least degG[Bi ](v) + 1 as v has one
neighbor in layer Bi−1. Then layer B0 is colored after all
other layers with different techniques as�-coloring B0 while
respecting already colored neighbors might not be a deg+1
list coloring instance. To make sure that we can still �-color
B0 efficiently (we might have to recolor previously colored
nodes) it has to be chosen carefully. Also consult Fig. 4 for
an illustration of the technique.

The deterministic algorithm in this section uses the lay-
ering technique in a simple setting with O(log2 n) layers.
The layer B0 is chosen to be a ruling set in which nodes
have large distances such that Theorem 4 can be applied to
color the nodes in B0 independently and in parallel. The total
running time is dominated by the O(log2 n) iterations of list
coloring due to the layering technique.

Algorithm. First, color all nodes of G with O(�2) colors
with Linial’s algorithm [25]. These colors are only used for
symmetry breaking when applying list coloring algorithms

123



250 M. Ghaffari et al.

Fig. 4 The layering technique:
First, the base layer is removed,
then neighbors of the base layer
are removed, then their
neighbors and so on. Attention!
The base layer in the illustrated
example is build as in our main
algorithm in Sect. 5 and consists
of degree choosable
components. To illustrate the
technique in the setting of
Sect. 4 simply assume that each
component of the base layer
consists of a single node. This
illustration only shows one
connected component of the
base layer and in general the
illustrated layer building starts
at several places of the graph
(wherever nodes are in the base
layer) at the same time

and do not coincide with the desired �-coloring. Let R :=
4 log�−1 n + 1 ≤ 7 log n/ log� and z = 4 · R2.

1. (Build layer B0) Compute a (R, z) ruling forest of G with
Lemma 10, (2). Add all nodes of the ruling set to layer
B0 ⊆ V .

2. (Remove layers B0, . . . , Bz) Define layers B1, . . . , Bz

where v ∈ Bi if the distance of v to B0 is i . Remove
all layers from the graph.

3. (Color layers Bz, . . . , B1) Add the layers Bz, . . . , B1 to
the graph one by one: When adding layer Bi color the
nodes of Bi such that G↑i = G[⋃z

j=i B j ] is validly
�-colored. Step i = z, . . . , 1 is a deg+1 list coloring
instance on Gi = G[Bi ] because a node v ∈ Bi has an
uncolored neighbor in Bi−1 . We use Theorem 6 to solve
each list coloring instance.

4. (Color layer B0) Use Theorem 4 to independently color
the nodes in B0 through recoloring nodes within distance
at most 2 log�−1 n < R/2.

Proof of Theorem 3 By the definition of a ruling set every
node of G is in distance at most z from its root in the ruling
forest. Thus every node is contained in the z + 1 layers and
is colored.

We formally show that coloring each layer is an instance
of deg+1 list coloring in the graph Gi . Assume that we are

in step i and want to color the nodes of Bi such that G↑i is
validly �-colored. Pick a node v ∈ Bi . The list of available
colors of v is {1, . . . ,�} \ Fv where Fv is the set of colors
that have already been chosen by v’s colored neighbors in
G↑i . The size of Fv is at most degG↑i

(v) − degGi
(v). The

degree degG↑i
(v) is upper bounded by�−1 because at least

one of v’s neighbors in G is contained in Bi−1. Thus the
list of available colors of v has size at least � − |Fv| ≥
� − (degG↑i

(v) − degGi
(v)) ≥ degGi

(v) + 1 .

The running time of the first and second step is O
(
R2 ·√

� + R · log∗ n + z + log∗ n
) = O

(
R2 · √

�
)
. The third

step takes O(
√

� log� log∗ �) rounds for each of the z =
O(R2) = O(log2� n) iterations. The fourth step takes O(R)

rounds. In total, the running time is dominated by the third
step. ��

The following theorem appeared as [31, Theorem 5]. Our
techniques can be used to give an alternative proof.

Theorem 9 ([31], rephrased, reproved) Nice graphs can be
�-colored deterministically in the distributed model of com-
putation in 2O(

√
log n) rounds.

Algorithm.

1. (Build layer B0) Define R as R = 4 log�−1 n + 1 ≤
7 log n/ log� and compute a

(
2O(

√
log n), 2O(

√
log n)

)
net-

123



Improved distributed�-coloring 251

work decomposition of G R with [30]. Then compute an
(R, R +1) ruling set with the help of the network decom-
position in 2O(

√
log n) rounds. Let B0 be the nodes in the

ruling set.
2. (Remove layers B0, . . . , Bz) Define layers B1, . . . , Bz

where z = R + 1 and v ∈ Bi if the distance of v to
B0 is i . Remove all layers from the graph.

3. (Color layers Bz, . . . , B1) Add the layers Bz, . . . , B1 to
the graph one by one: When adding layer Bi color the
nodes of Bi such that G↑i = G[⋃z

j=i B j ] is validly
�-colored. Step i = z, . . . , 1 is a deg+1 list coloring
instance on Gi = G[Bi ] because a node v ∈ Bi has
an uncolored neighbor in Bi−1. Use the network decom-
position to solve the list colorings (note that a network
decomposition of G R is also a network decomposition of
G with an R factor increase in the diameter of the clus-
ters).

4. (Color layer B0) Use Theorem 4 to independently color
the nodes in B0 through recoloring nodes in distance at
most 2 log�−1 n < R/2.

Proof The proof of correctness is along similar lines as the
proof of Theorem 3. The running time of the third step dom-
inates and is O

(
z · 2O(

√
log n)

) = 2O(
√
log n). ��

5 Randomized1-coloring
(Theorems 1 and 2)

The randomized algorithm is split into two slightly different
versions based on �: one version can handle any � ≥ 4
and the other any 3 ≤ � = O(1). We refer to these two
versions as the large-� version and the small-� version. In
this section we present the algorithms of Theorems 1, 2 and
their proofs. We recommend to read the algorithms in a top-
down manner beginning with the captions of the respective
parts.

Both variants share the same basic structure. We decom-
pose the graph into layers B0, . . . , Bs, C0, . . . , C2r (and in
some cases also layers D0, . . . , Dα) of nodes such that all
nodes are either colored or are in one of the layers. Then,
the layers are iteratively colored in the reverse order that
they were built. Coloring a single layer requires solving a
(deg+1)-list coloring instance since we will guarantee that
each node has an uncolored neighbor in a lower layer.

In Phase I we build layers B0, . . . , Bs : we identify the
dense parts of the graph – the parts which are easy to color
after the rest of the graph has been colored.2 These are

2 Dense in the sense that the part has a small DCCs that by definition
can be colored easily after everything else is colored. The term dense
is inspired as the expansion results in Sect. 2 show that parts without
DCCs are in some sense sparse.

removed from the graph, along with the nodes around them,
to be colored later. Let H denote the remaining graph.

In Phase II we extract layersC0, . . . , C2r from H : Phase I
guarantees that H does not contain any dense parts, and there-
fore the remaining graph must expand. We take advantage of
this by randomly inserting slack into the graph. This means
that we pick a set of well-separated nodes and color two of
their neighbors with the same color: these nodes now effec-
tively have decreased their degree and will be easy to color
later. We again remove the nodes with slack along with the
nodes around them to be colored later. Due to the expansion
of H we can prove that the probability of each node to remain
after this process is small.

Actually, in the small-� case we prove by union bound
that with high probability no node remains after this process.
In the large-� case we show that the graph formed by the
remaining nodes has shattered: remaining connected com-
ponents are of small size and can be colored efficiently with
a similar layering technique using layers D0, . . . , Dα (cf.
Phase (6) in Sect. 5.1).

In Phase III we color the layers C0, . . . , C2r in reverse
order. Then, in Phase IV, we color the layers B1, . . . , Bs

in the reverse order. By definition B0 consists of (dense)
parts that are easy to color if the remaining graph is colored,
actually B0 consists of independent DCCs and we can color
the components of B0 at the very end.

5.1 The randomized1-coloring algorithms

First, we remove all degree-choosable components of radius
r or less from the graph. This implies that the graph must
expand locally (Lemma 9). The two versions differ in the
radius r : in the small version we choose r = O(log log n)

and in the large version r = O(1). Let b = 6 in the large
version and b = 15 in the small version. Set p = �−b.

First, color all nodes of G with O(�2) colors with
Linial’s algorithm [25]. These colors are only used for sym-
metry breaking when applying deterministic list coloring
algorithms and they in no way coincide with the desired �-
coloring.

I Removing Degree Choosable Components and Layers
around them

(1) Each node that is contained in at least one degree choos-
able subgraph with radius at most r selects one such
subgraph. Let GDCC be the virtual graph that has a node
for each selected degree choosable subgraph, and two
subgraphs in V (GDCC ) are connected in GDCC by an
edge if they share a vertex or if they are connected by
an edge in G. The graph GDCC has at most n nodes as
every node adds at most one degree choosable compo-

123



252 M. Ghaffari et al.

nent, maximum degree at most �2r+1 ≤ �3r , and one
round of a distributed algorithm in it can be simulated in
O(r) rounds in G.
Runtime for large �: O(r) = O(1).
Runtime for small �: O(r) = O(log log n).

(2) (Build layer B0) Find a (2, β) ruling set M of GDCC with
β = 6 · r . Add each node v ∈ V (G) that is contained in
a DCC C ∈ M to the base layer B0.
Runtime for large �: With Lemma 10, (4)
O

(
log1/β � + 2O(

√
log log n)

)
.

Runtime for small �: With Lemma 10, (3)
O(r · (O(log log n))) = O(log2 log n).

(3) (Remove layers B1, . . . , Bs) For s = β · (r + 1) define
layers B1, . . . , Bs . Layer Bi consists of the nodes of G
that have distance i (measured in G) from a node in B0.
Remove all layers B0, . . . , Bs from the graph.
Runtime for large �: O(s) = O(β · r) = O(1).
Runtime for small �: O(s) = O(β · r) =
O(log2 log n).

Note that (besides potentially some other nodes) all nodes
that are in a degree choosable component with radius at most
r are removed from the graph after phase (3).

II Shattering of the Remaining Graph

(4) (Random T -node creation) Consider the remaining
graph

H = G \ ( s⋃

i=0

Bi
)
.

Each node of H becomes selected independently with
probability p. Then, if there is another selected node
within distance b, both become unselected. If not, the
selected node picks a random pair of non-adjacent neig-
bors and colors them with color one. We call these
neighbors marked.
Runtime: O(1).

(5) (Remove layers C0, . . . , C2r ) We call a node happy if it
has an uncolored path to a T -node in its r -neighborhood.
By this definitionwe assign each happy node to its closest
T -node in its r -neighborhood.
We define the boundary of graph H as the set of nodes
with degree less than � in H . Nodes that are colored and
have distance at most r steps away from the boundary
now remove their color and each such node is assigned to
its closest boundary node, breaking ties using identifiers.
It might happen that a node v that is r ≤ � < 2r steps
away from the boundary was assigned to a nodew that is
at most r − 1 steps away from the boundary. Due to the
uncoloring w might not be a T -node anymore. However,

w is assigned to a node w′ on the boundary. Then there
is an uncolored path of length at most 2r from v to w′
through w and we assign v to w′ as well.
Define layersC0, . . . , C2r ,whereCi consists of the nodes
of H that are at distance i from their respective assigned
node. The layerC0 consists of T -nodes, and all nodes that
have degree < � in H . Remove the layers C0, . . . , C2r

and the marked nodes from the graph.
In Sect. 5.4 we show that in the algorithm for small�, all
nodes are removed after this phase with high probability.
Hence this algorithm proceeds directly to Phase (7).
Runtime for large �: O(r) = O(1).
Runtime for small �: O(r) = O(log log n).

(6) (Color Small Components) Consider the remaining graph
L = H \ (C0 ∪ . . . ∪ C2r ∪ C ′) where C ′ are the marked
nodes. In Sect. 5.2 we show that the probability for a
node of H to remain in L is small and then the standard
shattering technique (cf., e.g., [7] or Lemma 13) implies
that L consists of small connected components of size at
most N := poly� · log� n .
Section 5.3 explains in detail how to color these small
components if � ≥ 4. The core idea is to again handle
the small components by constructing layers D0, . . . , Dα

where α = O(log2 log n). Besides some other nodes
layer D0 contains the nodes that have an uncolored neigh-
bor in the layers C0∪C1∪ . . .∪C2r , i.e., they just did not
get removedbecause the closestT -nodewas a little bit too
far away. One can show that layer D0 contains at least one
node of each small component. However, then all nodes
of the component are in one of the layers, because, assum-
ing that a node v of a small component does not see a node
of the first few layers, the BFS tree of v within the com-
ponent expands so fast (basically due to Lemma 5) that it
sees the whole component in O(log� N ) = O(log log n)

hops, a contradiction.
Section 5.4 shows that for� = 3 this step can be omitted
and L does not contain any vertices.
Runtime for large �: 2O(

√
log log n) via Lemma 16.

Runtime for small �:
O

(√
� log� log∗ � · log2 log n

)
via Lemma 16

III Color Happy Nodes From the Shattering Process

(7) (Color layers C2r , . . . , C0) Assume that the remaining
small components are colored with� colors in Phase (6).
Go through the layers C2r , . . . , C0 grown in step (5)
in reverse order and �-color them one at a time while
respecting the colors of nodes that are already colored.
Coloring layer Ci corresponds to a (deg+1)-list color-
ing instance on H [Ci ], since for each i = 2r , . . . , 1 each
node has a neighbor at a lower level and the nodes in C0

have two neighbors of the same color.

123



Improved distributed�-coloring 253

Runtime for large �: O(log� + 2O(
√
log log n)) with

using Lemma 8 2r = O(1) times.
Runtime for small �: O(log log n(

√
� log� · log∗ �))

with using Theorem 6 2r times.

IV Color Degree Choosable Components and Layers
around them

(8) (Color layers Bs, . . . , B1) Go through the layers Bs, . . . ,

B1 grown in step (3) and color each layer with � col-
ors while respecting nodes colored previously: Coloring
layer Bi forms a (deg′ +1)-list coloring instance on
G[Bi ], since each node has an uncolored neighbor in
Bi−1.
Runtime for large �: O(log� + 2O(

√
log log n)) with

using Lemma 8 s = O(1) times.
Runtime for small �: O(log log n(

√
� log� · log∗ �))

with using Theorem 6 s times.
(9) (Color layer B0) Each connected component of layer B0

corresponds to one DCC in M (selected in step (2)). Thus
each connected component of B0 is �-list colorable and
of radius ≤ r . We find a coloring by brute forcing each
component independently.
Runtime for large �: O(r) = O(1).
Runtime for small �: O(r) = O(log log n).

Proof of Theorem 1 The runtime follows from summing up
the runtimes for small � of all phases and is dominated
by the runtime of phases (7) and (8) in which we need to
solve O(r + s) = O(log2 log n) list coloring instances in
O(

√
� log� log∗ �) rounds each. Solving the small com-

ponents in phase (6) also has a significant contribution and
can be done in O(

√
� log� log∗ � · log2 log n) rounds via

Lemma 16 if � ≥ 4. If � = 3 then Sect. 5.4 shows that
phase (6) can be omitted as L is the empty graph. The ruling
set in phase (2) can be found in O(log2 log n) rounds. All
other phases take at most O(r + s) = O(log2 log n) rounds.

All nodes are colored at the end because any nodes that is
in none of the layers

B0, . . . , BS, C0, . . . , C2r , C ′

is contained in a ’small component’ and colored in phase
(6), w.h.p. In Sects. 5.2 and 5.3 we prove that this is indeed
the case for � ≥ 4. For � = 3 we show in Sect. 5.4 that
the aforementioned layers already contain all vertices of the
graph w.h.p, that is, w.h.p. the graph L defined in phase (6)
does not have any vertices. ��
Proof of Theorem 2 The runtime follows from summing up
the runtimes for large � of all phases and is dominated by
the runtime of phases (7) and (8) in which we need to solve
O(r + s) = O(1) list coloring instances in O(log�) +

2O(
√
log log n) rounds. Solving the small components in phase

(6) also has a significant contribution and can be done in
2O(

√
log log n) rounds via Lemma 16. The ruling set in phase

(2) can be found in O(log�)+2O(
√
log log n) rounds.All other

phases take O(r) = O(1) rounds.
All nodes are colored at the end because any nodes that is

in none of the layers

B0, . . . , BS, C0, . . . , C2r , C ′

is contained in a ‘small component’ and colored in phase (6),
w.h.p. In Sects. 5.2 and 5.3 we prove that this is indeed the
case. ��

5.2 Shattering of the remaining graph (phases
(4)–(6))

In this section we show that the process of phase (4)
and (5) produces a graph with remaining components of size
O(poly(�) · log n). In Section 5.3 we show how to color
these small components fast. The nodes that are put into the
layers in phase (5) are colored later in phase (7).

For a node v let Ev be the event that v is removed in the
graph in phases (4)–(5). Let t be the radius such that the event
Ev only depends on the random bits of nodes in radius t of v.
The standard shattering technique (cf. Lemma 13) shows that
the connected components of non-removed nodes are small if
the probability of Ev is upper bounded by 1/poly(�) where
the polynomial depends on the radius t .

To show that the probability of Ev is small enough we
show that the BFS tree of uncolored nodes around v expands
exponentially. Thus after O(1) steps of expansion we see
uncolored paths to enough nodes that independently form a
T -node with probability 	(p) and the probability that none
of them actually is a T -node will be at most 1/poly(�) for
a sufficiently small polynomial.

Now, we upper bound the probability that a given node
does not become happy after the shattering process. Due to
Lemma 5 the BFS tree around a node expands deterministi-
cally even after the marking process which implies the next
lemma.

Lemma 11 For every 0 < t ≤ r and after the selection and
marking process the t-neighborhood of every node v contains
a boundary node or a set of nodes Sv with the following
properties:

1. |Sv| ≥ (� − 2)t/2 · �−6,
2. all nodes in Sv are reachable through uncolored nodes

from v,
3. for each u ∈ Sv the probability that it is selected and

creates a T -node that does not block the path to v is at
least 1/3 · p(1 − p)�

6
. The events are independent for

distinct u ∈ Sv ,

123



254 M. Ghaffari et al.

Fig. 5 The creation of T -nodes in Phase (4). Note that the top right
T -node is not reachable from the blue node in the center through a path
of unmarked nodes. To be removed in the layer creation around the
T -nodes it is essential that a T -node is reachable through an unmarked
path. The image is also helpful to get an understanding of how the locally

Gallai tree like graph H looks like (a tree of cliques and odd cycles).
However, note that certain edges are left out to simplify the illustra-
tion. In the right hand side illustration you can see how the T -node is
removed from the layer creation around the T -node because it has a
short path of unmarked nodes to the T -node node.

4. For each u ∈ Sv the event that it forms a T -node of the
above type only depends on the random bits of nodes in
radius t + 7 around v.

Proof For a fixed node and due to Lemma 5 the BFS tree
around v restricted to unmarked nodes contains at least (�−
2)t/2 nodes on level t or we encounter a T -node. Let Av be
the set of these nodes. For each node u ∈ Av whose children
in the BFS tree form a � − 1 clique we remove u from Av

and add one of its children u′ in the BFS tree to Av . As the
child has the � − 2 nodes of the clique on its own level and
u as parent it has only one child in the BFS tree. Thus the
children of u′ in the BFS tree cannot form a � − 1 clique.
Furthermore, u′ is distinct from all other nodes in Av as the
BFS tree is unique.

Now, we greedily add nodes of Av to Sv . When we add a
node u ∈ Av to Sv we remove the nodes from Av that are in
the 6-neighborhood of u; these are at most �6 many. Thus
the size of Sv is at least |Av| · �−6 = (� − 2)t/2 · �−6 and
nodes in Sv have pairwise distance at least 7.

We now compute the probability that a node u ∈ Sv is
selected and creates a T -node that does not block the path to
v. To ensure that the path to v is not blocked we (1) condition
on the event that certain nodes in the BFS tree around v are
not uncolored (through the usage of Lemma 5) and (2) we
ensure that none of the two nodes that u colors is the single
neighbor u′ of u that lies on the unique path in the BFS tree
to v. Node u is selected with probability p and stays selected
if no neighbor in its 6-neighborhood is selected, i.e., at least

with probability (1− p)�
6
. As u does not have a�−1 clique

on the next level of the BFS tree there are at least two non
adjacent neighbors u1 and u2 of u that are distinct from u′.
So the probability that u does not mark u′ is at least 1/3.

In this whole process we expanded for t steps to obtain
the set Av . The set Sv contains nodes in distance at most
t + 1 from v and we use that nodes in distance 6 to nodes
in Sv are not selected, i.e., the probabilities only depend on
the t + 7 radius of v. The event whether distinct nodes in Sv

can generate T−nodes are independent as they have pairwise
distance at least 7. ��

For any node v Lemma 11 provides a large set of indepen-
dent nodes that have uncolored paths to v. Thus we can upper
bound the probability that a node remains after the shattering
process.

Lemma 12 (Shattering Probability) Let � ≥ 4. There is an
r = O(1) such that every node finds an uncolored path of
length at most r − 7 to a T -node with probability at least

1−( 1
�

)4r+4
using only the randomness in its t neighborhood.

The constant r is independent from the graph (including its
size).

Proof Let v be a node in H . Apply Lemma 11 with t = r −7
and obtain a set Sv in which each node independently forms
a T -node that is reachable from v through an uncolored path
with probability 1/3 · p(1 − p)�

6
. The probability that v

remains after phase (5) is upper bounded by

(
1 − 1

3
p(1 − p)�

6
)|Sv |

≤ e− |Sv |
3 p(1−p)�

6

123



Improved distributed�-coloring 255

= e− (�−2)t/2 ·�−12
12

(∗)≤ �−4t−32 ,

where (∗) is satisfied if the exponent−(�−2)t/2 ·�−12/12 is
smaller than−(4t+32)·ln�which holds for some t = O(1)
and implies an r = O(1) that is independent from v and the
graph, in particular r can be chosen independently from the
graph size n. ��

The following lemma is the most important result of the
standard shattering technique.

Lemma 13 (The Shattering Lemma, [17], cf. [7]) Let H =
(V , E) be a graph with maximum degree �. Consider a
process which generates a random subset B ⊆ V where
P(v ∈ B) ≤ �−c1 , for some constant c1 ≥ 1, and that the
random variables 1(v ∈ B) depend only on the randomness
of nodes within at most c2 hops from v, for all v ∈ V , for
some constant c2 ≥ 1. Moreover, let Z = H [2c2+1, 4c2+2]
be the graph which contains an edge between u and v iff their
distance in H is between 2c2+1 and 4c2+2. Let L = H [B].
Then with probability at least 1 − n−c3 , for any constant c3
satisfying c1 > c3 + 4c2 + 2, we have the following three
properties:

(P1) Z [B] has no connected component U with |U | ≥
log� n.

(P2) Each connected component of L has size at most
O(log� n · �2c2�).

(P3) L admits a (λ, O(log1/λ n·log2 log n))network decom-
position, for any integer λ ≥ 1, which can be
computed by a randomized algorithm in O

(
λ log1/λ n ·

2O(
√
log log n)

)
rounds, w.h.p.

(P4) for any R ≥ 1 there is a randomized algorithm to
compute a

(
2O(

√
log log n), R · 2O(

√
log log n)

)
network

decomposition of L R in O(R · 2O(
√
log log n)) rounds,

w.h.p.

Proof (P1)–(P3) are proven in [17]. The proof of (P4) is
along similar lines as the proof of (P3) in [17] and we only
provide a sketch here: First one computes a ruling set M with
parameters

(
2c2 + 1,	(log log n)

)
on L R with the random-

ized algorithm Lemma 10, (3). Similar to the arguments in
[7, Section 3.2, Step 3/4] this ruling set has, if restricted to
a single connected component of L , at most log� n nodes.
Now, we assign each node of the connected components to
the closest ruling set node and form a cluster graph. Two
clusters in this cluster graph are connected if they have two
nodes that are neighbors in the original network. On this clus-
ter graph and for each component in parallel we perform the
deterministic network decomposition algorithm from [30]
to compute a

(
2O(

√
log N ), 2O(

√
log N )

)
for each cluster graph

where N = O(log� n) is an upper bound on the size of
each cluster graph. The runtime of the network decompo-
sition depends on the size of the id space of the nodes and
[7, Remark 3.5] explains how to compute a new id space for
each cluster graph. As one round on the cluster graph can be
executed in O

(
R · log log n

)
rounds in H the runtime of this

step is R ·2O(
√
log N ) = R ·2O(

√
log log n). To obtain a network

decomposition of L R we add each non ruling set node of B
to the cluster of its closest ruling set node. This increases the
diameter of each cluster by at most a factor 	(log log n). ��
Remark 2 The computation of the single network decompo-
sition in (P3) (or in (P4)) only uses randomness for the
ruling set computation in the first step. In contrast to the deter-
ministic network decomposition algorithm that is computed
on each component separately and in parallel this random-
ized step is not performed on each component separately but
on the whole graph. In particular its runtime and failure prob-
ability depend on n where n is the size of the original graph.
Furthermore, the ruling set algorithm does not require that
the components of size N are also equipped with an ID space
of size poly N , but works with the ID space of the original
graph. The same holds for the network decompositions and
ruling sets that are computed to color the small components
(cf. Section 5.3).

Lemma 12, 13 imply that the graph L that remains after
phase (5) consists of connected components of size at most
poly�·log� n. Section 5.3 explains in detail how these com-
ponents can be�-colored while respecting the nodes colored
with color one in phase (4).

5.3 Shattering: coloring small remaining
components (phase (6))

Wenowexplain howone can solve the small components that
are left after the shattering process. Let C be a small compo-
nent with size at most N := poly(�) · log� n. Call a node in
C free if it has degree < � or at least one neighbor outside
of C that is not colored with the first color after the shat-
tering process. We color the nodes of C with the following
algorithm where R = 2 log�−2 N + 1 = O(log log n). The
algorithm is explained from the view of a single component.

(1) Each free node selects itself. Further, each node that is
contained in at least one DCC with radius at most R
selects one of these subgraphs. Let CDCC be the virtual
graph that has a node for each selected node and degree
choosable subgraph. Any two subgraphs (or nodes) of
CDCC are connected in CDCC if they share a vertex or
are connected by an edge in G. The maximum degree
of CDCC is min{N , O(�O(R))} and it has at most |C | =
N nodes. One round of an algorithm on CDCC can be
executed in O(R) steps in G.

123



256 M. Ghaffari et al.

(2) Find a (2, γ ) ruling set M ′ of CDCC where γ = O(R)

such that �(CDCC )2/γ ≤ �1/2.
Runtime for large �: Compute a

(
2O(

√
log log n), 4R ·

2O(
√
log log n)

)
network decomposition of L4R with

Lemma 13 (P4). Then each node assigns its color in
this network decomposition to its corresponding selected
node in CDCC . This results in a

(
2O(

√
log log n), 4R ·

2O(
√
log log n)

) = (
2O(

√
log log n), 2O(

√
log log n)

)
network

decomposition of CDCC . Then iterate through the colors
of the network decomposition to compute the ruling set
in time O

(
R · 2O(

√
log log n)

) = 2O(
√
log log n).

Runtime for small�: Use Lemma 10, (1) in time O
(
R ·

γ · �(CDCC )2/γ + log∗ n
) = O

(
log2 log n · √

�
)
.

(3) For i = 0, . . . , γ ·(R+1)+ R define layers Di where Di

consists of the nodes that are at distance i to the closest
node that is contained in a component in M ′.
Runtime: O(R2) = O(log2 log n).

(4) We color the layers in order i = γ · (R + 1) + R, . . . , 1;
each layer is a deg+1 list coloring instance. There are
R2 + 2R layers and we obtain the following runtimes.
Runtime for large�: In time O((R2+2R)·2O(

√
log log n))

= 2O(
√
log log n) via computing a single network decom-

position for C with Lemma 13, (P3).
Runtime for small�: Ifwefirst useLinial’s algorithm to
compute a O(�2) coloring the running time is O

(
(R2 +

2R) · √
� log� · log∗ �

) = O
(
log2 log n

√
� log� ·

log∗ �
)
with Theorem 6.

(5) Now, we color the nodes that are in D0. Each DCC
is brute-forced independently in time O(R). Each free
node in D0 can be colored in a single time unit as it has
one uncolored neighbor outside the component it has a
free color.
Runtime: O(R) = O(log log n).

Lemma 14 If D0 is not empty each node of the component is
in one of the layers.

Proof The layers D0, . . . , Dγ ·(R+1) contain all free nodes, all
nodes that are in a DCC with radius at most R and all nodes
that have degree smaller �. The layers D0, . . . , Dγ ·(R+1)+R

additionally contain the nodes that have such a DCC or such
a node in distance at most R. To show that all nodes are
removed we assume that there is a node v ∈ C that is in
none of the layers. In particular it does not have a DCC or
a free node in distance R, all nodes in its R-neighborhood
have degree � or � − 1. As the R-neighborhood of v does
not contain a free node it can only hit the boundary of C
at colored nodes, i.e., its R-neighborhood can be obtained
from the marking process as described in Section 2.2. Thus
we can apply Lemma 5 and obtain that the BFS tree around
v and within the component expands and contains at least
(� − 2)R/2 > N nodes, a contradiction. ��

Lemma 15 D0 is not empty.

Proof Assume that D0 is empty. Let v be an arbitrary node
of C . Its R-neighborhood neither contains a DCC of radius
at most R nor a free node and all its nodes have degree � or
� − 1. As the R-neighborhood of v does not contain a free
node it can only hit the boundary ofC at colored nodes, i.e., its
R-neighborhood can be obtained from the marking process
as described in Sect. 2.2. Thus we can apply Lemma 5 and
obtain that the BFS tree around v and within the component
expands and contains at least (� − 2)R/2 > N nodes, a
contradiction as in the worst case the whole component is
a DCC (it cannot be an odd cycle due to � ≥ 4 and not a
(�−1)-clique; if it was a (�−1) clique and D0 is empty all
nodes have to be neighbors of the same marked node (due to
b = 6) which implies a �-clique, a contradiction). ��

The runtimes of the above algorithmprovide the following
lemma.

Lemma 16 Let � ≥ 4. Then the small components can,
w.h.p., be �-colored in time

min
{
2O(

√
log log n), O

(
log2 log n · √� log� log∗ �

)}
.

Proof Lemma 14, 15 imply that each node becomes colored.
The proof that coloring a single layer in phase (4) is a a
deg+1 list coloring instance is along similar lines as in the
proof of Theorem 3. The components and free nodes in D0

can be colored independently because they stem from the
independent set M ′. In both variants the runtime is dominated
by phase (4) step which implies the result. ��
Remark 3 The algorithm to solve the small components only
uses randomization to compute the network decomposition
(Lemma 13 and Remark 2).

5.4 Global success after marking process for small1
(no phase(6))

In this section we show that a vertex v ∈ V (H) is contained
inC0, . . . , C2r , C ′ w.h.p. if� = O(1). As nodes which have
an uncolored path of length ≤ 2r to a vertex of degree < �

will be contained in one of the layersC0, . . . , C2r we assume
throughout this section that v and all vertices reachable from
v through uncolored path of length at most r have degree �

in H .
Lemmas 5 and 7 imply that for � = O(1) and b = 15

we can choose an r = 	(log log n) such that for an arbi-
trarily large constant c, we have |Br (v)| ≥ c log� n after the
marking process.

Lemma 17 Let u be a node such that there is an unmarked,
unselected path from u to v. Then u or its child u′ become a
T -node of v with a constant probability.

123



Improved distributed�-coloring 257

Note that the following analysis is done for b = 15. For
� ≥ 4 we could equally well use b = 6 to optimize the
constants.

Proof Let u be a node such that there is an unmarked, uns-
elected path from v to u. In the following we consider the
2-hop neighborhood of u including marked nodes and natu-
rally extend the BFS-tree from v to u for 2 hops to u’s 2-hop
neighborhood.Wemake a case distinction depending on how
the children of u in this BFS tree are connected.

Case 1, the children of u do not form a clique: The chil-
dren of u form at least two distinct cliques (including single
nodes). Among all pairs of non-adjacent neighbors of u there
are at most�−1 pairs that include the parent of u and at least
� − 2 pairs that do not include the parent of u. Therefore,
if u is selected and does not back off due to another node
being selected in distance at most b, it actually chooses a
non-adjacent pair of neighbors that does not contain its par-
ent, i.e., that does not block the uncolored path to v, with
probability at least (� − 2)/(� − 2 + � − 1) ≥ 1/3. Thus
node u becomes a T -node for v with probability at least
p′ = (p/3)(1 − p)�

15 = 	(1), since � = O(1).
Case 2, the children of u form a clique: In this case node

u cannot become a T -node of v as it does not have two non-
adjacent neighbors that do not block the path to v. However,
u’s children must have a successor in the BFS tree, and there-
fore can become a T -node of v. We show that each child of
u becomes a T -node of v with constant probability. Let u′ be
one child of u and u′′ the unique child of u′. All children of
u form a clique and are connected to u′. If u′ is selected and
does not back off the only pairs of non adjacent neighbors
that u′ can select is u′′ and u, or u′′ and one of u’s children.
In neither case the uncolored path to v is blocked. With the
same reasoning as before u′ becomes a T -node of v with
constant probability.

The events that u or a child of u succeed are not indepen-
dent but are disjoint, so the claim holds. ��

Note that the event in Lemma 17 depends on randomness
at distance at most 16.

Lemma 18 The marking process generates a T -node for
every node of the remainder graph H with high probabil-
ity.

Proof Consider an arbitrary node v ∈ V (H). By Lemmas 5
and 7, for any c > 0 we can choose r = O(log log n) such
that at distance t from the root of any BFS tree, there are at
least c/p′�16 ln n nodes such that their path to u is unmarked
and unselected. From this set find a set S of nodes as in
Lemma 17, of size c/p′ ln n with pairwise distance of at least
16 and they can each produce a T -node for v with constant
probability p′.

The events that each u ∈ S become a T -node of v are
independent due to the pairwise distance of the nodes. Thus

no node of S becomes a T -node of v with probability at most

(1 − p′)c/p′ ln n ≤ e−c ln n ≤ n−c .

With a union bound over all nodes, all nodes of H are happy
with probability at least 1 − 1/nc−1. ��

6 Conclusion

Wehaveprovided several structural results for the�-coloring
(Sect. 2) that hopefully will be of use for future algorithmic
improvements to the problem. For constant degree graphs
we provided a deterministic algorithm with O(log2 n) round
complexity (Theorem 3) and a O(log log n) round random-
ized algorithm (Theorem 1) . The respective lower bounds
are�(log n) and�(log log n) and despite only a polynomial
difference between upper and lower bounds it remains an
intriguing open question whether the true complexity of the
problem is at the lower or the higher end.

After our submission, in a breakthrough result, Rozhoň
and Ghaffari [33] found a polylogarithmic deterministic
time algorithm to compute

(
poly logn,poly logn

)
network

decompositions. As one of many implications the runtime
of our deterministic �-coloring algorithm (for unbounded
degree) drops to poly logn and our randomized algorithm
for non-clique graphs with (unbounded) maximum degree
� ≥ 4 drops to O(log�) + poly log log n (Theorem 2).
Further, [24] provides an improved list coloring algorithm.
Combining it with the techniques in our paper [24] gives a
log3 n ·2O(

√
log�) round algorithm for�-coloring. Also [28]

provides improved list coloring algorithms, i.e., it shaves of
the O(log∗ �) term in Theorem 6 if the color space is at
most exponential in the maximum degree of the uncolored
graph. As a result the log∗ � term can also be removed in the
runtime of Theorems 1 and 3.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


258 M. Ghaffari et al.

References

1. Aboulker, P., Bonamy, M., Bousquet, N., Esperet, L.: Distributed
coloring in sparse graphs with fewer colors. In: Proceedings of the
2018 ACM Symposium on Principles of Distributed Computing,
PODC 2018, Egham, UK, 23–27, 2018, pp. 419–425 (2018)

2. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel
algorithm for the maximal independent set problem. J. Algorithms
7(4), 567–583 (1986)

3. Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network
decomposition and locality in distributed computation. In: Pro-
ceedings of 30th Symposium on Foundations of Computer Science
(FOCS 1989), pp. 364–369 (1989)

4. Barenboim, L., Elkin, M.: Distributed graph coloring: fundamen-
tals and recent developments. Synth. Lect. Distrib. Comput. Theory
4(1), 1–171 (2013)

5. Barenboim, L., Elkin, M., Goldenberg, U.: Locally-iterative dis-
tributed (�+1)-coloring below szegedy-vishwanathan barrier, and
applications to self-stabilization and to restricted-bandwidth mod-
els. In: Proceedings of 37th ACM Symposium on Principles of
Distributed Computing (PODC 2018) (to appear) (2018)

6. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality
of distributed symmetry breaking. In: Proceedings of 53rd Sym-
posium on Foundations of Computer Science (FOCS 2012), pp.
321–330 (2012)

7. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of
distributed symmetry breaking. J. ACM 63(3), 201–2045 (2016)

8. Bondy, J.A., Murty, U.: Graph Theory with Applications. Elsevier
(1976)

9. Brandt, S., Fischer, O., Hirvonen, J., Keller, B., Lempiäinen, T.,
Rybicki, J., Suomela, J., Uitto, J.: A lower bound for the distributed
Lovász local lemma. In: Proceedings of 48th ACM Symposium on
Theory of Computing (STOC 2016), pp. 479–488. ACM (2016)

10. Brooks, R.L.: On colouring the nodes of a network. Math. Proc.
Camb. Philos. Soc. 37(2), 194–197 (1941)

11. Leonard Brooks, R.: On colouring the nodes of a network. In: Clas-
sic Papers in Combinatorics, pp. 118–121. Springer (2009)

12. Chang, Y.-J., Kopelowitz, T., Pettie, S.: An exponential separa-
tion between randomized and deterministic complexity in the local
model. In: Proceedings of 57th Symposium on Foundations of
Computer Science (FOCS 2016), pp. 615–624. IEEE (2016)

13. Chang, Y.-J., Li, W., Pettie, S.: An optimal distributed (� + 1)-
coloring algorithm? In: Proceedings 50th ACM Symposium on
Theory of Computing (STOC 2018) (to appear) (2018)

14. Chechik, S., Mukhtar, D.: Optimal distributed coloring algorithms
for planar graphs in the local model. In: Proceedings of the ACM-
SIAMSymposiumonDiscreteAlgorithms (SODA), SODA’19, pp.
787–804 (2019)

15. Cranston, D.W., Rabern, L.: Brooks’ theorem and beyond. J. Graph
Theory 80(3), 199–225 (2015)

16. Erdős, P., Rubin, A., Taylor, H.: Choosability in graphs. In: Pro-
ceedings of West Coast Conference on Combinatorics, Graph
Theory and Computing, vol. 26, pp. 125–157. Congressus Numer-
antium (1979)

17. Fischer, M., Ghaffari, M.: Sublogarithmic distributed algorithms
for Lovász local lemma, and the complexity hierarchy. In: Proceed-
ings of the International Symposium on Distributed Computing
(DISC), pp. 18:1–18:16 (2017)

18. Fraigniaud, P., Heinrich,M., Kosowski, A.: Local conflict coloring.
In: Proceedings of 57th Symposium on Foundations of Computer
Science (FOCS 2016), pp. 625–634 (2016)

19. Gfeller, B., Vicari, E.: A randomized distributed algorithm for the
maximal independent set problem in growth-bounded graphs. In:
Proceedings of 26th ACMSymposium on Principles of Distributed
Computing (PODC 2007), pp. 53–60, NewYork, NY, USA (2007).
ACM

20. Ghaffari,M.: An improved distributed algorithm formaximal inde-
pendent set. In: Proceedings of 27th ACM-SIAM Symposium on
Discrete Algorithms (SODA 2016), pp. 270–277 (2016)

21. Ghaffari, M., Kuhn, F., Maus, Y.: On the complexity of local dis-
tributed graph problems. In: Proceedings of 49thACMSymposium
on Theory of Computing (STOC 2017), pp. 784–797. ACM (2017)

22. Ghaffari,M., Su, H.-H.: Distributed degree splitting, edge coloring,
and orientations. In: Proceedings of 28th ACM-SIAM Symposium
on Discrete Algorithms (SODA 2017), pp. 2505–2523. Society for
Industrial and Applied Mathematics (2017)

23. Harris, D.G., Schneider, J., Su, H.-H.: Distributed (�+1)-coloring
in sublogarithmic rounds. In: Proceedings of 48th ACM Sympo-
sium on Theory of Computing (STOC 2016) pp. 465–478. ACM
(2016)

24. Kuhn, F.: Faster deterministic distributed coloring through recur-
sive list coloring. In: Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 1244–1259 (2020)

25. Linial, N.: Locality in distributed graph algorithms. SIAM J. Com-
put. 21(1), 193–201 (1992)

26. Lovász, L.: Three short proofs in graph theory. J. Combin. Theory
Ser. B 19(3), 269–271 (1975)

27. Luby,M.: A simple parallel algorithm for themaximal independent
set problem. SIAM J. Comput. 15(4), 1036–1053 (1986)

28. Maus, Y., Tonoyan, T.: Local conflict coloring revisited: linial
for lists. In: Proceedings of the International Symposium on Dis-
tributed Computing (DISC), pp. 16:1–16:18 (2020)

29. Molloy, M., Reed, B.: Graph Colouring and the Probabilistic
Method, vol. 23. Springer (2013)

30. Panconesi, A., Srinivasan, A.: Improved distributed algorithms for
coloring and network decomposition problems. In: Proceedings of
24th ACM Symposium on Theory of Computing (STOC 1992),
pp. 581–592. ACM (1992)

31. Panconesi, A., Srinivasan, A.: The local nature of �-coloring and
its algorithmic applications. Combinatorica 15(2), 255–280 (1995)

32. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach.
SIAM (2000)

33. Rozhoň, V., Ghaffari, M.: Polylogarithmic-time deterministic net-
work decomposition and distributed derandomization. In: Proceed-
ings of the ACM Symposium on Theory of Computing (STOC),
pp. 350–363 (2020)

34. Schneider, J., Elkin, M., Wattenhofer, R.: Symmetry breaking
depending on the chromatic number or the neighborhood growth.
Theoret. Comput. Sci. 509, 40–50 (2013)

35. Vizing, V.: Vextex coloring with given colors. Metody Diskretn.
Anal. 29, 3–10 (1976)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Improved distributed Δ-coloring
	Abstract
	1 Introduction and related work
	1.1 Background and state of the art
	1.2 Our results
	1.3 Our methods
	1.4 Outline

	2 Graph colorability and structural results
	2.1 Gallai-trees and degree choosability
	2.2 Graphs with no small degree-choosable components
	2.3 Exponential expansion after the marking process
	2.4 A simplified proof for the distributed Brooks' theorem

	3 Algorithmic preliminaries and notation
	4 Deterministic Δ-coloring (Theorem 3)
	5 Randomized Δ-coloring  (Theorems 1 and 2)
	5.1 The randomized Δ-coloring algorithms
	5.2 Shattering of the remaining graph (phases (4)–(6))
	5.3 Shattering: coloring small remaining components (phase (6))
	5.4 Global success after marking process for small Δ (no phase(6))

	6 Conclusion
	References




