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Carbon emission leads to environmental and social consequences, which could be severe
in the emerging economies. Owing to the dilemma of emission and economic expansion, it
is necessary to achieve a more comprehensive understanding of the dynamic relationship
between economic growth and carbon emission. Multivariate Wavelet analysis is
introduced in addition to the decoupling analysis for BRICS countries. The decoupling
analysis detects an obvious trend of economic growth decoupling from carbon emission in
China, and generatesmixed results for the other countries. Estimates of wavelet coherency
suggest that BRICS countries have experienced different kinds of structural changes in
growth–emission nexus. Results of partial phase-difference and wavelet gain imply that
different resource endowments and growth paths lead to varied impact of economic
growth on carbon emission and time-varying characteristics of the causality relationship
over different frequencies. Energy structure and trade openness matter for anatomizing
this time-varying relationship. To succeed in the fight against climate change, the policy
makers need to pay serious attention to the dynamic impact of economic growth, energy
structure, and trade openness on carbon emission.
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INTRODUCTION

The climate change has been deemed as one of the most urgent issues that are confronted by the
humankind. It results in far-reaching and complex socioeconomic consequences (Dai et al., 2016;
Dottori et al., 2018; Pinsky et al., 2019). So far, a global consensus has been reached that the greenhouse
gas, especially CO2, causes climate change. Facing the threat of global warming to economic prosperity
and sustainability, the carbon emission reduction measures have been proposed as a response.

World economy is fueled largely by the fossil energy sources. The dilemma of environmental
degradation and economic growth needs to be handled to optimize the human welfare. The
decoupling indexes reflect a variety of different coupling states of carbon emission and
economic growth in the literature (Gao et al., 2015). Although this approach provides real-time
measure for the relationship between carbon emission and economic growth, the influence from
other important factors is left out of consideration. As a result, the decoupling analysis fails to reveal
the time-varying real effect of economic growth on carbon emission and to identify the evolving
impact from other crucial factors.

Besides the studies that have investigated the relationship between economic growth and carbon
emission, much attention has been paid on the impact of energy transition and international trade on
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emission emerges. That is because not only the quantity of
production output (GDP), but also the change in energy
sources and production distribution worldwide, which can be
proxied by energy structure and trade openness respectively, pose
a significant impact on carbon emission. Energy is a critical input
to economic development and an essential part of human activity.
The current world energy consumption is mainly based on fossil
fuel energy. Thus, the research on energy transition is of practical
importance (Wang and Wang, 2020). In the process of
globalization, there is no doubt that the change in one
country’s level of trade openness will reshape its production
distribution and industrial emission structure (Wang and
Zhang, 2021). Therefore, it is necessary to incorporate
variables that represent both the economic output itself and
the way to achieve it into the model.

The BRICS countries (Brazil, Russia, India, China, and South
Africa) are experiencing drastic economic transition and structural
change. The shifts in their energy structure and level of trade
openness are profound and influencing, which makes them
excellent samples for empirical investigation. This article
attaches importance to the effects of energy structure and trade
openness on carbon emission along with the economic growth.
Based on results from decoupling analysis, the continuous wavelet
analysis framework is applied to dig deeper into the complex
relationships among carbon emission and economic growth.

The contribution of this article to the extant literature is as
follows: 1) the application of wavelet transform allows us to
estimate partial phase-difference to depict both the short-term
(high-frequency) and long-term (low-frequency) causality
between economic growth and carbon emission. The
relationship changes over time and across frequencies. Our
analysis advances the analysis of the decoupling states to the
identification of causality; 2) the wavelet analysis framework is
extended to estimate the magnitude of marginal impact of
economic growth on carbon emission by introducing the
(partial) wavelet gain. Compared with previous studies, the
interference from other factors is suppressed. And the applied
wavelet model generates much richer empirical results including
correlation, causality, and statistics that measure magnitude of
marginal impact; 3) The physical inputs, including capital and
labor, and the proxy of economic development have been
introduced into the estimation to examine whether the newly
developed wavelet analysis approach is able to overcome the
omitted variable bias documented in the literature; 4) The wavelet
analysis approach captures the nonlinear dynamics among
economic variables. In addition to the decoupling states, more
dynamic characteristics and evolving patterns can be inferred
from our estimated statistics such that the conclusions drawn
from the empirical results provide a deeper understanding of the
time-varying impact of economic growth on carbon emission.

The remainder of the article is organized as follows. Literature
Review Section reviews the relevant literature and presents the
motivation and contribution. In Methodology Section the
methodology is introduced in detail. Data and Empirical
Results Section presents the data and empirical result. Then in
the last section, we draw conclusion and provide corresponding
policy implication.

LITERATURE REVIEW

Along with economic development, environmental degradation
problems gradually emerge. Many researchers believe that there is
a close relationship between economic development and carbon
emissions (e.g., Selden and Song, 1994; Galeotti et al., 2009;
Saboori et al., 2012). Extensive studies have begun to focus on
the relationship between GDP growth and carbon dioxide
emissions based on testing the effectiveness of environmental
Kuznets curve (EKC) in different countries and regions (Apergis,
2016; Apergis et al., 2017; Murshed, 2020; Murshed et al., 2021a;
Murshed et al., 2021b).

Scholars draw different conclusions on the relationship
between GDP growth and energy consumption using Granger
causality. The results from the Granger causality tests suggest that
in the long run there is unidirectional Granger causality running
from electricity consumption and emissions to economic growth
(Lean and Smyth, 2010). Apergis and Tang (2013) reexamine the
validity of the energy-led growth hypothesis using different
model specifications. Compared with the Granger causality
model containing only two variables, the Granger causality
model containing three and four variables is more likely to
support the assumption. In addition, both developed and
developing countries are more likely to support the energy-led
growth assumption than less developed or low-income countries.

There are many factors affecting carbon emissions. Scholars
have conducted different analyses and found some major factors.
Banerjee and Murshed (2020) confirmed the pollution paradise
hypothesis by examining cross-sectional dependencies between
national teams in 2005–2015 and determining the long-term
equilibrium relationship between net export emissions and real
GDP, FDI, trade openness, energy consumption, and financial
development. Murshed (2020) drew a conclusion that in South
Asia ICT trade reduces CO2 emissions by directly increasing
renewable energy consumption, increasing the share of renewable
energy, reducing energy intensity, promoting cleaner cooking
fuels, indirectly increasing the level of renewable energy
consumption, improving energy efficiency, and strengthening
cleaner cooking fuel channels. In addition, environmental
policy is also an important influencing factor. From an
environmental perspective there is potential to use pricing
policies in the G7 countries to curtail residential electricity
demand, and thus curb carbon emissions, in the long run
(Narayan et al., 2007).

In the case of China, Ma et al. (2021) find that provincial
growth and the development of the tertiary industry are the
reasons for the deterioration of China’s carbon dioxide emission
trend. The survey results also show that emission taxes,
investment in research and development, technological
innovation, and the use of renewable energy together further
reduce carbon dioxide emission. Abdul et al. (2021) indicated
that the positive impact on grain crop production will only
increase carbon dioxide emissions in the long term, the impact
on forestry will not have any significant impact on China’s
carbon dioxide emissions level, and the negative impact on
livestock production will only increase carbon dioxide
emissions in the short term.
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Decoupling of Economic Growth and
Carbon Emission
The decoupling analysis framework was proposed to confirm the
disconnection between economic growth and environmental
degradation (Tapio, 2005). It has been widely applied to
various levels (Wang and Zhang, 2020). Compared with the
Environmental Kuznets Curve framework, decoupling analysis
is straightforward and able to reveal the real-time relationship in
different horizons (Dong et al., 2020). The rationale of decoupling
analysis is to dissociate economic growth from environmental
degradation to achieve sustainable development (Zhang and
Zhang, 2020). It provides a way to perform decomposition on
the complex relationship between two variables. Many scholars
address the dilemma of economic growth and environmental
degradation using the decoupling framework and make
significant progresses (Csereklyei and Stern, 2015; Kovanda
and Hak, 2007; Loo and Banister, 2016).

Dai et al. (2016) identified decoupling state of BRICS countries
and further explored driving factors on decoupling. Some
scholars conduct decomposition and decoupling analysis of
carbon dioxide emissions from economic growth in China and
the ASEAN countries (Zhang et al., 2020). Another study took the
Belt and Road as the starting point to analyze spatiotem poral
evolution of decoupling and driving forces of CO2 emissions on
economic growth (Hu et al., 2020). Adedoyin et al. (2020)
introduced coal rents vs coal consumption and other energy
sources as determinants of CO2 emissions in BRICS economies.
Wang and Zhang (2020) studied the influence of increasing
investment in research and development on economic growth
decoupling from carbon emission. Wang and Wang (2020)
discovered the promoting effect of energy transition on the
decoupling economic growth from emission. Nandini and
Joyashree (2020) decomposed energy-related CO2 emissions,
using LMDI approach, to quantify drivers of climate change.
And decoupling elasticity is estimated to identify historical
attainment in decoupling economic growth from emissions in
India.

Energy Structure and Carbon Emission
Energy is essential material input for production. Economic
growth cannot sustain without enough energy consumption.
Hence, intuitively, energy consumption should maintain a long-
term equilibrium with economic growth (Zhang, 2011).
Adedoyin et al. (2020) find that the BRICS countries are
heavily dependent on energy-intensive sectors such as
construction, mining, and manufacturing, because of a rapid
increase in population, lifestyle changes, and urbanization. It is a
natural choice to achieve emission reduction by improving
energy efficiency. Guan et al. (2018) find that the most
important factor in reducing carbon emissions in China is
the improvement of energy efficiency, during the sample
period from 2007 to 2010.

Among the factors affecting carbon emissions, energy
consumption is one of the most important factors and energy
consumption has different effects in countries with different
development status. The results show that the United States
strongly supports the hypothesis of neutrality. While a

developing economy panel (90 countries) favors the
conservative hypothesis, and a panel of 32 lower middle-
income countries suggests that energy consumption per capita
predicts real GDP per capita (Narayan, 2016). Narayan and
Smyth (2007) suggest that the demand for oil in the Middle
East is being driven largely by strong economic growth. In the
near future, Malaysia’s energy import dependency will rise.
Carbon emissions will triple by 2030 (Gan and Li, 2008). New
energy and renewable energy have become the focus in the energy
consumption–growth relationship research (Apergis and Payne,
2010a; Apergis and Payne, 2010b; Apergis et al., 2010; Apergis
and Payne, 2011a; Apergis and Payne, 2011b; Apergis and Payne,
2012; Murshed et al., 2021). Thus, it is necessary to incorporate an
energy structure in the empirical study of growth–carbon
emission relationship.

When the marginal carbon reduction effect of energy
efficiency improvement gradually reaches its ceiling, renewable
energy turns out to be a more promising alternative. Energy
transition has caught much attention and has been regarded as an
efficient approach to reduce carbon emission and achieve low-
carbon development (Obama, 2017; Wang and Su, 2020).
International Energy Agency (IEA) carried out the Clean
Energy Transitions Program (CETP) to facilitate global energy
transition1. IEA demonstrated that energy transition can enhance
energy security, robust energy system at the same time thrive
economy in its annual report20182.

For the developing countries, scholars find that increasing the
share of renewable energy use could reduce emission (Liu et al.,
2017; Hu et al., 2018). The recent research found that renewable
energy decreases CO2 emissions in African countries (Dauda
et al., 2021). Fragkos et al. (2021) investigate Energy system
transitions and low-carbon pathways. Their results imply the
technical-economic feasibility of achieving large emission
reductions by 2050.

Trade Openness and Carbon Emission
Trade liberalization has significantly reshaped industries and
production network worldwide. Since the seminal work by
Grossman and Krueger (1991), many scholars have attempted
to examine the effect of trade openness on the environment.

Since countries experience different levels of income and
foreign trade depending on their level of economic
development, the relationship between emissions and trade
depends on where an economy is currently placed in its
development trajectory (Baek et al., 2009). Antweiler et al.
(2001) have systematically described three major categories of
the impact on the environment, namely the scale, technique, and
composition effects. They point out that the technique effect
overshadows the scale effect.

The debate regarding the relationship between trade openness
and environmental degradation has not reached a consensus yet.
The findings based on the different methodology and data are
quite discrepant (Cole and Elliott, 2003; Frankel and Rose, 2005;

1https://www.iea.org/cetp/.
2Clean Energy Transitions Program (CETP) Annual Report 2018.
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Managi et al., 2008). Copeland and Taylor (2003), Tiba et al.
(2015), and Tiba and Frikha (2018), among others, revealed the
existence of a significant positive impact of trade openness on
environmental quality. In constant, Salman et al. (2019) found
that export increases CO2 emissions in some countries in Asia
after disaggregating trade into export and import. The
relationship between trade openness and carbon emissions still
merits further investigation (Wang and Zhang, 2021).

This article uses data from the BRICS countries to explore the
dynamic relationship between carbon emission and economic
growth. Decoupling approach is introduced to reflect the states of
growth–emission nexus. And based on that, the wavelet analysis
is applied to provide deeper insight and extensive discussion on
the impact of economic growth on carbon emission.

METHODOLOGY

Tapio Decoupling Model
In this article, we adopt the decoupling approach that is being
widely used in the literature to provide a portrait for the complex
growth–emission relationship. The OECD decoupling index (de
Freitas and Kaneko, 2011; Yu et al., 2013; Zhao et al., 2017), the
Tapio decoupling model (Climent and Pardo, 2007; Dong et al.,
2016; Kan et al., 2019; Roman-Collado et al., 2018; Sorrell et al.,
2012; Tapio, 2005; Zhang et al., 2015), the IGTX decoupling
method (Ma et al., 2016), and the EA method (Enevoldsen et al.,
2007; Mielnik and Goldemberg, 2002) are four alternative
approaches for analyzing economic growth decoupling from
environmental pollution. Since the Tapio (2005) method is
most widely applied in the literature, we follow this approach
to define the decoupling elasticity as:

e(C) � ΔC/C0

ΔG/G0
(1)

where e(C) indicates the decoupling elasticity coefficient between
economic activities and carbon emissions, ΔC and ΔG
respectively indicate the total carbon emission change and the
total GDP change from the base period to the end period. C0

indicates the carbon emissions at the base period, and G0

indicates the base period GDP.
As shown in Figure 1, in the first quadrant, both carbon

emission and GDP increase simultaneously, represent expansive
negative decoupling; 0.8≤ e≤ 1.2 represents expansive coupling;
0≤ e< 0.8 represents weak decoupling. While in the third
quadrant, both carbon emission and GDP decrease
simultaneously, e> 1.2 represents recessive decoupling;
0.8≤ e≤ 1.2 represents recessive coupling; 0≤ e< 0.8 represents
weak negative decoupling. In the second and fourth quadrants,
e< 0 represent that carbon emission and GDP change
asynchronously. In the fourth quadrant, there is strong
decoupling, the best decoupling state, indicating economy
increasing while carbon emission decreasing. In the second
quadrant, it is strong negative decoupling, the worst
decoupling state, showing economy decreasing while carbon
emission increasing.

Wavelet Model
To carry out further in-depth research, we introduce the wavelet
analysis framework. The wavelet model is an extension of spectral
analysis (Mandler and Scharnagl, 2014). Wavelet analysis can
reveal the frequency components of variables just like the Fourier
transform, in addition to extraction of series characteristics in the
time domain. It is a sophisticated time-frequency analysis
technique that outperforms pure time series or frequency
domain methods. As a result, it has been widely used for data
processing and econometric analysis. While the Fourier
transform breaks down a time series into constituent sinusoids
of different frequencies and infinite duration in time, the wavelet
transform expands the time series into shifted and scaled versions
of a function, the so-called mother wavelet, that has limited
spectral band and limited duration in time (Aguiar-Conraria
et al., 2018).

Continuous Wavelet Transform
Discrete wavelet transform (DWT) and continuous wavelet
transform (CWT) are two classes of wavelet transform. The
DWT is useful for noise reduction and data compression,
while the CWT is more helpful for feature extraction and data
self-similarity detection (Grinsted et al., 2004; Loh, 2013). In
application, continuous wavelet transformation is often chosen to
extract the characteristics of economic variables and perform
correlation and causality analysis. This approach utilizes
information from two dimensions, namely time and frequency.
Thus, it is suffered less estimation bias other than empirical
methods developed to identify economic relationship solely in the
time domain.

Assuming the mother wavelet function is ψ(t), the
corresponding base wavelet function is

ψτ,s(t) �
1�
s

√ ψ(t − τ

s
) (2)

where τ is the translation factor, which represents the
magnitude of the mother wavelet function’s translation,
and different values will produce different window
positions. s is the expansion factor, which represents the
degree of expansion of the mother wavelet function. When
the s is less than 1, the function is compressed, which is
beneficial to capture the high-frequency part of original
sequence, and when the s is greater than 1, the function is
stretched, which is beneficial to capture the low-frequency
part. By changing the two parameters, one can construct a
picture showing how the amplitudes of x(t) vary across scales
and how such amplitudes change over time (Torrence and
Compo, 1998).

A continuous wavelet transformation can be expressed as
follows:

Wx(τ, s) � ∫+∞

−∞
x(t) 1�

s
√ ψp(t − τ

s
)dt (3)

Because of the need for both amplitude and phase information, it
is necessary to select complex wavelet, and the Morlet wavelet
satisfies this condition. Based on the Morlet continuous wavelet
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transform, we can calculate (partial) wavelet coherency, (partial)
phase-difference, and (partial) wavelet gain to analyze the
correlation and causality relationship between two or more
time series and the magnitude of the impact.

Wavelet Coherency and Phase-Difference
In analogy with the terminology used in the Fourier case, the local
wavelet power spectrum of the time series is defined as

∣∣∣∣Wx(τ, s)
∣∣∣∣2,

which measures the magnitude of the time series fluctuation in
the time-frequency space. The wavelet power spectrum may be
averaged over time for comparison with classical spectral
methods. When the average is taken over all times, we obtain
the global wavelet power spectrum as follows:

GWPSx(s) � ∫∞

−∞
|Wx(τ, s)|2dτ (4)

For two time series x(t) and y(t), we can obtain the cross-wavelet
transform corresponding to(τ, s):

Wxy(τ, s) � Wx(τ, s)Wp
y (τ, s) (5)

And the corresponding cross-wavelet power spectrum is as
follows: ∣∣∣∣Wxy(τ, s)

∣∣∣∣2 � |Wx(τ, s)|2
∣∣∣∣∣Wp

y (τ, s)
∣∣∣∣∣2 (6)

where Wp
y (τ, s) represents the complex conjugate of the

continuous wavelet transform function.
Following Torrence &Webster (1999), theWavelet Coherence

of two time series is defined as:

R2
n(s) �

∣∣∣∣S(s−1WXY
n (s))∣∣∣∣2

S(s−1∣∣∣∣WX
n (s)

∣∣∣∣2) · S(s−1∣∣∣∣WY
n (s)

∣∣∣∣2) (7)

whereSis the smoothing operator.

According to Bloomfield et al. (2004), the wavelet phase-difference
enables us to calculate the phase of the wavelet transform of each time
series. And wavelet phase-difference is defined as follows:

ϕn(s) � arctan(I{S(s−1WXY
n (s))}

R{S(s−1WXY
n (s))}) (8)

whereI andR are the imaginary and real parts of the smoothed
cross-wavelet transform, respectively. Using the phase-
difference, the time lag or time difference, which gives the
lead or lag of the series in the time domain, can be
calculated as ΔTn(s) � φn(s)/ω, where ω is the angular
frequency with respect to the time scale.

When the phase-difference falls in different quadrants, it represents
different types of correlations and causality relationships between
variables, as shown in Figure 2. As referred to partial phase-difference,
it indicates the time-varying correlations and causality relationships
between two variables after controlling other factors. By its nature, this
indicator can precisely capture the sign of correlation and the direction
of causality over time and across different frequencies.

Partial Phase-Difference and Partial Wavelet Gain
Partial phase-difference is introduced to incorporate energy
transition and trade openness into the estimation of dynamic
causality relationship between economic growth and carbon
emission. And partial wavelet gain can be estimated to identify
the real effect of economic growth on carbon emission, after
controlling for influence from other factors.

The smoothed cross-wavelet transform is denoted as
Sij � S(Wij). We can take these smoothed wavelet transforms
as elements to construct a matrix S and Sdij denotes the cofactor of
the element in position (i, j). The multivariate complex wavelet
coherency for x1 and x2,/, xp is given by:

FIGURE 2 | Interpretation of phase-difference. Note: the arrow between
the variables indicates the direction of causality.

FIGURE 1 | chematic diagram of decoupling states.
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Rc(1,K1) � 1 − |S|
S11S

d
11

(9)

where ki � {1, 2,/, p}\{i}.
The complex partial wavelet coherency for x1 and xi(2≤ i≤ p)

is calculated according to the following equation:

Rc(1,i | ki) � − S
d
i1�����

S
d
11S

d
ii

√ (10)

Taking the modulus of complex coherency, the partial wavelet
coherency R(1,i | ki) � |Rc

(1,i | ki)
∣∣∣∣∣ is obtained.

Similar to the definition of the wavelet phase-difference in the
case of two variables, we can define the partial wavelet phase-
difference between x1 and xi(2≤ i≤ p) in the multivariate case
after controlling the influence of other variables:

ϕ(1,i | ki) � tan−1⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝I(ρc(1,i | ki))
R(ρc(1,i | ki))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (11)

where I(ρc(1,i | ki)) and R(ρc(1,i | ki)) represent the imaginary and
real parts of the complex wavelet coherency ρc(1,i | ki). The cross
wavelet gain is defined as follows:

Gy,x(s) �
∣∣∣∣∣S(s−1Wxy(s))∣∣∣∣∣
S(s−1|Wx|2) (12)

which can be interpreted as the absolute value of regression
coefficient in the regression of y on x. Taking account of other
variables, the formula for the partial wavelet gain is given by

G(1,i| ki) �
∣∣∣∣Sd

i1

∣∣∣∣
S
d
11

(13)

G(1,i | ki) can be interpreted as the absolute value of coefficients (in
modulus) of multivariate regression of x1on x2, ..., xp at each point of
time and frequency. According toAguiar-Conraria et al. (2018), wavelet
gain should be interpreted simultaneously with the phase-difference,
which reveals the sign of correlation and the direction of causality.

DATA AND EMPIRICAL RESULTS

Data
The data used in this study are obtained from three sources,
including the World Bank WDI database3, the Global Carbon
Project4, and the BP Statistical Review of World Energy5. The
definition of variables and data sources are presented in Table 1.
The decoupling analysis is based on the level series of emission
and GDP, while the wavelet analysis is conducted after taking a
first-order difference of these two variables. In the robustness
examination, we also take the first-order difference of labor force.

Compared to previous studies, we gather emission and
energy structure data from additional sources other than
the WDI database to obtain original real GDP and CO2
emission series. Inputs such as capital and labor are also
included in the estimation to perform a robustness check
for omitted variable. And we use industry value added to
proxy the level of economic development. In this way, we
are able to alleviate concerns about the impact of economic
development on the growth–emission relationship. The
descriptive statistics are provided in Table 2. There exists
significant heterogeneity in country-specific carbon emission
and energy structure among the BRICS countries. It is natural
that the relationship between emission and economic growth
will vary across these countries.

Decoupling Analysis
Following the Tapio approach, we calculate the decoupling elastic
coefficients between emission and economic growth during the
period of 1960–2019 for the BRICS countries, as shown in
Table 3. The decoupling states are marked by different colors.
As it can be observed, the decoupling indexes of different
countries in different periods show great differences.

In Brazil, the expansive negative decoupling state appears the
most frequently during the period of 1960–2019, which
demonstrates that the growth rate of carbon emission is higher
than that of economic development. The expected strong
decoupling state appears during 1964–1965, 1979–1980,
2001–2003, 2005–2006, and 2017–2019, showing that economy
grew while carbon emission decreasing at the same time, and the
state of strong decoupling and weak decoupling appears more
frequently in the period of 2000–2019. Evaluations of the period
2004 to 2009 are compared with the period 1980 to 1994 when
Brazil also experienced an apparent decoupling (Freitas and
Kaneko, 2011).

For Russia, we focus on analyzing the results after 1989. The
strong decoupling state and weak decoupling state are two of the
most frequent decoupling states, especially from 1998 to 2019.
There also exist recessive coupling in 2008–2009, expansive

TABLE 1 | Data sources and variable definition.

Variable Definition Source

GDP Gross domestic production (in
constant 2010 US$ billions)

World Bank WDI
database

Carbon
emission

CO2 emissions (million tonnes) Global carbon project

Energy
structure

Renewable energy ratio (% of total
primary energy consumption)

BP statistical review of
world energy

Trade openness Total trade value as % of GDP World Bank WDI
database

Capital
formation

Capital investment as % of GDP World Bank WDI
database

Labor force Total labor force (million) World Bank WDI
database

Industrialization Industry value added growth rate (%) World Bank WDI
database

Note: Primary energy is calculated using the “substitution method” that takes account of
the inefficiencies energy production from fossil fuels.

3World Development Indicators (WDI) database from World Bank, available at:
http://wdi.worldbank.org.
4Global Carbon Project. (2020). Supplemental data of Global Carbon Budget 2020
(Version 1.0) (Data set). Available at: https://doi.org/10.18160/gcp-2020.
5BP Statistical Review of World Energy. Available at: http://www.bp.com/
statisticalreview.
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negative decoupling in 2009–2010, strong negative decoupling in
2014–2015, and expansive coupling in 2016–2018.

The three major types of the decoupling state that appeared in
India each account for about 30% of the sample during the whole
period: weak decoupling, expansive coupling, and expansive
negative decoupling. And we observed that weak decoupling
has become a trend since 2000 in India. The expected strong
decoupling state appears in 1963–1964, and strong negative
decoupling appears in 1964–1966 and 1971–1972.

Weak decoupling state appears the most frequently in China
from 1960 to 2019, especially after 1978. This result indicates
aggressive efforts in the field of energy conservation and emission
reductionmade by China. There emerged six different decoupling
states during the sample period: recessive coupling in 1960–1961,
recessive decoupling in 1961–1962 and 1966–1967, strong
decoupling in 1962–1963, weak decoupling in 1963–1965 and
1972–1973, expansive coupling in 1965–1966 and 1973–1974,
strong negative decoupling in 1967–1968 and 1975–1976, and
expansive negative decoupling in the remaining time period. The

expansive coupling state that appeared from 2009 to 2011 may be
caused by the recovery after the world economic crisis in 2008.

The results for South Africa are similar to those of Brazil.
Expansive negative decoupling state appears the most frequently,
which is followed by weak decoupling state and strong decoupling
state. It is obvious that the decoupling index of South Africa
fluctuates significantly. The expected strong decoupling state
appears more frequently after 1997.

In general, the relationship between economic growth and
carbon emission is variable and reflects different patterns of
economic development. The results from the Tapio decoupling
model only provide decoupling state from an elastic perspective
in a certain period. In the following section, wavelet transform is
introduced to perform an in-depth analysis in the time-frequency
domain for richer results.

Wavelet Analysis
The continuous wavelet transform method makes it possible to
analyze the complex and evolving impact of economic growth on

TABLE 2 | Descriptive statistics.

Variables Mean Sd min Median Max Sample period

Brazil GDP 1,252.93 680.90 246.66 1,195.94 2,423.27 1960–2019
Carbon emission 243.06 138.20 46.85 209.84 523.89 1960–2019
Energy structure 36.77 6.88 23.90 38.63 45.02 1965–2019
Trade openness 19.54 5.32 9.06 19.13 29.68 1960–2019
Capital formation 18.61 2.30 14.63 18.16 22.99 1990–2019
Labor force 86.30 14.00 61.50 89.70 107.00 1990–2019
Industrialization 1.40 4.36 −5.76 0.54 10.17 1990–2019

Russia GDP 1,316.68 323.06 813.03 1,386.61 1762.46 1989–2019
Carbon emission 1,690.87 390.28 885.86 1,620.76 2,525.29 1960–2019
Energy structure 5.63 0.65 4.34 5.81 6.59 1985–2019
Trade openness 53.65 13.75 26.26 50.95 110.58 1989–2019
Capital formation 23.02 4.44 14.83 22.62 36.27 1990–2019
Labor force 73.80 1.96 68.90 74.10 76.00 1990–2019
Industrialization 0.05 8.26 −21.60 1.81 12.14 1990–2019

India GDP 812.65 761.03 148.77 494.26 2,940.16 1960–2019
Carbon emission 820.20 733.92 111.49 559.99 2,616.45 1960–2019
Energy structure 8.41 2.25 5.03 7.77 14.05 1965–2019
Trade openness 23.39 15.18 7.66 15.45 55.79 1960–2019
Capital formation 31.82 5.56 23.97 30.17 41.93 1990–2019
Labor force 425.00 53.40 324.00 449.00 495.00 1990–2019
Industrialization 6.22 3.00 0.59 6.01 13.24 1990–2019

China GDP 2,439.28 3,184.53 87.93 812.26 11,537.48 1960–2019
Carbon emission 3,594.74 3,231.24 432.22 2,403.84 10,174.68 1960–2019
Energy structure 5.29 2.46 2.60 4.45 12.67 1965–2019
Trade openness 27.12 17.92 4.92 25.53 64.48 1960–2019
Capital formation 40.73 4.11 33.57 40.48 46.66 1990–2019
Labor force 746.00 42.30 650.00 764.00 787.00 1990–2019
Industrialization 10.83 4.10 4.87 10.29 21.03 1990–2019

South
Africa

GDP 238.63 103.87 79.07 218.58 430.17 1960–2019
Carbon emission 308.30 128.17 97.84 327.38 502.26 1960–2019
Energy structure 0.53 0.49 0.01 0.43 2.21 1965–2019
Trade openness 52.36 7.14 37.49 51.72 72.87 1960–2019
Capital formation 18.66 1.85 15.16 18.47 23.15 1990–2019
Labor force 18.00 3.00 12.80 18.30 23.30 1990–2019
Industrialization 1.08 2.40 -6.00 1.36 4.72 1990–2019
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TABLE 3 | Decoupling states of carbon emission and economic growth.

Period Brazil Russia India China South Africa

e State e State e State e State e State

60–61 0.48 WD — — 2.19 END 1.07 RC 1.14 EC
61–62 1.75 END — — 3.45 END 3.63 RD 0.56 WD
62–63 4.09 END — — 1.24 END −0.08 SD 0.52 WD
63–64 0.58 WD — — −0.28 SD 0.00 WD 1.13 EC
64–65 −0.19 SD — — −3.87 SND 0.53 WD 1.17 EC
65–66 3.37 END — — −66.61 SND 0.93 EC 0.02 WD
66–67 0.59 WD — — 0.01 WD 2.97 RD 0.60 WD
67–68 1.48 END — — 2.68 END −2.01 SND 0.75 WD
68–69 0.91 EC — — 0.29 WD 1.36 END 0.80 WD
69–70 1.27 END — — 0.47 WD 1.75 END 0.86 EC
70–71 0.84 EC — — 3.43 END 1.91 END 2.93 END
71–72 0.94 EC — — −10.42 SND 1.65 END 1.13 EC
72–73 1.13 EC — — 0.91 EC 0.51 WD 0.23 WD
73–74 0.91 EC — — 2.73 END 0.87 EC 0.30 WD
74–75 1.02 EC — — 0.93 EC 1.83 END 2.83 END
75–76 0.26 WD — — 2.71 END −2.73 SND 1.90 END
76–77 1.08 EC — — 0.80 EC 1.26 END −37.65 SND
77–78 2.64 END — — 0.28 WD 1.02 EC 0.36 WD
78–79 0.94 EC — — −0.95 SND 0.29 WD 2.19 END
79–80 −0.08 SD — — 0.83 EC −0.24 SD 0.66 WD
80–81 1.87 RD — — 1.33 END −0.22 SD 2.36 END
81–82 0.32 WD — — 0.95 EC 0.98 EC −23.70 SND
82–83 0.92 RC — — 1.13 EC 0.50 WD −2.21 SND
83–84 0.25 WD — — 0.69 WD 0.58 WD 1.59 END
84–85 0.93 EC — — 1.90 END 0.62 WD −2.16 SND
85–86 1.20 END — — 1.51 END 0.58 WD 114.88 END
86–87 1.21 END — — 1.72 END 0.58 WD −0.26 SD
87–88 −8.40 SND — — 0.83 EC 0.64 WD 1.01 EC
88–89 0.67 WD — — 1.67 END 0.40 WD −0.24 SD
89–90 0.79 WND −2.39 SND 1.25 END 0.36 WD 25.65 RD
90–91 3.29 END 1.01 RC 6.12 END 0.52 WD −4.11 SND
91–92 −1.14 SND 1.26 RD 1.19 EC 0.32 WD 3.54 RD
92–93 0.98 EC 0.58 WND 0.70 WD 0.50 WD 5.12 END
93–94 0.91 EC 0.93 RC 0.86 EC 0.47 WD 1.78 END
94–95 1.52 END 0.42 WND 0.83 EC 0.77 WD 2.19 END
95–96 4.54 END 0.54 WND 1.11 EC 0.44 WD 0.13 WD
96–97 1.61 END −4.75 SD 1.01 EC 0.02 WD 2.30 END
97–98 11.69 END 0.22 WND 0.34 WD −0.55 SD −4.23 SD
98–99 5.53 END 0.30 WD 0.95 EC −0.03 SD −0.27 SD
99–00 0.57 WD −0.10 SD 0.73 WD 0.33 WD 0.22 WD
00–01 1.94 END 0.49 WD 0.30 WD 0.28 WD −0.66 SD
01–02 −0.55 SD −0.17 SD 0.80 EC 1.14 EC −1.10 SD
02–03 −2.66 SD 0.27 WD 0.45 WD 1.76 END 4.55 END
03–04 0.88 EC 0.05 WD 0.78 WD 1.50 END 2.44 END
04–05 0.79 WD 0.17 WD 0.68 WD 1.10 EC −1.40 SD
05–06 −0.01 SD 0.46 WD 0.77 WD 0.83 EC 1.32 END
06–07 0.72 WD −0.01 SD 1.02 EC 0.53 WD 0.76 WD
07–08 1.29 END 0.39 WD 2.50 END 0.78 WD 2.01 END
08–09 42.33 RD 0.85 RC 1.30 END 0.55 WD −1.00 SND
09–10 1.89 END 1.22 END 0.48 WD 0.90 EC −2.31 SD
10–11 1.15 EC 0.75 WD 1.00 EC 1.09 EC 0.46 WD
11–12 3.65 END 0.22 WD 1.82 END 0.33 WD −1.22 SD
12–13 2.53 END −2.06 SD 0.74 WD 0.22 WD −0.46 SD
13–14 11.56 END 0.27 WD 1.00 EC 0.03 WD 3.09 END
14–15 1.54 RD −0.02 SND 0.40 WD −0.20 SD −5.27 SD
15–16 1.03 RC −1.45 SD 0.75 WD −0.20 SD 4.69 END
16–17 0.97 EC 0.94 EC 0.38 WD 0.30 WD 0.93 EC
17–18 −2.81 SD 1.08 EC 0.89 EC 0.31 WD 1.61 END
18–19 −0.18 SD −0.57 SD 0.23 WD 0.36 WD 9.17 END

Note: WD: weak decoupling; EC: expansive coupling; END: expansive negative decoupling; SND: strong negative decoupling; WND: weak negative decoupling; RC: recessive coupling;
RD: recessive decoupling; SD: strong decoupling.
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carbon emission that varies over time and across different
frequencies. We estimate partial coherency, partial phase-
difference, and partial wavelet gain at different frequencies and
over time. Not only the time-varying impact of economic growth
on carbon emission, but also the influences from the covariates
are well identified. When the partial phase-difference and wavelet
gain are estimated regarding a given variable, other variables are
served as covariates. The results for each BRICS country are
interpreted as follows.

China has been experiencing booming economy and
significant shift of growth mode. We analyze the impact of
China’s GDP growth on carbon emission in short-, medium-,
and long-term horizons. As shown in Figure 3, the partial wavelet
coherency between carbon emission and GDP growth suggests
more consistent correlation between these two variables in the
medium- and long-term. And in the early stage of China’s
economic development, partial phase-difference indicator is
near zero, indicating non-causality between economic growth
and carbon emission.

In the short term (with a period of 1–2 years), relationship
between emission and growth is fluid. In the period of 1975–1980,
the partial phase-difference is estimated to be between −π/2 and
0, which indicates that the increase in emission rate leads to GDP
growth. In this period, China’s GDP growth depends on heavy
industry. The extensive growth mode implies expansion in
energy-consuming industries, along with emission surge, will
result in higher growth rate. As for 1980–2004, the partial
phase-difference is estimated to be between π/2 and π with
occasional large deviations around the years around 1991. It
indicates negative correlation and causality from emission to
GDP growth in general, which suggests that the increasing carbon
emission restrains the growth of economy. The reason behind this
is that after the rapidly growing phase of the economy

development, carbon emission starts to inhibit economic
growth to a certain degree; at the same time, the dramatic
increase in emission pushes the government to balance the
goal of economic expanding and the environment. In the
period of 2004–2010, the partial phase-difference is estimated
to be between −π and −π/2, which indicates that reduced carbon
emission leads to increased GDP growth rate during this period.
It is largely the result of the transition of economic growth mode
and the enhanced awareness of environmental protection. For the
time after 2010, the results are quite mixed, reflecting impact of
cross currents in the economy after the shock of the financial
crisis.

In the medium-term (with a period of 2–4 years), it can be
observed that the pattern of variation in partial phase-difference
and wavelet gain is very similar to that in the short-term. So, more
attention is paid to the results from the perspective of long-term.

In the long run (with a period of 4–8 years), the partial wavelet
gain of carbon emission over GDP growth is around 1. It is
smaller than that in the short- and medium-term due to the fact
that influences from temporary factors fade out eventually.
During the period of 1970–1979, the partial phase-difference is
estimated to be between −π/2 and 0, which indicates that the
increase in emission rate poses positive impact on GDP growth
rate. From 1980 to 1994, the partial phase-difference is estimated
to be between 0 and π/2, suggesting that increase in GDP growth
rate causes higher carbon emission. During this period, China
was experiencing an unprecedented rapid economic growth, and
the environmental consideration did not feature prominently in
the government’s policy goals yet. The partial phase-difference
lies in the interval (−π,−π/2) from 1995 to 2013, which means
with the increasing of GDP growth, the growth rate of carbon
emissions decreased. The significant decoupling of emission from
economic growth attributes to the effective environmental

FIGURE 3 | Impact of GDP growth on carbon emission in China. Note: The expression “Partial Coherency (GDP Growth)” denotes the partial coherency between
GDP growth and carbon emission, controlled for the influence from energy structure and trade openness. The areas below the symmetric black convex curve that
appears in the figure of coherency are called the “Cone of Influence (COI),” in which the edge effects are profound. Inside the COI, the results tend to be unreliable. The
contours in the coherency diagrams indicate 5% significance level, bootstrapped for 10,000 replications. And, the brighter colors correspond to higher significance
level, and darker colors correspond to lower significance level. The dotted lines accompanying the partial phase-difference indicate the 95% confidence intervals.
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protection measures and the promoting usage of renewable
energy in China.

The partial wavelet coherency between energy structure and
carbon emission in China indicates that there is a significant
correlation between proportion of renewable energy
consumption and carbon emissions (see Figure 4). And the
partial wavelet gain results show a decreasing trend of
marginal impact of energy structure on carbon emission
throughout the sample period, regardless of the perspectives of
time-spans.

In the short-term and medium-term, the partial phase-
difference falls into the range of (0, π/2) from 1967 to 1975,
indicating that the increase in renewable energy share is
accompanied by higher level of carbon emission. The main
reason behind this unusual result is that China was hungered
for energy from all sources to support its economic development
during this period. In the following period of 1975 to 1980, the
partial phase-difference falls into the interval of (−π,−π/2),
showing that the increasing proportion of renewable energy
leads to lowering the growth rate of emission. From 1981 to

FIGURE 5 | Impact of trade openness on carbon emission in China. Note: The expression “Partial Coherency (Trade Openness)” denotes the partial coherency
between trade openness and carbon emission, controlled for the influence from energy structure and economic growth. The areas below the symmetric black convex
curve that appears in the figure of coherency are called the “Cone of Influence (COI),” in which the edge effects are profound. Inside the COI, the results tend to be
unreliable. The contours in the coherency diagrams indicate 5% significance level, bootstrapped for 10,000 replications. And, the brighter colors correspond to
higher significance level, and darker colors correspond to lower significance level. The dotted lines accompanying the partial phase-difference indicate the 95%
confidence intervals.

FIGURE 4 | Impact of energy structure on carbon emission in China. Note: The expression “Partial Coherency (Energy Structure)” denotes the partial coherency
between energy structure and carbon emission, controlled for the influence from economic growth and trade openness. The areas below the symmetric black convex curve
that appears in the figure of coherency are called the “Cone of Influence (COI),” in which the edge effects are profound. Inside the COI, the results tend to be unreliable. The
contours in the coherency diagrams indicate 5%significance level, bootstrapped for 10,000 replications. And, the brighter colors correspond to higher significance level,
and darker colors correspond to lower significance level. The dotted lines accompanying the partial phase-difference indicate the 95% confidence intervals.

Frontiers in Environmental Science | www.frontiersin.org August 2021 | Volume 9 | Article 71514910

Xiang et al. Impact of Growth on Emission

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


1986, the partial phase-difference falls into the range of (π/2, π).
This means that the increasing emission is a cause of higher
proportion of renewable energy consumption, which implies that
economic growth has once again become the country’s top
priority. In the following sample period, the partial phase-

difference fluctuates across all four quadrants frequently,
reflecting ambiguous causality relationship.

The results from the perspective of medium-term are similar
to those in the short-term, except for the sharp dive of partial
phase-difference in 1996. This sudden drop may reflect the

FIGURE 6 | Multivariate wavelet analysis results for Russia. Note: The expression “Partial Coherency (Z)” denotes the partial coherency between variable Z and
carbon emission, controlled for the influence from other factors. The areas below the symmetric black convex curve that appears in the figure of coherency are called the
“Cone of Influence (COI),” in which the edge effects are profound. Inside the COI, the results tend to be unreliable. The contours in the coherency diagrams indicate 5%
significance level, bootstrapped for 10,000 replications. And, the brighter colors correspond to higher significance level, and darker colors correspond to lower
significance level. The dotted lines accompanying the partial phase-difference indicate the 95% confidence intervals.
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impact of changes in national policy which emphasizes the
importance of development of new and renewable energy6.

In the long-term, the partial phase-difference is estimated to
fall into the range of (−π,−π/2) from 1970 to 1987, suggesting an
emission reduction effect of increasing share of renewable energy
consumption. From 1990 to 2004, the partial phase-difference
falls into the interval of (0, π/2). After the reform and opening up,

FIGURE 7 | Multivariate wavelet analysis results for Brazil. Note: The expression “Partial Coherency (Z)” denotes the partial coherency between variable Z and
carbon emission, controlled for the influence from other factors. The areas below the symmetric black convex curve that appears in the figure of coherency are called the
“Cone of Influence (COI),” in which the edge effects are profound. Inside the COI, the results tend to be unreliable. The contours in the coherency diagrams indicate 5%
significance level, bootstrapped for 10,000 replications. And, the brighter colors correspond to higher significance level, and darker colors correspond to lower
significance level. The dotted lines accompanying the partial phase-difference indicate the 95% confidence intervals.

6New and renewable energy development plan: 1996–2010, issued in 1995.
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China’s economic growth was largely driven by the introduction
of energy-inefficient technologies, which had depressed the
carbon reduction effect of renewable energy consumption.
From 2005 to 2013, the partial phase-difference falls into the
range of (−π,−π/2), indicating that production energy efficiency
has begun to improve and a greater proportion of renewable

energy has been a significant cause of the decline in the growth
rate of carbon emissions.

According to the wavelet coherency estimates in Figure 5,
there exists significant and consistent correlation between
emission and trade openness. In the short-term, the partial
phase-difference lies in (−π/2, 0) from 1967 to 1994 and the

FIGURE 8 | Multivariate wavelet analysis results for India. Note: The expression “Partial Coherency (Z)” denotes the partial coherency between variable Z and
carbon emission, controlled for the influence from other factors. The areas below the symmetric black convex curve that appears in the figure of coherency are called the
“Cone of Influence (COI),” in which the edge effects are profound. Inside the COI, the results tend to be unreliable. The contours in the coherency diagrams indicate 5%
significance level, bootstrapped for 10,000 replications. And, the brighter colors correspond to higher significance level, and darker colors correspond to lower
significance level. The dotted lines accompanying the partial phase-difference indicate the 95% confidence intervals.
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period of 2004–2015, indicating positive impact of carbon
emission on trade openness. That is because China was a
major producer of industrial semifinished products in the
period from 1967 to 1994. The export of these products has
resulted in a significant increase in China’s trade volume, such

that China’s increasing carbon emission rate was followed by
higher proportion of trade to GDP. And this effect was evident
again after China’s entry into theWorld Trade Organization. The
result for the period from 1994 to 2004 shows the positive impact
of trade openness on the emission rate. In the long run, the partial

FIGURE 9 | Multivariate wavelet analysis results for South Africa. Note: The expression “Partial Coherency (Z)” denotes the partial coherency between variable Z
and carbon emission, controlled for the influence from other factors. The areas below the symmetric black convex curve that appears in the figure of coherency are called
the “Cone of Influence (COI),” in which the edge effects are profound. Inside the COI, the results tend to be unreliable. The contours in the coherency diagrams indicate
5% significance level, bootstrapped for 10,000 replications. And, the brighter colors correspond to higher significance level, and darker colors correspond to lower
significance level. The dotted lines accompanying the partial phase-difference indicate the 95% confidence intervals.
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FIGURE 10 | Multivariate wavelet analysis results controlled for additional factors. Note: The expression “Partial Coherency (Z)” denotes the partial coherency
between variable Z and carbon emission, controlled for the influence from other factors. The areas below the symmetric black convex curve that appears in the figure of
coherency are called the “Cone of Influence (COI),” in which the edge effects are profound. Inside the COI, the results tend to be unreliable. The contours in the coherency
diagrams indicate 5% significance level, bootstrapped for 10,000 replications. And, the brighter colors correspond to higher significance level, and darker colors
correspond to lower significance level. The dotted lines accompanying the partial phase-difference indicate the 95% confidence intervals.
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phase-difference lies in (−π/2, 0) and (0, π/2) respectively during
the periods 1972–1994 and 1994–2013. The relationship between
trade openness and carbon emission is quite consistent with the
results in the short-term.

The results of multivariate wavelet analysis for Russian are
presented in Figure 6. According to partial coherency between
GDP growth and emission, the correlation is much more
significant in the short-term. This result implies a
temporary relationship between these two variables. The
estimated partial wavelet gain of emission over GDP growth
is approximately 0.5, which is quite constant across different
frequencies.

In the short-term, the partial phase-difference lies in (−π/2, 0)
from 1992 to 1994, indicating that the increasing of emission rate
causes higher rate of GDP growth. From 1994 to 2018, the partial
phase-difference is greater than 0 and less than π/2 all along. As a
typical industrial economy, the Russian production system is
dominated by heavy industries, resulting in the causality from
GDP growth to higher level of carbon emission. In the long run, the
partial phase-difference falls into the range of (0, π/2) throughout
the whole sample period. This result reveals the dependence of
Russia’s economic growth on high-emission heavy industry in the
long-term and the persistent impact of growth on emission.

As for other factors, the partial phase-difference between
emission and energy structure is estimated to be between −π
and −π/2 in the long-term. And the partial wavelet gain is
estimated to be approximately 10. These results indicate that
the rising proportion of renewable energy has effectively
restrained the growth of carbon emission rate since the 1990s.
The partial wavelet gain of emission over trade openness is
approximately 0.2 in the long-term, implying a much weaker
impact on carbon emission other than energy structure. And the
partial coherency also provides evidence of insignificant
correlation between trade openness and carbon emission.

In Figure 7we observe a significant correlation between Brazil’s
economic growth and carbon emission. The partial wavelet gain of
emission over GDP growth is approximately 1. In both short-term
and long-term, the partial phase-difference roughly falls into the
range of (−π,−π/2) from 1996 to 2004, reflecting the inhibitory
effect of the increase of GDP growth rate on the growth rate of
carbon emissions. Brazil currently possesses one of the most
sustainable energy structures among the emerging economies.
There is 44.1% of energy supply coming from renewable
sources, and approximately 81.7% of all electricity supply
coming from hydropower (Hsiao-Tien and Hsin-Chia, 2013).

As for other factors, the partial coherency between energy
structure and carbon emission seems insignificant in most areas.
And the long-term partial phase-difference between emission and
trade openness falls into the range of (π/2, π) from 1972 to 1989,
and into the range of (−π,−π/2) from 1990 to 2015. When the
correlation remains negative, the leading variable has changed
from carbon emissions to trade openness after 1990, indicating a
reversion in the direction of causality. The relationship between
the two variables has shifted from that carbon emission restricts
scale of international trade to that increased trade openness
mitigating the growth of carbon emission.

A careful look at India’s NDC reveals that India’s climate
commitment is grounded on various macroeconomic
indicators such as GDP growth, emission intensity, mix of
energy sources, and changing structure of the economy, which
are also drivers of carbon emission (Nandini and Joyashree,
2020). As presented in Figure 8, the partial wavelet gain of
emission over GDP growth is approximately 1 and the partial
coherency indicates a significant correlation between the two
variables only in a small area. Compared with countries
previously discussed, the correlation between India’s
economic growth and carbon emissions is relatively weak.
The long-run partial phase-difference falls into the range of
(−π/2, π/2) from 1965 to 2015, and implies a positive
correlation between the two variables in the long-term. But,
the low significant level of partial coherency makes it
meaningless for the correlation and causality inference. As
for the energy structure and trade openness, estimated partial
coherency suggests low significant level of correlation and
causality.

South Africa is one of the world’s most carbon-intensive
economies (Marcel, 2013). As presented in Figure 9, partial
phase-difference is estimated to be between −π/2 and π/2
during 1976–2015. It is easy to observe that there is a strong
positive correlation between the emission and GDP growth in the
long run. Given thatmost of SouthAfrica’s energy needs aremet by
fossil fuels, and considering its status as a non-oil producer, a
strong link between energy structure and CO2 emissions is to be
expected. The partial phase-difference is estimated to be between
π/2 and π and between −π and −π/2 in the most time, indicating a
strong negative correlation in the long run. The result also suggests
causality from increase in GDP growth to slower adoption of
renewable energy, before 1990. And the improving energy
structure starts to mitigate incremental carbon emission ever
since 1996.

Robustness
There is little consensus on that the causality relationship has been
reached in the field of the energy consumption–economic growth
nexus due to the omitted variable bias. So, we have reasons to
concern that our empirical results also suffer from the omitted
variable problem. We follow the approach from prior researches to
examine whether the empirical results suffer from this problem (see
Lean and Smyth, 2010; Apergis and Payne, 2010a; Apergis and
Payne, 2010b; Apergis and Payne, 2011a; Apergis and Payne, 2011b).
The physical inputs and a proxy of economic development are
introduced and the multivariate wavelet analysis is conducted as a
robustness check. Themultivariate wavelet analysis results with these
additional control variables are presented in Figure 10.

As Figure 10 demonstrates, the results are consistent with
those reported in previous sections, with certain difference in
statistic values. The reason may be the shortened sample period
due to the inclusion of more variables. We believe the adoption of
wavelet analysis not only makes it possible to extract more
abundant information from the perspective of time and
frequency, but also alleviates the interference caused by
omitted variable problem to a certain extent.
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CONCLUSION

The decoupling relationship between economic growth and
carbon emissions has received extensive academic discussion.
But the dynamic time-varying impact of growth on carbon
emission has not received enough attention. Besides the
decoupling analysis, this paper further introduces the wavelet
analysis method that estimates the dynamic relationship in time-
frequency space to fill this gap.

The results of the decoupling analysis show that only China exhibits
an obvious decoupling trend among the BRICS countries. This result
indicates aggressive efforts in the field of energy conservation and
emission reductionmade byChina. The decoupling indies of other four
emerging economies are relativelymixed, and part of them aremore of
an irregular list of decoupling states at different time points.

The wavelet analysis provides more extensive results, fully
considering the influence of covariates and the time-varying
characteristics of the relationship between variables. Among
the BRICS countries, coherency analysis indicates a significant
impact of economic growth on carbon emission only in China,
Russia, and Brazil.

In the early stage of China’s economic development, the near-
zero partial phase-difference indicates a non-causality relationship
between the economic growth and carbon emission. When the
expansion of heavy industries gets started, the accompanying
emission leads to rise in the growth rate. And after the country
enters a path of rapid growth, the increase in growth rate continues
to push up carbon emission. Until 1995, the economic growth
starts to suppress carbon emission growth. This is largely the result
of transition of economic growthmode, change in energy structure,
and enhanced awareness of environmental protection. Trade
openness generally has a positive impact on emission, due to
China’s long-standing trade surplus.

Results from wavelet analysis reveal the dependence of Russia’s
economic growth on high-emission heavy industry in the long-
term and the persistent positive causality from economic growth to
carbon emission. Meanwhile, the improvement of energy structure
helps in effectively restraining the growing carbon emission ever
since the 1990s. And there is no obvious evidence that trade
openness has a certain effect on carbon emission.

Estimation based on data from Brazil implies a significant
inhibitory effect of the increase of GDP growth rate on the rise of
carbon emissions. It attributes to the abundant renewable energy
resources such that improvement in energy structure does not

play a significant role in reducing emission. And increased
openness helps in mitigating the growth of carbon emissions
in Brazil since 1990.

In conclusion, different resource endowments and growth
patterns lead to different impacts of economic growth on
carbon emissions and the time-varying characteristics of the
causality relationship between them. In addition to economic
growth, changes in a country’s energy structure and trade
openness can also significantly affect carbon emissions. When
the government formulates relevant carbon emission targets and
emission reduction policies, it is necessary to pay full attention to
the dynamic impact of economic growth, energy structure, and
trade openness to carbon emission.
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