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ABSTRACT  9 

Numerous ligand-based drug discovery projects are based on structure-activity relationship 10 

(SAR) analysis, such as Free-Wilson (FW) or matched molecular pair (MMP) analysis. 11 

Intrinsically they assume linearity and additivity of substituent contributions. These techniques 12 

are challenged by nonadditivity (NA) in protein-ligand binding where the change of two 13 

functional groups in one molecule results in much higher or lower activity than expected from 14 

the respective single changes. Identifying nonlinear cases and possible underlying explanations 15 

is crucial for a drug design project since it might influence which lead to follow. By 16 

systematically analyzing all AstraZeneca (AZ) inhouse compound data and publicly available 17 

ChEMBL25 bioactivity data, we show significant NA events in almost every second assay 18 

among the inhouse and once in every third assay in public data sets. Furthermore, 9.4% of all 19 

compounds of the AZ database and 5.1% from public sources display significant additivity 20 

shifts indicating important SAR features or fundamental measurement errors. Using NA data 21 

in combination with machine learning showed that nonadditive data is challenging to predict 22 
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and even the addition of nonadditive data into training did not result in an increase in 23 

predictivity. Overall, NA analysis should be applied on a regular basis in many areas of 24 

computational chemistry and can further improve rational drug design.  25 

KEYWORDS 26 

Nonadditivity analysis; structure-activity relationship; matched molecular pair analysis; 27 

experimental uncertainty; machine learning; support vector machine; random forest.  28 

INTRODUCTION 29 

The similarity and additivity principles represent the basis of various well-established areas in 30 

computer-aided drug design (CADD) such as Free-Wilson (FW)[1] analysis, 2D/3D 31 

quantitative structure-activity relationship (QSAR),[2] matched molecular pair (MMP)[3] 32 

analysis and computational scoring functions.[4, 5] Similarity and additivity are often implicitly 33 

assumed in CADD approaches in order to identify favorable molecular descriptors and predict 34 

the activity of new molecules. Otherwise chemists would have to synthesize and biologically 35 

evaluate every single molecule.[6]  36 

Yet, all the principles are subjects of frequent disruptions. The exceptions to the similarity 37 

principle often complicate SAR analysis. So-called ‘activity cliffs’ refer to structurally very 38 

similar compound pairs with large alterations in potency.[7–14] Exceptions to linearity and 39 

additivity occur when the combination of substituents boosts or significantly decreases the 40 

biological activity of a ligand.[15–19] Nonadditivity (NA) may have several underlying 41 

reasons, including inconsistency in the binding pose of the central scaffold inside the pocket[20]  42 

and steric clashes.[21] Conformational changes in the binding pocked such as complete 43 

reorientation of the ligands alter the free energy of binding.[15] Furthermore, many nonadditive 44 

‘magic methyl’ cases[13, 14, 22], i.e. attaching a simple alkyl fragment to a ligand that greatly 45 
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increases the biological activity, can be explained by conformational changes as the so-called 46 

‘ortho-effect’. 47 

Additivity and NA of ligand binding have been studied for many years[23, 24] and can be 48 

perceived as a specific kind of interaction between functional groups.[25, 26] By analyzing 49 

public SAR data sets for strong NA (ΔΔpActivity > 2.0 log units) and respective X-ray 50 

structures, Kramer et al. showed that the cases of strong NA are underlined by changes in 51 

binding mode.[15] Babaoglu and Schoichet applied an inverse, deconstructive logic to 52 

structure-based drug design (SBDD) and by studying β-lactamase inhibitors demonstrated that 53 

fragments often do not recapitulate the binding affinity of the parent molecule.[27] The study 54 

of Miller and Wolfenden about substrate recognition demonstrated that the combination of 55 

distinct functional groups shows strong nonadditive behavior.[28] The work of Hajduk et 56 

al.[29] on stromelysin inhibitors and Congrive et al.[30] on CDK inhibitors showed that 57 

molecular affinity after the combinations of a certain amount of functional groups is much 58 

higher than expected. Patel et al. examined various combinatorial libraries assayed on several 59 

different biological responses and concluded that only half of the data is additive.[4] McClure 60 

and colleagues developed a method to determine FW additivity in a combinatorial matrix of 61 

compounds (when multiple R groups are altered simultaneously; combinatorial analoging) and 62 

they intuitively explained the occurring NA by changes in binding mode without any structural 63 

validation.[18, 19] Water molecules are a major player in ligand−protein interactions by 64 

participating in extended hydrogen-bond networks.[31] Baum, Muley, and co-workers 65 

thoroughly analyzed the structural data and the reasons behind NA at the molecular level, [17, 66 

32] showing that NA can be the result of entropy and enthalpy profile changes, caused by 67 

hydrophobic interactions, hydrogen bonding, loss of residual mobility of the bound ligands. In 68 

another study, Kuhn et al. proposed that internal hydrogen bonding to be the reason for NA 69 

during compound optimization.[33] Gomez et al. explained NA caused by protein structural 70 
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changes upon ligand binding.[16] According to these studies, instead of seeing NA as a 71 

problem, it should be interpreted as a hint towards key SAR features and variations in the 72 

binding modes. Identifying NA and understanding the reasons behind it is crucial for rational 73 

drug design since it provides valuable information about ligand-protein contacts and molecular 74 

recognition. NA analysis helps us to identify potential SAR outliers in a data set, ultimately 75 

suggesting interesting structural properties that might change the course of a small molecule 76 

optimization. Importantly, NA might be caused by experimental noise.  77 

Despite the clear need for NA analysis it is generally not incorporated in classical QSAR 78 

applications and publications. NA clearly creates difficulties for linear SAR analysis 79 

approaches, such as standard MMP and FW analysis. These classical QSAR models will not 80 

work if the effect of introducing group R1 in the molecule is influenced by R2 or R3.[4] NA is 81 

calculated from double-mutant/double-transformation cycles consisting of four compounds 82 

linked by two identical transformations.[15] Assuming that each measurement among these 83 

double mutants contains experimental uncertainty, the experimental noise might add up and 84 

result in false nonadditive cases. Therefore, it is critical to distinguish real NA from assay noise. 85 

Extensive work on NA has been carried out by Kramer et al. In their publications they created 86 

the statistical framework to systematically analyze NA.[6, 15] Kramer first developed a general 87 

metric and afterwards created an open-source python code to quantify NA, available on 88 

GitHub.[6]  89 

Apart from classical CADD approaches, many machine learning (ML) and deep learning (DL) 90 

techniques became very popular and are applied to a diverse range of questions – from 91 

generation of new molecules[34–37], to predicting binding affinities[38–46] and retrosynthesis 92 

predictions[47–50]. Thus, the question arises: How much are those methods influenced by NA? 93 

When activity data is used for model training, NA might cause problems that are currently not 94 

considered adequately. 95 
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In this work we show a systematics analysis of AZ inhouse and public ChEMBL 96 

physicochemical and biological data with the aim to quantify and compare NA in assays and 97 

compounds in public and inhouse data. Nonlinear events occur in 57.8% of all the tests in AZ 98 

inhouse and in 30.3% of all public data sets, indicating the need for constantly integrating NA 99 

analysis in drug discovery projects and understanding the structural reasons behind it. 100 

Additionally, we trained ML models to evaluate the predictability of nonadditive data and could 101 

show their poor performance in both support vector machine and random forest models. 102 

METHODS 103 

NA analysis code 104 

The open-source NA analysis code provided by Christian Kramer was used in this study 105 

(available on GitHub: https://github.com/KramerChristian/NonadditivityAnalysis).[6] The 106 

code is written in python making use of the cheminformatics libraries RDKit[51] as well as 107 

Pandas and NumPy. NA calculations are based on MMP analysis (upon the assembly of double-108 

transformation cycles (DTC)), using an open-source code developed by Dalke et al.,[52] which 109 

is an implementation of the MMPA algorithm by Hussain and Rea.[3]  110 

Data sets 111 

In this study both public and inhouse data are analyzed in order to compare the occurrence of 112 

NA. By understanding both types of data valuable information can be concluded for CADD 113 

projects. 114 

ChEMBL data set 115 

Assay data was downloaded from ChEMBL version 25 (accessed Feb. 6, 2020).[53] A 116 

ChEMBL target confidence score of at least 4 (confidence range from 0 to 9 based on available 117 

target information) was set as a threshold, resulting in 15,504,603 values. 118 

AstraZeneca inhouse data set  119 
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All assays with an existing target gene ID were extracted from the internal AZ screening and 120 

test database (38,356 IT tests run from 2005 until 2020 across all AZ sites, accessed September 121 

13, 2020). 122 

Data curation  123 

Molecules were standardized with PipelinePilot including standardization of stereoisomers, 124 

neutralization of charges, and clearing of unknown stereoisomers. This step was followed by 125 

the enumeration of tautomeric forms and selecting the canonical tautomer with PipelinePilot. 126 

The same subsequent filtering steps were employed for both datasets using a Python script to 127 

make inhouse and public data comparable (Figure 1). The filtering steps were the following: 128 

(1) All endpoints, suitable for NA analysis, were selected based on assay description. (2) 129 

Measurements without values as well as uncertain and negative values were removed. (3) Only 130 

measurements with a defined unit (M, mM, μM, nM, pM, or fM) were kept. (4) The activity 131 

values were converted to the negative logarithm of the activity - pActivity (pAct) and unrealistic 132 

values, i.e. lower than 10 pM or higher than 10 mM, were discarded. Cases were the 133 

measurement was given as pActivity (e.g. pIC50) but had an indicated unit were discarded.  (5) 134 

All compounds with multiple measurements in one test, where the difference between the 135 

minimum and the maximum measurement was larger than 2.5 log units, were removed. For 136 

those kept, the median of the logged activity values was calculated. Only compounds with large 137 

measurement differences were removed, the assay itself was kept. (6) All compounds with 138 

different IDs and the same simplified molecular-input line-entry system (SMILES) strings were 139 

filtered out and only the compound with the highest activity value was kept. (7) The molecular 140 

size was restricted to 70 heavy atoms (atomic number > 1). (8) Last, small tests with less than 141 

25 compounds were removed.  142 

 143 

 144 
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Data selection for QSAR models  145 

The data sets for ML study were extracted from ChEMBL (Table 1). Public assays were chosen 146 

from the NA analysis of the ChEMBL tests that had (1) NA output, (2) >200 compounds, (3) 147 

>25 double-transformation cycles (DTC) in the test in order to observe the effect of NA on ML 148 

model performance.  149 

Table 1. Description of ChEMBL tests selected for QSAR models.  150 

ChEMBL 

data 

# Cpds # Cpds with 

significant NA (%) 

# DTC # DTC with 

significant NA (%) 

ChEMBL Version 

(access date) 

1613797 6,236 73 (1.2) 6,245 694 (11.1) 27 (08/26/2020) 

1614027 2,892 69 (2.4) 4,691 582 (12.4) 27 (08/26/2020) 

1613777 3,512 122 (3.5) 8,600 1606 (18.7) 26 (06/20/2020) 

 151 

Data curation was conducted with the Jupyter notebook (SI 1). Molecules were standardized 152 

with the PipelinePilot protocol mentioned above.  153 

Each assay file contains: Compound IDs, SMILES, pActivity values, number of occurrences in 154 

double-transformation cycles, and an absolute NA value per compound. An NA value above 155 

1.0 is considered to be significant. 156 

OPTUNA 157 

In order to build ML models, an automatic extensive hyper-parameter optimization tool, 158 

Optuna[54], was applied. Herein the optimization strategy is based on surrogate models, which 159 

is supposed to be superior to random or grid search. In order to analyze the effect of NA on ML 160 

performance, support vector machine (SVM) and Random Forest (RF) models from the scikit-161 

learn framework[55] were trained. The latter is often considered as a base-line algorithm, being 162 

robust against over-fitting, while SVMs often push performance a bit further than RF.  163 
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While we will analyze the binary classification problem in detail (threshold chosen: pIC50 = 164 

5), the underlying problem is a regression problem. Thus, it seemed more appropriate to model 165 

the fit as a regression and binarize afterwards. For both SVM and RF 500 trial runs were 166 

performed using a 5-fold cross-validation to avoid overfitting. We used ECFP6 counts (as 167 

implemented in REINVENT[36]). The reported values are R2 and RMSE from scikit learn. 168 

Model training protocol 169 

The following protocol was applied to ChEMBL data for training SVM and RF models. Herein, 170 

additive data refers to those compounds that had NA below the experimental uncertainty cut-171 

off and were thus not significant. 172 

1.1) Optimization of hyper-parameters based on the training set (80% additive 173 

observations) with 5-fold cross-validation (i.e. mean performance of 5 models trained 174 

on 80% of the training set). 175 

1.2) Train final model on all of the training set using the best hyper-parameters from 1.1) 176 

and predict both the non-significant test (20%), i.e. additive data only and the 177 

significant hold-out sets (all significant observations), i.e. nonadditive data only. 178 

1.3) Use R2 and RMSE (scikit learn's function) to quantify performance.  179 

Binary classification 180 

2.1) The predictions from 1.2) were dichotomized (threshold based on pActivity: 0 if 181 

pActivity < 5, 1 if pActivity > 5) and then compared to the true class (same threshold). 182 

2.2) Matthews correlation coefficient (MCC from scikit learn) is used to quantify 183 

performance. MCC is used due to several advantages for binary classification 184 

problems.[56] For binary classification problems, the MCC score is guaranteed to be 185 

between -1 (anti-correlation) and 1 (perfect correlation), with 0 being the worst 186 
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possible score, i.e. random. It takes into account the complete confusion matrix and 187 

thus provides a better balance between the different categories. 188 

"Mixin" models 189 

The effect of NA data during training and on the model performance on the test data was 190 

analyzed by adding increasing fractions of NA observations in the respective training sets (see 191 

Results). For those, we have trained models as described above and investigated whether the 192 

model performance changes by analyzing MCC values and confusion matrices. We used the 193 

hyper-parameters established earlier for the respective datasets. 194 

RESULTS 195 

The curated ChEMBL dataset contains 13,620 unique tests, 799,860 unique compounds and in 196 

total 3,625,044 measurements (Figure 1), while AZ inhouse data set consists of 6,277 unique 197 

tests, 1,232,555 unique compounds and in total 5,801,969 measurements. 198 
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 199 

Figure 1. The data curation process of public ChEMBL25 data representing number of measurements 200 

after each cleaning step. 201 

 202 

Most compounds (85%) in AZ tests have been measured more than once (Table 2), which is 203 

not the case for ChEMBL data (5%). This must be considered, during the differentiation of true 204 

NA from experimental noise. It is, indeed, easy to detect strong NA, although weak NA can be 205 

easily confused with the experimental uncertainty. On the other hand, if the experimental noise 206 

is overestimated, potentially significant cases will be ignored and not considered for compound 207 

optimization. Therefore, it is critical, to set the right threshold for experimental noise, since as 208 

mentioned before, it impacts the NA value twice as much as an individual biological 209 

measurement. Considering our data and the studies carried out by Kramer et al. regarding 210 

experimental uncertainty of public and inhouse data sets,[57–59] 0.3 and 0.5 log units were 211 

used as thresholds for AZ and ChEMBL data respectively. Consequently, the NA values above 212 

0.6 (AZ) and 1.0 log (ChEMBL) units were considered significant. 213 

 214 
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NONADDITIVITY ANALYSIS 215 

Figure 2 shows all observed NA of both AZ inhouse and ChEMBL data sets. The sign of the 216 

NA value depends on the order of the molecules within the double-transformation cycles 217 

(DTCs). Consequently, the raw data obtained after running the NA analysis contains both 218 

positive and negative values (Figure 2). Negative values have afterwards been converted to 219 

absolute values. Most of the NA cases can be explained with the experimental noise (Figure 2). 220 

Especially the major peak in the AZ and ChEMBL data are fully covered by the normal 221 

distribution expected from 0.3 and 0.5 log units of the experimental uncertainty respectively. A 222 

significant amount of DTCs not explainable by experimental uncertainty can be identified from 223 

the tail distributions. 224 

Table 2.The numbers describing both curated AZ inhouse and ChEMBL datasets along with the output of NA 225 

analysis. 226 

Nof AZ ChEMBL 

Measurements 5,801,969 3,625,044 

Cpds measured more than once (%) 85.8% 5.1% 

Curated tests 6,277 13,620 

Unique cpds 1,232,555 799,860 

Tests with NA 4,030 7,534 

Tests with significant NA 3,628 (57.8%) 4,128 (30.3%) 

Tests with NA* 3,081 (49%) ----- 

Tests with strong NA# 1,509 (24%) 1,237 (9.1%) 

Unique cpds showing significant NA* 114,862 (9.4%) 40,798 (5.1%) 

Unique cpds showing strong NA# 5,767 (0.5%) 8,572 (1.1%) 

Median nof AZ ChEMBL 

Unique cpds per test 233 35 

Unique cpds per test with NA output 490 39 

DTC per test with NA output 63 13 
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Unique cpds per test with significant NA* 562.5 43 

DTC per test with significant NA* 88.5 23 

Unique cpds per test with NA* 662 ---- 

DTC per test with NA* 133 ---- 

Unique cpds per test with strong NA# 1093 52 

DTC per test with strong NA# 423 43 

Nof = number of, DTC = double-transformation cycles 

* Significant NA: 0.6 log units for AZ inhouse data, 1.0 log units for ChEMBL data 

# Strong NA: > 2.0 log units 

 227 

Figure 2. Theoretical NA distribution expected from an experimental uncertainty of (a) 0.3 and (b) 0.5 log units 228 

(grey lines), and observed NA distribution for all (a) AZ (yellow) tests and (b) ChEMBL (blue) tests. 229 

 230 

According to the Figure 2 both AZ and ChEMBL NA distributions seem normal. However, the 231 

kurtosis, which is a measure of ‘tailedness’, is significantly large in both datasets (Table 3) and 232 

both fail the Kolmogorov-Smirnov[60, 61] tests for normality. Both AZ inhouse and public 233 

output of NA analysis is similar, yet undersampled in case of ChEMBL. Importantly, NA events 234 

occur less often in public data, based on which one might assume that nonlinear events are rare 235 

and can be disregarded. However, the pattern of nonlinear observations in AZ data sets suggests 236 

that it must be considered more carefully and structural reasons must be thoroughly investigated 237 

since they might be hinting towards important structural features. 238 
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Table 3. Descriptive statistics of NA distribution in AZ inhouse and ChEMBL data sets. Note that all 239 

NA values have not been converted to absolute values prior to these calculations. 240 

 
Observations Mean Variance Std Skewness Kurtosis 

AstraZeneca 3,053,055 0 0.42 0.65 0 3.13 

ChEMBL 1,246,975 0 0.46 0.68 0.01 4.52 

 241 

In order to compare the distribution of NA in two groups, two tests have been performed: (1) 242 

Kruskal-Wallis H Test[62], that does not have the assumption of normality, testing the null 243 

hypothesis that the population median of both of the groups is equal; (2) Mann-Whitney U 244 

tests[63] have been employed to test the null hypothesis that it is equally likely that a randomly 245 

selected measurement from one group of observations will be less than or greater than a 246 

randomly selected measurement from the second group of observations. According to the 247 

obtained results from both tests, the NA value distribution in AZ and ChEMBL data sets are 248 

not different from a given level of confidence (p-value = 0.07). 249 

Importantly, public data has a larger number of tests with fewer measurements and unique 250 

compounds (Table 2). The number of tests showing significant NA in ChEMBL data is lower 251 

(30.3%, higher than 1 log unit) than in AZ inhouse data (57.8%, higher than 0.6 log units). 252 

However, ChEMBL tests, in general, contain fewer compounds, therefore the number of DTCs 253 

and hence, the chance of a strong NA occurring is lower. 254 

Less than half of the tests (41.7%) in AZ screening and test database are either additive or no 255 

DTCs were assembled (Figure 3a). This number is higher in public bioactivity data (69.7%, 256 

Figure 3b), which can be explained by the higher threshold of experimental noise and smaller 257 

test sizes. Remarkably, in 24% of all AZ inhouse tests show strong NA (above 2 log units), 258 

whereas in ChEMBL bioactivity data strong NA is observed in 9.1% of all tests. Yet, various 259 

virtual screening studies depend on public datasets and it is crucial to take NA into account 260 
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whilst judging the performance of predictive models since 1 out of 10 tests might not be 261 

additive.  262 

 263 

Figure 3. NA distribution among all curated tests from AZ inhouse (a) and public ChEMBL (b) data sets. 264 

 265 

Beside the number of tests, NA can also be analyzed for DTCs. On average one out of four and 266 

one out of ten DTCs is not additive for AZ inhouse and ChEMBL data respectively (Figure 4a 267 

and b). The distribution of NA among DTCs shows significant NA up to 2 log units indicating 268 

a gradual decrease in the number of cycles with the increasing NA value (Figure 4c and d).  269 
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 270 

Figure 4. NA distribution for all DTCs among curated tests from AZ (a) and ChEMBL (b) data sets. (c) NA 271 

distribution of DTCs showing significant NA score (from 0.6 - up to 2 log units) in AZ (c) and (from 1 - up to 2 272 

log units) ChEMBL (b) bioactivity data. 273 

 274 

Out of all compounds 9.4% from AZ and 5.1% from ChEMBL data sets show a significant NA 275 

shift (Figure 5). As mentioned before, test sizes and different thresholds for the experimental 276 

uncertainty influence these numbers.  277 

 278 

Figure 5. NA distribution among all unique compounds from AZ (a) and ChEMBL (b) data sets.  279 

 280 
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Bioactivity tests from ChEMBL have a smaller number of compounds and a lower number of 281 

DTCs per test. Yet, Figure 6a and b show the shifted distribution of the compounds occurring 282 

in double-transformation cycles per test. Surprisingly, there are more than a hundred tests in 283 

public data sets in which almost all compounds participate in the assembly of DTCs. This might 284 

be due to very small structural variations of tested molecules. AZ inhouse tests tend to be more 285 

diverse. Ultimately, testing more compounds results in a lower percentage of unique molecules 286 

showing NA. Even though the median number of DTCs is higher in AZ tests, the number of 287 

compounds tested in these data sets is also larger, resulting in a relatively lower ratio. 288 

 289 

Figure 6. (a) Distribution of the compounds in DTC. (b) Distribution of the compounds showing a significant NA 290 

shift per test. 291 

 292 

NA distribution according to the number of compounds in tests (Figure 7) indicates that most 293 

of the tests in the AZ database contain up to 20,000 compounds and generally smaller tests 294 

show higher NA. On average, ChEMBL tests are smaller (Table 2), although several large tests 295 

vary in sizes resulting in a more spread out pattern (Figure 7). Herein, highest NA values occur 296 

in both small as well as large tests (Figure S1). Furthermore, the density distribution of all tests 297 

shows the assembly around the experimental uncertainty.  298 
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 299 

Figure 7. Density distribution of the tests showing significant NA from AZ (a) and ChEMBL (b) based on the 300 

average NA and the number of compounds in each test. 301 

 302 

CHEMBL1794483 is the largest bioassay obtained from CHEMBL25 (Figure S 1). Initial data 303 

of the quantitative high throughput screening for the inhibitors of polymerase Iota contains 304 

115,311 measurements, 33,777 DTCs have been assembled with an average NA score of 0.44. 305 

The NA distribution is almost entirely covered by the theoretical normal distribution expected 306 

from the experimental noise of 0.5 log units (Figure 8a). The assembled DTCs contain 24,238 307 

compounds and the average additivity shift for each compound is depicted in Figure 8b. In 308 

general, it is impossible to point out which molecule causes the NA in a given DTC without 309 

further structural information. If the compound occurs in many DTCs with high average NA 310 

shift (always with significantly low or high potency), it indicates either a plain error, i.e. a wrong 311 

measurement, or structural properties that drastically increase or decrease the compound’s 312 

biological activity. 313 
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 314 

Figure 8. (a) Theoretical NA distribution expected from an experimental uncertainty of 0.5 log units (grey line), 315 

and an actual NA distribution for CHEMBL1794483 test (Blue). (b) The average additivity shifts per compound 316 

and the standard deviation of the shift for the CHEMBL1794483 data set. Black lines show the confidence interval 317 

(CI = 95%) indicating the area where the compounds should appear in case of additivity given the selected 318 

threshold of experimental uncertainty (0.5 log units in this case). 319 

 320 

Figure 9 shows the DTC from CHEMBL1794483 test with one of the highest NA scores. If the 321 

SAR was perfectly additive then the removal of isopropyl group and attaching the benzyl group 322 

should have resulted in a significant increase of the potency, yielding pActivity of 8.35. Instead, 323 

the activity of the fourth compound even decreased and is lower than compound 1.  324 

 325 

Figure 9. The DTC from CHEMBL1794483 data set with one of the highest NA score (4.35). 326 
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OPTUNA 327 

In the second part of the results, the influence of NA on ML performance will be analyzed. 328 

Herein, three different ChEMBL assays (Table 4, Figure S 2) were used to analyze the 329 

following aspects: (1) Can NA compounds be correctly predicted from a model based on 330 

additive data? (2) Does the integration of NA data into training increase model performance? 331 

Table 4. Selected ChEMBL data sets including NA statistics. 332 

ChEMBL 

data 

# Cpds 

# Cpds with 

significant NA (%) 

# Cycles 

# Cycles with 

significant NA (%) 

1613797 6,236 73 (1.2) 6,245 694 (11.1) 

1614027 2,892 69 (2.4) 4,691 582 (12.4) 

1613777 3,512 122 (3.5) 8,600 1606 (18.7) 

 333 

The data sets for the second question was constructed based on the median number of 334 

compounds with NA observations (Figure 10). Thus, three sets were constructed for each 335 

ChEMBL test containing Q1 (0.6%), median (1.3%) and Q3 (2.6%) of NA compounds. The 336 

NA compounds were selected using a stratified split. The NA hold-out set was constructed form 337 

the Q3 (2.6%) split, i.e. all models were evaluated on the same subset of observations to ensure 338 

comparability. 339 

 340 

Figure 10. Distribution of NA compounds (%) and the number of DTCs (%) in ChEMBL tests that show NA. 341 

 342 
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In order to check that any difference in performance is not purely due to a different 343 

biological/chemical space, two aspects were checked: (1) the coverage of pIC50 values between 344 

training and both test sets and (2) the similarity between the compounds (Figure S 2Error! 345 

Reference source not found., Figure 11). 346 

 347 

Figure 11. Overlay of tanimoto similarity distributions for training (green), and both test data sets, i.e. additive 348 

(blue) and NA (red). Tanimoto similarity was calculated using ECFP6. For training set similarity the identity for 349 

the molecule was excluded for its similarity calculation. 350 

 351 

Based on the automatic hyper-parameter training using Optuna, RF and SVM models were 352 

generated for all three ChEMBL data sets. Both RF and SVM show similar performances for 353 

each ChEMBL data set, while SVM performance was more volatile to the actual choice of 354 

hyper-parameters. While the RF model for ChEMBL1614027 performed well on training and 355 

additive test data (Table 5, Figure 12), the models for the other two data sets performed less 356 

good with R2=0.63/0.06 and R2=0.72/0.24 for CHEMBL1613797 and ChEMBL1613777 357 

training/test data respectively (Table 5, Figure S 3, and Figure S 4). Importantly, for both 358 

models (RF and SVM), as well as all three data sets the performance on NA test data 359 

consistently dropped, with the RFs typically performing slightly better than the SVM model 360 

(Table 5, Figure S 5-7). In addition to the correlation between experimental and predicted data 361 

the predicted error (RMSE) increases for all NA data sets. 362 

 363 
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Table 5. RF and SVM model performance measures. 364 

ChEMBL data  

(#measures) 

RF SVM 

Train r2 

(RMSE) 

Test r2 (RMSE) Test MCC Train r2 

(RMSE) 

Test r2 (RMSE) Test MCC 

A* NA# A* NA# A* NA# A* NA# 

1613797 

(772) 

0.63  

(0.22) 

0.06 

(0.33) 

-0.27 

(1.19) 
0.06 0.22 

0.51  

(0.26) 

0.05 

(0.33) 

-0.35 

(1.22) 
0.14 0.07 

1614027 

(1024) 

0.94  

(0.15) 

0.68 

(0.34) 

-0.29 

(1.26) 
0.53 0.20 

0.94  

(0.15) 

0.68 

(0.34) 

-0.29 

(1.26) 
0.54 0.08 

1613777 

(3511) 

0.72  

(0.42) 

0.24 

(0.69) 

-0.37 

(1.29) 
0.40 -0.01 

0.84  

(0.32) 

0.24 

(0.69) 

-0.47 

(1.33) 
0.49 0.00 

Testdata with (*) additive and (#) NA data only   

 365 

 366 

Figure 12. Correlation plots with RF predictions for ChEMBL1614027. 367 

 368 

Furthermore, a binary classification of the predicted values was done and the MCC was 369 

calculated as well as confusion matrices generated. Both show that it is much harder to 370 

accurately predict the NA test sets (Figure S 8, Figure S 9). 371 

In a subsequent test, NA data was added to the training data to evaluate whether this could 372 

improve the prediction for NA data (Table 6, Figure S 10). For these "mixin" trials, it appears 373 
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that for all ratios and all datasets there is no significant difference in performance. This might 374 

be either because it has a hard time learning from those examples or because they are too few 375 

in number. 376 

Table 6. Performance measures for binary classification. 377 

ChEMBL 

data 

RF (MCC for test) 

Q0 (0.0%)
*
 Q1 (0.6%)

*
 Median (1.3%)

*
 Q3 (2.6%)

*
 

1613797 0.22 0.16 0.16 0.16 

1614027 0.20 0.20 0.12 0.10 

1613777 -0.01 0.11 -0.03 -0.05 

* Test set size for Q0 differs from Q1/Median/Q3. 

 378 

DISCUSSION 379 

The project aimed to analyze the occurrence of NA in public and inhouse data and its influence 380 

on machine learning performance.  381 

One of the biggest challenges during this process is the data pre-processing to make both sets 382 

comparable. Thus, additional cleaning steps were applied to ChEMBL bioactivity data, such as 383 

filtering by the target confidence score to increase the data reliability. The final ‘cleaned’ 384 

dataset depends on the experience and decision-making of the researcher to correctly choose 385 

which tests are compatible with the analysis.  386 

The size restriction of the molecules was based on the structural transformations and 387 

similarities, the upper limit of the molecular size included and exchanged during the 388 

transformations must be set carefully. 70 heavy atoms and the transformation of a maximum 389 

1/3rd of the molecule were established. Without having these limitations, the following issues 390 

may arise: (1) large molecules, such as peptides are not compatible with the NA analysis since 391 
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it is impossible to track small functional groups; (2) performing calculations on large molecules 392 

is computationally expensive; (3) in cases where the functional group represents 60% of the 393 

molecule will most likely result in NA since almost the whole compound is transformed and 394 

the corresponding binding mode is likely to change. 395 

In addition to the molecules size restrictions, also test size after all the data-cleaning steps is 396 

crucial. On one hand, small tests should be discarded, because there is a lower probability of 397 

DTCs assembling. In this research project, 25 was set as the lowest number of unique 398 

compounds per test. Since most of the tests are small (half of the measurements in both inhouse 399 

and public data sets were concentrated in a few hundred assays only), it also influences the 400 

general statistics resulting in no NA output. One might argue that the majority of the tests are 401 

additive, however, most of them are too small to draw any meaningful conclusions regarding 402 

their NA. 403 

According to the results, significant nonlinearity occurs once in every second test in AZ inhouse 404 

and once in every third biological and physicochemical tests in ChEMBL databases. 405 

Importantly, significant nonadditive events are less frequent in public data sets. The reasons for 406 

it can be: (1) potential bias in reporting single series or positive SAR results; (2) the smaller 407 

size of public bioactivity tests, resulting in less DTCs; (3) a higher threshold of the experimental 408 

uncertainty for the entire data, as some tests have significantly higher experimental noise. An 409 

additional influence is the reliability of the compounds measurements. Since in the inhouse 410 

database a majority of compounds is measured several times in each test the measurements are 411 

more reliable. This is not the case in the public data sets, where only 5% of the compounds are 412 

measured more than once in each test.  413 

Prior to the analysis, it is crucial to carefully set the thresholds for the experimental noise to 414 

point out true NA cases. Strong NA stands out from the rest of the data and it is easy to spot, 415 

while weaker NA is usually blended with the experimental noise. As described by Kramer et 416 
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al.[6] NA analysis can estimate the upper limit of an experimental uncertainty for specific 417 

biochemical assays, which is crucial in differentiating true NA from the assay artefacts. 418 

However, it is less straight forward to select the threshold for large data. While experimental 419 

noise among most of the inhouse tests might be 0.2 log units, there are still some assays with 420 

larger errors. The problem with the higher limits of the experimental noise is the higher amount 421 

of insignificant NA cases. By choosing 0.5 log units for public data, we potentially cover all 422 

the assay artefacts, still, we might have ignored potentially true NA cases.  423 

NA can be a problem for linear SAR techniques. Yet, if used intentionally, it can be an 424 

important tool for drug discovery. This study provides a detailed picture of the NA pattern 425 

amongst the inhouse and public databases, providing the global distribution of nonlinear events 426 

amongst tests and unique compounds. A careful understanding of the data is the key to 427 

successful decision-making. By conducting NA analysis one can easily identify outliers, detect 428 

potential assay artefacts, or key conformational changes. It is crucial to understand the possible 429 

experimental noise, that can be underlying most of NA cases because of assay noise. Therefore, 430 

one must always keep in mind the origin of a given assay, the reliability of the measurements, 431 

and a possible upper limit of experimental uncertainty.  432 

By systematically incorporating the NA analysis into the drug discovery projects, detection of 433 

interesting interactions and key SAR features will be easier and will eventually provide more 434 

structural insights for rational drug design. 435 

CONCLUSIONS  436 

Identifying NA in the SAR data sets can be crucial by suggesting important structural features 437 

for the compound optimization. However, nonadditive events can be caused by the random 438 

addition of experimental uncertainty, which is important to consider during the interpretation 439 

of results. The impact of the experimental noise increases with the size of the test, as more 440 
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double-transformation cycles can be assembled. NA analysis in the AZ compound database 441 

suggests that significant nonlinear events are more frequent in AZ inhouse data than public 442 

ChEMBL data. By considering only public data one might assume that a NA is a rare event and 443 

important cases can be neglected. AZ data points out the fact that this is not true and the 444 

statistical framework of the NA analysis should be systematically implemented in SAR projects 445 

and discussed in publications for rational drug design.  446 

Despite that we retrospectively cannot figure out if the optimization lead to a general increase 447 

or decrease in the activity, from MMP studies we know that 100-fold improvements are very 448 

rare events of about 1%.[64] Our numbers 1-3% point to the fact that electrostatic or steric 449 

problems occur more frequently than expected from SAR data because of the undersampling 450 

of negative data. This undersampling might be a reason why QSAR models have problems with 451 

describing activity cliffs despite being often based on non-linear algorithms. This would also 452 

be useful for setting a baseline of performance to be expected from such models. 453 

Currently, the sign of a NA value does not provide valuable information since the order of 454 

compounds does not indicate the effect of a given transformations. In other words, one cannot 455 

guess which feature leads to the gain or loss of the activity from a specific double-456 

transformation cycle. It would add another level of information to see the pattern of NA 457 

distribution in terms of boosting or decreasing the biological effect, whether the cases are equal 458 

or mostly lead to the loss of biological activity. 459 

REFERENCES 460 

1.  Free SM, Wilson JW (1964) A mathematical contribution to structure-activity studies. J Med Chem 461 

7:395–399 462 

2.  Cramer RD, Wendt B (2014) Template CoMFA: The 3D-QSAR Grail? J Chem Inf Model 54:660–671 463 

3.  Hussain J, Rea C (2010) Computationally efficient algorithm to identify matched molecular pairs 464 



26 

 

(MMPs) in large data sets. J Chem Inf Model 50:339–348 465 

4.  Patel Y, Gillet VJ, Howe T, et al (2008) Assessment of additive/nonadditive effects in structure− activity 466 

relationships: implications for iterative drug design. J Med Chem 51:7552–7562 467 

5.  Wang L, Wu Y, Deng Y, et al (2015) Accurate and reliable prediction of relative ligand binding potency 468 

in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am 469 

Chem Soc 137:2695–2703. https://doi.org/10.1021/ja512751q 470 

6.  Kramer C (2019) Nonadditivity Analysis. J Chem Inf Model 59:4034–4042. 471 

https://doi.org/10.1021/acs.jcim.9b00631 472 

7.  Dimova D, Bajorath J (2016) Advances in activity cliff research. Mol Inform 35:181–191 473 

8.  Dimova D, Heikamp K, Stumpfe D, Bajorath J (2013) Do medicinal chemists learn from activity cliffs? 474 

A systematic evaluation of cliff progression in evolving compound data sets. J Med Chem 56:3339–3345 475 

9.  Hu Y, Stumpfe D, Bajorath J (2013) Advancing the activity cliff concept. F1000Research 2: 476 

10.  Mobley DL, Gilson MK (2017) Predicting binding free energies: frontiers and benchmarks. Annu Rev 477 

Biophys 46:531–558 478 

11.  Hu H, Bajorath J (2020) Introducing a new category of activity cliffs combining different compound 479 

similarity criteria. RSC Med Chem 480 

12.  Abramyan TM, An Y, Kireev D (2019) Off-Pocket Activity Cliffs: A Puzzling Facet of Molecular 481 

Recognition. J Chem Inf Model 482 

13.  Andrews SP, Mason JS, Hurrell E, Congreve M (2014) Structure-based drug design of chromone 483 

antagonists of the adenosine A2A receptor. Medchemcomm 5:571–575. 484 

https://doi.org/10.1039/C3MD00338H 485 

14.  Schönherr H, Cernak T (2013) Profound Methyl Effects in Drug Discovery and a Call for New C-H 486 

Methylation Reactions. Angew Chemie Int Ed 52:12256–12267 487 

15.  Kramer C, Fuchs JE, Liedl KR (2015) Strong nonadditivity as a key structure-activity relationship 488 

feature: Distinguishing structural changes from assay artifacts. J Chem Inf Model 55:483–494. 489 

https://doi.org/10.1021/acs.jcim.5b00018 490 



27 

 

16.  Gomez L, Xu R, Sinko W, et al (2018) Mathematical and Structural Characterization of Strong 491 

Nonadditive Structure–Activity Relationship Caused by Protein Conformational Changes. J Med Chem 492 

61:7754–7766 493 

17.  Baum B, Muley L, Smolinski M, et al (2010) Non-additivity of functional group contributions in 494 

protein–ligand binding: a comprehensive study by crystallography and isothermal titration calorimetry. J 495 

Mol Biol 397:1042–1054 496 

18.  McClure K, Hack M, Huang L, et al (2006) Pyrazole CCK1 receptor antagonists. Part 1: Solution-phase 497 

library synthesis and determination of Free–Wilson additivity. Bioorg Med Chem Lett 16:72–76 498 

19.  Sehon C, McClure K, Hack M, et al (2006) Pyrazole CCK1 receptor antagonists. Part 2: SAR studies by 499 

solid-phase library synthesis and determination of Free–Wilson additivity. Bioorg Med Chem Lett 500 

16:77–80 501 

20.  Hilpert K, Ackermann J, Banner DW, et al (2002) Design and synthesis of potent and highly selective 502 

thrombin inhibitors. J Med Chem 37:3889–3901 503 

21.  Lübbers T, Böhringer M, Gobbi L, et al (2007) 1, 3-disubstituted 4-aminopiperidines as useful tools in 504 

the optimization of the 2-aminobenzo [a] quinolizine dipeptidyl peptidase IV inhibitors. Bioorg Med 505 

Chem Lett 17:2966–2970 506 

22.  Leung CS, Leung SSF, Tirado-Rives J, Jorgensen WL (2012) Methyl effects on protein–ligand binding. 507 

J Med Chem 55:4489–4500 508 

23.  Abeliovich H (2005) An empirical extremum principle for the hill coefficient in ligand-protein 509 

interactions showing negative cooperativity. Biophys J 89:76–79 510 

24.  Dill KA (1997) Additivity principles in biochemistry. J Biol Chem 272:701–704 511 

25.  Camara-Campos A, Musumeci D, Hunter CA, Turega S (2009) Chemical double mutant cycles for the 512 

quantification of cooperativity in H-bonded complexes. J Am Chem Soc 131:18518–18524 513 

26.  Cockroft SL, Hunter CA (2007) Chemical double-mutant cycles: dissecting non-covalent interactions. 514 

Chem Soc Rev 36:172–188 515 

27.  Babaoglu K, Shoichet BK (2006) Deconstructing fragment-based inhibitor discovery. Nat Chem Biol 516 

2:720–723 517 



28 

 

28.  Miller BG, Wolfenden R (2002) Catalytic proficiency: the unusual case of OMP decarboxylase. Annu 518 

Rev Biochem 71:847–885 519 

29.  Hajduk PJ, Sheppard G, Nettesheim DG, et al (1997) Discovery of potent nonpeptide inhibitors of 520 

stromelysin using SAR by NMR. J Am Chem Soc 119:5818–5827 521 

30.  Congreve MS, Davis DJ, Devine L, et al (2003) Detection of ligands from a dynamic combinatorial 522 

library by X‐ray crystallography. Angew Chemie Int Ed 42:4479–4482 523 

31.  Sharrow SD, Edmonds KA, Goodman MA, et al (2005) Thermodynamic consequences of disrupting a 524 

water‐mediated hydrogen bond network in a protein: pheromone complex. Protein Sci 14:249–256 525 

32.  Muley L, Baum B, Smolinski M, et al (2010) Enhancement of hydrophobic interactions and hydrogen 526 

bond strength by cooperativity: synthesis, modeling, and molecular dynamics simulations of a 527 

congeneric series of thrombin inhibitors. J Med Chem 53:2126–2135 528 

33.  Kuhn B, Mohr P, Stahl M (2010) Intramolecular hydrogen bonding in medicinal chemistry. J Med Chem 529 

53:2601–2611. https://doi.org/10.1021/jm100087s 530 

34.  Segler MHS, Kogej T, Tyrchan C, Waller MP (2018) Generating focused molecule libraries for drug 531 

discovery with recurrent neural networks. ACS Cent Sci 4:120–131. 532 

https://doi.org/10.1021/acscentsci.7b00512 533 

35.  Arús-Pous J, Blaschke T, Ulander S, et al (2019) Exploring the GDB-13 chemical space using deep 534 

generative models. J Cheminform 11:20. https://doi.org/10.1186/s13321-019-0341-z 535 

36.  Blaschke T, Arús-Pous J, Chen H, et al (2020) REINVENT 2.0 – an AI Tool for De Novo Drug Design. 536 

https://doi.org/10.26434/CHEMRXIV.12058026.V2 537 

37.  Olivecrona M, Blaschke T, Engkvist O, Chen H (2017) Molecular de-novo design through deep 538 

reinforcement learning. J Cheminform 9:48. https://doi.org/10.1186/s13321-017-0235-x 539 

38.  Stepniewska-Dziubinska MM, Zielenkiewicz P, Siedlecki P (2018) Development and evaluation of a 540 

deep learning model for protein–ligand binding affinity prediction. Bioinformatics 34:3666–3674. 541 

https://doi.org/10.1093/bioinformatics/bty374 542 

39.  Gomes J, Ramsundar B, Feinberg EN, Pande VS (2017) Atomic Convolutional Networks for Predicting 543 

Protein-Ligand Binding Affinity 544 



29 

 

40.  Feinberg EN, Sur D, Wu Z, et al (2018) PotentialNet for Molecular Property Prediction. ACS Cent Sci 545 

4:1520–1530. https://doi.org/10.1021/acscentsci.8b00507 546 

41.  Jiménez J, Škalič M, Martínez-Rosell G, De Fabritiis G (2018) KDEEP: Protein-Ligand Absolute 547 

Binding Affinity Prediction via 3D-Convolutional Neural Networks. J Chem Inf Model 58:287–296. 548 

https://doi.org/10.1021/acs.jcim.7b00650 549 

42.  Wójcikowski M, Ballester PJ, Siedlecki P (2017) Performance of machine-learning scoring functions in 550 

structure-based virtual screening. Sci Rep 7:1–10. https://doi.org/10.1038/srep46710 551 

43.  Ragoza M, Hochuli J, Idrobo E, et al (2017) Protein-Ligand Scoring with Convolutional Neural 552 

Networks. J Chem Inf Model 57:942–957. https://doi.org/10.1021/acs.jcim.6b00740 553 

44.  Pereira JC, Caffarena ER, Dos Santos CN (2016) Boosting Docking-Based Virtual Screening with Deep 554 

Learning. J Chem Inf Model 56:2495–2506. https://doi.org/10.1021/acs.jcim.6b00355 555 

45.  Wallach I, Dzamba M, Heifets A (2015) AtomNet: A Deep Convolutional Neural Network for 556 

Bioactivity Prediction in Structure-based Drug Discovery 557 

46.  Ballester PJ, Mitchell JBO (2010) A machine learning approach to predicting protein-ligand binding 558 

affinity with applications to molecular docking. Bioinformatics 26:1169–1175. 559 

https://doi.org/10.1093/bioinformatics/btq112 560 

47.  Kayala MA, Baldi P (2012) ReactionPredictor: Prediction of complex chemical reactions at the 561 

mechanistic level using machine learning. J Chem Inf Model 52:2526–2540. 562 

https://doi.org/10.1021/ci3003039 563 

48.  Struble TJ, Alvarez JC, Brown SP, et al (2020) Current and Future Roles of Artificial Intelligence in 564 

Medicinal Chemistry Synthesis. J Med Chem. https://doi.org/10.1021/acs.jmedchem.9b02120 565 

49.  Segler MHS, Waller MP (2017) Neural-Symbolic Machine Learning for Retrosynthesis and Reaction 566 

Prediction. Chem - A Eur J 23:5966–5971. https://doi.org/10.1002/chem.201605499 567 

50.  Schwaller P, Gaudin T, Lányi D, et al (2018) “Found in Translation”: predicting outcomes of complex 568 

organic chemistry reactions using neural sequence-to-sequence models. Chem Sci 9:6091–6098. 569 

https://doi.org/10.1039/c8sc02339e 570 

51.  Landrum G (2006) RDKit: Open-source cheminformatics 571 



30 

 

52.  Dalke A, Hert J, Kramer C (2018) mmpdb: An Open-Source Matched Molecular Pair Platform for Large 572 

Multiproperty Data Sets. J Chem Inf Model 58:902–910. https://doi.org/10.1021/acs.jcim.8b00173 573 

53.  Gaulton A, Hersey A, Nowotka M, et al (2017) The ChEMBL database in 2017. Nucleic Acids Res 574 

45:D945–D954 575 

54.  Akiba T, Sano S, Yanase T, et al (2019) Optuna: A Next-generation Hyperparameter Optimization 576 

Framework. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery 577 

and Data Mining. Association for Computing Machinery, New York, NY, USA, pp 2623–2631 578 

55.  Pedregosa F, Varoquaux G, Gramfort A, et al (2011) Scikit-learn: Machine learning in Python. J Mach 579 

Learn Res 12:2825–2830 580 

56.  Chicco D, Jurman G (2020) The advantages of the Matthews correlation coefficient (MCC) over F1 581 

score and accuracy in binary classification evaluation. BMC Genomics 21:6. 582 

https://doi.org/10.1186/s12864-019-6413-7 583 

57.  Kramer C, Kalliokoski T, Gedeck P, Vulpetti A (2012) The experimental uncertainty of heterogeneous 584 

public K i data. J Med Chem 55:5165–5173. https://doi.org/10.1021/jm300131x 585 

58.  Kalliokoski T, Kramer C, Vulpetti A, Gedeck P (2013) Comparability of mixed IC50 data–a statistical 586 

analysis. PLoS One 8: 587 

59.  Kramer C, Dahl G, Tyrchan C, Ulander J (2016) A comprehensive company database analysis of 588 

biological assay variability. Drug Discov. Today 21:1213–1221 589 

60.  Kolmogorov-Smirnov AN, Kolmogorov A, Kolmogorov M (1933) Sulla determinazione empírica di 590 

uma legge di distribuzione 591 

61.  Smirnov N (1948) Table for estimating the goodness of fit of empirical distributions. Ann Math Stat 592 

19:279–281 593 

62.  Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 594 

47:583–621 595 

63.  Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger 596 

than the other. Ann Math Stat 50–60 597 



31 

 

64.  Hajduk PJ, Sauer DR (2008) Statistical analysis of the effects of common chemical substituents on 598 

ligand potency. J Med Chem 51:553–564. https://doi.org/10.1021/jm070838y 599 

 600 

List of abbreviations  601 

NAA: NA analysis; AZ: AstraZeneca; SAR: Structure-activity relationship; QSAR: 602 

Quantitative structure-activity relationship; AI: Artificial intelligence; ML: Machine learning; 603 

FW: Free-Wilson; MMPA: Matched molecular pair analysis; FBDD: Fragment-based drug 604 

discovery; CADD: Computer-aided drug design; SMILES: Simplified molecular-input line-605 

entry system; SBDD: Structure-based drug design; RF: Random forest; SVM: Support vector 606 

machine. 607 

Acknowledgements  608 

Gratitudes towards Uppsala University, Dr. Lena Åslund and the colleagues from IMIM program for 609 

supporting the master thesis of DG. 610 

Authors’ contributions  611 

DG performed data curation, NA analysis and wrote the paper. CM realized the ML study and wrote the 612 

paper. EN and CT supervised the study and wrote the paper. All the authors read and approved the final 613 

manuscript. 614 

Funding 615 

DG is supported financially by Erasmus Mundus Joint Master Degree scholarship 2018-2020 and 616 

AstraZeneca Master student program.  617 

Availability of data and materials  618 

The datasets supporting the conclusions of this article are included within the article and its additional 619 

files. 620 

• S1: Additional figures. 621 

• The Jupyter notebook for data preparation and NA analysis is available on GitHub 622 

(https://github.com/MolecularAI/NonadditivityAnalysis). 623 

• ChEMBL data sets (ChEMBL1613777/1613797/1614027) with obtained NA values for ML approach 624 



32 

 

are available as csv files. 625 

Nonadditivity analysis code was made available by Christian Kramer on GitHub 626 

(https://github.com/KramerChristian/NonadditivityAnalysis).  627 

Competing interests  628 

The authors declare that they have no competing interests. CM, CT and EN are employees of 629 

AstraZeneca and own stock options. 630 

Current address 631 

¤ Dea Gogishvili, Department of Computer Science, Vrije Universiteit, De Boelelaan 1105, 1081 HV 632 

Amsterdam, The Netherlands. 633 



Figures

Figure 1

The data curation process of public ChEMBL25 data representing number of measurements after each
cleaning step.



Figure 2

Theoretical NA distribution expected from an experimental uncertainty of (a) 0.3 and (b) 0.5 log units
(grey lines), and observed NA distribution for all (a) AZ (yellow) tests and (b) ChEMBL (blue) tests.

Figure 3

NA distribution among all curated tests from AZ inhouse (a) and public ChEMBL (b) data sets.



Figure 4

NA distribution for all DTCs among curated tests from AZ (a) and ChEMBL (b) data sets. (c) NA
distribution of DTCs showing signi�cant NA score (from 0.6 - up to 2 log units) in AZ (c) and (from 1 - up
to 2 log units) ChEMBL (b) bioactivity data.

Figure 5

NA distribution among all unique compounds from AZ (a) and ChEMBL (b) data sets.

Figure 6

(a) Distribution of the compounds in DTC. (b) Distribution of the compounds showing a signi�cant NA
shift per test.



Figure 7

Density distribution of the tests showing signi�cant NA from AZ (a) and ChEMBL (b) based on the
average NA and the number of compounds in each test.

Figure 8

(a) Theoretical NA distribution expected from an experimental uncertainty of 0.5 log units (grey line), and
an actual NA distribution for CHEMBL1794483 test (Blue). (b) The average additivity shifts per
compound and the standard deviation of the shift for the CHEMBL1794483 data set. Black lines show



the con�dence interval (CI = 95%) indicating the area where the compounds should appear in case of
additivity given the selected threshold of experimental uncertainty (0.5 log units in this case).

Figure 9

The DTC from CHEMBL1794483 data set with one of the highest NA score (4.35).



Figure 10

Distribution of NA compounds (%) and the number of DTCs (%) in ChEMBL tests that show NA.

Figure 11

Overlay of tanimoto similarity distributions for training (green), and both test data sets, i.e. additive (blue)
and NA (red). Tanimoto similarity was calculated using ECFP6. For training set similarity the identity for



the molecule was excluded for its similarity calculation.

Figure 12

Correlation plots with RF predictions for ChEMBL1614027.
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