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Abstract
Major advances in our understanding of the functional heterogeneity of enteric neurons are driven by the application of newly 
developed, innovative methods. In contrast to this progress, both animal and human enteric neurons are usually divided into 
only two morphological subpopulations, “Dogiel type II” neurons (with several long processes) and “Dogiel type I” neurons 
(with several short processes). This implies no more than the distinction of intrinsic primary afferent from all other enteric 
neurons. The well-known chemical and functional diversity of enteric neurons is not reflected by this restrictive dichotomy 
of morphological data. Recent structural investigations of human enteric neurons were performed by different groups which 
mainly used two methodical approaches, namely detecting the architecture of their processes and target-specific tracing of 
their axonal courses. Both methods were combined with multiple immunohistochemistry in order to decipher neurochemi-
cal codes. This review integrates these morphological and immunohistological data and presents a classification of human 
enteric neurons which we believe is not yet complete but provides an essential foundation for the further development of 
human gastrointestinal neuropathology.
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Prologue: from past to present

The earliest approaches to identify nerve structures in the 
gut resulted in the description of different ganglionic enteric 
nerve networks (Meissner 1857; Auerbach 1862; Schaba-
dasch 1930) and the subsequent distinction of enteric neu-
ron types (Dogiel 1899). The latter phase in particular was 
embroiled in decades of dispute between followers of two 
rival theories concerning the basic structure of the nerv-
ous system, the reticular versus the neuron theory, the latter 
mainly based on the works of Ramón y Cajal (Garcia-Lopez 
et al. 2010). This conceptual discord was only decided in 
favor of the neuron theory in the 1950s by electron micros-
copy (Clarke and O’Malley 1996).

The Russian histologist Dogiel was a rather inconsistent 
follower of the reticular concept because he distinguished 
neural processes into long and short ones, namely axons and 
dendrites (Brehmer et al. 1999a). Although his descriptions 

of three neuron types contained the hidden potency for 
further development, “collapsing of the classifications” 
(Furness and Costa 1987) led to a simplified morphologi-
cal two-type concept (Brehmer et al. 1999a). For numerous 
contemporary researchers in the field of the enteric nervous 
system (ENS), the distinction between Dogiel type II and 
Dogiel type I neurons is mainly useful for separating primary 
afferent from all other enteric neurons (Nurgali 2009; Car-
bone et al. 2014; Fung and Vanden Berghe 2020; Spencer 
and Hu 2020; Smolilo et al. 2020; Yuan et al. 2021). The 
occasional identification of non-Dogiel type I or II but fila-
mentous neurons (Furness et al. 1988; Carbone et al. 2014) 
indicated both the possibility and the need for a more solid 
morphological classification reminiscent of Dogiel’s original 
tree-type system.

Three original types of Dogiel

Although Dogiel (1899) reported that he also considered 
submucosal neurons, his three types are obviously concerned 
with myenteric neurons (based on specimens from human 
infants, guinea pigs and other mammals). Of his depictions, 
only samples of type I and II neurons are derived from 
humans (Brehmer 2006).
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Type I neurons had one axon and up to 20 dendrites which 
were, in simple terms, short with broad or lamellar endings. 
Axons of these neurons were observed to run through adja-
cent ganglia, occasionally into the muscle coat.

Type II neurons had one axon and up to 16 long dendrites 
leaving the ganglion of origin and resembling axons—a dis-
tinctive ambiguity (see below).

Type III neurons had one axon and up to 10 (seldom 
more) dendrites which were many times longer than those 
of type I neurons, ramified and had tapering endings within 
the ganglion of origin (in contrast to the processes of type II 
neurons). Only two examples derived from guinea pig large 
intestine were depicted by Dogiel (1899).

Following the categories of the recent International Neu-
roanatomical Terminology (FIPAT. Terminologia Neuroana-
tomica. 2017), all these Dogiel types of neurons would be 
called multipolar neurons displaying one (long or short) 
axon and several dendrites.

Additional criteria of Stach

Based mainly on investigations on silver-impregnated whole 
mounts of the pig small intestine, two general, conceptual 
advances as to morphological classification schemes were 
achieved by Stach in the 1980s.

First, he strictly considered the combination of two (at 
first glance independent) morphological features, namely 
the dendritic architecture and the axonal course in Dogiel’s 
types. This resulted in the clear distinction between (pig) 
type I neurons with short, lamellar dendrites, and orally 
running axons as well as (pig) type III neurons with long, 
branched, tapering dendrites and anally running axons 
(Stach 1980, 1982a). This conceptual progress forced a 
numerical extension beyond Dogiel’s three types. Stach type 
IV neurons (in the pig) had short, tapering dendrites and 
axons running vertically towards the mucosa (Stach 1982b; 
Brehmer et al. 1999b).

Secondly, Stach specified the generally used term 
“multipolar” for neurons displaying numerous processes. On 
the one hand, “multipolar type I, III, IV neurons” (and also 
further types V, VI: Stach 1985, 1989) were termed multi-
dendritic uniaxonal neurons. On the other hand, “multipolar 
type II neurons” were characterized as multiaxonal neurons 
(Stach 1981; there are both non-dendritic and dendritic ones, 
see below). This distinction within the category “multipolar 
neurons” is not considered in the recent neuroanatomical 
terminology (FIPAT. Terminologia Neuroanatomica. 2017).

Enteric neuron classifications in different 
mammalian species

Our conceptual understanding of enteric circuits in general 
is derived mainly from the guinea pig (Furness and Costa 

1987; Furness 2006). That is, intrinsic afferent neurons, sev-
eral types of ascending and descending interneurons or vari-
ous muscle or mucosal motor neurons were first identified 
in this species. The immunohistochemical detection of the 
presence or absence of neuronal substances (i.e., the chemi-
cal coding of enteric neurons) became an effective and easily 
applicable tool for distinction of enteric neuron types in the 
guinea pig and, subsequently, in other species. In contrast, 
morphological correlates of this chemical and functional 
heterogeneity were hardly searched for.

Detailed knowledge on neurochemical classes of neurons 
is available from various gut segments of the guinea pig, e.g. 
the small intestine (Costa et al. 1996; Brookes 2001), the 
colon (Lomax and Furness 2000) and the stomach (Sche-
mann et al. 2001). Considerable data also exist from the 
mouse (Sang et al. 1997; Nurgali et al. 2004; Qu et al. 2008; 
Mongardi Fantaguzzi et al. 2009), the rat (Sayegh and Ritter 
2003; Mitsui 2010), the pig (Brown and Timmermans 2004; 
Brehmer 2006; Petto et al. 2015; Mazzoni et al. 2020) and 
other mammals (Freytag et al. 2008; Chiocchetti et al. 2009; 
Noorian et al. 2011).

It was recognized early on that the transfer of single find-
ings from one species to another (including human) is ham-
pered by species differences. Furthermore, the concept “one 
neuron–one function” has been refuted. Intrinsic primary 
afferent neurons (IPANs, see below) can also be regarded 
as interneurons (Wood 1994; Furness et  al. 1998), and 
non-IPANs have also been shown to be (mechano-)sensory 
(Spencer and Smith 2004; Spencer and Hu 2020), even in 
the human ENS (Kugler et al. 2015).

Because of the restricted access to human tissues, our 
knowledge of human enteric morphochemical classes 
is much more limited than that of some animal species. 
Therefore, the following assignment of functions to mor-
phochemical phenotypes remains partly putative and cer-
tainly incomplete. The aim of this review is to integrate 
findings of morphological and immunohistological features 
of human enteric neurons and to stimulate further search for 
both physiological features and pathohistological alterations 
in the human ENS. It has been shown that both dendritic 
architecture (Brehmer et al. 2001) and chemical coding of 
neurons (Schemann and Neunlist 2004) may change under 
experimental and pathological conditions, respectively.

Structure of human myenteric neurons

Recent attempts to identify and characterize the structure 
and main functions of human enteric neuron populations 
followed two methodical approaches.

One method aimed at the representation of dendrites and 
proximal axonal segments of neurons (Table 1). Classically, 
this has been achieved by silver impregnation (Stach 1980, 
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1989; Stach et al. 2000). Presently, this capricious method is 
being replaced by immunostaining with cytoskeletal mark-
ers which depicts neurons almost equivalently (Vickers and 
Costa 1992; Brehmer et al. 2002b, 2004a) but is a more 
reliable and combinable staining method. We used neuro-
filaments (NF; Brehmer et al. 2004a) in human myenteric 
and peripherin (PERI; Kustermann et al. 2011) in human 
submucosal neurons. These markers represent the morphol-
ogy of the cytoskeleton but not that of the whole, membrane-
covered neuron. They allowed us, by co-staining with other 
neuronal markers, to differentiate neurons based on their 
morphochemical phenotype. That is, neurons displaying dif-
ferent dendritic architectures and, simultaneously, different 
chemical codes were distinguished from each other. In this 
context, application of the panneuronal marker human neu-
ronal protein HuC/D (HU) enabled estimation of proportions 
of enteric subpopulations (Ganns et al. 2006).

The other method deciphered target tissues of axonal 
projections by tracing techniques (most successful with the 
carbocyanine tracer DiI; Wattchow et al. 1995, 1997; Por-
ter et al. 1997, 2002; Humenick et al. 2019, 2021). These 

studies demonstrated projection distances for motoneurons 
of about 1 to 2 cm (for ascending and descending pathways 
to circular and longitudinal muscle, respectively) as well 
as for interneurons of about 4 to 7 cm (for ascending and 
descending interneurons, respectively).

Since both approaches were combined with multiple 
immunohistochemistry for neuronal substances, correlation 
of the results is possible to some degree.

Dogiel type II neurons

Also, with regard to the entire human (and mammalian) 
nervous system, Dogiel type II neurons (Dogiel 1899) are 
unique. Already the Russian histologist was apparently 
uncertain in his own interpretation when distinguish-
ing between one axon and (up to) 16 dendrites in this 
type (Brehmer et al. 1999a). Stach (1981) introduced the 
term “multiaxonal” because, neurohistologically, all pro-
cesses of these neurons look like axons. Hendriks et al. 
(1990) showed that all these processes conduct action 
potentials; thus, electrophysiologically, they behave like 

Table 1   Summary of human myenteric neuron types based on their morphological properties observable after immunostaining for neurofila-
ments (NF)

Roman numerals I–III refer to Dogiel’s and IV–V to Stach’s types. For details and references see text

Myenteric neuron type Basic morphological 
description

Axon projection Dendritic 
architecture

Chemical coding Main function? (comments)

Type II Pseudouni- to multiaxonal A: partly circumferential, 
partly to mucosa

D: non-dendritic

ChAT/
CALR/SOM/SP

IPAN? (usual subtype)

A: not known
D: long, branched, tapering

ChAT? IPAN?
(infrequent subtype)

Stubby type I Uniaxonal
Dendritic

A: mostly orally
D: short, radially arranged:
“stubby, lamellar”

ChAT/ENK/SP± Ascending interneuron?
Excitatory motor neuron?

Spiny type I Uniaxonal
Dendritic

A: mostly anally
D: short, radially arranged:
“spiny, thorny”

nNOS/VIP/GAL±
ChAT/nNOS/VIP±

Inhibitory motor neuron?
Descending interneuron?

D: with few additional main 
dendrites

nNOS/VIP (Only in upper small 
intestine)

Hairy type I Uniaxonal
Dendritic

A: to mucosa?
D: short, thin, radially 

arranged; as a whole: 
“hairy”

ChAT/VIP
(determined only in stom-

ach)

Mucosal motor neuron?
(Stach type IV in pig?)

Type III
(in small intestine)

Uniaxonal
Dendritic

A: anally?
D: long, radially arranged, 

branched, tapering

ChAT/CALB/
CALR±/SOM±

Interneuron?
(Stach type III in pig?
Filamentous neuron in 

guinea pig?)
Type V
(in upper small intestine)

Uniaxonal
Dendritic

A: anally
D: mostly single stem pro-

cess with long, branched, 
tapering dendrites

ChAT/SOM± Interneuron?
(Stach type V in pig?)

Non-specific neurons Uniaxonal
(inconspicuous dendritic?)

A,D: not specified
/
A,D: not specified

ChAT
/
nNOS
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axons. Altogether, they were characterized in the guinea 
pig small intestine as intrinsic primary afferent neurons 
(IPANs), the only ones known so far in a peripheral organ 
(Furness et al. 1998). Individual features of the equivalent 
neurons in various species were shown to differ. The elec-
trophysiological afterhyperpolarization (AHP) phenom-
enon of IPANs in the guinea pig could barely be proven 
in humans (Brookes et al. 1987), and the chemical coding 
between IPAN-candidates of other species varied con-
siderably, apart from their common cholinergic pheno-
type. In the guinea pig, calbindin (CALB) is an effective 
marker for IPANs (Furness et al. 1990; Song et al. 1994). 
Calcitonin gene-related peptide (CGRP) is, among other 
additional markers, immunohistochemically demonstrable 
in putative IPANs of pigs (Scheuermann et al. 1987; Wolf 
et al. 2007), mice (Furness et al. 2004; Melo et al. 2020), 
lambs (Chiocchetti et al. 2006) and rats (Mitsui 2009).

In the human small intestine, Dogiel type II neurons 
(Fig. 1a), the putative IPANs, amount to about 10% of 
the whole myenteric neuron population. Immunohisto-
chemical co-labelling of calretinin (CALR), somatostatin 
(SOM) and substance P (SP) is characteristic for these 
neurons (Brehmer et al. 2004b; Weidmann et al. 2007), 
whereas both CALB and CGRP are only detectable in a 
minority of type II neurons (Brehmer 2007).

In the human stomach, less than 1% of myenteric neu-
rons could be morphologically identified as type II neu-
rons, and most of them were SOM-reactive, with weak 
or no co-reactivity for CALR (Anetsberger et al. 2018).

In the human colon, co-labelling of CALR and SOM 
is, similar to the small intestine, highly indicative for 
type II neurons; however, about one third of CALR+/
SOM- neurons and about half of SOM+/CALR- neurons 
were also NF-reactive, multiaxonal type II neurons (own 
unpublished observations).

Next to these non-dendritic Dogiel type II neurons 
there are dendritic type II neurons (Fig. 1b). These also 
have more than one axon and additional dendrites and 
were originally described in the pig (Stach 1989). In the 
guinea pig, they were characterized as IPANs (Bornstein 
et al. 1991; Brookes et al. 1995). In humans, they were 
occasionally identified in the small intestinal myenteric 
plexus (Stach et al. 2000) and are non-nitrergic, probably 
cholinergic neurons (Brehmer 2006).

As pointed out above, a key criterion for identifying 
IPANs in various species is their “Dogiel type II” (i.e. 
multiaxonal) morphology as opposed to the “Dogiel type 
I” morphology of neurons with short dendrites and a sin-
gle axon. Actually, quite different human myenteric neu-
rons are distinguished that fit into this overall category 
(Figs. 2 and 3).

Fig. 1   a Drawings of three non-dendritic, multiaxonal type II neurons 
from the human small intestine. b Two dendritic, multiaxonal type 
II neurons from the small intestine. (Axons are illustrated by double 
lines until their cut ends = ax) Bar = 50 µm
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Stubby type I neurons

Due to the shapes of their “short” processes, demonstrated 
by NF-immunohistochemistry, these human myenteric neu-
rons most likely match Dogiel’s original descriptions of type 
I neurons (Fig. 4a). They have short, partly stubby (more 
likely in the small intestine), partly lamellar dendrites (more 
likely in the colon). In the small intestine, their NF-stained 
axons start to run preferentially in the oral direction (about 
50% vs. 30% anally; Brehmer et al. 2005). Immunohisto-
chemically, they contain choline acetyltransferase (ChAT), 
leu-enkephalin (ENK) and, partly, SP (Brehmer et al. 2005; 
Beck et al. 2009). These chemical characteristics correspond 
to ascending motor and interneurons identified by Porter 
et al. (1997) and Humenick et al. (2021).

Spiny type I neurons

With their short processes, these NF-stained neurons 
also correspond to Dogiel type I neurons. Occasionally, 
the dendrites have widened, lamellar endings or branch-
ing points, but their main appearance is spiny or thorny 
(Fig. 4b). In contrast to stubby neurons, the dendrites of 
spiny neurons also frequently emerge from the luminal 
somal surface, and the whole cell has a hedgehog-like 
appearance (Lindig et al. 2009). The axons preferentially 
start running anally; they are immunopositive for neu-
ronal nitric oxide synthase (nNOS) and vasoactive intesti-
nal peptide (VIP; Brehmer et al. 2006), and partly (maybe 
additionally?) for nNOS and ChAT (Beck et al. 2009). 
This corresponds to the chemical codes of circular muscle 
motor neurons (Wattchow et al. 1997; Porter et al. 1997) 
and descending interneurons (Porter et al. 2002; Humen-
ick et al. 2021), respectively.

Hairy type I neurons

Uniaxonal, short-dendritic neurons (“Dogiel type I”) which 
project from the myenteric plexus to the mucosa were not 
included in Dogiel’s classification. These Stach type IV 

neurons were first observed in pigs and guinea pigs (Stach 
1982b, 1989; Furness et al. 1985; Brehmer et al. 1999b). 
Human myenteric, uniaxonal neurons projecting to the 
mucosa were suggested by Stach et al. (2000) using classi-
cal silver staining, while the results of target-specific trac-
ing studies in the human gut were ambiguous (Wattchow 
et al. 1995; Hens et al. 2001). The latter authors found 
SOM+/SP± and VIP+ myenteric neurons traced from the 

Fig. 2   a Two “Dogiel type I” neurons (filled arrowheads) stained 
for neurofilaments (NF). The left one is a spiny neuron, its axon (ax) 
runs to the right (i.e. anally); the right one is a stubby neuron with 
an axon (ax) running to the left (i.e. orally). b Corresponding dem-
onstration of staining for neuronal nitric oxide synthase (nNOS). The 
spiny neuron is positive, the stubby one negative (filled and empty 
arrowhead, respectively). c The spiny neuron is co-reactive for vaso-
active intestinal peptide (VIP), the stubby neuron is negative (filled 
vs. empty arrowhead). d The spiny neuron is negative for choline  
acetyltransferase (ChAT), the stubby neuron is positive (empty vs. 
filled arrowhead). (From ascending colon of a 104-year-old woman; 
body donated to the Institute of Anatomy) Bar = 50 µm. (Antibodies: 
NF: Sigma-Merck N0142; nNOS: Novus Biologicals NB120-3511; 
VIP: Dianova T-5030; ChAT: Merck-Millipore AB144P)

▸
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Fig. 3   a A short-dendritic (“Dogiel type I”) neuron immunopositive 
for neurofilaments (NF; enlarged in b) whose axon (ax) runs from the 
myenteric plexus (MP) into a typically coiled interconnecting strand 
towards the external submucosal plexus (ESP). (Myenteric whole 
mount with adhering remnants of circular muscle strips and submu-
cosal connective tissue, derived from the transverse colonic segment 
resected from a female patient aged 21  years suffering from colon 
carcinoma. Composition of four subsequent z-series following the 
marked axon, each depicted as extended focus image.) Bar = 50 µm

Fig. 4   a Drawings of three stubby (type I) neurons; the two left 
ones are from the small intestine, the right one from the large intes-
tine. b Four spiny (type I) neurons; the two upper left ones are from 
the small intestine, the upper right one from the large intestine. The 
lower one with a main dendrite is from duodenum. c Two hairy 
(type I) neurons from the human stomach. (ax = cut ends of axons) 
Bar = 50 µm

jejunal mucosa of four infants. In the human stomach, 
myenteric neurons innervating mucosal cells were char-
acterized immunohistochemically, and these neurons were 
found to contain ChAT, VIP, gastrin-releasing peptide and 
neuropeptide Y (Anetsberger et al. 2018; Furness et al. 
2020). Their NF-morphology resembled a “hairy head”, 
and they had short, extremely thin dendrites (Fig. 4c, 
Anetsberger et al. 2018). Subsequently, such myenteric 
neurons co-reactive for NF+/ChAT+/VIP+ were also 
seen in the small intestine (unpublished observations). A 
colonic myenteric neuron  projecting directly towards the 
external submucosal plexus is depicted in Fig. 3. It dis-
played short, thin dendrites, but overall, and in contrast 
to gastric hairy neurons, it resembled a less hairy head.
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Long‑dendritic, uniaxonal neurons

Both human myenteric type III and type V neurons have 
been observed so far, based on silver staining and NF-immu-
nohistochemistry, in the small intestine only (Stach et al. 
2000; Brehmer et al. 2004a). Their type-specific immuno-
histochemical characterization awaits more detailed analysis. 
Although objectifying morphometric evaluations of enteric 
dendritic tree patterns are rare (Brehmer and Beleites 1996) 
and still pending in the human gut, the difference between 
neurons with short (Fig. 4a–c) and with long dendrites 
(Fig. 5a, b) is impressive at first glance.

Type III neurons (Fig. 5a). Dogiel‘s (1899) depictions 
of two myenteric type III neurons derived from the guinea 
pig large intestine. Nearly a century later, type III neurons 
were rediscovered and precisely described in the pig upper 
small intestine (Stach 1982a). In humans, their unequivocal 
representation using NF-immunohistochemistry succeeded 
especially in the small intestinal myenteric plexus (Brehmer 
et al. 2004a). These radial long-dendritic neurons are non-
nitrergic and mostly cholinergic (Brehmer et al. 2004a; 
Beck et al. 2009), which is in sharp contrast to pig nitrergic 
long-dendritic (type III) neurons (Timmermans et al. 1994; 
Brehmer and Stach 1997). This difference indicates that an 
appropriate comparative morphology, i.e. the definition of 
functionally equivalent enteric neurons across species, can-
not be established by pure transfer of superficial shape cri-
teria from one species to another. Human type III neurons 
display immunoreactivity for CALB (Zetzmann et al. 2018), 
and CALR reactivity was demonstrated in some of them 
(Brehmer et al. 2004b). Tracing studies in the human colon 
have assigned neurons with ChAT+/CALB+ and ChAT+/
CALR+ immunoreactivity to ascending and descending 
interneurons, respectively (Humenick et al. 2021). However, 
on the one hand, long-dendritic neurons in the human colon 
have not yet been successfully demonstrated by NF-staining 
(apart from single exceptions; Beck et al. 2009), and on the 
other hand, a specific chemical code of type III neurons in 
the human small intestine is not yet defined (Zetzmann et al. 
2018).

Type V neurons (Fig. 5b). These polar long-dendritic 
myenteric neurons were first described as a peculiar popu-
lation in the pig lower small intestine, where they occur 
in two forms: as single cells and in aggregates (Stach 
1985; Brehmer et al. 2002a, b). Their putative functional 
equivalence with ChAT+/SOM+ co-reactive interneu-
rons of the guinea pig (Portbury et al. 1995) has been 
discussed (Brehmer et al. 2004b; Brehmer 2006). Human 
type V neurons, in striking contrast to human “multipo-
lar” type III neurons, appear as “unipolar” neurons mostly 
displaying a single stem process from which both several 
long, branched, tapering dendrites and the single axon 
emerge. With this architecture of processes, they resemble 

“monopolar invertebrate motor neurons” (Smarandache-
Wellmann 2016). Human type V neurons are non-nitrergic 
and cholinergic; a minority (16%) display additional SOM-
reactivity (Brehmer et al. 2004a).

Fig. 5   a Drawings of three (radial long-dendritic) type III neurons 
from the small intestine. b Three (polar long-dendritic) type V neu-
rons. (ax = cut ends of axons) Bar = 50 µm
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Regional proportions of myenteric neurons

Overall, myenteric neurons can be immunohistochemically 
grouped into two large populations, namely neurons reac-
tive for nNOS or for ChAT, as well as into two smaller 
populations immunoreactive for both or for neither of 
these markers, respectively. Data based on this categoriza-
tion were provided for the human stomach by Pimont et al. 
(2003) and Anetsberger et al. (2018), for the human small 
intestine by Beck et al. (2009) and for the human colon by 
Murphy et al. (2007) and Beck et al. (2009).

For the stomach, data from Anetsberger et al. (2018) 
are graphically summarized in Fig. 6. Nitrergic neurons 
included mainly two groups: nNOS+/VIP+ neurons were 
mostly spiny neurons, whereas nNOS+/VIP− neurons dis-
played, apart from a few spiny neurons, no specific den-
dritic architecture (each about 12%). Such morphologi-
cally “unspecific”, “simple” or “small” neurons are also 
known from other species (Stach 1989; Qu et al. 2008). 
Cholinergic neurons included ChAT+/VIP+ hairy neurons 
(about 13%) as well as several different ChAT-only neu-
rons (about 40%), namely stubby neurons, “unspecific” 
neurons without distinct dendritic trees, and a few multi-
axonal type II neurons (less than 1%).

In the small intestine, the morphological diversity of 
myenteric neurons is most pronounced. Besides short-
dendritic (stubby and spiny) and non-dendritic type II 
neurons, long-dendritic neurons are common in this long-
est gut segment. Type III neurons are present in all small 
intestinal subregions, while type V neurons are conspicu-
ous mainly in the duodenum and upper jejunum. In Fig. 7, 
results of several studies were combined to show that the 
morphological diversity is greatest among cholinergic 

neurons. These include stubby (type I) as well as type II, 
III and V neurons. The nitrergic spiny (type I) neurons 
are depicted as two separate nitrergic populations (+VIP 
vs. +ChAT), although they may overlap.

Colonic putative IPANs were identified by NF-immuno-
histochemistry. These multiaxonal type II neurons are com-
mon in the large intestine (Beck et al. 2009; Zetzmann et al. 
2018) but have so far only been focused on in the small 
intestine in terms of their chemical coding and proportion 
(Weidmann et al. 2007).

Colonic interneurons were identified by DiI-tracing, 
with four ascending and descending populations each dis-
tinguished (Humenick et al. 2021). Among the ascending 
populations, three contain ChAT and ENK and corre-
spond immunohistochemically to stubby neurons (Brehmer 
et al. 2005). Among the descending populations, ChAT+/
nNOS+ interneurons chemically correspond to spiny neu-
rons (Beck et al. 2009), whereas nNOS-only neurons may 
be unspecific neurons without conspicuous dendritic trees. 
Colonic ChAT+/CALB+ ascending or ChAT+/CALR+ and 
ChAT+/5HT+ descending interneurons have not yet been 
identified as to their NF-morphology.

Colonic circular muscle motor neurons included ascend-
ing, ChAT+ neurons and descending nNOS+/VIP+ neurons 
(Porter et al. 1997), the latter corresponding to nNOS+/
VIP+ spiny neurons (Brehmer et al. 2006).

Colonic longitudinal muscle motor neurons included 
ChAT+ ascending as well as nNOS+ and nNOS+/
VIP+ ascending and descending neurons (Humenick et al. 
2019). nNOS+/VIP+ and nNOS+/ChAT+ spiny neurons, 
from stomach to colon, may be overlapping populations 
(we have observed neurons co-reactive for nNOS, VIP and 
ChAT but not yet estimated quantitatively). They may be 
both inter- and motor neurons.

Fig. 6   Morphochemically 
defined myenteric neuron 
populations in the human 
stomach (data from Anetsberger 
et al. 2018). The proportions of 
cholinergic subtypes were not 
yet estimated. (1: VIP+ neurons, 
1.4%; 2: cChAT+/nNOS+ neu-
rons, 1.3%; 3: cChAT+/
nNOS+/VIP+ neurons, 0.7%)
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Colonic and small intestinal myenteric neurons project-
ing outside the muscle coat have to be further investigated. 
By DiI-tracing, such neurons were identified by Wattchow 
et al. (1995) in both the small and large intestine as well as 
by Hens et al. (2001) in the jejunum of infants. These may 
include type II neurons with axons running towards the 
submucosa (Brehmer et al. 2004b) as well as hairy neurons 
(subtype I of Dogiel, type IV of Stach) in the stomach 
(Anetsberger 2018) and in the colon (Fig. 3).

Structure of human submucosal neurons

Historically, the first categorizations of submucosal neurons 
were published by authors other than Dogiel (Kustermann 
et al. 2011). These were Koelliker (1896) in the dog, Ramón 
y Cajal (1911) in the guinea pig, Rossi (1929) in the pig, 
Sokolova (1931) in cattle and Stöhr (1949) in humans. A 
general structural dichotomy into multipolar and unipolar 
(and occasionally also bipolar) neurons was detected and 
could be, to some degree, also correlated with the chemi-
cal codes of neuron populations in human small and large 
intestinal submucosal neurons (Fig. 8, Table 2).

Although the human submucosal plexus, similar to that of 
other medium-sized mammals, consists of two topographi-
cally distinct networks (reviewed in Brehmer et al. 2010), 
there seem to be only quantitative differences in neuronal 
composition between them (Jabari et al. 2014). This is in 
striking contrast, for example, to the pig submucosa, where 
qualitative differences between the external and the internal 
submucosal plexus (ESP, ISP) are conspicuous (Stach 1977; 
Timmermans et al. 2001; Kapp et al. 2006; Petto et al. 2015). 
The demonstration of human submucosal neuron morphol-
ogy was more successful using PERI- instead of NF-anti-
bodies (Ganns et al. 2006; Kustermann et al. 2011).

Submucosal unipolar (pseudouniaxonal) neurons

These neurons (Kustermann et al. 2011) have a small round 
or oval cell body with a single (seldom two or three) pro-
cess, most likely an axon. Occasionally, the process could 
be traced until its branching point; thus these neurons may 
be pseudouniaxonal. Immunohistochemically, they contain 

Fig. 7   Morphochemically 
defined myenteric neuron 
populations in the human small 
intestine. Undefined cholinergic 
neurons are illustrated in yellow. 
Proportions of type III and type 
V neurons were not yet esti-
mated; the latter are mainly pre-
sent in the upper small intestine 
(asterisk). Data from Brehmer 
et al. (2005, 2006), Weidmann 
et al. (2007), Beck et al. (2009), 
Schuy et al. (2011), Zetzmann 
et al. (2018)

Fig. 8   a Drawings of two dendritic submucosal neurons. b Two non-
dendritic submucosal neurons with one axon. The axon of the right 
neuron could be observed until its branching point. (ax = cut ends of 
axons) Bar = 50 µm
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ChAT, SOM and, partly, SP (Beyer et al. 2013). Based 
on the structure and the localizations of ChAT+/SOM+/
SP+ endings in the mucosa, we suggest a sensory func-
tion. To some extent, the identification of mechanosensitive 
ChAT+/SP+ neurons (Filzmayer et al. 2020) supports this 
assumption.

Submucosal multipolar (dendritic, uniaxonal) 
neurons

In contrast to the unipolar neurons described above, these 
obviously have numerous processes, most of which being 
dendrites (Kustermann et al. 2011). Based on their PERI-
staining, we observed these neurons to be mostly uniaxonal 
(seldom bi- or tripolar), a finding supported to some extent 
by the descriptions by Porter et al. (1999). Furthermore, they 
are co-immunoreactive for ChAT, CALR and VIP. It has 
to be considered that the colocalization rate of CALR and 
VIP is almost 100% in colonic submucosal neurons, whereas 
in the small intestine, up to 16% of VIP-reactive neurons 
do not co-stain for CALR (Beuscher et al. 2014). Boutons 
co-stained for VIP and CALR were found exclusively in 
the colonic mucosa (Beuscher et al. 2014); therefore, a 
mucosal effector function has been suggested (Jabari et al. 
2014). Contrary to these results, Porter et al. (1999) found 
VIP+ submucosal neurons projecting to the circular muscle.

Submucosal nitrergic and other neurons

nNOS+ neurons represent a small submucosal population 
(1–4%; Beuscher et al. 2014), and an even smaller one is 
represented by nNOS+/VIP+ colocalization (max. 1%, in 
the external submucosal plexus; Beuscher 2014; Porter et al. 
1999). It is supposed that these neurons are dendritic and 
uniaxonal, though this has not yet been investigated in detail.

Moreover, Beuscher et al. (2014) found that more than 30% 
of small intestinal and more than 10% of colonic submucosal 

neurons were only stained by HU. Thus, there may be three 
or more populations in the human submucosa as found in the 
mouse (Wong et al. 2008; Mongardi Fantaguzzi et al. 2009) 
and guinea pig (Furness et al. 2003), respectively, which 
remain to be further characterized.

Regional proportions of submucosal 
neurons

In the stomach, no continuous submucosal plexus could be 
found and, as compared with the intestines, very few submu-
cosal neurons were present (Anetsberger et al. 2018). Mor-
phologically, both neuron types (non-dendritic and dendritic, 
see above) were identified, although no clear morphochemical 
correlation could be proved.

In the intestines, so far, we have found no qualitative differ-
ences in neuronal composition, either between the small intes-
tine and colon or between the ESP and the ISP (Kustermann 
et al. 2011; Beyer et al. 2013; summarized and graphically 
illustrated by Beuscher et al. 2014). Basically, four popula-
tions, three larger and one smaller, were identified. All of them 
may include subpopulations. The most striking difference 
between the small intestinal and the colonic submucosa is the 
proportion of VIP+ neurons, though it has to be emphasized 
that the variability is enormous.

VIP+/ChAT±/CALR± dendritic uniaxonal neurons 
amounted to 32–39% (ISP-ESP) in the small intestine and 
72–74% in the colon.

SOM+/ChAT+/SP± pseudouniaxonal neurons accounted 
for 36–24% (ISP-ESP) in the small intestine and 14–10% in 
the colon.

nNOS+ neurons were between 1 (ISP of both segments) and 
4% (colonic ESP). Here, up to 1% nNOS+/VIP+ neurons were 
additionally identified.

Immunohistochemically uncharacterized (HU+ only) neu-
rons amounted to 11–34%.

Table 2   Summary of human submucosal neuron types based on their morphological properties observable after immunostaining for peripherin 
(PERI)

For details and references see text

Submucosal neuron type Basic
morphological description

Axon projection
Dendritic architecture

Chemical coding Main function?

Unipolar
(rarely bi- or tripolar)

Pseudouniaxonal
Non-dendritic

A: to mucosa? ChAT/SOM/SP± Mucosal afferent
neuron?

Multipolar Uniaxonal
Dendritic

A: to mucosa?
D: slender, short to 

medium length

ChAT/CALR±/VIP Mucosal effector neuron?

(Nitrergic neurons) Not determined ? nNOS Circular muscle
motor neuron?
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Epilogue: from present to future

Here, we tried to emphasize the importance of morpho-
logical analysis of the processes of human enteric neu-
rons. Dendritic architecture is one cornerstone for evaluat-
ing synaptic connectivity, and axonal projection is more 
than a symbolic link to the function of a neuron. Both the 
omnipresence of, e.g., stubby and spiny type I neurons 
from stomach to colon and the limited occurrence of, e.g., 
type V neurons only in the upper small intestine indicate 
general principles as well as local characteristics of the 
neuronal composition of the human ENS. Such regional 
differences should also exist in the human colon, as indi-
cated by differences in motor patterns between the upper 
and lower colon in the mouse (Costa et al. 2021). The 
further classification of human enteric neurons must also 
consider regional peculiarities. This is a basic requirement 
for understanding physiological functions, pathological 
processes and, ultimately, options for therapeutic inter-
ventions in different regions of the gastrointestinal tract. 
To this end, all methodical approaches available may con-
tribute, both “classical” and “modern” ones.
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