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Abstract
In this paper, we study reliability properties of k-out-of-n system consisting of l (1 ≤
l ≤ n) different types of components with discrete, independent lifetimes. We obtain
some conditional survival functions of lifetime of a used system. Next, we use them to
calculate two conditional failure probabilities of k-out-of-n systems and show that they
are equal to unconditional failure probability of a k-out-of-(n−r) system, r < n−k+1.
These results are extended versions of the respective ones existing in the literature.

Keywords Discrete lifetime distributions · k-out-of-n system · Not identically
distributed random variables · Reliability theory

1 Introduction

A technical system has a k-out-of-n structure if it works when at least k of the n
components operate. It fails if n − k + 1 or more components fail. Two important
particular cases of k-out-of-n systems are parallel and series ones corresponding to
k = 1 and k = n. In the literature, many authors paid attention to the reliability and
aging properties of k-out-of-n systems and their variants and extensions, see, for exam-
ple Eryilmaz (2011, 2012, 2013), Navarro and Duarte (2017), Navarro et al. (2017),
Misra and Francis (2018), Zhang et al. (2018), Balakrishnan et al. (2018) and Salehi
et al. (2019). Most of these results have been restricted to the case when the compo-
nent lifetimes are independent and identically distributed. However, in some practical
situations systems might be composed of independent and nonidentical components.
The most recent results in this direction are in Li and Chen (2004), Xu (2008), Sadegh
(2008), Zhao et al. (2008), Gurler and Bairamov (2009), Kochar and Xu (2010), Salehi
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and Asadi (2010), Salehi et al. (2011) and Sutar and Naik-Nimbalkar (2019), under
the assumption that the component lifetimes have absolutely continuous distributions.

The situation becomesmore complicated in the case inwhich the parent distribution
of the component lifetimes is discrete. This is so due to the presence of ties between
components failures. This assumption might be more adequate for example when the
component lifetimes represent the numbers of turn-on and switch-off up to the failure
or when the system’s elements operate in discrete cycles, or are exposed to shocks
occurring in discrete times. Reliability properties of k-out-of-n systems composed
of components which have discrete operation times have been considered by Weiss
(1962), Young (1970), Tank and Eryilmaz (2015), Dembińska and Goroncy (2020)
and Dembińska et al. (2021).

Dembińska (2018) established explicit expressions for unconditional and some con-
ditional probabilities of a failure of a k-out-of-n system whose component lifetimes
X1, . . . , Xn, are not necessarily independent nor identically distributed discrete vari-
ates. Let X1:n ≤ . . . ≤ Xn:n stand for the order statistics corresponding to X1, . . . , Xn

and Tk,n denote the lifetime of the k-out-of-n system. In particular, she obtained the
formula describing the conditional probability that this systemwill break down at time
t j given the times of failures of its components which occurred up to time ti :

P
(
Tk,n = t j |X1:n = ti1 , X2:n = ti2 , . . . , Xr :n = tir , Xr+1:n > ti

)
, (1)

r <n−k+1 and ti1 ≤ ti2 ≤ . . .≤ tir ≤ ti < t j , where ti1 ≤ ti2 ≤ . . .≤ tir ≤ ti are such that
P

(
X1:n = ti1, X2:n = ti2 , . . . , Xr :n = tir , Xr+1:n > ti

)
> 0. She also considered the

situationwhen at time ti we registered a failure of a component of the k-out-of-n system
and we observed that at this time exactly r components were broken, r < n − k + 1.
Then, repeating similar arguments as for (1) she computed the conditional probability
that the system will fail to function at time t j > ti :

P(Tk,n = t j |Xr :n = ti , Xr+1:n > ti ), (2)

where ti is such that P(Xr :n = ti , Xr+1:n > ti ) > 0. Next, the probabilities (1) and (2)
were applied to obtain the corresponding residual lifetimes of a used system. Under
the assumption that X1, . . . , Xn are identically distributed with common cumulative
distribution function (cdf) F , she observed that the probability (1) does not depend
on ti1 ≤ ti2 ≤ . . . ≤ tir and as well as the probability (2) is equal to unconditional
probability that a k-out-of-(n − r) system, consisting of homogeneous elements with
lifetimes Y1, . . . , Yn−r having cdf given by

FY (x) = P(Xi ≤ x |Xi > ti ) =
{

F(x)−F(ti )
F(ti )

, if x > ti ,

0, if x ≤ ti ,

will brake down at time t j (t j > ti ). Our aim is to extend these results by considering
k-out-of-n systems with independent component lifetimes that are of l (1 ≤ l ≤ n)

different types and adding some extra information in the conditions of the probabilities
(1) and (2) which concerns failures of these components. This is done in Sect. 2.
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Reliability properties of k-out-of-n... 1243

Throughout the paper we write I(·) for the indicator function, that is I(x ∈ A) = 1
if x ∈ A and I(x ∈ A) = 0 otherwise.

2 Main result

Consider a k-out-of-n system which is composed of n independently operating com-
ponents.We assume that the lifetimes of the components, X1, X2, . . . , Xn , are discrete
random variables (rvs) of l (1 ≤ l ≤ n) different types. There are exactly nw rvs of
typew having cdf Fw,w = 1, . . . , l (the cdfs Fw, w = 1, . . . , l, are pairwise different
and n1 + n2 + . . . + nl = n). Without loss of generality we can assume that

X1, . . . , Xn1 ∼ F1, Xn1+1, . . . , Xn1+n2 ∼ F2, . . . Xn1+...+nl−1+1, . . . , Xn ∼ Fl .

The k-out-of-n system functions as long as at least k of its n components function.
It fails when the (n − k + 1)-th component failure occurs. Thus the lifetime of the
k-out-of-n system is Tk,n = Xn−k+1:n . The discrete case becomes more complicated
than the continuous one due to possible ties between component failures with non-zero
probability. In this case at the moment of the system failure the number of inoperative
elements can be larger than n − k + 1.

Let T = {t1, . . . , tN }, where N ≤ ∞, be the union of the supports of Fw, w =
1, . . . , l, and assume that t1 < t2 < . . . < tN . Next, if Xi ∼ Fw, w = 1, . . . , l, then
pw(t) = Pw(Xi = t), i.e. pw is the probability mass function (pmf) corresponding to
Fw, Fw(t−) = Pw(Xi < t) and Fw(t) = 1 − Fw(t).

We need the following definition.

Definition 1 For a fixed ω ∈ � we write X j :n(ω) � F instead of Xh j (ω) ∼ F , where
the function h j is defined as follows:

(i) if there is exactly one p such that X j :n(ω) = X p(ω), then h j (ω) = p,
(ii) otherwise, if X1:n(ω) = X j :n(ω) and X j :n(ω) = X p1(ω) = X p2(ω) = . . . =

X pm (ω), where j ≤ m and 1 ≤ p1 < p2 < . . . < pm ≤ n, then h j (ω) = p j ;
and if j1 is the largest integer satisfying X j1:n(ω) < X j :n(ω) and X j :n(ω) =
X p1(ω) = X p2(ω) = . . . = X pm (ω), where 1 ≤ p1 < p2 < . . . < pm ≤ n, then
h j (ω) = p j− j1 .

Now we are able to define

Si =
(

S(1)
i , . . . , S(l)

i

)
and Gi =

(
G(1)

i , . . . , G(l)
i

)
, i = 1, . . . , n,

where

S(w)
i = #{ j ≤ i : X j :n � Fw},

G(w)
i = #{ j ≤ i : X j :n = Xi :n, X j :n � Fw}, w = 1, . . . , l, i = 1, . . . , n.

Observe that S(w)
i informs us howmany of X j ’s of typew are not greater than Xi :n and

G(w)
i limits to such of them which are equal to Xi :n . Moreover S(l)

i = i −∑l−1
w=1 S(w)

i ,
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1244 K. Jasiński

i = 1, . . . , n. Definition 1 with the example of its application as well as the construc-
tions of vectors Si and Gi , i = 1, . . . , n were proposed by Jasiński (2020).

Firstly, we assume that at the moment Xr :n = ti we registered g(w)
r failures of

components of type w, w = 1, . . . , l of a used k-out-of-n system. We also assume
that at this time exactly s(w)

r elements of type w were broken, where
∑l

w=1 s(w)
r = r

and r < n − k + 1. Then it is of interest to obtain the following conditional survival
function of Tk,n

pk;r (ti + x |ti , gr , sr )= P
(
Tk,n > ti + x |Xr :n = ti , Xr+1:n > ti , Gr = gr , Sr = sr

)
,

where ti , gr =
(

g(1)
r , . . . , g(l)

r

)
and sr =

(
s(1)
r , . . . , s(l)

r

)
, are chosen so that the

probability p∗
k;r (ti , gr , sr ) of {Xr :n = ti , Xr+1:n > ti , Gr = gr , Sr = sr } is not equal

to 0.
We begin with an observation that

p∗
k;r (ti , gr , sr ) =

l∏

w=1

P

(
Ati

g(w)
r ,s(w)

r

)
, (3)

where

Ati
g(w)

r ,s(w)
r

= {
exactly s(w)

r − g(w)
r of Xi ∼ Fw are < ti ,

exactly g(w)
r of Xi ∼ Fw are = ti ,

and the rest nw − s(w)
r of Xi ∼ Fw are > ti

}
.

It follows immediately that

P

(
Ati

g(w)
r ,s(w)

r

)
= nw!

(
s(w)
r − g(w)

r

)
!g(w)

r !
(

nw − s(w)
r

)
!
(
Fw(t−i )

)s(w)
r −g(w)

r

· (pw(ti ))
g(w)

r
(
Fw(ti )

)nw−s(w)
r

. (4)

Now we determine the probability

p∗∗
k;r (ti , ti +x, gr , sr )=P

(
Xr :n = ti , Xr+1:n > ti , Tk,n > ti +x, Gr = gr , Sr = sr

)

=P
(
Xr :n = ti , Xr+1:n > ti , Xn−k+1:n > t j , Gr =gr , Sr =sr

)
,

where

t j ∈ T is such that ti + x ∈ [t j , t j+1). (5)
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For abbreviation, let

ṽ0 = 0, ṽw =
w∑

j=1

v j , δw(v)= min {nw − s(w)
r , v − ṽw−1}, w = 1, . . . , l − 1.

(6)

Then

p∗∗
k;r (ti , ti + x, gr , sr ) =

n−r−k∑

v=0

⎛

⎝
l−1∏

w=1

δw(v)∑

vw=0

P

(
B

ti ,t j

g(w)
r ,s(w)

r ,vw

)⎞

⎠

·
(
P

(
B

ti ,t j

g(l)
r ,s(l)

r ,v−ṽl−1

)
I(v − ṽl−1 ≤ nl − s(l)

r )

)
, (7)

where

B
ti ,t j

g(w)
r ,s(w)

r ,vw

= {
exactly s(w)

r − g(w)
r of Xi ∼ Fw are < ti ,

exactly g(w)
r of Xi ∼ Fw are = ti ,

exactly vw of Xi ∼ Fw are ∈ (ti , t j ],
and the rest nw − s(w)

r − vw of Xi ∼ Fw are > t j
}
. (8)

and B
ti ,t j

g(l)
r ,s(l)

r ,v−ṽl−1
is given by (8) with w = l and vw replaced by v − ṽl−1. Denoting

fw(ti , t j , u) =
(

nw − s(w)
r

u

) (
Fw(t j ) − Fw(ti )

)u (
Fw(t j )

)nw−s(w)
r −u

, (9)

we have

P

(
B

ti ,t j

g(w)
r ,s(w)

r ,vw

)
= nw!

(
s(w)
r − g(w)

r

)
!g(w)

r !
(

nw − s(w)
r

)
!
(
Fw(t−i )

)s(w)
r −g(w)

r

· (pw(ti ))
g(w)

r fw(ti , t j , vw). (10)
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Similarly, we obtain P

(
B

ti ,t j

g(l)
r ,s(l)

r ,v−ṽl−1

)
. Now combining (3) with (4) and (7) with

(10), after simple algebra, we derive the desired conditional probability as follows

pk;r (ti + x |ti , gr , sr ) =
p∗∗

k;r (ti , ti + x, gr , sr )

p∗
k;r (ti , gr , sr )

=

n−r−k∑

v=0

(
l−1∏

w=1

δw(v)∑

vw=0
fw(ti , t j , vw)

) (
fl (ti , t j , v − ṽl−1) I(v − ṽl−1 ≤ nl − s(l)

r )
)

l∏

w=1

(
Fw(ti )

)nw−s(w)
r

=
n−r−k∑

v=0

⎡

⎢
⎣

l−1∏

w=1

δw(v)∑

vw=0

(
nw − s(w)

r

vw

)(
Fw(t j ) − Fw(ti )

Fw(ti )

)vw
(

Fw(t j )

Fw(ti )

)nw−s(w)
r −vw

⎤

⎥
⎦

·
(

nl − s(l)
r

v − ṽl−1

) (
Fl (t j )− Fl (ti )

Fl (ti )

)v−ṽl−1
(

Fl (t j )

Fl (ti )

)nl−s(l)
r −v+ṽl−1

· I(v − ṽl−1 ≤ nl − s(l)
r ). (11)

Since

P
(
Tk,n = t j |Xr :n = ti , Xr+1:n > ti , Gr = gr , Sr = sr )

= pk;r (t j−1|ti , gr , sr ) − pk;r (t j |ti , gr , sr ),

applying (11), we immediately get the conditional probability that the system will fail
to function at time t j .

Notice that

pk;r (ti + x |ti , gr , sr )

=
n−r−k∑

v=0

⎡

⎣
l−1∏

w=1

δw(v)∑

vw=0

(
nw − s(w)

r

vw

)(
FY

w (t j )
)vw

(
F

Y
w(t j )

)nw−s(w)
r −vw

⎤

⎦

·
(

nl − s(l)
r

v − ṽl−1

) (
FY

l (t j )
)v−ṽl−1

(
F

Y
l (t j )

)nl−s(l)
r −v+ṽl−1

I(v− ṽl−1≤ nl − s(l)
r )

=P(Yn−r−k+1:n−r > t j ),

where Y1, . . . , Yn−r are independent rvs of possibly l different types having cdfs FY
w ,

w = 1, . . . , l, given by

FY
w (y) = Pw(Xi ≤ y|Xi > ti ) =

{
Fw(y)−Fw(ti )

Fw(ti )
, if y > ti ,

0, if y ≤ ti .
(12)

More precisely, there are exactly nw −s(w)
r rvs of typew having cdf FY

w ,w = 1, . . . , l,
where

∑l
w=1 nw − s(w)

r = n − r .
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Reliability properties of k-out-of-n... 1247

Because the survival function uniquely determines the distribution, this proves the
following theorem.

Theorem 1 Under the above assumptions and notation, for r < n − k + 1 the condi-
tional distribution of Tk,n given Xr :n = ti , Xr+1:n > ti , Gr = gr , Sr = sr

(i) does not depend on g(1)
r , . . . , g(l)

r ,
(ii) is just equal to the unconditional distribution of T Y

k,n−r the lifetime of k-out-of-
(n − r) system consisting of components with independent lifetimes Y1, . . . , Yn−r ,
where there are exactly nw − s(w)

r of Yi ’s of type w having cdf FY
w , w = 1, . . . , l,

defined in (12).

Now for r < n − k + 1 we are interested in finding the following conditional survival
function of Tk,n

pk;r (ti + x |ti , s1, . . . , sn) = P
(
Tk,n > ti + x |X1:n = ti1 , . . . ,

Xr :n = tir , Xr+1:n > ti , S1= s1, . . . , Sr = sr
)
,

where ti1 ≤ . . . ≤ tir ≤ ti and s j =
(

s(1)
j , . . . , s(l)

j

)
, j = 1, . . . , r , are chosen so that

the probability of {X1:n = ti1 , . . . , Xr :n = tir , Xr+1:n > ti , S1 = s1, . . . , Sr = sr } is
not equal to 0. Here ti1, . . . , tir are the ordered failures times of the components of
the system which occurred up to time ti . Moreover, there are exactly s(w)

j elements of
type w, w = 1, . . . , l, that were broken at the time ti j , j = 1, . . . , r .

Using the concept of tie-runs proposed by Gan and Bain (1995), let us assume that
ti1 ≤ ti2 ≤ . . . ≤ tir have m tie-runs with lengths z1, z2, . . . , zm (z1 + . . . + zm = r),
i.e.

ti1 = . . .= tiz1
< tiz1+1 = . . .= tiz1+z2

<. . .< tiz1+...+zm−1+1 = . . .= tiz1+...+zm
(= tir ).

We begin with the probability

p∗
k;1,...,r (ti1, . . . , tir , ti , s1, . . . , sr )

= P
(
X1:n = ti1, . . . , Xr :n = tir , Xr+1:n > ti , S1= s1, . . . , Sr = sr

)
.

Notice that

p∗
k;1,...,r (ti1, . . . , tir , ti , s1, . . . , sr ) =

l∏

w=1

P

(
A

tiz1 ,...,tiz1+...+zm
,ti

s(w)
z1 ,...,s(w)

z1+...+zm

)
, (13)
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1248 K. Jasiński

where

A
tiz1 ,...,tiz1+...+zm

,ti

s(w)
z1 ,...,s(w)

z1+...+zm

= {
exactly s(w)

z1 of Xi ∼ Fw are = tiz1
,

exactly s(w)
z1+z2 − s(w)

z1 of Xi ∼ Fw are = tiz1+z2
,

...

exactly s(w)
z1+...+zm

− s(w)
z1+...+zm−1

of Xi ∼ Fw are= tir ,

and the rest nw − s(w)
z1+...+zm

of Xi ∼ Fw are > ti
}
.

Thus

P

(

A
tiz1

,...,tiz1+...+zm
,ti

s(w)
z1 ,...,s(w)

z1+...+zm

)

= nw !
(

nw− s(w)
z1+...+zm

)
!

m∏

h=1

(
s(w)
z1+...+zh

− s(w)
z1+...+zh−1

)
!

·
⎛

⎝
m∏

h=1

(
pw(tiz1+...+zh

)
)s(w)

z1+...+zh
−s(w)

z1+...+zh−1

⎞

⎠(
Fw(ti )

)nw−s(w)
z1+...+zm ,

(14)

with s(w)
z0 = 0.

Now we will obtain the probability p∗∗
k;1,...,r (ti1 ,. . ., tir , ti , ti + x, s1,. . ., sr ) of the

event {X1:n = ti1 , . . . , Xr :n = tir , Xr+1:n > ti , Xn−k+1:n > ti + x, S1=s1, . . . , Sr =sr }.
Since z1 + . . . + zm = r , with the notation (6), we get

p∗∗
k;1,...,r (ti1, . . . , tir , ti , ti + x, s1, . . . , sr )

=
n−r−k∑

v=0

⎛

⎝
l−1∏

w=1

δw(v)∑

vw=0

P

(
B

tiz1 ,...,tiz1+...+zm
,ti ,t j

s(w)
z1 ,...,s(w)

z1+...+zm ,vw

)⎞

⎠

·
(
P

(
B

tiz1 ,...,tiz1+...+zm
,ti ,t j

s(l)
z1 ,...,s(l)

z1+...+zm ,v−ṽl−1

)
I(v− ṽl−1≤ nl − s(l)

r )

)
, (15)

where t j is defined in (5) and

B
tiz1 ,...,tiz1+...+zm

,ti ,t j

s(w)
z1 ,...,s(w)

z1+...+zm ,vw

= {
exactly s(w)

z1 of Xi ∼ Fw are = tiz1
,

exactly s(w)
z1+z2 − s(w)

z1 of Xi ∼ Fw are = tiz1+z2
,

...

exactly s(w)
z1+...+zm

− s(w)
z1+...+zm−1

of Xi ∼ Fw are= tir ,

exactly vw of Xi ∼ Fw are ∈ (
ti , t j

]
,

and the rest nw−s(w)
z1+...+zm

−vw of Xi ∼ Fw are> t j
}
. (16)
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Observe that B
tiz1 ,...,tiz1+...+zm

,ti ,t j

s(l)
z1 ,...,s(l)

z1+...+zm ,v−ṽl−1
is given by (16) with w = l and vw replaced by

v − ṽl−1. Using (9) we have, for w = 1, . . . , l,

P

(
B

tiz1 ,...,tiz1+...+zm
,ti ,t j

s(w)
z1 ,...,s(w)

z1+...+zm ,vw

)
= nw!

(
nw− s(w)

z1+...+zm

)
!

m∏

h=1

(
s(w)

z1+...+zh
− s(w)

z1+...+zh−1

)
!

·
(

m∏

h=1

(
pw(tiz1+...+zh

)
)s(w)

z1+...+zh
−s(w)

z1+...+zh−1

)

fw(ti , t j , vw),

(17)

where vl = v − ṽl−1. Now combining (13) with (14) and (15) with (17), we are able
to determine the conditional probability

pk;r (ti + x |ti , s1, . . . , sn) =
p∗∗

k;1,...,r (ti1 , . . . , tir , ti , ti + x, s1, . . . , sr )

p∗
k;1,...,r (ti1 , . . . , tir , ti , s1, . . . , sr )

=

n−r−k∑

v=0

(
l−1∏

w=1

δw(v)∑

vw=0
fw(ti , t j , vw)

)
(

fl (ti , t j , v− ṽl−1) I(v−ṽl−1≤ nl − s(l)
r )

)

l∏

w=1

[
Fw(ti )

]nw−s(w)
z1+...+zm

.

(18)

Applying (18), we obtain the conditional probability that the system break down at t j

because

P
(
Tk,n = t j |X1:n = ti1 , . . . , Xr :n = tir , Xr+1:n > ti , S1=s1, . . . , Sr =sr

)

= pk;r (t j−1|ti , s1, . . . , sn) − pk;r (t j |ti , s1, . . . , sn).

Notice that the formula in (18) is the same as in (11). Then we have the following
result.

Theorem 2 Under the above assumptions and notation, for r < n − k + 1 and ti1 ≤
ti2 ≤ . . . ≤ tir ≤ ti , the conditional distribution of Tk,n given X1:n = ti1, X2:n =
ti2 , . . . , Xr :n = tir , Xr+1:n > ti , S1 = s1, . . . , Sr = sr ,

(i) does not depend on ti1, ti2 , . . . , tir nor on s1, s2, . . . , sr−1,
(ii) is the same as the unconditional distribution of T Y

k,n−r the lifetime of k-out-of-
(n − r) system consisting of components with independent lifetimes Y1, . . . , Yn−r ,
where there are exactly nw − s(w)

r of Yi ’s of type w having cdf FY
w , w = 1, . . . , l,

defined in (12).

Remark 1 Theorems (1) and (2) corresponds to Theorem III.4 of Dembińska (2018).
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3 Summary and conclusions

A k-out-of-n system is a technical devicewhich plays an important role in the reliability
theory. It has various applications in engineering. For example, it is used as the design
of servers in internet service or the design of engines in the automotive industries. In
this paper, we have considered k-out-of-n systems that consist of multiple types of
components. Although such systems are more common in real life situations, their
reliability analysis is more difficult and complicated. The operators of the systems
are interested in getting inference about the reliability or other specifications of the
system but they usually have only some partial information about the lifetime of the
system e.g. they registered the times of failures of the components up to and including
the fixed time. The presented results would allow the operators for greater planning
and more efficient use of resources to reduce unexpected costs of utilization.
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