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,e Korteweg–de Vries (KdV) equation is a weakly nonlinear third-order differential equation which models and governs the
evolution of fixed wave structures. ,is paper presents the analysis of the approximate symmetries along with conservation laws
corresponding to the perturbed KdV equation for different classes of the perturbed function. Partial Lagrange method is used to
obtain the approximate symmetries and their corresponding conservation laws of the KdV equation. ,e purpose of this study is
to find particular perturbation (function) for which the number of approximate symmetries of perturbed KdV equation is greater
than the number of symmetries of KdV equation so that explore something hidden in the system.

1. Introduction

Differential equations (DEs) are ubiquitous in modeling an
extensive class of physical phenomena involving variation
with respect to one or more independent variables. ,ere-
fore, DEs are broadly divided into ordinary DEs (ODEs) and
partial DEs (PDEs). In different sectors of science and
technology, PDEs have played a significant role. PDEs have
numerous applications in mathematics, physics, fluid dy-
namics, mechanics, and physical chemistry. Modeling of
PDEs under special conditions and constraints is advanta-
geous in different situations for an effective manipulation of
the varying phenomenon. ,e majority of real-world
problems are almost nonlinear in nature, having no ana-
lytical solutions. In order to solve nonlinear problems,
various approximations and techniques are used to gain high
accuracy. In this regard, the approximate symmetrymethods
play a significant role. We have used the method of ap-
proximate Lie symmetry [1, 2], for PDEs to deal with the
dynamical system more accurately. In the 1980s, the method
of approximate Lie symmetry was developed by Baikov et al.

[3, 4]. In obtaining the approximate solutions to such
perturbed PDEs, the approximate symmetry method is an
effective one. ,e extension of Lie’s theory was mainly the
basic reason behind the development of approximate
symmetry, which deals with the systems by introducing
small perturbation [5]. Symmetry applications to physical
problems play a pivotal role in the development of con-
servation laws [6, 7]. ,e widely recognized KdV equation is
a mathematical model for the depiction of weak nonlinear
long wavelength waves in various branches of engineering
and physics. It explains how waves evolve due to comparable
effects of weak nonlinearity and dispersion. A perturbed
nonlinear wave equation is a class of approximate sym-
metries which is computed using two newly developed
methods. For both methods, the associated invariant solu-
tion with the approximate symmetries is constructed. By
discussing the advantages and disadvantages of each
method, the symmetries and solutions are compared. So, the
Lie group technique in finding the exact solution of a dif-
ferential equation has lost its importance. But an approxi-
mate Lie group technique has been implemented and used in
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various methods for obtaining additional related informa-
tion of differential equation. Perturbation analysis is one of
the techniques which is used particularly for nonlinear
systems.

,is study is framed in the followingmanner: Section 2 is
devoted to the development of exact symmetries and exact
conservation laws of the KdV equation. ,e method to
handle the approximate part of the KdV equation is de-
veloped in Section 3. ,e method so developed is applied to
tackle the approximate part of the KdV equation for dif-
ferent cases and their corresponding conservation laws in
Section 4.,e work is concluded by describing the highlights
in Section 5.

2. Exact Symmetries and Conservation Laws of
the Korteweg–de Vries (KdV) Equation

,e exact symmetries and conservation laws in the current
study for the work considered in [8, 9] are worked out as
follows:

,e Korteweg–de Vries (KdV) equation which is a third-
order nonlinear partial differential equation is

μt − 6μμx + μxxx � 0. (1)

,e infinitesimal symmetry operator is

X[3]
� ϕ

z

zx
+ ϱ

z

zt
+ φ

z

zμ
+ φt z

zμt

+ φx z

zμx

+ φxx z

zμxx

+ φxt z

zμxt

+ φtt z

zμtt

+ φxxx z

zμxxx

.

(2)

Applying this symmetry operator on (1),

X[3] μt − 6μμx + μxxx( 􏼁 � 0, (3)

we get

φt
− 6μφx

− 6φμx + φxxx
� 0. (4)

,e expanded form of equation (4) is

φt − ϕtμx + φμ − ϱt􏼐 􏼑μt − ϕμμxμt − ϱμμ2t􏽨 􏽩 − 6μ φx + φμ − ϕx􏼐 􏼑μx − ϱxμt − ϕμμ
2
x − ϱxμxμt􏽨 􏽩

− 6φμx + φxxx + 3φμxx − ϕxxx􏼐 􏼑μx − ϱxxxμt + 3φμμx − 3ϕxxμ􏼐 􏼑􏽨

μ2x − 3ϱμxxμxμt + 3φμx − 3ϕxx􏼐 􏼑μxx − 3ϱxxμxt + φμμμ − ϕμμx􏼐 􏼑μ3x

− 3ϱμμxμ
2
xμt + 3φμμ − 9ϕμx􏼐 􏼑μxμxx − 6ϱxμμxμxt − 3ϱμxμtμxx + φμ − 3ϕx􏼐 􏼑μxxx

− 3ϱxμxxt − ϕμμμμ
4
x − ϱμμμμ

3
xμt − 6ϕμμμ

2
xμxx − 3ϱμμμ

2
xμxt − 3ϱμμμxμtμxx

− 4φμμxμxxx − 3ϱμμxμxxt − 3ϕμμ
2
xx − 3ϱμμxxμxt − ϱμμtμxxx � 0.

(5)

Substituting equation (1) in equation (5), we get

φt − ϕtμx + φμ − ϱt􏼐 􏼑μt − ϕμμxμt − ϱμμ
2
t − 6φμx − 6μ φx + φμ − ϕx􏼐 􏼑μx − ϱxμt − ϕμμ

2
x − ϱμμxμt􏽨 􏽩

+ φxxx + 3φxxμ − ϕxxx􏼐 􏼑μx − ϱxxxμt + 3φxμμ − 3ϕxxμ􏼐 􏼑μ2x

− 3ϱxxμμxμt + 3φxμ − 3ϕxx􏼐 􏼑μxx − 3ϱxxμxt + φμμμ − ϕxμμ􏼐 􏼑μ3x − 3ϱxμμμ
2
xμt

+ 3φμμ − 9ϕxμ􏼐 􏼑μxμxx − 6ϱxμμxμxt − 3ϱxμμtμxx + 6μ φμ − 3ϕx􏼐 􏼑μx − φμ − 3ϕx􏼐 􏼑μt

− 3ϱxμxxt − ϕμμμμ
4
x − ϱμμμμ

3
xμt − 6ϕμμμ

2
xμxx − 3ϱμμμ

2
xμxt − 3ϱμμμxμtμxx

− 24μϕμμ
2
x + 4ϕμμxμt − 3ϱμμxμxxt − 3ϕμμ

2
xx − 3ϱμμxxμxt − 6μϱμμxμxt + ϱμμ

2
t � 0.

(6)
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Comparing the coefficients of various terms, we get the
coefficients and monomials, as shown in Table 1.

Table 1 yields the required set of PDEs as follows:

ϱμ � 0, (7)

ϕμ � 0, (8)

ϱx � 0, (9)

3ϕx − ϱt � 0. (10)

Form (10),

ϕxx � 0

⇒φxxμ � ϕxxx

⇒φxxμ � 0,

φ �
− 1
6
ϕt − 2μϕx.

(11)

As

ϕx �
1
3
ϱt, (12)

therefore,

φ � −
1
6
ϕt −

2
3
μϱt,

φt � −
1
6
ϕtt −

2
3
μϱtt,

φx � −
1
6
ϕxt −

2
3
μϱtx,

φxxx � 0,

(13)

ϕtt � 0, (14)

ϱtt � 0. (15)

Let

ϱ � A(t)

⇒Att(t) � 0.
(16)

Integrating twice with respect to t yields

⇒At(t) � k1

⇒A(t) � k1t + k2

⇒ϱ � k1t + k2.

(17)

From (10),

3ϕx − ϱt � 0,

ϕμ � 0⇒ϕ � B(x)t,

ϕx �
1
3
ϱt

⇒ϕx �
1
3
k1.

(18)

Integrating with respect to “x,”

⇒ϕ �
1
3
k1x + D(t)

⇒ϕtt � Dtt(t) � 0

⇒D(t) � k3t + k4

⇒ϕ �
1
3
k1x + k3t + k4.

(19)

From (13),

φ � −
1
6
ϕt −

2
3
μϱt

� −
1
6
k3 −

2
3
k1μ.

(20)

,e general solution is

φ � −
2
3
k1μ −

1
6
k3,

ϱ � k1t + k2,

ϕ �
1
3
k1x + k3t + k4.

(21)

Hence, the Lie symmetry generators for the KdV
equation are given, as shown in Table 2.

3. A New Procedure to Find the
Approximate Symmetries

,is section explains the development of the method for the
approximate symmetries of the KdV equation. ,e KdV (1)
is perturbed with the function f(x, t, μ(x, t), μ(t, x)) as

μt − 6μμx + μxxx + εf(x, t, μ(x, t), μ(t, x)) � 0, (22)

where ε is a small parameter, causing the required pertur-
bation in the KdV equation. ,e exact and approximate
parts of (22) are

Ee � μt − 6μμx + μxxx,

Ea � f(x, t, μ(x, t)).
(23)
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Equation (22) can now be written in a more compact
form as

Ee + εEa � 0. (24)

On similar footing, we can combine the exact and ap-
proximate Lie symmetries as

X � Xe + εXa. (25)

Here,

Xe � ϕe

z

zx
+ ϱe

z

zt
+ φe

z

zμ
, (26)

is the exact Lie symmetry generator, and

Xa � ϕa

z

zx
+ ϱa

z

zt
+ φa

z

zμ
(27)

is the approximate Lie symmetry generator. Furthermore, ϕ,
ϱ, and φ are the unknown functions of x, t, and μ,
respectively.

Now, applying the generator X on (24), we have

Xe + εXa( 􏼁 Ee + εEa( 􏼁 � 0, (28)

which yields

XeEe + ε XaEe + XeEa( 􏼁 + O ε2􏼐 􏼑 � 0. (29)

,e comparison of coefficients of ε0 and ε1, respectively,
yields the exact and approximate symmetries of the corre-
sponding PDEs as in the following:

XeEe � 0,

XaEe + XeEa � 0.
(30)

,e latter equation additionally gives the approximate
Lie symmetries, which will not only provide the approximate
conservation laws involved in the dynamics of the KdV
equation but will also give the unknown function
f(x, t, μ(x, t), μi(t, x)) [8, 10].

4. Approximate Symmetries andCorresponding
Conservation Laws of the KdV Equation

In this section, we apply the developed method to find out
the approximate symmetries. ,is method is applied and
discussed for different cases. Considering the perturbed KdV
equation [6, 11, 12],

μt − 6μμx + μxxx + εf x, y, n, t, nt, nx, mt, mx( 􏼁 � 0. (31)

By employing the method developed in [13–15] for the
expansion of μ,

μ � m + εn. (32)

Using this expansion in (31),

Table 1: ,e exact symmetries of the given partial differential equation (PDE).

Coefficients Monomials
φt − 6μφx + φxxx � 0 1
− ϕt − 6φ − 6μ(φμ − ϕx) + 3φxxμ − ϕxxx + 6μ(φμ − 3ϕx) � 0 μx

− ϕμ + 6μϱμ − 3ϱxxμ + 4ϕμ � 0 μxμt

φμ − ϱt + 6μϱx − ϱxxx − (φμ − 3ϕx) � 0 μt

− ϱμ + ϱμ � 0 μ2t
6μϕμ + 3φxμμ − 3ϕxxμ − 24μϕμ � 0 μ2x
3φxμ − 3ϕxx � 0 μxx

− 3ϱxx � 0 μxt

φμμμ − ϕxμμ � 0 μ3x
− 3ϱxμμ � 0 μ2xμt

3φμμ − 9ϕxμ � 0 μxμxx

− 6ϱxμ − 6μϱμ � 0 μxμxt

− 3ϱxμ � 0 μtμxx

− 3ϱx � 0 μxxt

ϕμμμ � 0 μ4x
ϱμμμ � 0 μ3xμt

ϕμμ � 0 μ2xμxx

ϱμμ � 0 μ2xμxt

ϱμμ � 0 μxμtμxx

ϱμ � 0 μxμxxt

ϕμ � 0 μ2xx

ϱμ � 0 μxxμxt

Table 2: Lie symmetry generator of KdV equation.

Lie symmetry generators
X1 � (1/3)x(z/zx) + t(z/zt) − (2/3)μ(z/zμ)

X2 � (z/zt)

X3 � (z/z)

X4 � (z/zx)
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mt + εnt( 􏼁 − 6(m + εn) mx + εnx( 􏼁 + mxxx + εnxxx( 􏼁 � εf x, y, n, t, nt, nx, mt, mx( 􏼁,

mt + εnt − 6mmx − 6εmnx − 6εnmx − 6ε2nnx + mxxx + εnxxx � εf x, y, n, t, nt, nx, mt, mx( 􏼁,

mt − 6mmx + mxxx( 􏼁 + ε nt − 6mnx − 6nmx + nxxx( 􏼁 + ε2 − 6nnx( 􏼁 � εf x, y, n, t, nt, nx, mt, mx( 􏼁.

(33)

Equation (33) in more compact form is (neglecting
higher power of ϵ )

Δe + εΔa � 0. (34)

,e comparison of the coefficients of ϵ0 and ϵ1 in (33)
gives

Δe ≔ mt − 6mmx + mxxx � 0,

Δa ≔ nt − 6mnx − 6nmx + nxxx − f x, y, n, t, nt, nx, mt, mx( 􏼁 � 0.
(35)

,e Lie symmetry generator is

X � Xe + εXa � 0. (36)

Here,

Xe � ϕe

z

zx
+ ϱe

z

zt
+ φe

z

zm
+ ϕe

z

zn
,

Xa � ϕa

z

zx
+ ϱa

z

zt
+ φa

z

zm
+ ϕa

z

zn
.

(37)

Applying the Lie generator,

X Δe + εΔa( 􏼁 � 0,

Xe + εXa( 􏼁 Δe + εΔa( 􏼁 � 0,
(38)

which gives us

XeΔe + ε XaΔe + XeΔa( 􏼁 + o ε2􏼐 􏼑 � 0,

XeΔe � 0,

XaΔe + XeΔa � 0.

(39)

We now discuss the following cases in a bit detail.

Case I. Let

f x, y, n, t, nt, nx, mt, mx( 􏼁 � − mt − nt. (40)

,en, determining the system of PDEs from (35),

ϱtt � 0,

ϱm � 0,

ϕt � 0,

ϱn � 0,

ϕn � 0,

ϕm � 0,

ϱx � 0,

ϕx �
3
ϱt

,

φ �
− 2
3

mϱt,

ϕ � −
2
3
ϱtn.

(41)

As

zϱ
zm

� 0,

zϱ
zn

� 0,

zϱ
zx

� 0,

(42)
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which implies that “ϱ” is the function of “t” alone.,erefore,

ϱtt � 0. (43)

Integrating the above equation twice with respect to “t”
yields

ϱ � c1t + c2. (44)

Also,

zϕ
zt

� 0,

zϕ
zm

� 0,

zϕ
zn

� 0,

(45)

which shows that “ϕ” is the function of “x” alone. ,erefore,

zϕ
zx

�
1
3
ϱt. (46)

Putting the value of “ϱt” in (46), we get

zϕ
zx

�
1
3
c1. (47)

Integrating (47), we get

ϕ �
1
3
c1x + c3. (48)

Now,

φ � −
2
3

mϱt. (49)

Putting the value of “ϱt” in (49),

φ � −
2
3

mc1. (50)

By taking

ϕ � −
2
3
ϱtn, (51)

and putting the value of “ϱt” in (51),

ϕ � −
2
3
c1n. (52)

,erefore,

ϕ �
1
3
c1x + c3,

ϱ � c1t + c2,

φ �
− 2
3

mc1,

ϕ �
− 2
3

c1n.

(53)

,e corresponding symmetry generators are tabulated in
Table 3.

4.1. Conservation Laws. ,e conservation laws are devel-
oped as in the following:

X1 ψ x, y, n, t, nt, nx, mt, mx( 􏼁( 􏼁 � 0,

1
3

x
z

zx
+ t

z

zt
−
2
3

z

zn
−
2
3

m
z

zm
􏼠 􏼡ψ � 0,

1
3

xψx + tψt −
2
3
ψn −

2
3

mψm � 0,

3
dx

x
�

dt

t
�

dn

(− 2/3)
�

− 3
2

dm

m
�

dψ
0

.

(54)

Now, by taking

3
dx

x
�

dt

t
⇒x

3
� c1t⇒ c1 �

x
3

t
,

3
dx

x
�

dn

(− 2/3)
⇒ ln x

3
� −

2
3

n + c2⇒ c2 � x
3
e

(3/2)
n,

3
dx

x
�

− 3
2

dm

m
⇒x

3
� c3m

− 3
2
⇒ c3 � x

3
m

(3/2)
,

dt

t
�

dn

(− 2/3)
⇒ ln t � −

2
3

n + c4⇒ c4 � te
(3/2)

n,

dt

t
�

− 3
2

dm

m
⇒ t � c5m

− 3
2
⇒ c5 � tm

3
2
,

dn

(− 2/3)
�

− 3
2

dm

m
⇒ n + c6 � ln m⇒ c6 � me

− n
,

(55)

so

ψ � c1 + c2 + c3 �
x
3

t
+ x

3
e

(3/2)
n + x

3
m

(3/2)

+ te
(3/2)

n + tm
3
2

+ me
− n

.

(56)

Furthermore,

X2 ψ x, y, n, t, nt, nx, mt, mx( 􏼁( 􏼁 � 0,

ψt � 0⇒ψ � c,

X3 ψ x, y, n, t, nt, nx, mt, mx( 􏼁( 􏼁 � 0,

ψx � 0⇒ψ � c.

(57)

Following are the symmetries and their corresponding
conservation laws of Case 1.

Case 2. Let

f x, y, n, t, nt, nx, mt, mx( 􏼁 � − mx. (58)
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From (35), we get after comparing the coefficients of ϵ0
and ϵ1,

mt − 6mmx + mxxx � 0,

nt − 6mnx − 6nmx + nxxx − mx � 0.
(59)

Applying (36) to (59) yields the following system of
PDEs:

ϕt � 0,

ϕn � 0,

ϕm � 0,

ϕm � 0,

ϕn �
6ϕ

n + 1
,

ϕx �
1
3
ϱt,

ϕx � 0,

ϱm � 0,

ϕtt � 0,

ϱn � 0,

φ �
− 2
3
ϱtm −

1
6
ϕtϱx � 0,

ϱtt � 0.

(60)

Solving the above system of PDEs, we get the following
results:

φ �
− 2
3

c1m −
1
6
c4,

ϕ � 6c3n + c3,

ϱ � c1t + c2,

ϕ �
1
3
c1x + c4t + c5.

(61)

,e approximate symmetries and their corresponding
conservation laws in this case are given in Table 4.

Case 3. For this case, take

f x, y, n, t, nt, nx, mt, mx( 􏼁 � − nx. (62)

From (35), we get after comparing the coefficients of ϵ0
and ϵ1,

mt − 6mmx + mxxx � 0,

nt − 6mnx − 6nmx + nxxx − nx � 0.
(63)

,is results in the following equations:

ϕt � 0,

ϕtt � 0,

ϕm � 0,

ϕx � 0,

ϕn �
ϕ
n

,

ϕn � 0,

ϕx � 0,

ϱt � 0,

ϕm � 0,

ϱm � 0,

φ �
− 1
6
ϕtϱn � 0,

ϱx � 0,

φ �
− 1
6

c1,

ϕ � c3n,

ϱ � c4,

ϕ � c1t + c2.

(64)

Following are the symmetries and corresponding con-
servation laws of this Case 3.

Case 4. For this case, take

f x, y, n, t, nt, nx, mt, mx( 􏼁 � mn, (65)

then the system defined in (35) gives

mt − 6mmx + mxxx � 0,

nt − 6mnx − 6nmx + nxxx + mn � 0.
(66)

Applying (36) to (66), we get the following set of PDEs:

Table 3: Lie symmetry generators.

Lie symmetry generators
X1 � (1/3)x(z/zx) + t(z/zt) − (2/3)(z/zn) − (2/3)m(z/zm)

X2 � (z/zt)

X3 � (z/zx)
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ϱt � 0,

ϕt �
1
6

nϕt,

ϕx � 0,

ϕm � 0,

ϱx � 0,

ϕn �
ϕ
n

,

ϕtt � 0,

ϕx � 0,

ϱm � 0,

ϕm � 0,

ϱn � 0,

ϕn � 0,

φ � −
1
6
ϕt.

(67)

,e above equations yield

ϕ � c1t + c2,

ϱ � c3,

φ �
− 1
6

c1,

ϕ �
1
6

n c1t + 6c4( 􏼁.

(68)

Following are the symmetries and corresponding con-
servation laws of Case 4.

Case 5. Let

f x, y, n, t, nt, nx, mt, mx( 􏼁 � − n, (69)

then the system defined in (35) gives

mt − 6mmx + mxxx � 0,

nt − 6mnx − 6nmx + nxxx − n � 0.
(70)

Applying (36) to (70) produces the following set of PDEs:

ϕt � ϱtn,

ϕn � 0,

ϕm � 0,

ϕm � 0,

ϕn �
ϕ
n

,

ϱtt � 0,

ϕx � 0,

ϱm � 0,

ϕx �
1
3
ϱtϱn � 0,

ϱx � 0.

(71)

Solving the above equations, we get

ϕ �
c1x

3
+ tc3 + c4,

ϱ � c1t + c2,

φ �
− 2
3

mϱtc1 −
1
6
ϕtc3,

ϕ � n c1t + c5( 􏼁.

(72)

Following are the symmetries and corresponding con-
servation laws of Case 5.

Case 6. Assume

f x, y, n, t, nt, nx, mt, mx( 􏼁 � − nmt, (73)

then the system defined in (35) gives

mt − 6mmx + mxxx � 0,

nt − 6mnx − 6nmx + nxxx − nmt � 0.
(74)

Applying (36) to (74) results in the following set of PDEs:

Table 4: Lie symmetry generators and corresponding conservation laws.

Lie symmetry generators Corresponding conservation laws
X1 � (1/3)x(z/zx) + t(z/zt) − (2/3)m(z/zm) ψ1 � (x3/t) + (x

��
m

√
)3 + tm(3/2)

X2 � (z/zt) ψ2 � f(x, y, n, nt, nx, mt, mx)

X3 � (6n + 1)(z/zn) ψ3 � g(x, y, t, nt, nx, mt, mx)

X4 � t(z/zx) − (1/6)(z/zm) ψ4 � (x/t) + 6m

X5 � (z/zx) ψ5 � h(y, n, t, nt, nx, mt, mx)
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Table 6: Lie symmetry generator and corresponding conservation laws.

Lie symmetry generators Corresponding conservation laws
X1 � (1/3)x(z/zx) + t(z/zt) − (2/3)(z/zn) − (2/3)m(z/zm) ψ1 � (x3/t) + x3e(3/2)n + x3m(3/2) + te(3/2)n + tm(3/2) + me− n

X2 � (z/zt) ψ2 � f(x, y, n, nt, nx, mt, mx)

X3 � (z/zx) ψ3 � g(y, n, t, nt, nx, mt, mx)

Table 7: Lie symmetry generators and corresponding conservation laws.

Lie symmetry generators Corresponding conservation laws
X1 � (− 1/6)(z/zx) + t(z/zt) ψ1 � (e− 6x/t)
X2 � x(z/zx) ψ2 � f(y, n, t, nt, nx, mt, mx)

X3 � n(z/zn) ψ3 � g(x, y, t, nt, nx, mt, mx)

X4 � (z/zt) ψ4 � h(x, y, n, nt, nx, mt, mx)

Table 8: Lie symmetry generator and corresponding conservation laws.

Lie symmetry generators Corresponding conservation laws
X1 � t(z/zx) + (1/6)nt(z/zn) − (1/6)(z/zm) ψ1 � (e(x/t)/n6) + nem + (x/t) + 6m

X2 � (z/zx) ψ2 � f(y, n, t, nt, nx, mt, mx)

X3 � (z/zt) ψ3 � g(x, y, n, nt, nx, mt, mx)

X4 � n(z/zn) ψ4 � h(x, y, t, nt, nx, mt, mx)

Table 9: Lie symmetry generators and corresponding conservation laws.

Lie symmetry generators Corresponding conservation laws
X1 � n(z/zn) ψ1 � f(x, y, t, nt, nx, mt, mx)

X2 � (z/zt) ψ2 � g(x, y, n, nt, nx, mt, mx)

X3 � (z/zx) ψ3 � h(y, n, t, nt, nx, mt, mx)

Table 5: Lie symmetry generators and corresponding conservation laws.

Lie symmetry generators Corresponding conservation laws
X1 � (1/3)x(z/zx) + t(z/zt) + nt(z/zn) − (2/3)m(z/zm) ψ1 � (x3/t) + x3 + x3m(3/2) + etn + tm(3/2)

X2 � (z/zt) ψ2 � f(x, y, n, t, nt, nx, mt, mx)

X3 � (z/zx) − (1/6)(z/zm) ψ3 � x + 6m

X4 � (z/zx) ψ4 � g(y, n, t, nt, nx, mt, mx)

X5 � n(z/zn) ψ5 � h(x, y, t, nt, nx, mt, mx)
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ϱtx � 0,

ϕt � 0,

ϕx � 0,

ϕm � 0,

ϕn � 0,

ϕn �
ϕ
n

,

ϕm � 0,

ϱn � 0,

ϕx � 0,

ϱt � 0,

ϕt � 0,

ϱm � 0.

(75)

Solving the above set of equations, we get

ϕ � c3,

ϱ � c2,

φ � 0,

ϕ � c1n.

(76)

Following are the symmetries and corresponding con-
servation laws of Case 6.

5. Conclusion

,e KdV equation is a 3rd order nonlinear partial differ-
ential equation which is modeled for waves on the surface of
shallow water. It admits four Lie symmetries given in Ta-
ble 2. In this paper, approximate symmetry techniques are
used for finding some classes of the KdV equations that
admit more symmetries as compared to the exact KdV
equations. We perturbed the KdV equation by different
particular functions and found the corresponding Lie
symmetries. We found two important classes for the per-
turbed KdV equation that admits five Lie symmetries. ,e
Lie symmetries along with their conservation laws are given
in Tables 2, 4 and 5. In both the tables, we have an extra
symmetry which corresponds to an extra conservation law.
,is extra conservation law is an extra information hidden in
the system, the perturbation procedure explored it. Some-
times, the symmetry does not exist for the exact equation,
but perturbation enables the equation to admit a symmetry.
We saw this phenomenon in this research work by com-
paring Tables 2–6. Table 1 contains the determining PDEs
which provide the set of Lie symmetries admitted by the
given PDE. We have 4 Lie symmetries given in Table 2 for
exact PDE, while Tables 3 and 6 contain only three Lie

symmetries; in these cases, we lose one symmetry (one
conservation law). Tables 7 and 8 consist of four Lie sym-
metries which means that all the conservation laws are
recovered in these cases. Table 9 includes the lie symmetry
generators and corresponding conservation laws.
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