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(e task of child engagement estimation when interacting with a social robot during a special educational procedure is studied. A
multimodal machine learning-based methodology for estimating the engagement of the children with learning difficulties,
participating in appropriate designed educational scenarios, is proposed. For this purpose, visual and audio data are gathered
during the child-robot interaction and processed towards deciding an engaged state of the child or not. Six single and three
ensemble machine learning models are examined for their accuracy in providing confident decisions on in-house developed data.
(e conducted experiments revealed that, using multimodal data and the AdaBoost Decision Tree ensemble model, the children’s
engagement can be estimated with 93.33% accuracy. Moreover, an important outcome of this study is the need for explicitly
defining the different engagement meanings for each scenario. (e results are very promising and put ahead of the research for
closed-loop human centric special education activities using social robots.

1. Introduction

Nowadays, we are witnessing the fourth industrial revolu-
tion commonly known in Europe as Industry 4.0 [1]. One of
the most important parts of this revolution is the extension
of the robots’ usage beyond the industrial environments to
social activities interacting directly with humans. (is new
kind of robot named social robots shows increased inter-
action capabilities, characterized by a certain degree of in-
telligence, and is very much safe to interact with children in
any type of education.

Our interest here is the case of special education, which
draws increased attention from modern societies aiming at

providing equal opportunities to children with special needs
to develop their skills. Recent studies have demonstrated the
positive role of social robots in delivering special education
in person [2, 3] as well as in distance [4].

(e ultimate goal of an advanced child-robot interaction
is the establishment of a high level of an intelligence
communication channel, in a closed-loop configuration with
the child being at the center of the educational scenario. (is
goal can be achieved by developing efficient sensing
mechanisms to the robot side, such as automatic engage-
ment measuring, which will permit the robot to adapt its
behavior or even the execution of the educational scenario
[5], towards increasing the success—increased knowledge
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transfer and achievement of the learning objectives—of the
education delivery. (erefore, the development of a robust
methodology for measuring the engagement state of the
children in special education constitutes a challenging
problem to tackle.

Children with learning disabilities (LD) are identified as
having typical intelligence but manifest specific difficulties that
interfere with their task performance and academic achieve-
ment [6]. (is repeated failure and frustration experienced by
the childrenwith LD reduce their self-efficacy leading to a sense
of helplessness, which is associated with lack of motivation and
academic disengagement [7–9]. As academic engagement re-
fers to active participation and attention and focuses on the task
during the learning process, disengagement refers to apathy
and lack of interest.(e degree towhich students are engaged is
a critical precursor to learning, as without academic engage-
ment, students are unlikely to benefit from instructions [10]. In
other words, the more students are engaged, the more they
learn [11].(erefore, the development of a robustmethodology
for measuring the engagement state of children with LD
constitutes a challenge.

Although several methods [12] for measuring the en-
gagement level during child-robot interaction have been
presented in the literature, all these attempts were focused
on children with Autism Spectrum Disorder (ASD), and
their experimental study was limited with a small number of
children.

Taking into consideration the fact that children with
learning disabilities are associated with maladaptive en-
gagement compared with their typically developed peers
[13, 14], it would be of great importance to have knowledge
of each child’s engagement level through social robots in
order to use them in intervention programs that aim to
promote child’s learning by increasing their involvement in
all kinds of learning tasks. (us, as confirmed through re-
searches, interventions using social robots as a tool to
support the learning process have been demonstrated to
enhance students’ motivational skills, maintenance of en-
gagement, and compliance during instructional interactions
[15, 16].(e research of Pistoia et al. [17], which is one of the
first attempts to investigate the use of a social robot in
students with dyslexia, confirms that the presence of the
robot to support the learning process showed high levels of
response and engagement during child-robot interaction.

In this context, this work contributes along with the
following directions:

(1) A definition of the “Intelligent Interaction” based on
psychology is provided

(2) Amachine learning-basedmethodology that allows a
social robot to interact with intelligence with the
child is proposed

(3) (e proposed methodology is evaluated with a large
amount of in-house developed real data

(4) For the first time the case of children with learning
difficulties is considered for measuring their en-
gagement state during interaction with the social
robot

(5) (e need for customized engagement measuring
methods based on the characteristics of the deployed
scenario is touched for the first time

(e rest of the paper is organized as follows: Section 2
provides a snapshot of the related work and Section 3 presents
the definition of the “Intelligent Interaction,” the information
of the designed educational scenarios, and the details of the
proposed methodology. Section 4 provides the experimental
study with the corresponding results. Section 5 discusses the
results, concludes this study, and lays out the future work.

2. Related Work

Sidner et al. [18] proposed and Ahmad et al. [19] rephrased a
general definition of the concept of engagement during
human-robot interaction: “Engagement is the process by
which interactors start, maintain, and end their perceived
connection to each other during the interaction.” Measuring
engagement of humans, executing a specific activity, con-
stitutes a highly informative indication for analyzing the
effectiveness of the activity design. (is measurement can
help the improvement of the design towards achieving the
desired outcomes relative to the executed activity.

For this purpose, several methodologies have been
proposed to measure the engagement of a user playing a
video game [20], of a person when working [21], of students
in a classroom [22], of TV viewers [22], of a consumer when
purchasing products [23], and so on.Measuring engagement
of a child with special needs during an educational process
and/or intervention is very challenging due to the specially
designed scenarios and interaction schemes, which must
attract their attention and maintain engagement.

Early outstanding work for measuring the engagement
of children with a game companion was proposed by
Castellano et al. [24, 25] by using a multimodal processing
scheme based on visual and contextual information.
Moreover, Hernandez et al. [26] proposed a method to
measure the engagement of children, which were difficult to
engage during social interactions. In [26], wearable sensors
were used to measure the electrodermal activity of the
children and a Support Vector Machine (SVM) classifier was
applied to classify the children being engaged or not. In [27],
acoustic and linguistic data were utilized to detect the social
engagement in conversational interactions of children with
ASD and their parents, using an SVM classifier. (e first in-
depth study of measuring the engagement of children when
interacting with social robots was proposed by Anzalone
et al. [28]. In this work, the researchers analyzed visual
information in a static and dynamic perspective, in several
case studies of ASD child-robot interaction. Rudovic et al.
[29] presented a very interesting study regarding the en-
gagement measuring across cultures, which revealed that the
engagement level of 30 ASD children can be increased by
taking into account the cultural differences.

Recently, with the advent of deep learning technology,
several attempts have been pointed out for measuring en-
gagement during a child-robot interaction using advanced
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intelligent models. Rudovic et al. [30] proposed the Cul-
tureNet model based on the typical ResNet-50 architecture
for estimating the engaged or not engaged children of dif-
ferent cultures interacting with NAO robot in robot-assisted
therapy for children with Autism Spectrum Condition
(ASC). In [31], Hadfield et al. proposed a deep learning
model consisting of three fully connected layers and a single
LSTM layer, while the used features are computed using
visual data relative to the position of the child’s body parts.
(e reported results were of almost 80% accuracy, but the
limited number (3) of Typical Developed (TD) children can
justify the quite low accuracy. In a very recent work, Del
Duchetto et al. [32] tried to measure the engagement level in
human-robot interaction utilizing Convolutional Neural
Networks (CNNs) and LSTM model. (e novelty of the
work in [33] is the tackling of the engagement estimation as a
regression problem, aiming at providing a scalar value for
the engagement level during human-robot interaction. (e
reported results were very promising with Mean Squared
Error (MSE) 0.126.

Although the previous approaches have contributed
significantly to the engagement estimation in human-robot
interaction, they possess some limitations: (1) they were
applied mostly on adults or children with TD or ASD,
without examining other categories of children with special
needs, such as children with learning difficulties; (2) they
were experimented with a limited number of children; and
(3) they did not study the engagement estimation in the
framework of appropriately designed intervention scenarios
or the designed scenarios were few and very simple.

It is important to realize the need to analyze andmeasure
the engagement of children with learning difficulties.
Considering dyslexia as the most frequent learning difficulty,
Uta Frith [33] proposed a three-level theoretical framework
for the interpretation of dyslexia, namely, behavioral, cog-
nitive, and biological. In this context, Frith also distin-
guished the role of the environmental level that interacts
with the abovementioned three levels. (erefore, dyslexia
students interacting with a social robot can learn easier due
to its interactive and fun performance, which also allows
students to take their time during a learning task. In ad-
dition, a social robot engages pupils in mental information
processing and captures their attention [34].

After reviewing the applications of social robots in
special education from the international literature, we found
that the usage of social robots in supporting the educational
procedure of children with learning difficulties is limited.
(is observation contradicts the educational needs of a large
percentage of the world’s population, which accounts for
10–15% [35]. We believe that the high percentage of the
population showing learning difficulties imposes the tar-
geting of this part of the population as a potential application
field for using social robots.

(e current study aims to complement the previous
works by investigating the engagement measuring when
children with learning difficulties are interacting with the
social robot NAO. (e number of children that participated
in the experiments was 10, while child psychologists care-
fully designed 10 scenarios, executed by each child.

3. Materials and Methods

3.1. Intelligent Interaction: A Definition. In order to un-
derstand the real needs for an engagement measuring
methodology, it is crucial to provide a definition of what is
the meaning of an “Intelligent Interaction.”

Considering the work of the psychologist Howard
Gardner [36] regarding the type of intelligence, nine dif-
ferent types of intelligence can be considered. From these
nine types of intelligence, the following five deal with the
interaction of a human with the surrounding environment:

(1) Linguistic intelligence: ability to find the right words
to express what do you mean

(2) Visual-spatial intelligence: having awareness of the
surrounding environment

(3) Bodily-kinesthetic intelligence: coordinating the
mind with the body

(4) Interpersonal intelligence: sensing children’s feelings
and motives

(5) Logical-mathematical intelligence: quantifying
things, making hypotheses, and proving them

From the engineering point of view though, the previous
interaction-oriented intelligence can be summarized to the
following two levels of intelligence:

(1) 1st level of intelligence: ability to analyze the sensory
data in order to understand the surrounding
environment

(2) 2nd level of intelligence: establishing a human-like
closed-loop communication with the child

(e above two levels of intelligence enclose the afore-
mentioned five types of intelligence defined in terms of
psychology and can be the ultimate goals of any research
dealing with human-robot interaction.

An important part of the above two levels of intelli-
gence is the measuring of the child’s engagement state by
processing the sensory data (1st level) for adapting the
robot’s behavior and/or the educational scenario towards
establishing a closed-loop communication channel (2nd
level).

3.2. Educational Scenarios. For the sake of this study, five
child psychologists (three from the “Family Center KPG,
(essaloniki, Greece” and two from the “Department of
Clinical Psychology, Papageorgiou General Hospital, (e-
ssaloniki, Greece”) of our research team designed ten dif-
ferent educational scenarios for children with learning
difficulties, as part of the national project titled “Social
Robots as Tools in Special Education (SRTSE)” [37]. It is
worth noting that each child executed each scenario on
different days. More precisely, each child executed two
scenarios per week and the average duration of each scenario
was 35 minutes.

Table 1 shows what types of activities are included in
each scenario.

(e scenarios include the following types of activities:
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(i) Meet/greet
(ii) Text decoding, comprehension, and reading
(iii) Phonology composition, decomposition, discrim-

ination, and addition
(iv) Memory
(v) Robot-child relaxation game
(vi) Story listening and telling
(vii) Sentence structuring
(viii) Strategic visual representation

3.3. ProposedMethodology. Two are the main features of the
proposed methodology: (1) the usage of multimodal data
consisting of visual and audio modalities and (2) the usage of
a machine learning model that provides the decision about
the engagement state of the child. In the following sub-
sections, the modules of the designed methodology depicted
in Figure 1 are described in detail.

3.3.1. Multimodal Sensing. (e sensing capabilities of the
used social robot mainly control the type of sensory data to
process in order to decide the engagement state of the child
during the interaction. Our study considers the well-known
NAO robot as the robot that is able to interact with the child,
but other social robots [38] could also be used. (is robot is
equipped with two identical RGB video cameras located in
the forehead and a microphone; thus, it can provide visual
and audio sensing capabilities.

(1) Visual Sensing.(e visual sensing capabilities of the NAO
robot permit the acquisition of video frames that include the
child’s body and face. From each video frame, the body pose
is extracted using the library [39], consisting of 25 key points
(2 on the torso, 6 on the hands, 12 on the legs, and 5 on the
head), as depicted in Figure 2(a). In addition, 68 key points
called facial landmarks are extracted (see Figure 2(b)), from
the child’s face using the OpenFace library [40]. It is worth
noting that the computed facial landmarks are used to define
the child’s emotional state in compliance with the Facial
Action Coding System (FACS) [41]. Finally, the eye contact
between the child and the robot is detected using the
OpenGaze library [42] and following the methodology
proposed by Xucong Zhang et al. [43].

(2) Audio Sensing. During the interaction with the child, the
robot needs to keep facing the child at all times, in order for
the robot to record and analyze the child’s speech, by
providing additional information related to the engagement
state of the child.

3.3.2. Feature Extraction. (e abovementioned multimodal
sensing mechanism aims at collecting sensory raw data. (is
data, which has the form of 2D Cartesian points belonging to
the child, is further processed to construct more informative
descriptions named features. (e feature extraction proce-
dure is applied on the video frames (640× 480 pixels

resolution) captured every 0.7 secs (1.4 fps) by using non-
overlapping sliding windows of 60 secs. Although the
camera of the NAO robot has 2.5 fps for 640× 480 video
resolution, in a WiFi connection mode, in our case, the real-
time performance of our system is 1.4 fps due to the exe-
cution of the algorithms. Moreover, it is decided to set the
processing time window to 60 secs, in order to include
enough event transitions and to help the manual annotation
of the data. (e features that are finally computed are the
following:

(1) Feature 1: number of blinks: the blinks count of the
child on average

(2) Feature 2: mean movement of the body in pixels
(3) Feature 3: if the child’s body was turned away from

the robot (0 or 1)
(4) Feature 4: percentage of the time window within

which there was eye contact by the child
(5) Feature 5: emotion (happy, sad, surprised, fear,

anger, disgust, or contempt)
(6) Feature 6: emotion intensity (0–5)
(7) Feature 7: if the child’s head was turned away from

the robot (0 or 1)
(8) Feature 8: mean response time (set to −1 if the

scenario did not require a response from the child)
(9) Feature 9: mean voice level (in RMS)
(10) Feature 10: percentage of the time window within

which the child was silent
(11) Feature 11: percentage of the time window within

which the child was speaking

It should be noted that almost all the above visual
features are computed by tracking and processing the
extracted key points. For example, for a specific frame, the
emotion is determined by combining the FACS corre-
sponding to each feeling (Table 2), averaging their in-
tensities, and choosing the emotion that has the highest
intensity. In addition, features 3 and 7 are determined by
counting the number of states (0 and 1) in the time
window and choosing the one with the highest number of
occurrences. Lastly, to determine if the child is speaking
or not, we check if the voice volume is higher than 350
RMS and the mean voice level considers levels where the
child is speaking.

To summarize, for each 60 secs video frame, a feature
vector FV ∈ R11 is assigned, which is also manually anno-
tated by three experienced child psychologists to an engaged
time slot or not. (e extracted features from the educational
scenarios are used to train the machine learning model, so it
will able to detect the engagement state of the child.

3.3.3. Machine Learning Models. Herein, the detection of
the child’s engagement state (engaged or not engaged) is
accomplished by solving a typical two-class classification
problem by using a machine learning classifier. Machine
learning has been proved to be an efficient technology in
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many disciplines such as signal processing [45] and com-
puter vision [46]. More precisely, six traditional machine
learning models, the Support Vector Machine (SVM) model
with two different kernels (RBF and poly), the Decision Tree,
the K-NN, the Näıve Bayes (NB), the Multilayer Perceptron

(MLP), and the Extreme Learning Machine (ELM) classi-
fiers, are examined.

Additionally, three ensemble models are also considered,
the Random Forest (RF), the AdaBoost Decision Tree, and
AdaBoost Näıve Bayes ones. (e advantage of the ensemble

Table 1: Educational scenarios’ characteristics.

Scenario Types of activities included
S1 Meet/greet, text decoding, phonology (de)composition, memory, and robot-child relaxation game
S2 Meet/greet, phonetic discrimination, text reading, decoding, and comprehension
S3 Meet/greet, story listening and telling, and sentence structuring
S4 Text comprehension and visual representation
S5 Phonemic addition, sentence playback from memory, and robot-child relaxation game
S6 Meet/greet, sentence playback from memory, and reading enhancement
S7 Meet/greet, phonetic awareness, and robot-child relaxation game
S8 Meet/greet, acoustic vocal discrimination, and acoustic syllable discrimination
S9 Memory enhancement and text decoding
S10 Text reading and robot-child relaxation game

Image

Pose
estimation

Eye contact
detection

Facial
landmark
detection

Speech
processing

Feature
extraction ML model

Engaged?

Figure 1: Block diagram of the proposed methodology.

(a) (b)

Figure 2: Visual sensing extracted data. (a) Body pose detection [39]. (b) Facial landmark (action units) [44] detection.
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classifiers is that they combine “weak learners” with strong
ones, by reducing the bias and variance of the learner. (e
first ensemble uses the Bagging [47] and the last two use the
AdaBoost [48] training techniques.

Most of the machine learning models owing to a set of
configuration parameters that enables them to adjust their
performance are subject to the considered problem andmust
be carefully selected.

4. Experimental Study

In order to study the performance of the proposed meth-
odology, a set of experiments was arranged.(e experiments
were carried out using the scikit-learn [49] Machine
Learning Library for Python, on Python version 2.7.
Moreover, the experiments were conducted on a laptop
computer equipped with Intel i7-6700HQ CPU, 8GB DDR4
RAM, and GTX 960M GPU.

4.1. Dataset Design. For the sake of the experiments, 10
children participated in the ten scenarios (see Table 1), 2 girls
and 8 boys, aged from 9 to 10 years. Each scenario is executed in
a classroom with the participation of a child, the NAO robot,
and a child psychologist sitting behind the NAO robot. (e
robot also needs to keep facing the child at all times, in order for
the speech recognition module of the robot to work more
accurately, since in this position the microphones are oriented
to the source of the sound [50]. From the recorded video files, a
dataset of 819 samples, with 11 features for each sample, was
designed. From these samples, 99 samples corresponded to
children being engaged, while 720 samples corresponded to
children being not engaged. (ree experienced child psychol-
ogists derived the ground truth data after manual annotation.
Since this dataset is imbalanced, an oversampling technique was
employed, called Synthetic Minority Oversampling Technique
(SMOTE) [51], in order to balance the dataset, by containing the
same number of samples for each class. (e final balanced
dataset includes 1440 samples (720 per class).

4.2. Settings of the Experiments. A 10-fold cross-validation
grid search technique [52] was applied in order to select the
best parameters set for each model. (e resulting param-
eters that optimize the accuracy of each model are pre-
sented in Table 3.

(e performance of each model was evaluated using the
Precision, Recall, Accuracy, and F-measure indices [53].
(ese measures are widely used in machine learning to

evaluate the performance of a model. (ey are taking into
account the True Positive (TP) and True Negative (TN)
cases, which correspond to those cases correctly identified as
positive or negative, respectively, and False Positive (FP) and
False Negative (FN) cases, which are falsely identified as
positive or negative, respectively.

Accuracy is the proportion of the total number of correct
predictions and is calculated from the equation

Accuracy �
TP + TN

TP + TN + FP + FN
. (1)

Precision is the proportion of the correct predicted
positive results and is calculated from the equation

Precision �
TP

TP + FP
. (2)

Recall is the proportion of correct positive results and is
calculated from the equation

Recall �
TP

TP + FN
. (3)

F-measure combines both Precision and Recall and is the
harmonic mean of those indices, calculated as follows:

F − measure �
2 × Precision × Recall
Precision + Recall

. (4)

4.3. Results. A k-fold (with k� 10) cross-validation technique
is followed for the evaluation of each machine learning model
in estimating the children’s engagement state. According to
this training and testing protocol, the initial dataset of 1440
samples is divided into 10 equal and nonoverlapped subsets of
144 samples. Each one of these subsets is used to test the
model trained with the remaining nine subsets. (e process is
repeated k times by using different subsets for testing only
once.(e results of the k experiments are averaged in order to
conclude the generalization ability of each model. Table 4
summarizes the prediction performance of each model.

(e results of Table 4 reveal two important conclusions.
(e first one is that the initial hypothesis that the children’s
engagement can be measured by using multimodal data
consisting of combined behavioral, pose, and emotional
information is justified experimentally since the accuracy of
the models is very high (up to 93.33%).

(e second conclusion is that the AdaBoost Decision
Tree model outperforms the other models, by a significant

Table 2: Facial action coding system (FACS).

Emotion Action units (AU) Description
Happiness/joy 6 + 12 Cheek raiser and lip corner puller
Sadness 1 + 4 + 15 Inner brow raiser, brow lowerer, and lip corner depressor
Surprise 1 + 2 + 5 + 26 Inner brow raiser, outer brow raiser, upper lid raiser, and jaw drop

Fear 1 + 2 + 4 + 5 + 7 + 20 + 26 Inner brow raiser, outer brow raiser, brow lowerer, upper lid raiser, lid tightener, lip stretcher,
and jaw drop

Anger 4 + 5 + 7 + 23 Brow lowerer, upper lid raiser, lid tightener, and lip tightener
Disgust 9 + 15 Nose wrinkler, lip corner depressor, and lower lip depressor
Contempt 12 + 14 Lip corner puller and dimpler
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factor in some cases, followed by the SVM (RBF). Despite
the high accuracy of the AdaBoost Decision Tree model, the
additional high Precision, Recall, and F-measure constitute
the evidence that the model is able to estimate the

children’s engagement of unseen data with minimum False
Positive (FP) and False Negative (FN) decisions. (e
outperformance of the ensemble methods was expected
since these models are more complex and they provide the

Table 4: Predicted results.

ML model Accuracy (%) Precision (%) Recall (%) F-measure (%)
SVM (RBF) 91.53 91.86 91.53 91.51
SVM (poly) 57.92 61.50 57.92 54.74
Decision Tree 87.01 88.59 87.01 86.83
k-NN 88.33 88.81 88.33 88.30
Naı̈ve Bayes 78.12 81.41 78.12 77.49
MLP 78.75 79.73 78.75 78.50
ELM 89.72 90.16 89.16 89.66
Random Forest 88.54 89.61 88.54 88.42
AdaBoost Decision Tree 93.33 94.09 93.33 93.28
AdaBoost Näıve Bayes 82.29 83.48 82.29 82.09

Table 3: Settings of the ML models.

ML model Best parameters
SVM (RBF) C� 10, tol� 0.1, and gamma� 0.001
SVM (poly) C� 10, tol� 0.0001, and gamma� “scale”
Decision Tree Splitter� “best,” min samples leaf� 10, criterion� “gini,” max features� none, and max depth� 4
k-NN n neighbors� 2, weights� “uniform,” leaf size� 20, and algorithm� “ball tree”
Naı̈ve Bayes (Nothing to configure)
MLP Solver� “Adam,” learning rate� “constant,” hidden layer sizes� (80, 40), tol� 10.0, and alpha� 0.01
ELM Alpha� 100, n_hidden� 80, and rbf_width� 0.256
Random Forest Max features� “sqrt,” n estimators� 4, criterion� “gini,” max depth� 15, and min samples leaf� 15
AdaBoost Decision Tree Criterion� “entropy”, max depth� 15, max features� “auto,” splitter� “best,” and min samples leaf� 5
AdaBoost Näıve Bayes (Nothing to configure)
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Figure 3: Engagement detection accuracy for the case of the modified leave-one-out training strategy.

Mathematical Problems in Engineering 7



final decision considering the outcomes of multiple single
classifiers working in a complementary way. Among the
ensemble models, the AdaBoost shows the best perfor-
mance, a result that reveals the ability of the sequential
topology of the bootstrapping to improve the classification
performance. On the other hand, the Bagging topology of
the Random Forest model implies that the weak classifiers
of the model operate with similar data, meaning that the
dataset is quite homogenous, without including significant
variations.

Moreover, in order to examine the bias of the machine
learning models in the data of a specific scenario, a
modified leave-one-out training strategy was applied with
the samples that were left out in each case where all the
samples corresponding to a specific scenario and the
training were done with all other samples of the other
scenarios. For each test case, the training data were again
augmented to tackle the existing issue of the imbalanced
number of samples per class. For example, in the first fold,
the models were trained with the samples corresponding to
all the scenarios except the first one and then tested with the
samples corresponding to the first scenario and so on for
each fold. Figure 3 depicts the performance of the machine
learning models for each scenario when its data samples are
used to test the models.

(e results presented in Figure 3 reveal that the SVM
(poly) model shows the lowest bias in the training data since
it has the highest detection accuracy in 7 out of 10 training
folds. Moreover, an interesting observation of this experi-
ment is the different “definitions” of children’s engagement
state in each scenario, since the performance of each model
varies with the scenario type.

5. Discussion and Conclusion

(e task of engagement detection of a child with learning
difficulties interacting with a social robot for establishing a
two-way intelligent interaction was studied in this work.(e
detection procedure was tackled as a two-class classification
problem solved with high success by applying a machine
learning model. (e proposed methodology uses multi-
modal data (visual and audio) that describe the behavior of
the child during the interaction. (e initial hypothesis that
an engaged child with learning difficulties can be identified
by processing the body and head poses, the facial expres-
sions, the eye contact, and the speech was accepted following
the proposed method. However, this study brought to light
the possible different “definitions” of engagement that apply
in each educational scenario.(is outcome is very important
since it paves the way for more customized engagement
measuring techniques oriented to the specific scenarios
under deployment, towards providing an optimal interac-
tion strategy.

In addition to the investigation of developing scenario-
based engagement measuring methods, future work will
consider the time parameter for each extracted feature and
the handling of them as time series by deploying regression
ML models such as Long Short Term Memory (LSTM) for
predicting the engagement level at discrete time steps.
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