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Abstract
In this paper, we consider the problem of free convection in a square cavity filled with
a porous medium with convective boundary condition on the left wall of the cavity.
We first transform the governing equations transformed in terms of dimensionless
variables and then solve them numerically using a cubic spline colocation method.
We discuss the effects of two very important parameters, the Biot (Bi) and Rayleigh
(Ra) numbers. We perform a comparison of the average Nusselt number Nu at the hot
wall with results from the open literature. We can notice that the comparison is very
good, which gives us strong confidence that this cubic spline collocation method
works very efficiently for such problems. We also state that the present problem has
not been considered before by any researcher.

Keywords: Square cavity; Free convection; Porous medium; Convective boundary
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1 Introduction
Convection in enclosures saturated with porous media is present in several transport op-
erations in engineering devices. This is advised for altitude heat-dissipating electronic in-
gredients, where free convection is notable for providing effective cooling, heat exchang-
ers, solar energy storage, greasing technology, cooling the electronic systems, and des-
iccation technologies. It also occurs in investigations considering the chemical reactions
and detaching fluids, food processing and storage, petroleum and geothermal industries,
dialysis of blood in artificial kidney, blood oxygenators and flow of blood in the capillar-
ies, fibrous insulation, thermal insulation of buildings, geophysical systems, solar power
collectors, nuclear reactors, geothermal applications, electro chemistry, metallurgy, un-
derground disposal of nuclear or nonnuclear waste, and so on (see the books by Ingham
and Pop [1–3], Pop and Ingham [4], Kaviany [5], Vafai [6, 7], Vadasz [8], Bejan [9], Nield
and Bejan [10], Bear [11], Prasad and Kulacki [12], and Gross et al. [13]).

The situation with convective boundary condition arises in conjugate convective flows,
where the heat is supplied to the convective fluid through a bounding surface with a finite
heat capacity. This configuration occurs in many important engineering devices, for ex-
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ample, in heat exchange where the conduction in the solid tube wall is greatly influenced
by the convection in the fluid flowing over it (see Chaudhary and Jain [14]).

We also mention some very good papers on efficient methods for such problems: Ab-
delwahed et al. [15] on reconstruction of Tesla micro-valve using topological sensitivity
analysis, Abdelwahed and Chorfi [16] on the convergence analysis of a time-dependent
elliptic equations with discontinuous coefficients, and Chorfi et al. [17] on the analysis of
a geometrically selective turbulence model.

The objective of the present analysis is investigating the influence of the thermal bound-
ary condition in a square cavity filled with a porous medium using a spline colocation
method. We determine numerical solutions for the streamlines, isotherms, and local and
average Nusselt numbers.

2 Mathematical formulation
We consider the free convection in a square cavity filled with a fluid-saturated porous
medium, as it is shown in Fig. 1, where the Cartesian coordinates are x and y, and L is
the wall length. The temperatures at the left and right sides of the walls are considered
constant, and the bottom and top walls are thermally insulated. We also assume that the
outside left side surface of the cavity is heated by convection from a hot fluid at constant
temperature Tf , which provides a heat transfer coefficient hf (see Aziz [18]), namely

–kf
∂T
∂y

= hf (Tf – T) on y = 0. (2.1)

The homogeneity and the thermal equilibrium of the porous medium are assumed.
Then the steady conservation of mass, Darcy’s law with the Oberbeck–Boussinesq ap-

proximation employed, and the energy equations are (see Nield and Bejan [10])

∇ · v = 0, (2.2)

0 = –∇p –
μ

K
v + ρ0

[
1 – β(T – Tc)

]
g, (2.3)

(v · ∇)T = αm∇2T . (2.4)

In these equations, v = (u, v) is the velocity vector, T is the fluid temperature, p is the
fluid pressure, k is the thermal conductivity, ∇2 is the Laplace operator, and the physical
meanings of the other quantities are mentioned in the Abbreviations list.

Figure 1 Physical model and coordinate system
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Equations (2.2)–(2.4) are written in Cartesian coordinates, and the pressure p is elimi-
nated by cross-differentiation. Introducing the stream function ψ defined by

u =
∂ψ

∂y
, v = –

∂ψ

∂x
, (2.5)

we reduce equations (2.2) to (2.4) to

∂2ψ

∂x2 +
∂2ψ

∂y2 = –
gKρ0β

μ

∂T
∂y

, (2.6)

∂ψ

∂y
∂T
∂x

–
∂ψ

∂x
∂T
∂y

= αm

(
∂2T
∂x2 +

∂2T
∂y2

)
, (2.7)

where αm = km/(ρc)f is the effective thermal diffusivity. Introducing the dimensionless
variables

x =
x
L

, y =
y
L

, ψ =
ψ

αm
, θ =

T – Tc

�T
or θ =

T – T∞
Tf – T∞

(2.8)

and substituting (2.8) into equations (2.6)–(2.7), we obtain:

∂2ψ

∂x2 +
∂2ψ

∂y2 = –Ra
∂θ

∂x
, (2.9)

∂ψ

∂y
∂θ

∂x
–

∂ψ

∂x
∂θ

∂y
=

∂2θ

∂x2 +
∂2θ

∂y2 , (2.10)

where Ra = gKρ0β�T/(αmμ) is the Rayleigh number, and �T = Th – Tc. Then we com-
plete the mathematical model with the following corresponding boundary conditions:

ψ = 0,
∂θ

∂x
= –Bi(1 – θ ) on x = 0,

ψ = 0, θ = 0 on x = 1, (2.11)

ψ = 0,
∂θ

∂y
= 0 on y = 0, 1,

where Bi = Lhf /kf is the Biot number. Note that for large values of Bi(� 1), from (2.11) it
follows that θ (0) = 1 (isothermal left wall of the cavity).

The physical quantities of interest are the local and average Nusselt numbers Nul and
Nul . The local Nusselt number at the left wall is given by

Nul = –
∂θ

∂x
(0, y) = Bi

[
1 – θ (0, y)

]
, (2.12)

and the mean Nusselt number is

Nu = –
∫ 1

0

∂θ

∂x

∣
∣∣
∣
x=0

dy = Bi
∫ 1

0

[
1 – θ (0, y)

]
dy. (2.13)
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3 Numerical method
The governing equations (2.9) and (2.10) coupled with the boundary conditions (2.11) are
approximated numerically using the SADI (spline-alternating-direction-implicit) method,
a combination of spline collocation and standard ADI (alternating-direction-implicit)
methods. Each unknown is approximated by a cubic spline function. This is an efficient
method, having good accuracy and low cost in implementation, as it leads to a governing
linear tridiagonal system.

Using the fictitious time technique, we write equations (2.9) and (2.10) in the form

	n+1/2
ij = Fn

ij + Rn
ijm

n+1/2
	,ij + Qn

ijM
n+1/2
	,ij (3.1)

in the x-direction, with m	,ij and M	,ij denoting the spline approximations of the first-
and second-order partial derivatives with respect to x. Then, in the y-direction, we
write

	n+1
ij = Fn+1/2

ij + Rn+1/2
ij ln+1/2

	,ij + Qn+1/2
ij Ln+1/2

	,ij , (3.2)

where l	,ij and L	,ij are the spline approximations of (	y)ij and (	yy)ij. In these equa-
tions, i, j = 0, N refer to the mesh nodes, n denotes the false time step, and 	ij are the
cubic spline approximations of the functions θ or ψ at the grid nodes. The coefficients
Fij, Rij, and Qij at the two steps are given in Tables 1 and 2. By the usual cubic spline
collocation relations (see Pu and Kahawita [19]) we transform equations (3.1) and (3.2)
to

Aijϕ
n+1/2
i–1,j + Bijϕ

n+1/2
i,j + Cijϕ

n+1/2
i+1,j = Dij, i = 1, . . . , N – 1, (3.3)

and

A′
ijϕ

n+1
i,j–1 + B′

ijϕ
n+1
i,j + C′

ijϕ
n+1
i,j+1 = D′

ij, j = 1, . . . , N – 1, (3.4)

respectively, where ϕ can be the function 	 or one of its derivatives (m or M for equa-
tion (3.3) and l or L for equation (3.4)). Obtaining two more equations from the boundary
conditions, we get a closed tridiagonal, diagonally dominant linear system, which can be
solved efficiently by the Thomas algorithm. For details on the mathematical computations,

Table 1 Coefficients in equation (3.3)

� Fnij Rnij Qn
ij

θ θn
ij +

�t
2 (mn

ψ ,ij l
n
θ ,ij + Lnθ ,ij) –�t

2 lnψ ,ij
�t
2

ψ ψn
ij +

�t
2 (Lnψ ,ij + Ramn

θ ,ij) 0 �t
2

Table 2 Coefficients in equation (3.4)

� Fn+1/2ij Rn+1/2ij Qn+1/2
ij

θ θn+1/2
ij + �t

2 (–ln+1/2ψ ,ij mn
θ ,ij +Mn

θ ,ij)
�t
2 mn+1/2

ψ ,ij
�t
2

ψ ψn+1/2
ij + �t

2 (Mn+1/2
ψ ,ij + Ramn

θ ,ij) 0 �t
2
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see Rubin and Graves [20] or Pu and Kahawita [19]. The computations are iterated until
a steady-state solution is reached, that is,

∥
∥∥
∥
	n+1 – 	n

	n+1
max

∥
∥∥
∥ < 10–7, (3.5)

where n is the number of iterations.
When a steady-state solution is reached, the mean Nusselt number

Nu = –
∫ 1

0

∂θ

∂x

∣
∣∣
∣
x=0

dy (3.6)

is approximated by the trapezoidal rule.
The procedure is described in more detail by Micula and Pop [21].
At the first step, in the x-direction, from time n�t to (n + 1/2)�t, discretizing equations

(2.6)–(2.7), for every i = 1, . . . , N – 1 and fixed j ∈ {0, 1, . . . , N}, we write

θn+1/2
ij = Fn

θ ,ij + Rn
θ ,ijm

n+1/2
θ ,ij + Qn

θ ,ijM
n+1/2
θ ,ij (3.7)

and

ψn+1/2
ij = Fn

ψ ,ij + Rn
ψ ,ijm

n+1/2
ψ ,ij + Qn

ψ ,ijM
n+1/2
ψ ,ij (3.8)

with the coefficients given in Table 1. These equations are then put in the form

Aθ ,ijθ
n+1/2
i–1j + Bθ ,ijθ

n+1/2
ij + Cθ ,ijθ

n+1/2
i+1j = Dθ ,ij, i = 1, . . . , N – 1, (3.9)

and

Aψ ,ijψ
n+1/2
i–1j + Bψ ,ijψ

n+1/2
ij + Cψ ,ijψ

n+1/2
i+1j = Dψ ,ij, i = 1, . . . , N – 1, (3.10)

respectively.
From the boundary conditions (2.11) we get another equation for θn+1/2

ij ,

θn+1/2
Nj = 0. (3.11)

Also, combining the boundary conditions (2.11) with relations between cubic spline func-
tions and their derivatives, we get one more equation

Aθ ,0jθ
n+1/2
0j + Bθ ,0jθ

n+1/2
1j = Dθ ,0j. (3.12)

The derivation of coefficients Aθ ,0j, Bθ ,0j, and Dθ ,0j is given in the Appendix.
Equations (3.9), (3.11), and (3.12) form an (N + 1) × (N + 1) tridiagonal, diagonally dom-

inant linear system in the unknowns {θn+1/2
ij }i=0,N . When the system is solved and these

values are found, the values of {mn+1/2
θ ,ij }i=0,N (and of {Mn+1/2

θ ,ij }i=0,N , if needed) can also be
found.
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Similarly, for ψn+1/2
ij , equations (3.10) coupled with (from the boundary conditions)

ψn+1/2
0j = 0, ψn+1/2

Nj = 0 (3.13)

form an (N + 1)× (N + 1) tridiagonal, diagonally dominant linear system for the unknowns
{ψn+1/2

ij }i=0,N .
For the second step, in the y-direction, from time (n + 1/2)�t to (n + 1)�t, we proceed

similarly. For any fixed i ∈ {0, 1, . . . , N} and for every j = 1, . . . , N – 1, using the coefficients
from Table 2, we get equations

A′
θ ,ijl

n+1
θ ,ij–1 + B′

θ ,ijl
n+1
θ ,ij + C′

θ ,ijl
n+1
θ ,ij+1 = D′

θ ,ij, j = 1, . . . , N – 1, (3.14)

and

A′
ψ ,ijψ

n+1
ij–1 + B′

ψ ,ijψ
n+1
ij + C′

ψ ,ijψ
n+1
ij+1 = D′

ψ ,ij, j = 1, . . . , N – 1. (3.15)

Again, from the boundary conditions (2.11) we get two more equations for ln+1
θ ,ij ,

ln+1
θ ,i0 = 0, ln+1

θ ,iN = 0, (3.16)

and two for ψn+1
ij ,

ψn+1
i0 = 0, ψn+1

iN = 0. (3.17)

Then equations (3.14) and (3.16) form a closed linear system for the unknowns {ln+1
θ ,ij }j=0,N

(again, from these the values of {θn+1
ij }i=0,N and {Ln+1

θ ,ij }j=0,N can also be found). Similarly,
equations (3.15) and (3.17) give an (N + 1) × (N + 1) tridiagonal linear system for the
unknowns {ψn+1

ij }j=0,N .

4 Numerical results and discussion
We apply the SADI method to our problem taking the values Ra = 10, 100, 1000 and Bi =
0.5, 5, 50, 100. The method is validated by comparing the values of Nu we obtained with
other well-known results in the literature (see Table 3).

We use uniform meshes of N × N nodes for N = 100, 200, 300, and 400. A sensitivity
to the grid size test is performed, and the results are seen in Table 4. As the values in

Table 3 Comparison of the average Nusselt number Nu at the hot wall

Authors Ra

10 100 1000 10,000

Walker and Homsy [22] – 3.097 12.960 51.000
Bejan [23] – 4.200 15.800 50.800
Beckermann et al. [24] – 3.113 – 48.900
Gross et al. [13] – 3.141 13.448 42.583
Moya et al. [25] 1.065 2.801 – –
Manole and Lage [26] – 3.118 13.637 48.117
Baytas and Pop [27] 1.079 3.160 14.060 48.330
Sheremet and Pop [28] 1.071 3.104 13.839 49.253
Present results (unif. grid) 1.079 3.111 13.602 –
Present results (nonunif. grid) 1.079 3.113 13.650 48.836
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Table 4 Variation of Nu with the grid, Ra = 1000, Bi = 100, uniform grid

Grid Nu
|Nui×j–Nu400×400|

|Nui×j |
× 100%

100× 100 11.499 0.86
200× 200 11.581 0.15
300× 300 11.594 0.03
400× 400 11.598 –

Table 5 Variation of Nu with Bi, for Ra = 10, 100, 1000, uniform grid

Ra Bi Nu

10 0.5 0.3347
5 0.8761
50 1.0548
100 1.0668
θ = 1 1.0791

100 0.5 0.3737
5 1.6836
50 2.8732
100 2.9892
θ = 1 3.1106

1000 0.5 0.4427
5 3.1415
50 10.0772
100 11.5979
θ = 1 13.6017

Figure 2 Variation of local Nusselt number with Bi for Ra = 10, 100, 1000

the table show, the results vary little from 100 × 100 to 400 × 400 meshes. Therefore, for
various values of the parameters Ra and Bi, in our calculations, we considered 200 × 200
grids. The values of the average Nusselt number Nu are presented in Table 5. For each
value of Ra, note that as the values of Bi become larger, the results approach the values
corresponding to the case where the boundary condition is θ = 1 on the left wall of the
cavity.

Also, the average Nusselt number increases as the values of the Biot number increase,
as can be seen from Table 5.

Figure 2 shows the variation of the local Nusselt number with Bi, again the tendency
toward the case θ = 1 on x = 0 being evident. In Figs. 3–5 the streamlines and isotherms
are depicted for all the values of the parameters Ra and Bi considered.

For the maximum values of the parameters (Ra = 1000 and Bi = 100), we also performed
calculations using nonuniform grids. We used a nonuniform mesh obtained by keeping the
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Figure 3 Streamlines (first column) and isotherms (second column), Ra = 10

spacing ratio from the wall to the center hi+1/hi a constant (strictly greater than 1), which
depends on the desired number of nodes. In this case, we produced a symmetric grid with
hmin ≈ 5 × 10–5 (near the walls) and hmax ≈ 0.02 (at the center). The variation of Nu with
the number of nodes for a nonuniform grid is shown in Table 6. As it can be seen, there
are insignificant differences from smaller to larger numbers of nodes. Note that the values
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Figure 4 Streamlines (first column) and isotherms (second column), Ra = 100

obtained when a nonuniform mesh was used are slightly higher than those obtained by a
uniform grid at the same number of nodes. That was also evident in the simple case of a
hot wall, θ = 1, on x = 0 (see Table 3).
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Figure 5 Streamlines (first column) and isotherms (second column), Ra = 1000

5 Conclusions
We used a cubic spline collocation scheme to obtain the numerical solution of the prob-
lem of free convection inside a porous square cavity with convective boundary condition.
This is an efficient method as it leads to a sparse (tridiagonal) linear system that can be
solved faster using the Thomas algorithm. The SADI method is especially useful when
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Table 6 Variation of Nu with the grid, Ra = 1000, Bi = 100, nonuniform grid

Grid Nu
|Nui×j–Nu300×300|

|Nui×j |
× 100%

70× 70 11.722 0.80
100× 100 11.643 0.13
200× 200 11.630 0.02
300× 300 11.628 –

the boundary conditions involve values of the derivatives, not just of the function, as it is
the case here. That is because the governing linear system can be written for the values of
the (first or second) derivatives at the nodes, not just for the functional values, as in other
classical methods. This can be chosen by convenience (depending on the boundary con-
ditions), with fewer extra computations and without other local numerical differentiation
techniques. This saves computational time and storage space. The method is second-order
accurate, even when nonuniform meshes are used, as is often necessary near the bound-
ary. At the same time, it yields accurate results, in good agreement with other reported
values, as Table 3 shows.

As the numerical results and graphs show, when the values of Bi increase (�1), the
boundary condition on the left wall approaches the case θ = 1 (isothermal left wall of the
cavity).

The Biot number enhances the release of heat energy, substantially cooling the system.
This analysis may certainly have practical impact on obtaining the conditions needed to
design an integrated system to achieve optimal functionality.

Appendix
In this section, we derive equation (3.12). To simplify the writing, since this is only done
for the function θ at the first step, we omit the subscript θ for the coefficients and the
superscript n + 1/2 for the function. Also, since j ∈ {0, 1, . . . , N} is fixed, we also omit it.
The notations m and M for the approximations of the first and second derivatives of θ

with respect to x are also accordingly simplified. So, we want to derive the equation of the
form

A0θ0 + B0θ1 = D0. (A.1)

From discretization (3.7) we get (for i = 0 and i = 1)

θ0 = F0 + R0m0 + Q0M0 (A.2)

and

θ1 = F1 + R1m1 + Q1M1. (A.3)

From the boundary conditions (2.11) we also have

m0 = –Bi(1 – θ0). (A.4)
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By the basic cubic spline relations between functional and derivative values (see Rubin
and Graves [17]) we know that

m1 – m0 =
h1

2
(M0 + M1) (A.5)

and

M1 =
2
h1

(
m0 + 2m1 –

3
h1

(θ1 – θ0)
)

. (A.6)

We eliminate four of the six unknowns, namely m0, M0, m1, and M1 from five equations
(A.2)–(A.6) to obtain a linear relationship between the last two remaining unknowns θ0

and θ1.
Denoting

K = Q1 +
h1

2
R1, J =

K + Q1

Q0
, (A.7)

we obtain equation (A.1) with

A0 = Bi
(

4
h1

K +
2
h1

Q1 – R0J
)

+
6
h2

1
K + J ,

B0 = 1 –
6
h2

1
K , (A.8)

D0 = Bi
(

4
h1

K +
2
h1

Q1 – R0J
)

+ F0J + F1.
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