
Acta Math., 220 (2018), 297–339

DOI: 10.4310/ACTA.2018.v220.n2.a3
c© 2018 by Institut Mittag-Leffler. All rights reserved

Semiclassical measures on hyperbolic
surfaces have full support

by

Semyon Dyatlov

Massachusetts Institute of Technology

Cambridge, MA, U.S.A.

and

University of California, Berkeley

Berkeley, CA, U.S.A.

Long Jin

Tsinghua University

Beijing, China

and

Purdue University

West Lafayette, IN, U.S.A.

1. Introduction

Let (M, g) be a compact (connected) hyperbolic surface, that is a Riemannian surface

of constant curvature −1. Denote by ∆ the (non-positive) Laplace–Beltrami operator.

We fix a semiclassical quantization procedure Oph (see §2.2) which maps any function

a∈C∞0 (T ∗M) to a family of operators Oph(a):L2(M)!L2(M) depending on the semi-

classical parameter h>0. Assume that uj is a sequence of eigenfunctions of −∆ with

eigenvalues h−2
j !∞:

(−h2
j∆−I)uj = 0, ‖uj‖L2 = 1, hj > 0, hj! 0 as j!∞. (1.1)

We say that uj converge semiclassically to some probability measure µ on T ∗M if

〈Ophj (a)uj , uj〉L2!

∫
T∗M

a dµ as j!∞ for all a∈C∞0 (T ∗M).

We say that µ is a semiclassical defect measure (or in short, semiclassical measure) if

µ is the semiclassical limit of some sequence of eigenfunctions. It is well known (see for

instance [Zw1, §5.1 and §5.2]) that each semiclassical defect measure is supported on the

cosphere bundle S∗M⊂T ∗M and it is invariant under the geodesic flow ϕt:S
∗M!S∗M .

However, not every invariant measure can be a semiclassical defect measure as follows

from our first result.

Theorem 1. Let µ be a semiclassical defect measure. Then, suppµ=S∗M , that is

for every non-empty open set U⊂S∗M we have µ(U)>0.
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If a∈C∞(M) depends only on x, then Oph(a) is the multiplication operator by a.

Therefore, Theorem 1 implies that the support of any weak limit of the measures |uj |2 dvolg

(often called quantum limit) is equal to M .

The quantum ergodicity theorem of Shnirelman [Sh], Zelditch [Ze1], and Colin de

Verdière [CdV] (see also Helffer–Martinez–Robert [HMR] and Zelditch–Zworski [ZZ] for

more general versions) implies that there is a density-1 sequence of eigenvalues of ∆ such

that the corresponding eigenfunctions converge weakly to the Liouville measure µL. The

quantum unique ergodicity (QUE) conjecture of Rudnick and Sarnak [RS] states that µL

is the only semiclassical measure. This conjecture was proved for Hecke forms on arith-

metic surfaces (such as the modular surface) by Lindenstrauss [L] and Soundararajan [So].

For the related setting of Eisenstein series see Luo–Sarnak [LS]and Jakobson [Ja]. For

the history of the QUE conjecture we refer the reader to the reviews of Marklof [Mk],

Zelditch [Ze2], and Sarnak [Sa].

In the more general setting of manifolds with Anosov geodesic flows, restrictions

on possible semiclassical measures have been obtained by Anantharaman and Anantha-

raman–Nonnenmacher [A], [AN]; see also the papers by Rivière [Ri1], [Ri2] and Anantha-

raman–Silberman [AS]. In particular, [AN, Theorem 1.2] shows that every semiclassical

measure on a hyperbolic surface has Kolmogorov–Sinai entropy > 1
2 . For comparison, the

Liouville measure has entropy 1 and the delta measure on a closed geodesic has entropy 0.

Examples of manifolds with ergodic but non-Anosov geodesic flows with quasimodes and

eigenfunctions which violate QUE have been constructed by Donnelly [D] and Hassell [H];

see also Faure–Nonnenmacher–de Bièvre [FNB].

Theorem 1 is in some sense orthogonal to the entropy bounds discussed above. For

instance, Theorem 1 excludes the case of µ supported on a set of dimension 3−ε, which

might have entropy very close to 1. On the other hand, it does not exclude the case

µ=αµL+(1−α)µ0,

where µ0 is a delta measure on a closed geodesic and 0<α61, while the entropy bound

excludes such measures with α< 1
2 . Theorem 1 also does not exclude the case when µ

is a countable linear combination of the measures δγk , where {γk}∞k=1 are all the closed

geodesics: for instance,

µ=

∞∑
k=1

2−kδγk

satisfies suppµ=S∗M .

Our second result is a more quantitative version of Theorem 1.
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Theorem 2. Assume that a∈C∞0 (T ∗M) and a|S∗M 6≡0. Then, there exist constants

C(a),h0(a)>0 depending only on M and a such that, for 0<h<h0(a) and all u∈H2(M),

‖u‖L2 6C(a)‖Oph(a)u‖L2 +C(a)
log(1/h)

h
‖(−h2∆−I)u‖L2 . (1.2)

Theorem 1 follows immediately from Theorem 2. Indeed, take a∈C∞0 (T ∗M) such

that a|S∗M 6≡0, but supp a∩S∗M⊂U . Let uj and hj satisfy (1.1). Then (1.2) implies

that ‖Ophj (a)uj‖L2>C(a)−1 for large j. However, if uj converge semiclassically to some

measure µ, then

‖Ophj (a)uj‖2L2!

∫
T∗M

|a|2 dµ as j!∞.

It follows that
∫
|a|2 dµ>0, and thus µ(U)>0.

The above argument shows that Theorem 1 still holds if we replace the requirement

(−h2
j∆−I)uj=0 in (1.1) by ‖(−h2

j∆−I)uj‖L2 =o(hj/ log(1/hj)), that is it applies to

o(h/ log(1/h)) quasimodes. This quasimode strength is almost sharp; indeed, Brooks [B],

Eswarathasan–Nonnenmacher [EN], and Eswarathasan–Silberman [ES] construct a fam-

ily of O(h/ log(1/h)) quasimodes which do not converge to µL. In particular, [EN,

Proposition 1.9] gives O(h/ log(1/h)) quasimodes which converge semiclassically to the

delta measure on any given closed geodesic. We remark that the factor (1/h) log(1/h)

in (1.2) is reminiscent of the scattering resolvent bounds on the real line for mild hyper-

bolic trapping; see [Zw2, §3.2] and the references there.

Theorem 2 has applications to control for the Schrödinger equation [Ji1] and its proof

can be adapted to show exponential energy decay for the damped wave equation [Ji2].

We would also like to mention a recent result of Logunov–Malinnikova [LM] giving

a bound of the following form for an eigenfunction u, (−h2∆−I)u=0:

sup
Ω
|u|> 1

C

(
volg(Ω)

C

)−C/h
sup
M
|u|, (1.3)

where C is a constant depending only on M . The bound (1.3) holds on any closed

Riemannian manifold and for any subset Ω⊂M of positive volume. For hyperbolic sur-

faces and Ω having non-empty interior, Theorem 2 together with the unique continuation

principle give the bound

‖u‖L2(Ω) > cΩ‖u‖L2(M), (1.4)

where cΩ>0 is a constant depending on M and Ω, but not on h. Unlike (1.3), the

bound (1.4) cannot hold for general Riemannian manifolds: if M is the round sphere

and Ω lies strictly inside one hemisphere, then there exists a sequence of Gaussian beam

eigenfunctions u concentrating on the equator with ‖u‖L2(Ω)6e−C/h‖u‖L2(M).
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1.1. Outline of the proof

We give a rough outline of the proof of Theorem 2, assuming for simplicity that

(−h2∆−I)u= 0.

We write

u=AXu+AYu

where AX and AY are constructed from two fixed pseudodifferential operators A1 and

A2 conjugated by the wave propagator for times up to 2% log(1/h); see (3.7) and (3.16).

The parameter % is chosen less than 1 but is very close to 1; see the remark following

Proposition 3.5. The operators AX and AY formally correspond to symbols aX and aY

such that, for some small parameter α>0,

• for (x, ξ)∈supp aX , at most 2α log(1/h) of the points

ϕj(x, ξ), j= 0, 1, ..., 2% log(1/h) (1.5)

lie in the set {a 6=0}. That is, the geodesic ϕt(x, ξ), 06t62% log(1/h) spends very little

time in {a 6=0};
• for (x, ξ)∈supp aY , at least 1

10α log(1/h) points (1.5) lie in the set {a 6=0}.
To explain the intuition behind the argument, we first consider the case when α=0,

that is, for (x, ξ)∈supp aX none of the points (1.5) lie in {a 6=0}. (In the argument for

general α leading to (1.8), putting α=0 is equivalent to taking α∼1/ log(1/h).) One

can view {a 6=0} as a ‘hole’ in S∗M and supp aX is contained in the set of ‘forward

trapped’ geodesics (that is, those that do not go through the hole). On the other hand,

points (x, ξ) in supp aY are controlled in the sense that ϕj(x, ξ) lies in the hole for

some j∈[0, 2% log(1/h)]. Therefore, one hopes to control AYu in terms of Oph(a)u using

Egorov’s theorem and the fact that u is an eigenfunction of the Laplacian – see (1.7)

below.

The operator AX is not pseudodifferential because it corresponds to propagation

for time 2% log(1/h) which is much larger than the Ehrenfest time log(1/h). However,

conjugating AX by the wave group we obtain a product of the form A−A+, where the

symbols a± corresponding to A± satisfy

ϕ∓j(supp a±)∩{a 6= 0}=∅ for all j= 0, 1, ..., % log(1/h).

That is, supp a− is ‘forward trapped’ and supp a+ is ‘backward trapped’. The operators

A± lie in the calculi associated with the weak unstable/stable Lagrangian foliations

on T ∗M \{0} similar to the ones developed by Dyatlov–Zahl [DZa]; see §2.3 and the
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appendix. More precisely, the symbol a+ is regular along the weak unstable foliation and

a− is regular along the weak stable foliation. The constant curvature condition plays

an important role in defining these calculi associated with Lagrangian foliations. On a

general surface with negative curvature, the weak unstable/stable Lagrangian foliations

are only Hölder continuous instead of smooth.

Using unique ergodicity of horocyclic flows due to Furstenberg [F], we show that

supp a+ is porous in the stable direction and supp a− is porous in the unstable direc-

tion (see Definition 5.6 and Lemma 5.10). Then, the fractal uncertainty principle of

Bourgain–Dyatlov [DZa] implies that ‖A−A+‖L2
!L26Chβ for some β>0 and thus (see

Proposition 3.5)

‖AXu‖L2 6Chβ‖u‖L2 . (1.6)

We stress that just like the operator AX , the product A−A+ is not a pseudodifferential

operator, since it corresponds to propagation for time % log(1/h)> 1
2 log(1/h) in both time

directions. In fact, if A−A+ were pseudodifferential with symbol a−a+, we would expect

the left-hand side of (1.6) to be asymptotic to sup |a−a+|=1. However, since %<1 each of

the operators A±, corresponding to propagation for time % log(1/h) in one time direction,

is still pseudodifferential in an anisotropic class; see §2.3 (but the product A−A+ is not

pseudodifferential, since the calculi in which A− and A+ lie are incompatible with each

other). The norm estimate (1.6) uses fractal uncertainty principle, which is a tool from

harmonic analysis, and in some sense goes beyond the classical/quantum correspondence.

To estimate AYu in the case α=0, we can break it into pieces, each of which corre-

sponds to the condition ϕj(x, ξ)∈{a 6=0} for some j=0, 1, ..., 2% log(1/h). Since

(−h2∆−I)u= 0,

u is equivariant under the wave propagator; therefore, each piece can be controlled by

Oph(a)u. Summing over j, we get

‖AYu‖L2 6C log(1/h)‖Oph(a)u‖L2 +O(h∞)‖u‖L2 . (1.7)

Combining (1.6) and (1.7) we get (1.2), however the term ‖Oph(a)u‖L2 comes with

an extra factor of log(1/h). To remove this factor, we take α small, but positive. The

estimate (1.6) still holds as long as α is chosen small enough depending on the fractal

uncertainty exponent β, see (3.19). Moreover, we get the following improved version

of (1.7) for some ε>0 (see Proposition 3.4; one can take ε= 1
8 ):

‖AYu‖L2 6
C

α
‖Oph(a)u‖L2 +O(hε)‖u‖L2 . (1.8)

Combining (1.6) and (1.8) gives the required bound (1.2).
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The estimate (1.8) is delicate because AY is not pseudodifferential. To prove it, we

adapt some of the methods of [A]. More precisely, if we replace 2% log(1/h) by ε̃ log(1/h)

for small enough ε̃>0 in the definition of AY , then AY is pseudodifferential in a mildly

exotic calculus, and one can use a semiclassical version of the Chebyshev inequality (see

Lemma 4.6) to establish (1.8). To pass from short logarithmic times to time 2% log(1/h),

we use a submultiplicative estimate; see the end of §4.3.

2. Preliminaries

2.1. Dynamics of geodesic and horocyclic flows

Let (M, g) be a compact hyperbolic surface and T ∗M \{0} consist of elements of the

cotangent bundle (x, ξ)∈T ∗M such that ξ 6=0. Denote by S∗M={|ξ|g=1} the cosphere

bundle. Define the symbol p∈C∞(T ∗M \{0};R) by

p(x, ξ) = |ξ|g. (2.1)

The Hamiltonian flow of p,

ϕt := etHp :T ∗M \{0}−!T ∗M \{0} (2.2)

is the homogeneous geodesic flow.

Henceforth, we assume that M is orientable; if not, we may pass to a double cover

of M . We use an explicit frame on T ∗M \{0} consisting of four vector fields

Hp, U+, U−, D∈C∞
(
T ∗M \{0};T (T ∗M \{0})

)
. (2.3)

Here Hp is the generator of ϕt and D=ξ ·∂ξ is the generator of dilations. The vector

fields U± are defined on S∗M as stable (U+) and unstable (U−) horocyclic vector fields

and extended homogeneously to T ∗M \{0}, so that

[U±, D] = [Hp, D] = 0. (2.4)

See for instance [DFG, formula (2.1)]. The vector fields U± are tangent to the level sets

of p and satisfy the commutation relations

[Hp, U±] =±U±. (2.5)

Thus, on each level set of p, the flow ϕt has a flow/stable/unstable decomposition, with

U+ spanning the stable space and U− spanning the unstable space; see, for instance, [DFG,

formula (3.14)]. We use the following notation for the weak stable/unstable spaces:

Ls := span(Hp, U+), Lu := span(Hp, U−)⊂T (T ∗M \{0}). (2.6)
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Then, Ls and Lu are Lagrangian foliations; see [DZa, Lemma 4.1].

The next statement, used in §5.3 to establish the porosity condition, is a consequence

of the unique ergodicity of horocyclic flows; see [F], [Mc], [Ra], [C], [HM].

Proposition 2.1. Let U⊂S∗M be a non-empty open set. Then, there exists T>0

depending only on M and U such that, for all (x, ξ)∈S∗M ,

{esU±(x, ξ) : 06 s6T}∩U 6=∅. (2.7)

Proof. We focus on the case of U+; the same proof applies to U−. Denote by µL

the Liouville probability measure on S∗M . By the unique ergodicity of the horocyclic

flow esU+ , µL is the only probability measure on S∗M invariant under esU+ .

Let f∈C(S∗M) be a continuous function. Then, we have uniform convergence

〈f〉T :=
1

T

∫ T

0

f �esU+ ds! 〈f〉µ :=

∫
S∗M

f dµL as T !∞. (2.8)

Indeed, assume that (2.8) is false. Then, there exist ε>0 and sequences Tk!∞, (xk, ξk)∈
S∗M such that

|〈f〉Tk(xk, ξk)−〈f〉µ|> ε. (2.9)

Consider the probability measures νk on S∗M defined by∫
S∗M

g dνk = 〈g〉Tk(xk, ξk) for all g ∈C(S∗M).

Passing to a subsequence, we may assume that νk converge weakly to some probability

measure ν. Since Tk!∞, the measure ν is invariant under the flow esU+ , thus ν=µL.

However,
∫
f dν 6=

∫
f dµL by (2.9), giving a contradiction. This finishes the proof of (2.8).

Now, choose f∈C(S∗M) such that

supp f ⊂U and 〈f〉µ = 1.

By (2.8), there exists T>0 such that 〈f〉T> 1
2 everywhere. This implies (2.7).

2.2. Operators and propagation

We use the standard classes of semiclassical pseudodifferential operators with classical

symbols Ψk
h(M), with Ψcomp

h (M) denoting operators A∈Ψk
h(M) such that the wavefront

set WFh(A) is a compact subset of T ∗M . We refer the reader to the book of Zworski [Zw1]

for an introduction to semiclassical analysis used in this paper, to [Zw1, §14.2.2] for
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pseudodifferential operators on manifolds, and to [DZw, §E.1.5] and [DZa, §2.1] for the

classes Ψk
h(M) used here. Denote by Sk(T ∗M) the corresponding symbol classes, and by

σh: Ψk
h(M)!Sk(T ∗M) and Oph:Sk(T ∗M)!Ψk

h(M)

the principal symbol map and a (non-canonical) quantization map. For A,B∈Ψk
h(M)

and an open set U⊂T ∗M , we say that A=B+O(h∞) microlocally on U , if

WFh(A−B)∩U =∅.

We have the following norm bound:

A∈Ψ0
h(M), sup |σh(A)|6 1 =⇒ ‖A‖L2

!L2 6 1+Ch. (2.10)

Indeed, applying the sharp G̊arding inequality [Zw1, Theorem 4.32] to the operator

I−A∗A, we get, for all u∈L2(M),

‖u‖2L2−‖Au‖2L2 = 〈(I−A∗A)u, u〉L2 >−Ch‖u‖2L2

which gives (2.10).

The operator −h2∆ lies in Ψ2
h(M) and, with p defined in (2.1),

σh(−h2∆) = p2.

For us it will be convenient to have an operator with principal symbol p, since the

corresponding Hamiltonian flow is homogeneous. Of course, we have to cut away from

the zero section, as p is not smooth there. We thus fix a function

ψP ∈C∞0 ((0,∞);R), ψP (λ) =
√
λ for 1

16 6λ6 16,

and define the operator

P :=ψP (−h2∆), P ∗=P. (2.11)

By the functional calculus of pseudodifferential operators (see [Zw1, Theorem 14.9]

or [DS, §8]), we have

P ∈Ψcomp
h (M), σh(P ) = p on

{
1
4 6 |ξ|g 6 4

}
. (2.12)

To quantize the flow ϕt, we use the propagator

U(t) := e−itP/h:L2(M)−!L2(M). (2.13)

The operator U(t) is unitary on L2(M).

For a bounded operator A:L2(M)!L2(M), define

A(t) :=U(−t)AU(t). (2.14)

If A∈Ψcomp
h (M), WFh(A)⊂

{
1
4<|ξ|g<4

}
, and t is bounded uniformly in h, then Egorov’s

theorem [Zw1, Theorem 11.1] implies that

A(t)∈Ψcomp
h (M) and σh(A(t)) =σh(A)�ϕt. (2.15)
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2.3. Anisotropic calculi and long-time propagation

If A∈Ψcomp
h (M) and t grows with h, then A(t) will generally not be pseudodifferential

in the class Ψcomp
h , since the derivatives of the symbol σh(A)�ϕt may grow exponentially

with t. In this section, we introduce a more general calculus which contains the operators

A(t) for |t|6% log(1/h), %<1. (More precisely, we will have two calculi, one of which works

for t>0, and the other for t60.) Our calculus is similar to the one developed in [DZa,

§3], with remarks on the differences of these two calculi and the proofs of some of the

properties of the calculus contained the appendix.

Fix %∈[0, 1) and let L∈{Lu, Ls}, where the Lagrangian foliations Lu and Ls are

defined in (2.6). Define the class of h-dependent symbols Scomp
L,% (T ∗M \{0}) as follows:

a∈Scomp
L,% (T ∗M \{0}) if

(1) a(x, ξ;h) is smooth in (x, ξ)∈T ∗M \{0}, defined for 0<h61, and supported in

an h-independent compact subset of T ∗M \{0};
(2) supx,ξ |a(x, ξ;h)|6C for some constant C and all h;

(3) a satisfies the derivative bounds

sup
x,ξ
|Y1 ... YmZ1 ... Zka(x, ξ;h)|6Ch−%k−ε, 0<h6 1, (2.16)

for all ε>0 and all vector fields Y1, ..., Ym, Z1, ..., Zk on T ∗M \{0} such that Y1, ..., Ym

are tangent to L. Here the constant C depends on Y1, ..., Ym, Z1, ..., Zk and ε, but does

not depend on h.

This class is slightly larger than the one in [DZa, Definition 3.2], because we re-

quire (2.16) to hold for all ε>0, while [DZa] had ε:=0.

We use the following notation:

f(h) =O(hα−) if f(h) =O(hα−ε) for all ε> 0.

In terms of the frame (2.3), the derivative bounds (2.16) become

sup
x,ξ

∣∣Hk
pU

`
+U

m
− D

na(x, ξ;h)|=O(h−%(m+n)−) for L=Ls, (2.17)

sup
x,ξ

∣∣Hk
pU

`
−U

m
+ D

na(x, ξ;h)|=O(h−%(m+n)−) for L=Lu. (2.18)

If a∈C∞0 (T ∗M \{0}) is an h-independent symbol, then it follows from the commutation

relations (2.4) and (2.5) that

Hk
pU

`
+U

m
− D

n(a�ϕt) = e(m−`)t(Hk
pU

`
+U

m
− D

na)�ϕt.

Therefore,

a�ϕt ∈Scomp
Ls,%

(T ∗M \{0}) uniformly in t, 06 t6 % log(1/h). (2.19)



306 s. dyatlov and l. jin

Similarly,

a�ϕ−t ∈Scomp
Lu,%

(T ∗M \{0}) uniformly in t, 06 t6 % log(1/h). (2.20)

Let Ψcomp
h,L,%(T

∗M \{0}), L∈{Lu, Ls}, be the classes of pseudodifferential operators with

symbols in Scomp
L,% defined following the same construction as in [DZa, §3]. They satisfy

similar properties to the operators used in [DZa], in particular they are pseudolocal and

bounded on L2(M) uniformly in h. However, the O(h1−%) remainders have to be replaced

by O(h1−%−) because of the relaxed assumptions on derivatives (2.16). We denote by

OpLh :Scomp
L,% (T ∗M \{0})−!Ψcomp

h,L,%(T
∗M \{0}),

a 7−!OpLh (a),

a (non-canonical) quantization procedure. See §A.4 for more details.

The Ψcomp
h,L,% calculus satisfies a version of Egorov’s theorem (Lemma A.8). It states

that, for A=Oph(a), where a∈C∞0
({

1
4<|ξ|g<4

})
is independent of h,

A(t) = OpLsh (a�ϕt)+O(h1−%−)L2
!L2 , (2.21)

A(−t) = OpLuh (a�ϕ−t)+O(h1−%−)L2
!L2 (2.22)

uniformly in t∈[0, % log(1/h)].

3. Proof of Theorem 2

In this section we give the proof of Theorem 2. It uses two key estimates, Proposition 3.4

and Proposition 3.5, which are proved in §4 and §5 respectively.

3.1. Partitions and words

We assume that a∈C∞0 (T ∗M) and a|S∗M 6≡0 as in the assumptions of Theorem 2. Fix

conic open sets

U1,U2⊂T ∗M \{0}, U1,U2 6=∅, 	U1∩	U2 =∅, 	U2∩S∗M ⊂{a 6= 0}.

(The sets Uj and conditions (3.2) below are used in the proof of Proposition 3.5.)

We introduce a pseudodifferential partition of unity

I =A0+A1+A2, A0 ∈Ψ0
h(M) and A1, A2 ∈Ψcomp

h (M),
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such that the following conditions are satisfied (see Figure 1).

• A0 is microlocalized away from the cosphere bundle S∗M . More specifically, we

put A0 :=ψ0(−h2∆), where ψ0∈C∞(R; [0, 1]) satisfies

suppψ0∩
[

1
4 , 4
]

=∅ and supp(1−ψ0)⊂
(

1
16 , 16

)
.

This implies that

WFh(A0)∩
{

1
2 6 |ξ|g 6 2

}
=∅ and WFh(I−A0)⊂

{
1
4 < |ξ|g < 4

}
.

• A1 and A2 are microlocalized in an energy shell and away from U1 and U2, that is

WFh(A1)∪WFh(A2)⊂
{

1
4 < |ξ|g < 4

}
(3.1)

and

WFh(A1)∩	U1 = WFh(A2)∩	U2 =∅. (3.2)

• A1 is controlled by a on the cosphere bundle, that is

WFh(A1)∩S∗M ⊂{a 6= 0}. (3.3)

To construct A1 and A2, note that (3.1)–(3.3) are equivalent to WFh(Aj)⊂Ωj , where

Ω1 :=
({

1
4 < |ξ|g < 4

}
\	U1

)
∩({a 6= 0}∪(T ∗M \S∗M))

and

Ω2 :=
{

1
4 < |ξ|g < 4

}
\	U2

are open subsets of T ∗M such that

WFh(I−A0)⊂
{

1
4 < |ξ|g < 4

}
⊂Ω1∪Ω2.

It remains to use a pseudodifferential partition of unity to find A1 and A2 such that (3.1)–

(3.3) hold and A1+A2=I−A0. (For instance, one can write I−A0=Oph(b)+O(h∞),

where supp b⊂Ω1∪Ω2, split b=a1+a2 for some symbols a1 and a2 with supp aj⊂Ωj , and

put Aj :=Oph(aj).) We moreover choose A1 and A2 so that

06 a`6 1 where a` :=σh(A`), `= 0, 1, 2. (3.4)

We next dynamically refine the partition Aj . For each n∈N0, define the set of words of

length n,

W(n) := {1, 2}n = {w =w0 ... wn−1 :w0, ..., wn−1 ∈{1, 2}}.
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A0

A0

A1

A2 A2

U1 U2

{a 6=0}

{|ξg|=4}

{|ξg|=2}

S∗M

{
|ξg|= 1

2

}

{
|ξg|= 1

4

}

Figure 1. The sets U1, U2, WFh(Aj) (shaded), and {a 6=0} inside T ∗M . The vertical direction

corresponds to dilating ξ.

For each word w=w0 ... wn−1∈W(n), using the notation (2.14), define the operator

Aw =Awn−1(n−1)Awn−2(n−2) ... Aw1(1)Aw0(0). (3.5)

If n is bounded independently of h, then, as a consequence of Egorov’s theorem (2.15),

we have Aw∈Ψcomp
h (M) and σh(Aw)=aw, where

aw =

n−1∏
j=0

(
awj �ϕj

)
. (3.6)

For a subset E⊂W(n), define the operator AE and the symbol aE by

AE :=
∑
w∈E

Aw and aE :=
∑
w∈E

aw. (3.7)

Since A1+A2=I−A0 and P are both functions of ∆, they commute with each other.

Therefore, A1+A2 commutes with U(t), which implies

AW(n) = (A1+A2)n. (3.8)

This operator is equal to the identity microlocally near S∗M , implying the following

lemma.
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Lemma 3.1. We have, for all n>0 and u∈H2(M),

‖u−(A1+A2)nu‖L2 6C‖(−h2∆−I)u‖L2 . (3.9)

Proof. Since A1+A2=I−A0=I−ψ0(−h2∆), we have

u−(A1+A2)nu=ψ1(−h2∆)(−h2∆−I)u, where ψ1(λ) :=
1−(1−ψ0(λ))n

λ−1
.

Since 1 /∈suppψ0, we have supλ∈R |ψ1(λ)|6C for some constant C independent of n,

and (3.9) follows.

3.2. Long words and key estimates

Take %∈(0, 1) very close to 1, to be chosen later (in Proposition 3.5), and put

N0 :=
⌈

1
4% log(1/h)

⌉
∈N and N1 := 4N0≈ % log(1/h).

Then, words of length N0 and N1 give rise to pseudodifferential operators in the calculus

Ψcomp
h,L,% discussed in §2.3.

Lemma 3.2. For each w∈W(N0) we have (with bounds independent of w)

aw ∈Scomp
Ls,%/4

(T ∗M \{0}) and Aw = OpLsh (aw)+O(h3/4)L2
!L2 . (3.10)

If instead w∈W(N1), then

aw ∈Scomp
Ls,%

(T ∗M \{0}) and Aw = OpLsh (aw)+O(h1−%−)L2
!L2 . (3.11)

Proof. We prove (3.11); the proof of (3.10) is identical, replacing % by 1
4%. First of

all, by (2.19) and (3.4) we have, uniformly in j=0, ..., N1−1,

awj �ϕj ∈S
comp
Ls,%

(T ∗M \{0}) and sup |awj �ϕj |6 1. (3.12)

Recalling the definition (3.6), we have aw∈Scomp
Ls,%

(T ∗M \{0}), by Lemma A.1, where

we put aj :=awj �ϕj . Here, we use the relation (A.2) of the classes Scomp
Ls,%,%′

used in the

appendix to the class Scomp
Ls,%

used here. Next, by Lemma A.8 we have, uniformly in

j=0, ..., N1−1,

Awj (j) = OpLsh (awj �ϕj)+O(h1−%−)L2
!L2 . (3.13)

Applying Lemma A.6 with Aj :=Awj (j), we get Aw=OpLsh (aw)+O(h1−%−)L2
!L2 .



310 s. dyatlov and l. jin

Now, define the density function F :W(N0)![0, 1] by

F (w0 ... wN0−1) =
#{j ∈{0, ..., N0−1} |wj = 1}

N0
. (3.14)

Fix small α∈(0, 1) to be chosen later (in (3.21)), and define

Z := {F >α}⊂W(N0). (3.15)

We call the words w∈Z controlled because for each (x, ξ)∈supp aw, at least αN0 of the

points ϕ0(x, ξ), ϕ1(x, ξ), ..., ϕN0−1(x, ξ) lie in supp a1 and, due to (3.3), are controlled

by a.

We chose N0 short enough so that the operators Aw, w∈W(N0) are pseudodifferen-

tial and Egorov’s theorem (3.10) holds with remainder O(h3/4). This will be convenient

for the estimates in §4 below, in particular in Lemma 4.4 (explaining why we did not

replace N0 by N1). However, to apply the fractal uncertainty principle (Proposition 3.5),

we need to propagate for time 2N1=8N0≈2% log(1/h). To bridge the resulting gap, we

define the set of controlled words Y⊂W(2N1) by iterating Z. More specifically, writing

words inW(2N1) as concatenations w(1) ...w(8), where w(1), ...,w(8)∈W(N0), define the

partition

W(2N1) =XtY, (3.16)

where

X : = {w(1) ...w(8) : w(`) /∈Z for all `},

Y : = {w(1) ...w(8) : w(`) ∈Z for some `}.

In our argument, the parameter α will be taken small so that X has few elements. The

size of X is estimated by the following statement (which is not sharp, but provides a

bound sufficient for us).

Lemma 3.3. The number of elements in X is bounded by

#X 6Ch−4
√
α (3.17)

(here C may depend on α).

Proof. The complement W(N0)\Z consists of words w=w0 ... wN0−1, wj∈{1, 2},
such that the set Sw={j :wj=1} has no more than bαN0c elements. We add arbitrary

elements to the set Sw to ensure that it has size exactly bαN0c. Each choice of Sw

corresponds to at most 2αN06h−α/4 words w, and, by Stirling’s formula,

#{Sw : w∈W(N0)\Z}6
(

N0

bαN0c

)
6Ce−(α logα+(1−α) log(1−α))N0 .
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Since −(α logα+(1−α) log(1−α))6
√
α for 06α61, we have

#(W(N0)\Z)6Ch−α/4−
√
α/4 6Ch−

√
α/2.

As #X=#(W(N0)\Z)8, we obtain (3.17).

Now we state the two key estimates used in the proof. The first one, proved in §4,

estimates the mass of an approximate eigenfunction on the controlled region Y.

Proposition 3.4. We have, for all u∈H2(M), with AY defined by (3.7),

‖AYu‖L2 6
C

α
‖Oph(a)u‖L2 +

C log(1/h)

αh
‖(−h2∆−I)u‖L2 +O(h1/8)‖u‖L2 , (3.18)

where the constant C does not depend on α.

The second estimate, proved in §5 using a fractal uncertainty principle, is a norm

bound on the operator corresponding to every single word of length 2N1≈2% log(1/h):

Proposition 3.5. There exist β>0, %∈(0, 1) depending only on M , U1 and U2 such

that

sup
w∈W(2N1)

‖Aw‖L2
!L2 6Chβ .

Remark. Since the proof of [BD, Proposition 4.2] uses the triangle inequality, the

estimate on the norm of Aw is O(hβ̃−2(1−%)) for some β̃>0 depending on M , U1 and U2,

and thus % has to be close enough to 1 depending on β̃ to get decay of this norm. On the

other hand, we cannot put %=1, since the calculus described in §2.3 only works for %<1.

3.3. End of the proof of Theorem 2

Take β and % from Proposition 3.5. We may assume that β< 1
8 . Since

AX+AY =AW(2N1) = (A1+A2)2N1

by (3.8), for all u∈H2(M) we have

‖u‖L2 6 ‖AXu‖L2 +‖AYu‖L2 +‖u−(A1+A2)2N1u‖L2 .

Combining Lemma 3.3 with Proposition 3.5 and using the triangle inequality, we have

‖AXu‖L2 =O(hβ−4
√
α)‖u‖L2 . (3.19)

Combining this with Proposition 3.4 and Lemma 3.1 we obtain

‖u‖L2 6
C

α
‖Oph(a)u‖L2 +

C log(1/h)

αh
‖(−h2∆−I)u‖L2 +O(hβ−4

√
α)‖u‖L2 . (3.20)

Choosing

α := 1
64β

2, so that β−4
√
α= 1

2β, (3.21)

and taking h small enough to remove the O(hβ/2) term on the right-hand side of (3.20),

we obtain (1.2), finishing the proof.
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4. The controlled region

In this section we prove Proposition 3.4, estimating an approximate eigenfunction u on

geodesics which spend a positive fraction of their time inside {a 6=0}. The proof uses

tools similar to [A, §2].

4.1. Control and propagation

Recall the operator A1∈Ψcomp
h (M) constructed in §3.1. We first use the wavefront set

restriction (3.3) to estimate A1u.

Lemma 4.1. For all u∈H2(M) we have

‖A1u‖L2 6C‖Oph(a)u‖L2 +C‖(−h2∆−I)u‖L2 +Ch‖u‖L2 . (4.1)

Proof. By (3.3) we have supp a1∩S∗M⊂{a 6=0}, where a1=σh(A1). As p2−1 is a

defining function for S∗M , there exist b, q∈C∞0 (T ∗M) such that a1=ab+q(p2−1). It

follows that

A1 = Oph(b) Oph(a)+Oph(q)(−h2∆−I)+O(h)L2
!L2 . (4.2)

It remains to apply (4.2) to u and use the fact that Oph(b) and Oph(q) are bounded on

L2 uniformly in h.

Next, if we control Au for some operator A, then we also control A(t)u, where A(t)

is defined using (2.14).

Lemma 4.2. Assume that A:L2(M)!L2(M) is bounded uniformly in h. Then,

there exists a constant C such that, for all t∈R and u∈H2(M),

‖A(t)u‖L2 6 ‖Au‖L2 +
C|t|
h
‖(−h2∆−I)u‖L2 . (4.3)

Proof. Recall from (2.14) that A(t)=U(−t)AU(t), where U(t)=e−itP/h and the op-

erator P∈Ψcomp
h (M) is defined in (2.11). Since

∂t(e
it/hU(t)) =− i

h
eit/hU(t)(P−I),

integrating from 0 to t, we have

‖U(t)u−e−it/hu‖L2 = ‖eit/hU(t)u−u‖L2 6
|t|
h
‖(P−I)u‖L2 .

Then,

‖A(t)u‖L2 = ‖AU(t)u‖L2 6 ‖Au‖L2 +
C|t|
h
‖(P−I)u‖L2 . (4.4)
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We have P−I=ψE(−h2∆)(−h2∆−I), where ψE(λ)=(ψP (λ)−1)/(λ−1). Therefore,

‖(P−I)u‖L2 6C‖(−h2∆−I)u‖L2 . (4.5)

Combining (4.4) and (4.5) we obtain (4.3).

Combining Lemmas 4.1 and 4.2, we obtain the following result.

Lemma 4.3. For all t∈R and u∈H2(M) we have

‖A1(t)u‖L2 6C‖Oph(a)u‖L2 +
C〈t〉
h
‖(−h2∆−I)u‖L2 +Ch‖u‖L2 , (4.6)

where 〈t〉:=
√

1+t2, and the constant C is independent of t and h.

4.2. Operators corresponding to weighted words

By Lemma 3.2, for each w∈W(N0) the operator Aw is pseudodifferential modulo an

O(h3/4)L2
!L2 remainder. However, for a subset E⊂W(N0), the operator AE defined

in (3.7) is the sum of many operators of the form Aw and thus a priori might not even be

bounded on L2 uniformly in h. In this section we show that AE is still a pseudodifferential

operator plus a small remainder, using the fact that the corresponding symbol aE is

bounded.

More generally, one can consider operators obtained by assigning a coefficient to

each word. For a function c:W(N0)!C, define the operator Ac and the symbol ac by

Ac :=
∑

w∈W(N0)

c(w)Aw and ac :=
∑

w∈W(N0)

c(w)aw. (4.7)

Note that, for E⊂W(N0), we have AE=A1E , where 1E is the indicator function of E .

The next lemma shows that the operator Ac is pseudodifferential modulo a small

remainder. Recall the symbol classes Scomp
Ls,%,%′

(T ∗M \{0}) introduced in §A.1.

Lemma 4.4. Assume that sup |c|61. Then,

ac ∈Scomp
Ls,1/2,1/4

(T ∗M \{0}) and Ac = OpLsh (ac)+O(h1/2)L2
!L2 . (4.8)

The Scomp
Ls,1/2,1/4

seminorms of ac and the constant in O(h1/2) are independent of c.

Proof. We first show that ac∈Scomp
Ls,1/2,1/4

(T ∗M \{0}). As a1, a2>0 and

a1+a2 = 1−a0 6 1,
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for all (x, ξ)∈T ∗M \{0} we have

|ac(x, ξ)|6 aW(N0)(x, ξ) =

N0−1∏
j=0

(a1+a2)(ϕj(x, ξ))6 1.

It remains to show that, for m+k>0 and for all vector fields Y1, ..., Ym, Z1, ..., Zk on

T ∗M \{0} such that Y1, ..., Ym are tangent to Ls, we have

sup |Y1 ... YmZ1 ... Zkac|6Ch−k/2−m/4. (4.9)

By the triangle inequality the left-hand side of (4.9) is bounded by∑
w∈W(N0)

sup |Y1 ... YmZ1 ... Zkaw|.

By (3.10) each summand is bounded by Ch−k/4−0.01, where C is independent of w. The

number of summands is equal to 2N06h−1/4+0.01. Therefore, the left-hand side of (4.9)

is bounded by Ch−(k+1)/46Ch−k/2−m/4, giving (4.9).

Finally, by (3.10), we have

Ac =
∑

w∈W(N0)

c(w)(OpLsh (aw)+O(h3/4)L2
!L2) = OpLsh (ac)+O(h1/2)L2

!L2 ,

finishing the proof.

Combining Lemma 4.4 with the sharp G̊arding inequality (Lemma A.4), we deduce

the following “almost monotonicity” property for norms of the operators Ac.

Lemma 4.5. Assume c, d:W(N0)!R and |c(w)|6d(w)61 for all w∈W(N0). Then,

for all u∈L2(M), we have

‖Acu‖L2 6 ‖Adu‖L2 +Ch1/8‖u‖L2 ,

where the constant C is independent of c and d.

Proof. By (4.8), we may replace Ac and Ad by OpLsh (ac) and OpLsh (ad), respectively.

It is then enough to prove that

‖OpLsh (ac)u‖2L2 6 ‖OpLsh (ad)u‖2L2 +Ch1/4‖u‖2L2 .

This is equivalent to

〈Bu, u〉L2 >−Ch1/4‖u‖2L2 , B := OpLsh (ad)
∗OpLsh (ad)−OpLsh (ac)

∗OpLsh (ac). (4.10)
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Recall that ac, ad∈Scomp
Ls,1/2,1/4

(T ∗M \{0}). By (A.23) and (A.24), we have

B= OpLsh (a2
d−a2

c)+O(h1/4)L2
!L2 . (4.11)

As |c(w)|6d(w) for all w, we have

06 a2
d−a2

c ∈S
comp
Ls,1/2,1/4

(T ∗M \{0}).

Then, by Lemma A.4,

Re〈OpLsh (a2
d−a2

c)u, u〉L2 >−Ch1/4‖u‖2L2 . (4.12)

Combining (4.11) and (4.12), we get (4.10), finishing the proof.

4.3. Proof of Proposition 3.4

We first estimate AZu, where Z⊂W(N0) is the set of controlled words defined in (3.15).

Lemma 4.6. For all u∈H2(M), with the constant C independent of α,

‖AZu‖L2 6
C

α
‖Oph(a)u‖L2 +

C log(1/h)

αh
‖(−h2∆−I)u‖L2 +O(h1/8)‖u‖L2 . (4.13)

Proof. Recall the density function F from (3.14). By definition, the indicator func-

tion 1Z satisfies 06α1Z6F61. Thus, by Lemma 4.5 (where AF is defined by (4.7)),

α‖AZu‖L2 6 ‖AFu‖L2 +O(h1/8)‖u‖L2 . (4.14)

Using the definition (3.14) together with (3.8), we rewrite AF as follows:

AF =
1

N0

N0−1∑
j=0

∑
w∈W(N0)

wj=1

Aw =
1

N0

N0−1∑
j=0

(A1+A2)N0−1−jA1(j)(A1+A2)j .

Recall that ‖A1+A2‖L2
!L261; see the proof of Lemma 3.1. Then,

‖AFu‖L2 6 max
06j<N0

‖A1(j)(A1+A2)ju‖L2 .

Since ‖A1(j)‖L2
!L2 =‖A1‖L2

!L26C and using the estimate of (A1+A2)ju−u given in

Lemma 3.1, we get

‖AFu‖L2 6 max
06j<N0

‖A1(j)u‖L2 +C‖(−h2∆−I)u‖L2 .

Estimating A1(j)u by Lemma 4.3, we get

‖AFu‖L2 6C‖Oph(a)u‖L2 +
C log(1/h)

h
‖(−h2∆−I)u‖L2 +O(h)‖u‖L2 . (4.15)

Combining (4.14) and (4.15), we obtain (4.13).
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We now finish the proof of Proposition 3.4. Recalling (3.16), we write

Y =

8⊔
`=1

Y`, Y` := {w(1) ...w(8) : w(`) ∈Z and w(`+1), ...,w(8) ∈W(N0)\Z}.

Then,

AY =

8∑
`=1

AY` .

Let Q:=W(N0)\Z. Then, using (3.8), we have the following factorization:

AY` =AQ(7N0) ... AQ(`N0)AZ((`−1)N0)(A1+A2)(`−1)N0 .

By Lemma 4.4, we have ‖AQ‖L2
!L2 , ‖AZ‖L2

!L26C. Estimating

(A1+A2)(`−1)N0u−u

by Lemma 3.1, we get

‖AYu‖L2 6C

8∑
`=1

‖AZ((`−1)N0)u‖L2 +C‖(−h2∆−I)u‖L2 . (4.16)

By Lemma 4.2, we have

‖AZ((`−1)N0)u‖L2 6 ‖AZu‖L2 +
C log(1/h)

h
‖(−h2∆−I)u‖L2 . (4.17)

Using Lemma 4.6 to bound ‖AZu‖L2 and combining (4.16) with (4.17), we obtain (3.18),

finishing the proof.

5. Fractal uncertainty principle

In this section we prove Proposition 3.5 using the fractal uncertainty principle established

in [BD].

5.1. Fractal uncertainty principle for porous sets in R

We start by adapting the result of [BD] to the setting of porous sets, by embedding them

into Ahlfors–David regular sets of some dimension δ<1. Here, we define porous sets as

follows.
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Definition 5.1. Let ν∈(0, 1) and 0<α06α1. We say that a subset Ω of R is ν-porous

on scales α0 to α1 if for each interval I of size |I|∈[α0, α1], there exists a subinterval

J⊂I with |J |=ν|I| such that J∩Ω=∅.

As for Ahlfors–David regular sets, we recall the following definition.

Definition 5.2. [BD, Definition 1.1] Let δ∈[0, 1], CR>1, and 06α06α1. We say

that a closed non-empty subset X of R is δ-regular with constant CR on scales α0 to α1

if there exists a Borel measure µX on R such that

(1) µX is supported on X, that is µX(R\X)=0;

(2) for any interval I with α06|I|6α1, we have µX(I)6CR|I|δ;
(3) if in addition I is centered at a point in X, then µX(I)>C−1

R |I|δ.

We use the following version of fractal uncertainty principle for δ -regular sets. Hence-

forth, for X⊂R and s>0, X(s)=X+[−s, s] denotes the s-neighborhood of X.

Proposition 5.3. ([BD, Proposition 4.3]) Let B=B(h):L2(R)!L2(R) be defined

as

Bf(x) =h−1/2

∫
eiΦ(x,y)/hb(x, y)f(y) dy, (5.1)

where Φ∈C∞(U ;R), b∈C∞0 (U), U⊂R2 is open, and ∂2
xyΦ 6=0 on U .

Let 06δ<1 and CR>1. Then, there exist β>0, %∈(0, 1) depending only on δ and

CR, and there exists C>0 depending only on δ, CR, b and Φ such that, for all h∈(0, 1)

and all X,Y ⊂R which are δ-regular with constant CR on scales 0 to 1,

‖1lX(h%)B(h) 1lY (h%)‖L2(R)!L2(R) 6Chβ . (5.2)

Although porous sets need not be regular, we can always embed a porous set Ω in a

neighborhood of a δ -regular set X with δ<1. The set X is constructed by a Cantor-like

procedure with some large base L, where at the kth step we remove intervals of size

L−k−1, which do not intersect Ω.

Lemma 5.4. For each ν∈(0, 1) there exist δ=δ(ν)∈(0, 1) and CR=CR(ν)>1 such

that the following holds. Let Ω be a ν-porous set on scales α0 to 1. Then, there exists a

set X which is δ-regular with constant CR on scales 0 to 1 such that Ω⊂X(α0).

Proof. Put L:=d2/νe∈N. We use the tree of intervals

Im,k = [mL−k, (m+1)L−k], m, k∈Z.

Let k0>0 be the unique integer such that L−1−k0<α06L−k0 .

Take m and k with 06k6k0. We claim that there exists n=n(m, k) such that

In,k+1⊂ Im,k, In,k+1∩Ω =∅. (5.3)
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Indeed, as Ω is ν-porous, there is a subinterval J⊂Im,k such that |J |=ν|Im,k|>2L−k−1

and J∩Ω=∅. Then, one can find n such that In,k+1⊂J , and this value of n satisfies (5.3).

When k>k0, we put n(m, k):=Lm, so that the condition In(m,k),k+1⊂Im,k still holds.

We now define the set X as follows:

X :=

∞⋂
k=0

�Xk, Xk :=R\
⋃
m∈Z

In(m,k),k+1.

Note that, for each k>1, there exists a set M(k)⊂Z such that

k−1⋂
`=0

�X` =
⋃

m∈M(k)

Im,k.

We set M(0):=Z. Then, for all k>0 and m, we have

#{m′ ∈M(k+1) : Im′,k+1⊂ Im,k}=

{
L−1, m∈M(k),

0, otherwise.
(5.4)

We claim that Ω⊂X(α0). Indeed, by (5.3), we have Ω⊂Xk when 06k6k0. Take x∈Ω.

Then, x lies in
⋂k0
k=0

�Xk, which implies that x∈Im,k0+1 for some m∈M(k0+1). Since

L>2, by induction using (5.4), there exists a sequence (mk∈M(k))k>k0+1 with mk0+1=

m and Imk+1,k+1⊂Imk,k. The intersection
⋂
k Imk,k consists of a single point y∈X. Since

x, y∈Im,k0+1, we have |x−y|6L−k0−1, and thus x∈X(L−k0−1)⊂X(α0) as required.

It remains to prove that X is δ -regular with some constant CR on scales 0 to 1,

where we put

δ :=
log(L−1)

logL
∈ (0, 1).

Let µX be the natural Cantor-like measure supported on X. More precisely, by (5.4)

there exists a unique Borel measure µX on R satisfying, for all m and k>0,

µX(Im,k) =

{
(L−1)−k =L−δk, m∈M(k),

0, otherwise.

Take an interval I of size |I|61, and fix the unique integer k>0 such that

L−k−1< |I|6L−k.

Then, there exists m such that I⊂Im,k∪Im+1,k. It follows that

µX(I)6µX(Im,k)+µX(Im+1,k)6 2L−δk 6 2L|I|δ. (5.5)



semiclassical measures on hyperbolic surfaces 319

Next, assume that I is an interval of size |I|61 centered at a point x∈X. Fix the unique

integer k>0 such that 2L−k−16|I|<2L−k, and choose m∈M(k+1) such that x∈Im,k+1.

Then Im,k+1⊂I, and thus

µX(I)>µX(Im,k+1) =L−δ(k+1) >
|I|δ

2L
. (5.6)

Recalling Definition 5.2, we see that (5.5) and (5.6) imply that X is δ -regular with

constant CR :=2L on scales 0 to 1. This finishes the proof.

Combining Proposition 5.3 and Lemma 5.4, we obtain the following fractal uncer-

tainty principle for ν -porous sets.

Proposition 5.5. Let K>0 and ν∈(0, 1) be fixed and B(h):L2(R)!L2(R) be as

in Proposition 5.3. Then, there exist β>0 and %∈(0, 1) depending only on ν, and there

exists C depending only on ν, K, b, and Φ such that, for all h∈(0, 1) and all Ω±⊂R
which are ν-porous on scales Kh% to 1,

‖1lΩ−(Kh%)B(h) 1lΩ+(Kh%)‖L2
!L2 6Chβ . (5.7)

Proof. By Lemma 5.4, there exist X,Y ⊂R which are δ -regular with constant CR

on scales 0 to 1 for some δ=δ(ν)∈(0, 1), CR=CR(ν), such that

Ω−⊂X(Kh%) and Ω+⊂Y (Kh%).

Then,

‖1lΩ−(Kh%)B(h) 1lΩ+(Kh%)‖L2
!L2 6 ‖1lX(2Kh%)B(h) 1lY (2Kh%)‖L2

!L2 .

It remains to apply Proposition 5.3, where we increase % slightly to absorb the con-

stant 2K.

5.2. Fractal uncertainty principle for porous sets in T ∗M

We use Proposition 5.5 to prove a fractal uncertainty principle for subsets of T ∗M \{0},
where M is a compact orientable hyperbolic surface.

Let Hp, U+, U−, D be the frame on T ∗M \{0} defined in (2.3). For v=(v1, v2, v3)∈
R3, define the vector fields

V±v= v1Hp+v2D+v3U±.

For (x, ξ)∈T ∗M \{0} and ν0, ν1>0, we define the stable (ν0, ν1) slice centered at (x, ξ)

as follows:

Σ+

ν0,ν1(x, ξ) := {eV−vesU+(x, ξ) : |s|6 ν0 and |v|6 ν1}.

Similarly define the unstable (ν0, ν1) slice centered at (x, ξ):

Σ−ν0,ν1(x, ξ) := {eV+vesU−(x, ξ) : |s|6 ν0 and |v|6 ν1}.
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U+

U−

τ

(x, ξ) es0U−(x, ξ)

2ε0τ

2ν1

eτU−(x, ξ)

Hp, D

Figure 2. An illustration of Definition 5.6 of an (ε0, ν1)-porous set along U−. The blue

cylinder is the unstable slice Σ−ε0τ,ν1 (es0U− (x, ξ)). (We ignore here the fact that Hp, U±, and

D do not commute, and thus do not give rise to a coordinate system.)

Definition 5.6. Let

Z ⊂
{

1
4 6 |ξ|g 6 4

}
⊂T ∗M \{0}

be a closed set and fix ε0, ν1, τ0∈(0, 1]. We say that Z is (ε0, ν1)-porous along U± up to

scale τ0 if, for each (x, ξ)∈T ∗M \{0} and each τ∈[τ0, 1], there exists s0∈[0, τ ] such that

(see Figure 2)

Σ±ε0τ,ν1(es0U±(x, ξ))∩Z =∅.

Our fractal uncertainty principle for subsets of T ∗M \{0} is formulated in terms of

the Ψcomp
h,L,%(T

∗M \{0}) calculus introduced in §2.3.

Proposition 5.7. Fix ε0, ν1∈(0, 1]. Then, there exist β>0 and %∈(0, 1) depending

only on M , ε0, and ν1 such that the following holds. Suppose that

a+ ∈Scomp
Lu,%

(T ∗M \{0}) and a− ∈Scomp
Ls,%

(T ∗M \{0}),

and supp a± is (ε0, ν1)-porous along U±, up to scale K1h
% for some constant K1. Then,

for all Q∈Ψ0
h(M),

‖OpLsh (a−)QOpLuh (a+)‖L2
!L2 6Chβ , (5.8)

where C depends only on M , ε0, ν1, K1, and Q, and some Scomp
�,% seminorms of a±.
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In the rest of this subsection, we prove Proposition 5.7. We begin by straightening

out weak stable/unstable Lagrangian foliations similarly to [DZa, §4.4]. Denote by H2

the hyperbolic plane; it is the universal cover of M . Let

�
±:T ∗H2\{0}−!T ∗(R+

w×S1
y),

(x, ξ) 7−! (w, y, θ, η),

be the exact symplectomorphisms constructed in [DZa, Lemma 4.7] mapping Ls and Lu

to the vertical foliation L0 on T ∗(R+×S1):

(�+)∗Lu = (�−)∗Ls =L0 = ker(dw)∩ker(dy).

More precisely, in the Poincaré disk model of H2, we have w=p(x, ξ)=|ξ|g,

y=B∓(x, ξ)

is the limit of the projection to H2 of the geodesic etHp(x, ξ) as t!∓∞ on the boundary

S1=∂H2,

θ=± logP(x,B∓(x, ξ)),

where

P(x, y) =
1−|x|2

|x−y|2
, x∈H2 and y ∈ S1,

is the Poisson kernel, and

η=±G∓(x, ξ) =±p(x, ξ)G(B∓(x, ξ), B±(x, ξ))∈T ∗B∓(x,ξ)S
1,

where (see [DZa, formula (1.19)])

G(y, y′) =
y′−(y ·y′)y

1−y ·y′
∈T ∗y S1'TyS1⊂R2, y, y′ ∈S1, y 6= y′

is half the stereographic projection of y′ with base y. See Figure 3.

It follows from the definition of B±(x, ξ) that

(V±v)B±= 0 for all v ∈R3. (5.9)

By a microlocal partition of unity and since supp a±⊂
{

1
46|ξ|g64

}
, we may assume that

WFh(Q)⊂V , where V is a sufficiently small neighborhood of any given point (x0, ξ0)∈
T ∗M \{0}. We assume that

diam(V )6
ν1

C0
, (5.10)
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−2η

w

−y

x w ξ

y

Figure 3. The coordinates (w, y, θ, η)=�−(x, ξ) in the Poincaré disk model of H2. Here, w is
the length of ξ, y is the limit of the geodesic starting from (x, ξ) at t!∞, θ is determined from

the Poisson kernel P(x, y), and η is determined from the stereographic projection pictured.
By (5.9), the value of y does not change if we deform (x, ξ) along the stable, flow, or dilation

direction.

where C0 is a large constant depending only on M to be chosen in Lemma 5.8 below. We

lift V ⊂T ∗M \{0} to a subset of T ∗H2\0 and use �± to define the symplectomorphisms

onto their images

�
±
0 :V −!T ∗(R+×S1).

Note that we can make �±0 (V ) contained in a compact subset of T ∗(R+×S1) which only

depends on M .

We next quantize �±0 by Fourier integral operators which conjugate OpLsh (a−) and

OpLuh (a+) to operators on R+×S1. Following [DZa, §4.4, proof of Theorem 3], we consider

operators

B± ∈ Icomp
h (�±0 ) and B′± ∈ Icomp

h ((�±0 )−1)

quantizing �±0 near �±0 (WFh(Q))×WFh(Q) in the sense of (A.16). Consider the follow-

ing operators on L2(R+×S1):

A− :=B−OpLsh (a−)B′−, A+ :=B+QOpLuh (a+)B′+, and B=B−B′+.

Then, similarly to [DZa, formula (4.58)],

OpLsh (a−)QOpLuh (a+) =B′−A−BA+B++O(h∞)L2
!L2 .

Moreover, by (A.22), there exist ã±∈Scomp
L0,%

(T ∗(R+×S1)) such that

A±= OpL0

h (ã±)+O(h∞)L2
!L2 , and supp ã±⊂�±0 (V ∩supp a±). (5.11)

Therefore, in order to establish (5.8), it suffices to prove that

‖OpL0

h (ã−)BOpL0

h (ã+)‖L2(R+×S1)!L2(R+×S1) 6Chβ . (5.12)
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Using the porosity of supp a± along U±, we get the following 1-dimensional porosity

statement for projections of supp ã±.

Lemma 5.8. There exists a constant C0>0, depending only on M , such that the

following holds. Define the projections of supp ã± onto the y variable

Ω± := {y ∈S1 : (w, y, θ, η)∈ supp ã± for some w, θ and η}⊂S1.

Then, Ω± (more precisely, their lifts to R) are ν-porous on scales α0 to 1 in the sense

of Definition 5.1, where ν :=ε0ν1/C0 and α0 :=C0ν
−1
1 K1h

%.

Proof. We show the porosity of Ω+, with the case of Ω− handled similarly. Denote

by C1>0 a large constant depending only on M and put C0 :=C4
1 .

Denote W :=�+

0 (V ). Let V ′ be the (ν1/C
2
1 )-neighborhood of V and V ′′ be the

(ν1/C
2
1 )-neighborhood of V ′. Lifting V ′′ to T ∗H2\{0} and using �+, we extend �+

0 to a

symplectomorphism

�
+

0 :V ′−!W ′, V ′′−!W ′′

for some open sets W ′,W ′′⊂T ∗(R+×S1). Note that, by (5.10),

diam(W ′′)6
C1

10
diam(V ′′)6

ν1

C1
. (5.13)

Moreover, the (ν1/C
3
1 )-neighborhoods of W and W ′ are contained in W ′ and W ′′ respec-

tively.

Let I⊂S1 be an interval with α06|I|61 centered at some y0∈S1. Assume first that

the y -projection of W ′ does not contain y0. Then, since supp ã+⊂W by (5.11), we see

that y0 lies distance at least ν1/C0 away from Ω+. Thus, the interval of size ν|I| centered

at y0 does not intersect Ω+ and verifies the porosity condition in Definition 5.1.

We henceforth assume that the y -projection of W ′ does contain y0. Choose w0, θ0

and η0 such that (w0, y0, θ0, η0)∈W ′. Let (x0, ξ0):=(�+

0 )−1(w0, y0, θ0, η0)∈V ′. Put

τ :=C−3
1 ν1|I| and K1h

%6 τ 6
ν1

C3
1

6 1.

Since supp a+ is (ε0, ν1)-porous along U+ up to scale K1h
%, there exists s0∈[0, τ ] such

that

Σ+

ε0τ,ν1(x1, ξ1)∩supp a+ =∅, where (x1, ξ1) := es0U+(x0, ξ0)∈V ′′. (5.14)

Since C1 is large and Hp, U+, U− and D form a frame, we have a diffeomorphism

Θ: Ũ −!W ′′,

(s, v) 7−!�
+

0 (eV−vesU+(x1, ξ1)),
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where Ũ is some neighborhood of (0, 0) in R×R3. By (5.9), we see that for (w, y, θ, η)=

Θ(s, v), the value of y does not change if we change v. Therefore the y -component of

Θ(s, v) is equal to Θ1(s) for some smooth diffeomorphism Θ1 defined on a subset of R.

Applying �+

0 to (5.14) and using (5.11), we get

{Θ(s, v) : (s, v)∈ Ũ , |s|6 ε0τ, |v|6 ν1}∩supp ã+ =∅. (5.15)

However, by (5.13) we have

diam(Ũ)6
√
C1 diam(W ′′)6 1

10ν1,

and thus the condition |v|6ν1 in (5.15) is not needed. Therefore,

Θ−1
1 (Ω+)∩[−ε0τ, ε0τ ] =∅. (5.16)

Denote

(w1, y1, θ1, η1) := Θ(0, 0) =�
+

0 (x1, ξ1)∈W ′′,

and consider the interval

J :=
[
y1, y1+ν|I|

]
, |J |= ν|I|.

We have |y0−y1|6C1s06C
−2
1 ν1|I|. Therefore, J⊂I. Moreover, since Θ1(0)=y1 and

diam(Θ−1
1 (J))6C1ν|I|6ε0τ , (5.16) implies that J∩Ω+=∅. This gives the required

porosity condition on Ω+.

We are ready to finish the proof of Proposition 5.7. The operator B=B−B′+ lies in

Icomp
h (�−�(�+)−1). By [DZa, Lemma 4.9] we can write

B=AB̃χ+O(h∞)L2
!L2 for some A∈Ψcomp

h (R+×S1),

where χ∈C∞0 (S1
y×S1

y′), suppχ⊂{y 6=y′}, and B̃χ:L2(R+×S1)!L2(R+×S1) is given by

B̃χv(w, y)=Bχ,w(v(w, ·))(y), where

Bχ,wv(y) = (2πh)−1/2

∫
S1

∣∣∣∣y−y′2

∣∣∣∣2iw/hχ(y, y′)v(y′) dy′, w > 0.

Here |y−y′| denotes the Euclidean distance between y, y′∈S1⊂R2.

Since supp a±⊂
{

1
46|ξ|g64

}
, we have supp ã±⊂

{
1
46w64

}
. We can write

OpL0

h (ã−)BOpL0

h (ã+) = OpL0

h (a′−)B̃χ OpL0

h (a′+)+O(h∞)L2
!L2 , (5.17)
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where a′±∈Scomp
L0,%

(T ∗(R+×S1)) satisfy

supp a′±⊂
{

1
4 6w6 4 and y ∈Ω±

}
. (5.18)

In fact, a′−=ã−#σh(A) and a′+=ã+. By [DZa, Lemma 3.3], there exist symbols χ±(y;h)

such that

|∂kyχ±|6Ckh
−%k, supp(1−χ±)∩Ω±=∅, suppχ±⊂Ω±(h%).

Take also χw(w)∈C∞0
((

1
8 , 8
))

such that χw=1 near
[

1
4 , 4
]
. Then, it follows from (5.17)

and (5.18) that

OpL0

h (ã−)BOpL0

h (ã+) = OpL0

h (a′−)χwχ−B̃χχ+ OpL0

h (a′+)+O(h∞)L2
!L2 .

Therefore, (5.12) follows from the estimate

‖χwχ−B̃χχ+‖L2(R+×S1)!L2(R+×S1) 6Chβ ,

which in turn follows from

sup
w∈[1/8,8]

‖1lΩ−(h%) Bχ,w 1lΩ+(h%)‖L2(S1)!L2(S1) 6Chβ . (5.19)

The operator Bχ,w has the form (5.1) with

Φ(y, y′) = 2w log |y−y′|−w log 4, y, y′ ∈S1, y 6= y′,

where we pass from operators on S1 to operators on R by taking a partition of unity for χ.

The mixed derivative ∂2
yy′Φ does not vanish as verified for instance in [BD, §4.3]. There-

fore (5.19) follows from the 1-dimensional fractal uncertainty principle (Proposition 5.5),

where the porosity condition for Ω± has been verified in Lemma 5.8.

5.3. Proof of Proposition 3.5

We now prove Proposition 3.5. Take an arbitrary word w∈W(2N1), and write it as a

concatenation of two words in W(N1):

w = w+w−, w± ∈W(N1).

Define the operators

A+ :=Aw+
(−N1) and A− :=Aw− .
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Then,

Aw =U(−N1)A−A+U(N1). (5.20)

We relabel the letters in the words w± as follows:

w+ =w+

N1
... w+

1 and w−=w−0 ... w
−
N1−1,

and define the symbols a± by

a+ =

N1∏
j=1

(aw+
j
�ϕ−j) and a−=

N1−1∏
j=0

(aw−j
�ϕj).

Recall from (3.5) that

A−=Aw−N1−1
(N1−1)Aw−N1−2

(N1−2) ... Aw−1
(1)Aw−0

(0),

A+ =Aw+
1

(−1)Aw+
2

(−2) ... Aw+
N1−1

(1−N1)Aw+
N1

(−N1).

Lemma 5.9. The symbols a± and the operators A± satisfy

a+ ∈Scomp
Lu,%

(T ∗M \{0}), A+ = OpLuh (a+)+O(h1−%−)L2
!L2 ,

a− ∈Scomp
Ls,%

(T ∗M \{0}), A−= OpLsh (a−)+O(h1−%−)L2
!L2 .

Proof. The statement for a− and A− follows directly from Lemma 3.2. The state-

ment for a+ and A+ can be obtained similarly by reversing the flow ϕt which exchanges

the stable and unstable foliations.

By Lemma 5.9 and (5.20), to show Proposition 3.5 it suffices to prove the estimate

‖OpLsh (a−) OpLuh (a+)‖L2
!L2 6Chβ .

The latter follows from the version of the fractal uncertainty principle in Proposition 5.7

(with Q=I), where the porosity condition is established by the following result.

Lemma 5.10. There exist ε0, ν1,K1>0, depending only on M , U1, and U2, such

that the sets supp a± are (ε0, ν1)-porous up to scale K1h
% along U± in the sense of

Definition 5.6.

Proof. We show the porosity of supp a−. The porosity of supp a+ can be proved in

the same way, by reversing the direction of the flow ϕt.

Recall from (3.2) that supp a1∩U1=supp a2∩U2=∅ where U1 and U2 are non-empty

open conic subsets of T ∗M \{0}. Fix non-empty open conic subsets U ′1,U ′2⊂T ∗M \{0}
such that U ′w∩S∗MbUw, w=1, 2.
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By Proposition 2.1 and since the vector field U− is homogeneous, there is T>1,

depending only on M , U ′1, and U ′2, such that for each (x, ξ)∈T ∗M \{0} there exist sw=

sw(x, ξ)∈[0, T ], w=1, 2, such that

eswU−(x, ξ)∈U ′w.

We put K1 :=3T . Take arbitrary (x, ξ)∈T ∗M \{0} and τ such that K1h
%6τ61. Let j be

the unique integer such that ej−1τ<T6ejτ . Then, 16j6N1−1. Denote w:=w−j ∈{1, 2},
so that

(supp a−)∩(ϕ−j(Uw)) =∅. (5.21)

Since ejτ>T , we see that there exists s0 :=e−jsw(ϕj(x, ξ))∈[0, τ ] such that

q :=ϕj(e
s0U−(x, ξ)) = ee

js0U−(ϕj(x, ξ))∈U ′w. (5.22)

Here, we used the commutation relations (2.5). For v∈R3 and s∈R we have

ϕj(e
V+ve(s+s0)U−(x, ξ)) = eV+v

′
ee
jsU−(q), (5.23)

where v′=(v1, v2, e
−jv3). In particular, |v′|6|v|. Now, choose ν1>0 such that, for w=

1, 2,

max{|v|, |s|}6 ν1 =⇒ eV+vesU−(U ′w)⊂Uw,

and put ε0 :=ν1/3T . By (5.22) and (5.23) we have Σ−ε0τ,ν1(es0U−(x, ξ))⊂ϕ−j(Uw). By (5.21),

we then have

Σ−ε0τ,ν1(es0U−(x, ξ))∩supp a−=∅.

This finishes the proof of the porosity of supp a−.

Appendix A. Calculus associated with a Lagrangian foliation

In this appendix, we establish properties of the Ψcomp
h,L,% pseudodifferential calculus intro-

duced in §2.3. We follow [DZa, §3], indicating the changes necessary. We present the

calculus in the general setting of a Lagrangian foliation on an arbitrary manifold.

A.1. Symbols

We assume that M is a manifold, U⊂T ∗M is an open set, and L is a Lagrangian folia-

tion, that is for each (x, ξ)∈U , L(x,ξ)⊂T(x,ξ)(T
∗M) is a Lagrangian subspace depending

smoothly on (x, ξ) and the family (L(x,ξ))(x,ξ)∈U is integrable. See [DZa, Definition 3.1].
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To keep track of powers of h in the remainder, we introduce a slightly more general

class of symbols than the one used in §2.3. Fix two parameters

06 %< 1 and 06 %′6 1
2%, with %+%′< 1.

We say that an h-dependent symbol a lies in the class Scomp
L,%,%′(U) if

(1) a(x, ξ;h) is smooth in (x, ξ)∈U , defined for 0<h61, and supported in an h-

independent compact subset of U ;

(2) a satisfies the derivative bounds

sup
x,ξ
|Y1 ... YmZ1 ... Zka(x, ξ;h)|6Ch−%k−%

′m, 0<h6 1 (A.1)

for all vector fields Y1, ..., Ym, Z1, ..., Zk on U such that Y1, ..., Ym are tangent to L. Here

the constant C depends on Y1, ..., Ym, Z1, ..., Zk, but does not depend on h.

For %′=0 we obtain the class used in [DZa, §3]. Moreover, the class Scomp
L,% (T ∗M \{0})

introduced in §2.3 is given by

Scomp
L,% (T ∗M \{0}) =

⋂
ε>0

Scomp
L,%+ε,ε(T

∗M \{0}). (A.2)

In the arguments below (for instance, in (A.8), (A.11), and (A.19)) we implicitly use the

following version of Borel’s theorem (see [Zw1, Theorem 4.15] for the standard version

whose proof applies here). Let aj∈Scomp
L,%,%′(U) be a sequence of symbols with supports

contained in a compact subset of U independent of h and j. Take an increasing sequence

of real numbers mj>0, mj!∞. Then, there exists a symbol a∈Scomp
L,%,%′(U) which is an

asymptotic sum of hmjaj in the following sense:

a−
J−1∑
j=0

hmjaj ∈hmJScomp
L,%,%′(U) for all J ,

and moreover supp a⊂
⋃
j supp aj . Here, supp a denotes the support of a in the (x, ξ)

variables, which is an h-dependent family of compact subsets of U .

We have the following bound for the product of many symbols in Scomp
L,%,%′(U).

Lemma A.1. Let C be an arbitrary fixed constant and assume that a1, ..., aN∈
Scomp
L,%,%′(U), 16N6C log(1/h) are such that sup |aj |61 and each Scomp

L,%,%′(U) seminorm

of aj is bounded uniformly in j. Then, for all small ε>0, the product a1 ... aN lies in

Scomp
L,%+ε,%′+ε(U).
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Proof. We see immediately that sup |a1 ... aN |61 and supp(a1 ... aN )⊂supp a1 lies

in an h-independent compact subset of U . It remains to verify that, for all vector fields

Y1, ..., Ym, Z1, ..., Zk on U such that Y1, ..., Ym are tangent to L and each ε>0,

sup
x,ξ
|Y1 ... YmZ1 ... Zk(a1 ... aN )|=O(h−%k−%

′m−ε). (A.3)

By the Leibniz rule, Y1 ... YmZ1 ... Zk(a1 ... aN ) is a sum of Nm+k=O(h−ε) terms. Each of

these summands is a product of N terms, of which at least N−m−k have the form aj for

some j, and the rest are obtained by differentiating aj . Since the Scomp
L,%,%′(U) seminorms

of aj are bounded uniformly in j, each summand is O(h−%k−%
′m), giving (A.3).

A.2. Model calculus

In §§A.2–A.4 we review the construction of the calculus in [DZa, §§3.2,3.3], explaining

how to modify it to quantize symbols in Scomp
L,%,%′(U).

Following [DZa, §3.2], we first consider the model case when M=Rn, U=T ∗Rn, and

L=L0 is the vertical foliation:

L0 = span(∂η1 , ..., ∂ηn),

where (y, η) are the standard coordinates on T ∗Rn. Symbols in Scomp
L0,%,%′

(T ∗Rn) satisfy

the derivative bounds

sup
y,η
|∂αy ∂βη a(y, η;h)|6Cαβh

−%|α|−%′|β|. (A.4)

For these symbols we use the standard quantization

Oph(a)f(y) = (2πh)−n
∫
R2n

e(i/h)(y−y′)·ηa(y, η)f(y′) dy′ dη. (A.5)

Other quantizations such as the Weyl quantization are likely to produce the same class of

operators, however the standard quantization is convenient for proving invariance under

conjugation by Fourier integral operators; see [DZa, Lemma 3.10].

The standard quantization has the following properties:

(1) for a∈Scomp
L0,%,%′

(T ∗Rn) the operator Oph(a):L2(Rn)!L2(Rn) is bounded uni-

formly in h;

(2) for a, b∈Scomp
L0,%,%′

(T ∗Rn) we have, for some a#b∈Scomp
L0,%,%′

(T ∗Rn),

Oph(a) Oph(b) = Oph(a#b)+O(h∞)L2
!L2 , (A.6)

a#b= ab+O(h1−%−%′)Scomp

L0,%,%
′ (T∗Rn), (A.7)

supp(a#b)⊂ supp a∩supp b; (A.8)
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(3) for a∈Scomp
L0,%,%′

(T ∗Rn) we have, for some a∗∈Scomp
L0,%,%′

(T ∗Rn),

Oph(a)∗= Oph(a∗)+O(h∞)L2
!L2 , (A.9)

a∗= ā+O(h1−%−%′)Scomp

L0,%,%
′ (T∗Rn), (A.10)

supp a∗⊂ supp a; (A.11)

(4) if one of the symbols a and b lies in Scomp
L0,%,%′

(T ∗Rn), and the other one has

all derivatives bounded uniformly in h (it does not have to be compactly supported),

then (A.6) and (A.8) hold, and

a#b= ab+O(h1−%)Scomp

L0,%,%
′ (T∗Rn); (A.12)

(5) if a=a0+ha1, where a0 and a1 have all derivatives bounded uniformly in h,

b=b0+h1−%b1, where b0, b1∈Scomp
L0,%,%′

(T ∗Rn), and ∂ηa0=0 near supp b0∪supp b1, then

a#b−b#a=−ih{a0, b0}+O(h2−%−%′)Scomp

L0,%,%
′ (T∗Rn). (A.13)

The proofs are similar to those of [DZa, Lemmas 3.7, 3.8]. More precisely, we use

the unitary rescaling operator

T%,%′ :L
2(Rn)−!L2(Rn), T%,%′u(y) =h(%−%′)n/4u(h(%−%′)/2y),

to conjugate Oph(a) as follows:

T%,%′ Oph(a)T−1
%,%′ = Oph(a%,%′), a%,%′(y, η;h) := a(h(%−%′)/2y, h(%′−%)/2η;h).

If a satisfies (A.4), then the rescaled symbol a%,%′ satisfies

sup
y,η
|∂αy ∂βη a%,%′(y, η;h)|6Cαβh

−(%+%′)(|α|+|β|)/2,

that is a%,%′∈S(%+%′)/2, where the classes Sδ, 06δ6 1
2 , are defined in [Zw1, formula (4.4.5)].

Then the statements (1)–(3) above follow from the standard properties of the Sδ calculus;

see [Zw1, Theorems 4.23 (ii), 4.14, and 4.17]. The statements (4) and (5) follow by an

examination of the terms in the asymptotic expansion for a#b.

The model calculus satisfies the following version of sharp G̊arding inequality.

Lemma A.2. Assume that a∈Scomp
L0,%,%′

(T ∗Rn) satisfies Re a>0 everywhere. Then,

there exists a constant C depending on a such that, for all h and all u∈L2(Rn),

Re〈Oph(a)u, u〉L2 >−Ch1−%−%′‖u‖2L2 . (A.14)
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Proof. We take the following rescaled versions of u, a, and h:

ũ(y) :=h%n/2u(h%y), ã(y, η;h) := a(h%y, h%
′
η;h), and h̃ :=h1−%−%′ .

Note that ‖ũ‖L2 =‖u‖L2 . We have

Re〈Oph(a)u, u〉L2 = Re〈Oph̃(ã)ũ, ũ〉L2 .

Now (A.4) implies that all derivatives of ã are bounded uniformly in h. It remains to

apply the standard sharp G̊arding inequality [Zw1, Theorem 4.32].

A.3. Fourier integral operators

To pass from the model case to the general case, we study the conjugation of operators

in the model calculus by Fourier integral operators. We briefly review the notation for

Fourier integral operators, referring the reader to [DZa, §2.2] and the references there for

details.

• Let M1 and M2 be manifolds of the same dimension. An exact symplectomorphism

is a diffeomorphism �:U2!U1, where Uj⊂T ∗Mj are open sets, such that �∗(ξ dx)−η dy
is an exact 1-form. Here ξ dx and η dy are the canonical 1-forms on T ∗M1 and T ∗M2,

respectively. We fix an antiderivative for �∗(ξ dx)−η dy.

• For an exact symplectomorphism � (with fixed antiderivative), denote by Icomp
h (�)

the class of compactly supported(1) and compactly microlocalized semiclassical Fourier

integral operators associated with �. These operators are bounded L2(M2)!L2(M1)

uniformly in h.

• Let �:U2!U1 be an exact symplectomorphism and �
−1 denote its inverse. For

any B∈Icomp
h (�) and B′∈Icomp

h (�−1), the operators BB′ and B′B are pseudodifferential

in the class Ψcomp
h and [DZa, formula (2.12)]

σh(B′B) =σh(BB′)��. (A.15)

If V1⊂U1 and V2⊂U2 are compact sets such that �(V2)=V1, then we say that B and B′

quantize � near V1×V2 if

BB′= I+O(h∞) microlocally near V1,

B′B= I+O(h∞) microlocally near V2.
(A.16)

(1) An operator is called compactly supported if its Schwartz kernel is compactly supported.
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The quantization studied in §A.2 is invariant under conjugation by Fourier integral

operators whose underlying symplectomorphisms preserve L0.

Lemma A.3. Assume that �:U2!U1, Uj⊂T ∗Rn, is an exact symplectomorphism

such that �∗(L0)=L0, and take B∈Icomp
h (�) and B′∈Icomp

h (�−1). Then, for each a∈
Scomp
L0,%,%′

(T ∗Rn), there exists b∈Scomp
L0,%,%′

(T ∗Rn) such that

B′Oph(a)B= Oph(b)+O(h∞)L2
!L2 , (A.17)

b= (a��)σh(B′B)+O(h1−%)Scomp

L0,%,%
′ (T∗Rn), (A.18)

supp b⊂�−1(supp a). (A.19)

Proof. We argue exactly as in the proofs of [DZa, Lemmas 3.9 and 3.10]. The

stationary phase asymptotic at the end of the proof of [DZa, Lemma 3.9] produces

a remainder O(h1−2%′). The multiplication formula (A.12) applied to the expression

A′Oph(ã)A in the last paragraph of the proof of [DZa, Lemma 3.10] gives a remainder

O(h1−%).

A.4. General calculus

We now construct a quantization OpLh (a) of a symbol a∈Scomp
L,%,%′(U) for a general La-

grangian foliation L on U⊂T ∗M . This is done similarly to [DZa, §3.3] by summing

operators in the model calculus conjugated by appropriately chosen Fourier integral op-

erators.

We say that (U ′,�, B,B′) is a chart for L if

• U ′⊂U is an open set and �:U ′!T ∗Rn is an exact symplectomorphism onto its

image which maps L to L0;

• B∈Icomp
h (�) and B′∈Icomp

h (�−1).

For each (x0, ξ0)∈U there exists a chart (U ′,�, B,B′) such that σh(B′B)(x0, ξ0) 6=0

(in fact, we may take B′=B∗). Here, the existence of � follows from [DZa, Lemma 3.6]

and the existence of B and B′ is discussed in the paragraph following [DZa, (2.12)].

Following [DZa, formula (3.11)], we put, for a∈Scomp
L,%,%′(U),

OpLh (a) :=
∑
`

B′` Oph(a`)B`, a` = (χ`a)��−1
` ∈S

comp
L0,%,%′

(T ∗Rn),

where (U`,�`, B`, B
′
`) is a collection of charts for L such that U`⊂U form a locally

finite cover of U , the symbols σh(B′`B`)∈C∞0 (U`) form a partition of unity on U , χ`∈
C∞0 (U`) are equal to 1 near suppσh(B′`B`), and Oph is defined in (A.5). The quantization
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procedure OpLh depends on the choice of charts, however properties (3) and (4) below

show that the resulting class of operators is invariant.

To simplify the proof of Lemma A.4 below, we additionally assume that B′`=B
∗
` .

This can be arranged as follows: note that for any choice of � and B∈Icomp
h (�), we have

B∗∈Icomp
h (�−1) and σh(B∗B)>0 (since B∗B is a pseudodifferential operator which is

non-negative on L2). Choose a collection of charts (U`,�`, B̃`, B̃
∗
` ) for L such that b:=∑

` σh(B̃∗` B̃`)>0 on U . Putting B` :=B̃`Y`, where Y`∈Ψcomp
h (M) satisfy σh(Y`)=b−1/2

near WFh(B̃∗` B̃`), we obtain
∑
` σh(B∗`B`)=1 on U .

For a compactly supported operator A:L2(M)!L2(M), we say that A∈Ψcomp
h,L,%,%′(U)

if A=OpLh (a)+O(h∞)L2
!L2 for some a∈Scomp

L,%,%′(U). The quantization procedure OpLh has

the following properties which are consequences of the results of §A.2 and §A.3 (see [DZa,

Lemmas 3.12 and 3.14]).

(1) For each a∈Scomp
L,%,%′(U) the operator OpLh (a):L2(M)!L2(M) is compactly sup-

ported and bounded uniformly in h.

(2) If a∈C∞0 (U) is h-independent, then OpLh (a)∈Ψcomp
h (M) and σh(OpLh (a))=a.

(3) For every a∈Scomp
L,%,%′(U) and every chart (U ′,�, B,B′) for L there exists b∈

Scomp
L0,%,%′

(T ∗Rn) such that

BOpLh (a)B′= Oph(b)+O(h∞)L2
!L2 ,

b= (a��−1)σh(BB′)+O(h1−%)Scomp

L0,%,%
′ (T∗Rn),

supp b⊂�(supp a).

(A.20)

(4) For every b∈Scomp
L0,%,%′

(T ∗Rn) and every chart (U ′,�, B,B′) for L there exists

a∈Scomp
L,%,%′(U) such that

B′Oph(b)B= OpLh (a)+O(h∞)L2
!L2 ,

a= (b��)σh(B′B)+O(h1−%)Scomp

L0,%,%
′ (T∗Rn),

supp a⊂�−1(supp b).

(A.21)

(5) Assume that M1 and M2 are manifolds of the same dimension, Uj⊂T ∗Mj are

open sets, Lj are Lagrangian foliations on Uj , U
′
j⊂Uj are open sets, �:U ′2!U

′
1 is an exact

symplectomorphism mapping L2 to L1, and B∈Icomp
h (�) and B′∈Icomp

h (�−1). Then, for

each a1∈Scomp
L1,%,%′

(U1), there exists a2∈Scomp
L2,%,%′

(U2) such that

B′OpL1

h (a1)B= OpL2

h (a2)+O(h∞)L2
!L2 ,

a2 = (a1��)σh(B′B)+O(h1−%)Scomp

L0,%,%
′ (U2),

supp a2⊂�−1(supp a1).

(A.22)
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(6) For each a, b∈Scomp
L,%,%′(U) there exists a#Lb∈Scomp

L,%,%′(U) such that

OpLh (a) OpLh (b) = OpLh (a#Lb)+O(h∞)L2
!L2 ,

a#Lb= ab+O(h1−%−%′)Scomp

L,%,%′ (U),

supp(a#Lb)⊂ supp a∩supp b.

(A.23)

(7) For each a∈Scomp
L,%,%′(U) there exists a∗L∈S

comp
L,%,%′(U) such that

OpLh (a)∗= OpLh (a∗L)+O(h∞)L2
!L2 ,

a∗L = ā+O(h1−%−%′)Scomp

L,%,%′ (U),

supp a∗L⊂ supp a.

(A.24)

The following version of sharp G̊arding inequality follows immediately from Lemma A.2

and the fact that B′`=B
∗
` .

Lemma A.4. Assume that M is compact, a∈Scomp
L,%,%′(U), and Re a>0. Then, there

exists a constant C depending on some Scomp
L,%,%′ seminorm of a such that

Re〈OpLh (a)u, u〉L2 >−Ch1−%−%′‖u‖2L2 for all u∈L2(M). (A.25)

Lemma A.4 implies a more precise bound on the operator norm of OpLh (a).

Lemma A.5. Assume that M is compact, a∈Scomp
L,%,%′(U), and sup |a|61. Then, there

exists a constant C depending on some Scomp
L,%,%′ seminorm of a such that

‖OpLh (a)‖L2
!L2 6 1+Ch1−%−%′ . (A.26)

Proof. Fix an h-independent χ∈C∞0 (U ; [0, 1]) such that χ=1 near supp a. Define

b:=χ2−|a|2. Then, b∈Scomp
L,%,%′(U) and b>0. Applying Lemma A.4 to b, we get, for all

u∈L2(M),

‖OpLh (χ)u‖2L2−‖OpLh (a)u‖2L2 >Re〈OpLh (b)u, u〉L2−Ch1−%−%′‖u‖2L2

>−Ch1−%−%′‖u‖2L2 .

Estimating the norm of OpLh (χ) by (2.10), we get

‖OpLh (a)u‖2L2 6 ‖OpLh (χ)u‖2L2 +Ch1−%−%′‖u‖2L2 6 ‖u‖2L2 +Ch1−%−%′‖u‖2L2 ,

finishing the proof.

Using Lemma A.5, we get the following operator version of Lemma A.1.
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Lemma A.6. Let a1, ..., aN∈Scomp
L,%,%′(U) be as in Lemma A.1 and let A1, ..., AN be

operators on L2(M) such that Aj=OpLh (aj)+O(h1−%−%′−)L2
!L2 , where the constants in

O( ·) are independent of j. Then,

A1 ... AN = OpLh (a1 ... aN )+O(h1−%−%′−)L2
!L2 .

Proof. We have

A1 ... AN−OpLh (a1 ... aN ) =

N∑
j=1

BjAj+1 ... AN

and

Bj :=

{
A1−Oph(a1), if j= 1,

OpLh (a1 ... aj−1)Aj−OpLh (a1 ... aj), if 26 j6N .

Here, OpLh (a1 ... aj−1) is well defined since, by Lemma A.1, a1 ... aj−1∈Scomp
L,%+ε,%′+ε(U)

uniformly in j for any small ε>0.

Since sup |aj |61, by Lemma A.5 we have, for some C independent of j,

‖Aj‖L2
!L2 6 1+Ch1−%−%′ .

Since N=O(log(1/h)), we have, uniformly in j,

‖Aj+1 ... AN‖L2
!L2 6C.

Therefore, it suffices to show that we have, uniformly in j,

‖Bj‖L2
!L2 =O(h1−%−%′−)L2

!L2 . (A.27)

For j=1 this is immediate, so we assume 26j6N . We may replace Aj by OpLh (aj) in

the definition of Bj . Then (A.27) follows from the product formula (A.23) on the space

Scomp
L,%+ε,%′+ε.

A.5. Egorov’s theorem

We finally prove two versions of Egorov’s theorem for the Ψcomp
h,L,%,%′(U) calculus. In

this subsection we assume that M is a compact manifold, U⊂T ∗M is open, L is a

Lagrangian foliation on U , and P∈Ψcomp
h (M) is self-adjoint with principal symbol p=

σh(P )∈C∞0 (T ∗M ;R). We moreover assume that

L(x,ξ)⊂ ker dp(x, ξ) for all (x, ξ)∈U ; (A.28)

this is equivalent to the Hamiltonian vector field Hp lying inside L. The operator

e−itP/h:L2(M)−!L2(M)

is unitary.

We start with the following fixed-time statement similar to [DZa, Lemma 3.17].
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Lemma A.7. Let a∈Scomp
L,%,%′(U) and fix an h-independent constant T>0 such that

e−tHp(supp a)⊂U for all t∈[0, T ]. Then,

eitP/h OpLh (a)e−itP/h = OpLh (a�etHp)+O(h1−%−%′)L2
!L2 for 06 t6T . (A.29)

Proof. We first claim that, for each b∈Scomp
L,%,%′(U),

[P,OpLh (b)] =−ihOpLh (Hpb)+O(h2−%−%′)L2
!L2 . (A.30)

Using a partition of unity for b, we may assume that there exists a chart (U ′,�, B,B′) for

L such that B and B′ quantize � near �(supp b)×supp b in the sense of (A.16). Then,

B′B=I+O(h∞) microlocally near supp b, σh(B′B)=1 near supp b, and σh(BB′)=1 near

�(supp b). Since both OpLh (b) and P are pseudolocal, we have

[P,OpLh (b)] =B′B(PB′BOpLh (b)−OpLh (b)B′BP )B′B+O(h∞)L2
!L2

=B′[BPB′, BOpLh (b)B′]B+O(h∞)L2
!L2 .

By (A.20), we have

BOpLh (b)B′= Oph(b̃)+O(h∞)L2
!L2 for some b̃∈Scomp

L0,%,%′
(T ∗Rn),

with

b̃= b��−1+O(h1−%)Scomp

L0,%,%
′ (T∗Rn) and supp b̃⊂�(supp b).

Next, BPB′∈Ψcomp
h (Rn) and, by (A.15), σh(BPB′)=(p��−1)σh(BB′) is equal to p��−1

near supp b̃. By (A.28), we then have ∂ησh(BPB′)=0 near supp b̃. By (A.13),

[P,OpLh (b)] =B′[BPB′,Oph(b̃)]B+O(h∞)L2
!L2

=−ihB′Oph({p��−1, b��−1})B+O(h2−%−%′)L2
!L2 .

(A.31)

We have {p��−1, b��−1}=(Hpb)��
−1∈h−%′Scomp

L0,%,%′
(T ∗Rn). Therefore, by (A.21), the

right-hand side of (A.31) is equal to −ihOpLh (Hpb)+O(h2−%−%′)L2
!L2 , finishing the

proof of (A.30).

Now, put at :=a�e
tHp , t∈[0, T ]. By (A.28), the map etHp preserves the foliation L

on supp a, and therefore at∈Scomp
L,%,%′(U). Since ∂tat=Hpat, by (A.30) we have

ih∂t(e
−itP/h OpLh (at)e

itP/h) = e−itP/h
(
ihOpLh (∂tat)+[P,OpLh (at)]

)
eitP/h

=O(h2−%−%′)L2
!L2

for 06t6T . Integrating this from 0 to t, we get (A.29), finishing the proof.
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We now restrict ourselves to the case when M is a hyperbolic surface, U=T ∗M \{0},
and L∈{Lu, Ls} with Lu and Ls defined in (2.6). Let ϕt be the homogeneous geodesic

flow, P∈Ψcomp
h (M) be defined in (2.11), and U(t)=e−itP/h as in (2.13). The following

statement is a version of Egorov’s theorem for times up to % log(1/h), assuming that the

propagated operator lies in the standard calculus Ψcomp
h .

Lemma A.8. Assume that a∈C∞0
({

1
4<|ξ|g<4

})
is h-independent. Then we have,

uniformly in t∈[0, % log(1/h)],

U(−t) Oph(a)U(t) = OpLsh (a�ϕt)+O(h1−% log(1/h))L2
!L2 , (A.32)

U(t) Oph(a)U(−t) = OpLuh (a�ϕ−t)+O(h1−% log(1/h))L2
!L2 . (A.33)

Here, a�ϕt∈Scomp
Ls,%,0

(T ∗M \{0}) and a�ϕ−t∈Scomp
Lu,%,0

(T ∗M \{0}) by (2.19) and (2.20).

Proof. We prove (A.32), with (A.33) proved similarly (replacing P by −P ). By

property (2) in §A.4, we may replace Oph(a) by OpLsh (a) with an O(h)L2
!L2 error.

We write t=Ns, where 06s62 and N∈N0, N6log(1/h). Then,

U(−t) OpLsh (a)U(t)−OpLsh (a�ϕt)

=

N−1∑
j=0

U(−js)(U(−s) OpLsh (a�ϕ(N−1−j)s)U(s)−OpLsh (a�ϕ(N−j)s))U(js).

Since U(js) is unitary, it suffices to prove that, uniformly in j=0, ..., N−1,

U(−s) OpLsh (a�ϕ(N−1−j)s)U(s)−OpLsh (a�ϕ(N−j)s) =O(h1−%)L2
!L2 . (A.34)

Now, (A.34) follows from Lemma A.7 applied to a�ϕ(N−1−j)s∈Scomp
Ls,%,0

(T ∗M \{0}). Here,

ϕt=e
tHσh(P ) on

{
1
4<|ξ|g<4

}
, by (2.12).
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