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Abstract
Image dehazing is an increasingly widespread approach to address the degradation of images of the natural environment by 
low-visibility weather, dust and other phenomena. Advances in autonomous systems and platforms have increased the need 
for low-complexity, high-performing dehazing techniques. However, while recent learning-based image dehazing approaches 
have significantly increased the dehazing performance, this has often been at the expense of complexity and hence the use 
of prior-based approaches persists, despite their lower performance. This paper addresses both these aspects and focuses 
on single image dehazing, the most practical class of techniques. A new Dark Channel Prior-based single image dehazing 
algorithm is presented that has an improved atmospheric light estimation method and a low-complexity morphological 
reconstruction. In addition, a novel, lightweight end-to-end network is proposed, that avoids information loss and significant 
computational effort by eliminating the pooling and fully connected layers. Qualitative and quantitative evaluations show that 
our proposed algorithms are competitive with, or outperform, state-of-the-art techniques with significantly lower complexity, 
demonstrating their suitability for use in resource-constrained platforms.

Keywords  Single image dehazing · Dark channel prior · Low-complexity network

1  Introduction

Haze is a common atmospheric phenomenon caused by 
small particles (dust, smoke, water drops) in the air, leading 
to degradation of image clarity. Traditionally, researchers 
treated image dehazing as an image processing technique to 
recover image details and this restricted the use of dehaz-
ing algorithms to a limited range of applications. However, 
the rapid development of autonomous systems, artificial 
intelligence, and the requirements of high-level computer 
vision tasks has led to renewed research into improved image 
dehazing techniques. The development of dehazing algo-
rithms has, therefore, become one of the most topical areas 
of computer vision and an increasingly important application 
is the use of single image dehazing algorithms to improve 
the performance of the autonomous systems and platforms 
under adverse weather conditions.

The optics of a computer vision system are generally 
designed using the assumption of bright weather conditions, 
where the colour intensity of each pixel is solely associated 
with the brightness of the original scene. Hence, studies at 
an early stage of computer vision tasks selectively ignored 
the condition of bad weather. However, researchers soon 
realised the significance of image restoration techniques. 
Outdoor images are inevitably adversely influenced by the 
conditions, and refraction, scattering and absorption happen 
even on relatively clear days, resulting in loss of detailed 
information and low contrast. These degraded input images 
inevitably lead to adverse effects on autonomous systems.

To tackle this problem, a series of studies [1–3] proposed 
the general atmospheric scattering model that is widely 
accepted in this field, thus providing the theoretical basis for 
image dehazing. Under this general model, shown in Fig. 1, 
the reflected light must penetrate the haze before reaching 
the camera. Therefore, a portion of the reflected light has not 
been scattered, which is called the direct attenuation, while 
the scattered portion causes contrast reduction and visibility 
degradation (see Sect. 2.1 for a mathematical representa-
tion). In the field of image dehazing, many investigations 
have been based on this model [4]. Although the weaknesses 
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of the model have been identified, the improved models pro-
posed by later studies [5, 6] have not received much atten-
tion. Consequently, this work adopts the scattering model 
of Fig. 1, and its variants, and hence benefits from its low 
complexity and effectiveness.

Following the establishment of the theoretical founda-
tions, image dehazing algorithms have been intensively 
studied. However, dehazing remains a challenging task as 
the degradation of colour intensity is dependent on the depth 
information of the original scene, which is usually unavail-
able, especially for single image dehazing.

Image dehazing algorithms can generally be divided into 
three categories according to the techniques used [7]. The 
first of these is dehazing algorithms that require extra infor-
mation [8–13]. As mentioned above, the colour intensity 
of each pixel is affected by the depth of the corresponding 
point. Hence, early studies used physical information such 
as depth [8] or polarisation [9, 12] from the original scene 
to restore images. This category is limited by the fact that 
physical information is usually unavailable without special 
equipment and, for this reason, its techniques are neither 
practical nor straightforward. The second class is multi-
image dehazing [14] in which the dehazing algorithms take 
several pictures of the same scene to produce a reference 
to restore the visibility and contrast. To some extent, algo-
rithms in this class are similar to those in the previous one 
and the difficulty of obtaining multiple images hinders their 
development.

The final category, single image dehazing [7, 15–30], 
has received the most attention over the last two decades 
due to its more realistic assumptions and wide application 
scenarios. Single image dehazing techniques can be further 
divided into two subclasses: one group of studies [15–21] 
attempt to achieve haze removal using image processing 
techniques, often employing a prior, while the other applies 
machine learning methods [22–30]. With the rapid develop-
ment of artificial neural network, over the last five years, 
more and more convolutional neural network-based single 
image dehazing algorithms have been proposed. This paper 
focuses the challenges of performance and complexity that 

are critical to the successful deployment of image dehazing 
on resource-constrained platforms such as unmanned aerial 
vehicles (UAVs) and mobile platforms. To address the chal-
lenges, two new, reduced complexity single image dehazing 
algorithms are proposed, one that is prior based and one 
learning based.

1.1 � Single image dehazing

Most single image dehazing algorithms employ either prior-
based image processing-derived or learning-based features 
to predict the transmission, while inferring the atmospheric 
light by empirical methods (the exception being end-to-end 
learning-based algorithms).

A significant development was the discovery by He et al. 
that there is at least one channel that has a minimal intensity 
among the three colour channels in non-sky regions, known 
as the Dark Channel Prior (DCP) [18]. The value of the DCP 
can be considered to reflect the concentration of haze in this 
area and infer the transmission. The DCP offers the advan-
tages of simplicity and effectiveness [31] but also has draw-
backs in adaptability, speed and edge preservation, motivat-
ing many attempts to improve the original method. Xie et al. 
[32] combined the DCP and Multi-scale Retinex to improve 
the speed. Later, several papers [33–36] attributed the long 
processing time of the original DCP method to the soft 
matting operation, replacing it with different filters. More 
recently, morphological reconstruction was incorporated in 
the DCP process, overcoming the loss of detail caused by 
the minimum filter [37]. To address real-time processing, 
Lu and Dong [38] introduced a joint optimization between 
hardware and algorithm, achieving real-time processing with 
limited degradation. A recent study [39] employed a novel 
unsupervised learning method via minimisation of the DCP, 
feeding the network with real-world hazy images rather than 
commonly used synthetic data to avoid the possible domain 
shift. Another problem of the DCP method is the image dis-
tortion caused by the over-enhancement, reducing the adapt-
ability of this algorithm.

Tarel et al. [16] proposed the Fast Visibility Restora-
tion (FVR) algorithm, improving the computation speed by 
applying the median filter. The most significant contribu-
tion of the FVR is its linear relationship between computa-
tion complexity and image size. Tarel et al. also attempted 
to apply the FVR algorithm to real-world applications. 
However, it failed to detect the haze in small gaps between 
objects and the median filter can blur image edges.

Observing the shortcomings of the DCP, Meng et al. [17] 
introduced the Boundary Constraint and Contextual Regu-
larisation (BCCR) algorithm which overturned the previ-
ous assumption that pixels in the same local patch share the 
same depth, achieving better adaptability and detail preser-
vation Moreover, Meng et al. identified the problem of the 

Fig. 1   The atmospheric scattering model
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inaccurate prediction of the atmospheric light, which was 
rarely addressed in previous studies. The actual atmospheric 
light is slightly darker than the brightest pixel from the 
object region [17] rather than the commonly used brightest 
pixel. Hence, the lack of accurate prediction of the atmos-
pheric light is one of the critical reasons for failures in sin-
gle image dehazing; this is addressed by the new method in 
Sect. 3.1.1.

Unlike the previous algorithms which aim to improve the 
overall performance, the Gradient Residual Minimisation 
(GRM) algorithm [19] addressed the influence of the input 
image. When the quality of the input image is low, many 
of the previous methods will enhance the visual artefacts. 
Chen et al. applied the GRM between the input and output 
images, refining the coarse transmission generated by priors 
[19]. This method further extended single image dehazing to 
a broader range of images, but also inherited the limitations 
of DCP-based methods.

Zhu et al. [20] introduced the Colour Attenuation Prior 
(CAP), assuming the brightness and saturation are signifi-
cantly changed by the haze concentration. Based on this 
hypothesis, a linear model was established to represent the 
connection between depth, haze concentration, brightness, 
and saturation. The CAP algorithm applied a data-driven 
methodology to acquire the model parameters and recover 
the haze-free image from the scene depth. As discussed 
above, the connection between depth and transmission 
was rarely used because of the unavailability of the depth 
information. The CAP algorithm restored the depth map by 
combing the prior with a machine learning method, achiev-
ing a unique perspective of haze removal. A recent study 
introduced a variation function to the original CAP algo-
rithm, which further improved the performance in visibility 
and efficiency [40].

In [21], Berman et al. proposed a non-local dehazing 
(NLD) algorithm for single images. According to their 
observations, the number of colours is much smaller than 
the number of pixels in an image. Therefore, the colour of a 
pixel can be replaced by the central value in the same clus-
ter. Berman et al. later extended this theory to hazy images, 
discovering clusters will become haze lines due to the scat-
tering effect. Finally, the transmission and haze-free image 
were recovered based on the haze line theory. The NLD 
algorithm can overcome the deficiency of haze removal 
at depth discontinuities but its high dependency on colour 
information leads to a lack of adaptability for this prior.

To summarise, prior-based single image dehazing algo-
rithms seek to develop bespoke solutions based on image 
processing techniques. Despite the effectiveness of each 
prior or feature for specific scenarios, their adaptability is 
inevitably affected by the diversity of the data. Moreover, 
observation-based features are normally not accurate enough 
to perform well in objective evaluations, which can be seen 

in the experimental results later in this paper. Another prob-
lem of prior-based methods is the inaccurate estimation of 
the atmospheric light, an issue which was highlighted in 
[18] but no significant improvement proposed. According 
to our knowledge, for these reasons, few prior-based studies 
have achieved state-of-the-art performances in the last five 
years. However, these approaches can work well under spe-
cific scenarios and, due to their simplicity and practicality, 
have application in real-time dehazing for resource-limited 
autonomous systems.

Recognising the recent achievements of the deep neural 
network in various fields, many researches have proposed 
data-driven approaches to overcome the bottlenecks in previ-
ous dehazing studies and this has been a growing trend in the 
last five years. Initially, these learning-based approaches also 
focussed on improving the transmission estimation. One of 
the most successful of these early attempts, DehazeNet [22], 
proposed a trainable model to obtain the accurate transmis-
sion, demonstrating the superiority of a fully data-driven 
approach over prior-based approaches. Concurrently, a 
multi-scale convolutional neural network MSCNN [23] was 
proposed as a multi-scale architecture to refine the transmis-
sion by multi-scale fusion. To avoid learning inaccurate sta-
tistical representation from variability and diversity of local 
regions, a recent study introduced a fully point-wise CNN 
(FPCNET) architecture [27]. The novelty of FPCNET is the 
awareness of the importance of shuffling the data, which was 
mainly overlooked in prior work.

Unfortunately, these studies did not utilise the full poten-
tial of deep neural networks as, even though significant per-
formance improvements were achieved, they ignored the 
previously exposed problems of the atmospheric light and 
model.

The All-in-One Dehazing Network (AOD-Net) [24] 
adopted an end-to-end concept that generates the haze-free 
image directly from the hazy image. To achieve this goal, 
Li et al. [24] combined the atmospheric light with the trans-
mission. The ingenuity of this design is that the joint learn-
ing not only overcomes the cumulative error generated by 
separate learning but also compensates for the inaccuracy 
of the existing model to a certain extent through the self-
adaptive characteristic of the neural network. This idea can 
be tracked through to the latest paper [41]. An alternative 
dehazing approach was suggested by Liu et al. [42], who 
proposed a generic model-agnostic fully convolutional neu-
ral network (GMAN). To enlarge the receptive field without 
losing information, GCANET [43] applied smoothed dilated 
convolution instead of downsampling to a gated fusion net-
work. In [28], a Gated Fusion Network (GFN) applied the 
results of white balance, contrast-enhancing, and gamma 
correction as inputs, generating the confidence map through 
training. Finally, the clear image was recovered by fusing 
the three inputs using weights learnt from the training. As 
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a continuation of previous studies, FAMED-NET [7] inte-
grated the end-to-end structure, multi-scale architecture and 
fully point-wise network, outperforming all previous state-
of-the-art algorithms. Recently, the FFA-Net [44] introduced 
the attention mechanism into an end-to-end feature fusion 
network, achieving significantly improved quantitative and 
qualitative evaluation results but at the expense of increased 
complexity.

Recent studies [29, 45, 46] have introduced the Gen-
erative Adversarial Network (GAN) concept to dehazing. 
For example, the Densely Connected Pyramid Dehazing 
Network (DCPDN) [29] proposed a discriminated-based 
GAN to refine the estimation. Park et al. [45] proposed a 
heterogeneous GAN and a new loss function, while Zhang 
et al. [46] proposed a contextualised dilated network. These 
methods generated the output through a CNN while using 
a GAN to perform the feature extraction. Despite its high 
performance, the high storage requirement of this approach 
severely restricted its practical applications.

Throughout the evolution of learning-based dehazing 
algorithms, the desire for high performance has driven 
the development of increasingly sophisticated techniques, 
such as multi-scale architectures and GAN. This trend has 
reduced the practical use of single image dehazing algo-
rithms, in particular for resource-constrained applications 
where real-time operation with limited computational 
resources is a key driver. Many recent studies [7, 23, 24, 
38, 47] recognise the need for real-time processing and the 
development of techniques to reduce the storage, complexity, 
processing time and other related aspects without compro-
mising the performance. This is also the main focus of this 
paper.

1.2 � Main contributions

This paper addresses the need for the low-complexity, high-
performing single image dehazing algorithms for resource-
constrained platforms, such as UAVs, surveillance, and 
mobile platforms. Both prior-based and learning-based 
approaches are considered, providing a comprehensive solu-
tion to this ill-posed problem. The main contributions are 
given below.

•	 Following the prior-based approach: (1) a new estima-
tion method of the atmospheric light is proposed which 
significantly enhanced the robustness of the algorithm 
and (2) a transmission reconstruction technique that 
addresses the problem of overexposure, with a lower 
complexity than that proposed in [18].

•	 Based on the new deep learning trend in CNN: a new, 
lightweight end-to-end dehazing network is proposed, 
that achieves comparable results with the state-of-the-art 
algorithms using far fewer parameters.

The rest of this paper is organised as follows. The back-
grounds of image dehazing and the DCP are explained in 
Sect. 2, followed by the methodologies of the two new algo-
rithms in Sects. 3 and 4. Section 5 provides a comprehensive 
performance analysis, including the subjective and objec-
tive evaluations, and complexity analysis in comparison with 
state-of-the-art algorithms. Finally, conclusions are given in 
Sect. 6, together with potential directions for further work.

2 � Background information

2.1 � Atmospheric scattering models

As shown in Fig. 1, the degradation of captured images 
under bad weather conditions is caused by the scattering 
effect of particles in the air. Following Nayar and Narasim-
han [1–3], this process can be expressed as:

where x denotes the position of the pixel, I(x) is the colour 
intensity of the captured image, J(x) is the original scene 
radiance to be recovered, A is the atmospheric light, and 
t(x) is the transmission. More specifically, t(x) is a coef-
ficient used to represent the portion of light in the direct 
attenuation.

In most image dehazing literature, Eq. (1) is written in a 
different form:

According to Eq.  (2), the problem of restoring the 
haze-free image J(x) can be transformed to predicting the 
unknown parameters A and t(x) . However, it is challenging 
to achieve accurate predictions of these parameters because 
A is not always the pixel with the highest intensity and t(x) 
corresponds to the depth.

Li et al. [24] reformulated the existing model, combining 
A and t(x) into one variable K , to give:

where K(x) =
[

1

t(x)
(I(x) − A) + (A − b)

]/

[I(x) − 1] . Equa-
tion (3) established the direct connection between I(x) and 
K(x) while adding an unknown constant b . This variant is 
particularly suitable for learning-based approaches since the 
network is input adaptive. The ingenuity of this formula is 
to avoid the potential cumulative error caused by separate 
learning of A and t(x) . In addition, Eq. (3) can be used to 
reduce the complexity of the network, resulting in lower 
processing time and storage requirements. Considering the 
above advantages, this is the model used in our proposed 

(1)I(x) = J(x)t(x) + A(1 − t(x)),

(2)J(x) =
1

t(x)
I(x) − A

1

t(x)
+ A.

(3)J(x) = K(x)I(x) − K(x) + b,
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low-complexity learning-based algorithm described in 
Sect. 4.

2.2 � Dark channel prior (DCP)

The DCP is one of the most widely used approaches in prior-
based dehazing approaches and is reviewed in almost every 
paper within this field. As a prior-based method, the DCP 
was summarised from numerous observations of haze-free 
images. He et al. [18] discovered that there is a close-to-zero 
value for at least one colour channel in any non-sky local 
patch and further expanded this observation to the transmis-
sion estimation. The dark channel is defined as [18]:

where Ω(x) is a local patch centred on the pixel x , and C 
denotes the R,G,B colour channels of an image I . Hence, 
the DCP is represented as:

The DCP of Eq. (5) was extended from clear to hazy con-
ditions such that the hazy condition of a region is indicated 
by a change in the value of the DCP, establishing the connec-
tion between the DCP, haze level and transmission.

Due to the complexity of the mathematical representa-
tion, the derivation from [18] is not reproduced here but a 
flow chart of the DCP algorithm is shown in Fig. 2. This 
algorithm achieved relatively good results, with the main 
drawback of low efficiency caused by the soft matting opera-
tion, which is applied to refine the transmission. According 
to one experiment, the processing time was in excess of 20 s 
for a 400 × 600 image. To reduce this complexity, morpho-
logical operations can be used instead of the soft matting to 
refine the transmission and this is the approach adopted by 
the improved method proposed in Sect. 3.

(4)Idark(x) = min
C∈{R,G,B}

�

(

min
y∈Ω(x)

(

IC(y)
)

)

,

(5)Idark(x) → 0.

3 � The robust atmospheric light estimation 
with reduced distortion (RALE‑RD) 
prior‑based dehazing algorithm

A flow diagram of the proposed algorithm is shown in Fig. 3 
and was designed to address the extant problems of the origi-
nal DCP method. Similar to other prior-based dehazing algo-
rithms, the basis of the proposed approach is atmospheric 
light estimation and transmission prediction. The improve-
ments to these two components are described in the subsec-
tions below.

3.1 � A robust method of atmospheric light 
estimation

The proposed algorithm is based on the observation that 
the value of the atmospheric light is slightly darker than the 
brightest pixel in the sky region. While a lower estimation 
can result in dim but acceptable results, a higher estimation 
can lead to overexposure. Thus, a new robust method of esti-
mating the atmospheric light, A , is proposed by introducing 
a weighting function to two widely used methods, such that:

where Abrightest denotes the corresponding value in the origi-
nal image which the highest value in the dark channel. Simi-
larly, A0.1% uses the average of the corresponding values for 
the 0.1% brightest pixels in the dark channel and � is the 
weighting function whose default value is 0.66.

Using Eq. (6), the estimation of our method tends to be 
slightly lower than the ground truth, which can be addressed 
by image enhancement. However, the robustness of this 
method has been improved significantly as, while a lower 
estimation only leads to dim results, an over-estimation pro-
duces unacceptable results. Therefore, our approach exploits 
the best performance while ensuring robustness.

(6)A = �Abrightest + (1 − �)A0.1%,

Fig. 2   The dark channel prior 
(DCP)-based algorithm [18]
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3.2 � Transmission reconstruction

In this section, colour distortions in the sky region are pre-
vented by introducing a lower bound of the reconstructed 
transmission map of the sky region.

The motivation for this approach is the observation that 
colour distortion in the sky region is caused by low transmis-
sion values, resulting in some intensity of the sky region in the 
recovered image exceeding the maximum value. The proposed 
approach to mitigate this phenomenon is to set a lower bound 

Fig. 3   The system flow diagram 
of the proposed robust atmos-
pheric light estimation with 
reduced distortion (RALE-RD) 
algorithm
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for the transmission. It is worth noting that this lower bound 
is different from the lower bound prosed in [18], which was 
used to prevent a zero denominator. In the proposed method, 
the transmission, t , is defined by:

where t0 is the lower bound of the transmission, with a 
default value of 0.4. Under normal circumstances, the trans-
mission of the object region will not be lower than 0.6, while 
the transmission of the sky region is close to 0. Therefore, 
the dehazing process of the object region will not be affected 
by this lower bound. As the DCP dehazing is applied to the 
whole image, due to the change of transmission, the colour 
of the sky region is incorrectly estimated and, as a result, 
the colour intensity of the sky region is always very high 
due to the attempt to remove non-existent haze. However, 
as the colours of the haze and the sky are very similar, this 
incorrect estimation does not influence the overall quality 
of the result.

However, this use of Eq. (7) applies the lower bound to the 
entire transmission map, which is slightly different from our 
original intention. In the case of dense haze, part of the trans-
mission of the object may be lower than 0.4, resulting in the 
residual haze in the corresponding area. To address this, a set 
of morphological operations were introduced to reconstruct the 
transmission map before applying this lower bound. As shown 
in Fig. 3, this process first applies the morphological closing 
operation, �(⋅) , to the coarse transmission generated from the 
dark channel, followed by an opening, �(⋅) , to produce:

and

respectively, where the closing and opening operations are 
combinations of the fundamental morphological operations 
of dilation �B and erosion �B , with a structuring element B 
[48].

The closing is used to fill the holes of the image, enhanc-
ing the structure of objects, and the opening removes small 
image objects while preserving larger objects. These opera-
tions maintain the shapes of the main objects in the scene in 
tCO . The size of the structuring element B for both operations 
was set equal to the kernel size used in the DCP.

Finally, the sky and objects are separated and the trans-
mission map reconstructed by:

where treconstructed is the final transmission map which will be 
used to recover the haze-free image and t�(x) = max

(

tCO, t0
)

 . 
The proposed approach has two benefits. First, the 

(7)t�(x) = max
(

t(x), t0
)

,

(8)tC = �(t(x)) = �B
[

�B(t(x))
]

,

(9)tCO = �
(

tC
)

= �B
[

�B
(

tC
)]

,

(10)treconstructed = t�(x) +
(

t(x) − tCO
)

,

phenomenon of excessive enhancement is prevented by the 
lower bound and a better estimation of the scene radiance. 
Second, the morphological reconstruction significantly 
reduces the processing time and provides smooth edges. In 
very limited cases, the difference between our atmospheric 
light estimation and the scene radiance can produce results 
that appear dim. This can be corrected by employing an 
optional histogram equalisation step to enhance the lumi-
nance for display and, following [18], the Contrast Limited 
Adaptive Histogram Equalisation (CLAHE) algorithm was 
used. As this step is not necessary in most cases, it was not 
included in the performance evaluation in Sect. 5.

To summarise, the proposed algorithm tries to make full 
use of the potential of the DCP. Despite the excellent results 
generated from various tests, it cannot avoid inheriting some 
of the built-in limitations of this prior. For example, the DCP 
does not hold in exceptional circumstances, such as a scene 
containing many white buildings, leading to unexpected 
results. This is further explored and discussed in the results 
and conclusions sections.

It is worth noting that the problems caused by inaccu-
racy of the prior and atmospheric light have been mentioned 
many times in previous sections. Through investigations, the 
main reason for these inaccuracies is the lack of image rec-
ognition capabilities in the algorithm. Conversely, humans 
can easily predict atmospheric light from the sky region and 
recognise the haze concentration. This insight inspired the 
development of a new lightweight learning-based dehazing 
method, which will be presented in the next section.

4 � The lightweight single image dehazing 
fully convolutional neural network 
(LSID‑FCNN)

A new, lightweight end-to-end CNN (LSID-FCNN) is pro-
posed, with the general architecture shown in Fig. 4. LSID-
FCNN consists of two components: the image generator and 
the K-estimation module. In this way, the haze-free image is 
recovered from the K-map generated by the estimation net-
work through a variant of the atmospheric scattering model.

4.1 � Image generator

As the problem addressed in this paper is the need for real-
time dehazing for UAVs and mobile platforms, computation 
complexity is a critical factor. Therefore, the image genera-
tor was adopted in our design.

As discussed in Sect. 1, the existing atmospheric scatter-
ing model has been found to be inaccurate in some aspects, 
which result in errors in the dehazing. Therefore, the design 



2518	 Journal of Real-Time Image Processing (2021) 18:2511–2525

1 3

of the image generator was based on the improved variant 
of this model [24]:

This variant cleverly combined the atmospheric light 
and transmission into one variable K , which avoided the 
cumulative error caused by separated learning. Further, the 
proposed K used the self-adaptive characteristic of artificial 
neural networks to overcome the inaccuracy of the model. In 
other words, the defects of this model can be compensated in 
part by the adjustment of K in the learning process. Besides, 
using the image generator significantly reduces the complex-
ity while still guaranteeing high accuracy.

4.2 � K‑estimation network

To achieve accurate estimation of the parameter K , a Fully 
Convolutional Neural Network (FCNN) is proposed, as 
shown in Fig. 4. Unlike the typical CNN architecture, the 
proposed network avoids information loss and significant 
computational effort by abandoning the pooling and fully 
connected layers. The network consists of ten multi-scale 
convolutional layers, and the input of each layer is the 
concatenation of the previous output. All the activation 

(11)J(x) = K(x)I(x) − K(x) + b.

functions are Rectified Linear Unit (ReLU) functions to fit 
the characteristics of colour intensity.

The main difference between image dehazing and more 
common CNN applications is the large number of inputs 
and outputs, which means any kind of information loss is 
unacceptable. For example, a typical CNN application such 
as recognition or classification is not sensitive to information 
loss as the grayscale image, or even partial features, are suffi-
cient to achieve their goal. This allows these networks to use 
pooling layer and large-scale convolution. However, all the 
input image information is vital to image dehazing, as pre-
dictions of each pixel in three channels are required. There-
fore, large-scale convolution and pooling were unsuitable for 
this task. Although increasing the depth of the network can 
compensate for the information loss, it also greatly increases 
the computation complexity and storage requirement.

For the above reasons, the kernel size of most convolu-
tion operations in our network is 3 × 3, while a few large-
scale convolutions were used to enlarge the receptive field. 
Concatenation was adopted to compensate the information 
loss after each convolution. Finally, the K-map was gener-
ated through this network, achieving haze removal with the 
image generator.

In the training stage, all examples were selected from the 
Realistic Single Image Dehazing (RESIDE) dataset [4]. To 
demonstrate the low training requirement and effectiveness 
of the LSID-FCNN for resource-constrained platforms, only 
one-third of the training examples were used and the specific 
training configurations are given in Table 1.

5 � Experimental results and analysis

The two proposed single image dehazing algorithms were 
developed from two different approaches: a traditional prior-
based method and a learning-based CNN approach. To vali-
date the relative effectiveness of these methods, a series of 
experimental results are presented consisting of a subjective 
evaluation, objective evaluation, complexity and processing 
time analysis. The visual appearance of our proposed algo-
rithms is explored through the subjective evaluation, while 
a quantitative comparison with a selection of state-of-the-
art algorithms forms the objective evaluation. All experi-
ments use images from the RESIDE dataset [4], which was 

Fig. 4   The architectures of the proposed network (top) and the K-esti-
mation network (bottom)

Table 1   The LSID-FCNN algorithm training configurations

Training Loss func-
tion

Learning 
rate

Batch size Gradient 
clipping

5000 × 40
Shuffle
Resolution: 

620 × 460

MSE 0.001 8 [− 0.1, 0.1]
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specifically designed to enable the fair evaluation of single 
image dehazing algorithms. The RESIDE dataset contains 
training and test sets of synthetic hazy images. The Syn-
thetic Objective Testing Set (SOTS) used here is composed 
of indoor and outdoor sets, each with 500 synthetic hazy 
images generated by varying the parameters of the atmos-
pheric scattering model. The testing images from the indoor 
set have a fixed resolution of 620 × 460 pixels while the reso-
lution of outdoor images varies from 550 × 309 to 550 × 975. 
The RESIDE dataset has been widely adopted in the field 
of image dehazing and facilitates a direct comparison with 
the state-of-the-art.

5.1 � Subjective evaluation

The subjective evaluation is divided into three parts, each 
consisting of subsets from the RESIDE benchmark [4]. Spe-
cifically, tests were performed on the SOTS dataset, a syn-
thetic dataset, and a real-world dataset. In both the indoor 
and outdoor sets of the SOTS dataset the hazy images were 
generated from real-world scenes, to simulate the real-
world environment. To ensure a fair evaluation, all the test-
ing examples are unseen data for our network. Due to the 
synthetic configuration, testing on the SOTS and synthetic 
dataset are full-reference evaluations as ground truth images 
were given. Conversely, the real-world dataset contains 
only the captured hazy images for which no ground truth 
is available.

Figure 5 presents results for a representative indoor and 
outdoor image from the SOTS dataset. These results show 
the typical characteristics of the techniques and their corre-
sponding peak signal-to-noise ratio (PSNR) and structural 

similarity index measure (SSIM) are also provided. For the 
indoor image, the RALE-RD algorithm outperforms the 
LSID-FCNN in colour restoration while the LSID-FCNN 
produces smoother results. For example, the vivid colour of 
the table indicates the excellent colour restoration ability of 
RALE-RD. However, the curves of the floor and chairs are 
slightly thickened, showing the drawback of the smoothing. 
The outdoor result shows a similar pattern, for example the 
colour of buildings is still slightly brighter than the ground 
truth, while the enhancement of edges in outdoor large-scale 
pictures is unnoticeable.

These results validate the accuracy of our previous obser-
vations, the RALE-RD algorithm tends to generate haze-
free images with vivid colours, which is advantageous when 
dealing with dense haze conditions. For the same reason, 
the recovered image can be even more colourful than the 
ground truth, which means it may be considered as a colour 
restoration image enhancement technique, rather than for 
recovering the ground truth. On the other hand, the LSID-
FCNN algorithm appears to better recover the ground truth, 
generating more natural results. No severe failure cases were 
found during this testing stage, underlying the robustness of 
the proposed algorithms.

Figures 6 and 7 show the results for the synthetic and 
the real-world sets, respectively. Unlike the SOTS results, 
the LSID-FCNN algorithm shows superiority over the 
RALE-RD method in real-world scenes. As shown in 
Fig. 6, the results produced by LSID-FCNN are close to 
the ground truth, while the results generated by the RALE-
RD are exaggerated. This trend is noticeable in the sky 
regions. In addition, the edges are enhanced in the results 
generated by the prior-based method. Although this aspect 

Fig. 5   Representative results using the SOTS dataset for the indoors set (top row) and the outdoor set (bottom row). From left to right: ground 
truth images, hazy images, results of the RALE-RD algorithm, and results of the LSID-FCNN
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has been significantly improved from the original algo-
rithm, its smoothness remains a weakness when compared 
to the learning-based algorithm.

Many of the hazy images in the real-world set were cap-
tured under poor airlight conditions which increase the pos-
sibility of failure, leading to this dataset being ignored by 

Fig. 6   Representative results using the RESIDE synthetic set. From left to right: ground truth image, hazy image, result of the RALE-RD algo-
rithm, result of the LSID-FCNN

Fig. 7   Example results using 
the RESIDE real-world set. 
From left to right: hazy images, 
results of the RALE-RD 
algorithm, results of the LSID-
FCNN algorithm
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many previous dehazing studies. Figure 7 presents four of 
the most challenging images from this real-world dataset, 
demonstrating that even under insufficient ambient light 
conditions both the RALE-RD and LSID-FCNN algo-
rithms produce relatively clear and natural results with good 
details. In addition, the adverse edge enhancement effect of 
the RALE-RD algorithm is not evident in these large-scale 
outdoor images.

To facilitate visual comparisons with dehazing test 
images from outside the RESIDE dataset, Fig. 8 presents 
results of three images for four significant prior-based meth-
ods (DCP, FVR, BCCR and NLR) and one early CNN-based 
method (DehazeNet). Note that most subsequent learning-
based methods have high PSNR and SSIM results and thus 
similar, high visual quality results. The DCP and FVR 
results exhibit fuzzy results or have haze residuals, see for 
example the leaves in the first and third images. Some edge 
enhancement is evident in all results for the FVR and BCCR 
methods, while the latter also exhibits some overexposure. 
NLD produces good results, apart from some sharp curves 
in the first image, while DehazeNet has smooth and natural 
result but failed to eliminate the haze, see the haze residu-
als around the pumpkins (second image) and leaves (third 
image).

In comparison, the RALE-RD results have vivid colours 
and good details, the only problem being the enhancement 
of edges (first image only) and does not occur in the majority 
of cases. The LSID-FCNN results have natural colours with 
good details and while slightly dimmer, is possibly closer 
to the ground truth.

5.2 � Objective evaluation

The objective evaluation results provide a quantitative com-
parison with state-of-the-art algorithms. Both the PSNR and 
SSIM measures were used in conjunction with the SOTS 
dataset, as they are both full-reference methods. The results 
in Table 2 give the average performances of the two pro-
posed methods for the indoor and outdoor sets from SOTS, 
which each contains 500 images. In addition, results for six 
significant prior-based and nine learning-based algorithms 
are also provided. The results were collected from [7] and 
the original papers for each algorithm.

Our proposed RALE-RD algorithm achieves the highest 
PSNR and the third highest SSIM among all prior-based 
algorithms. Further, the RALE-RD results even outperform 
some of the learning-based algorithms, proving the accu-
racy of the observations behind its development. The LSID-
FCNN algorithm achieves a comparable PSNR to the top 
50% of the learning-based algorithms and above all prior-
based algorithms. For SSIM, the LSID-FCNN algorithm has 
the seventh highest performance of the 17 algorithms evalu-
ated. These competitive results can be considered a success 

considering that the lightweight design of our network is 
well suited for fast computation and low complexity.

As the motivation for the development of both the RALE-
RD and LSID-FCNN algorithms was resource-constrained 
applications such as UAVs, which typically operate in the 
more demanding environments, separate quantitative results 
for the indoor and outdoor SOTS test sets are presented in 
Table 3. Results for the indoor set are generally not as good 
as the outdoor set, which is not a major issue as the outdoor 
environment is the main application area for image dehazing.

5.3 � Complexity and time analysis

Recent research in single image dehazing has paid a lot of 
attention to performance but has often ignored the consid-
erations of resource-constrained platforms. The motivation 
for the proposed algorithm was to satisfy the requirements of 
real-time processing while still achieving high performance. 
To evaluate this aspect, complexity and time analysis results 
are shown in Table 4 and Table 5, respectively.

Due to the difference in the framework, network complex-
ity may not be directly comparable between the learning-
based approaches [49]. Therefore, the model size, which 
is commonly measured by the number of learnable param-
eters [49], is used as an estimate of network complexity, see 
Table 4. Generally, more parameters are indicative of larger 
model sizes which are more likely to have a higher demand 
on hardware, leading to a slower runtime. The model size of 
the proposed LSID-FCNN algorithm is much less than all 
other learning-based algorithms except the AOD-NET [24]. 
However, the performance of this algorithm (Table 3) is bet-
ter than most algorithms of the same order of magnitude.

Although the SSIM of the LSID-FCNN only ranks fifth, 
the model size of the top four algorithms is several orders 
of magnitude higher, demonstrating that the LSID-FCNN 
achieves competitive results with a very limited number of 
parameters, validating the effectiveness of our design.

The processing time experiment was conducted on a 
64-bit Inter Core I7-8750H CPU with 16 GB of RAM. To 
try to ensure a fair comparison between the prior-based 
and learning-based algorithms, the GPU acceleration was 
deactivated. Table 5 shows the average processing time of 
the algorithms for a 620 × 460 pixels image. Due to their 
lightweight design, both proposed algorithms have process-
ing speeds among the lowest in each algorithm class, even 
when recognising that the contributions from the different 
environments used may influence the processing times to 
some degree.

In summary, both algorithms achieved excellent results 
in efficiency, which was precisely the aim of this work. With 
optimisation, it is believed that both algorithms could satisfy 
the requirements of real-time processing.
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Fig. 8   Dehazing results for 
three classic test images. 
From top to bottom: original 
hazy images, DCP [18], FVR 
[16], BCCR [17], NLD [21], 
DehazeNet [22], RALE-RD and 
LSID-FCNN



2523Journal of Real-Time Image Processing (2021) 18:2511–2525	

1 3

6 � Conclusions and future work

Outdoor images are often affected by small atmospheric 
particles, giving rise to haze that degrades the image clar-
ity. While many single image dehazing algorithms have 
been proposed, their focus has mainly been on perfor-
mance at the expense of complexity. This presents par-
ticular issues for the deployment of dehazing algorithms in 
resource-constrained autonomous systems and platforms 
which require real-time operation, often under adverse 
weather conditions.

To address this problem, two new low-complexity, high-
performance single image dehazing algorithms have been 
proposed, one prior based and one learning based. As its 
name suggests, the Robust Atmospheric Light Estimation 
with Reduced Distortion (RALE-RD) prior-based algo-
rithm offers a robust weighting-based approach to atmos-
pheric light estimation and an improved lower bound to 
reduce distortion, coupled with an efficient morphological 
transmission map reconstruction. The lightweight learning-
based approach, LSID-FCNN, employs an image generator 
for atmospheric light estimation with a single parameter, K, 
that has significantly reduced complexity yet retains high 
accuracy. A FCNN is employed as a K-estimation network 
that avoids information loss and has significantly lower com-
plexity than conventional CNN architectures.

Subjective and objectives results show the RALE-RD 
algorithm to match or outperform many other prior-based 
techniques and with a complexity amongst the lowest in this 
class. The LSID-FCNN algorithm’s performance matches 
that of other learning-based techniques with a significantly 
lower complexity, offering a major advantage for resource-
constrained applications.

Table 2   Results of our proposed algorithms and state-of-the-art algo-
rithms on the indoor and outdoor sets from SOTS, 1000 images in 
total

Class Method PSNR SSIM

Prior-based approach DCP [18] 16.62 0.8179
FVR [16] 15.72 0.7483
BCCR [17] 16.88 0.7913
GRM [19] 18.86 0.8553
CAP [20] 19.05 0.8364
NLD [21] 17.29 0.7489
RALE-RD 19.07 0.8318

Learning-based approach DehazeNet [22] 21.14 0.8472
MSCNN [23] 17.57 0.8102
FPCNet [27] 21.84 0.8872
AOD-NET [24] 19.06 0.8504
GMAN [42] 24.36 0.8860
FAMED-NET [7] 27.01 0.9371
FFA-NET [44] 34.98 0.9863
GFN [28] 22.30 0.8800
DCPDN [29] 20.81 0.8378
LSID-FCNN 20.28 0.8524

Table 3   PSNR and SSIM results for RALE-RD and LSID-FCNN 
algorithms on indoor and outdoor SOTS image sets

Method Testing set PSNR SSIM

RALE-RD Indoor 18.8531 0.8149
Outdoor 19.2880 0.8486

LSID-FCNN Indoor 19.5303 0.8356
Outdoor 21.0224 0.8691

Table 4   Complexity 
comparisons between the 
LSID-FCNN and other recent 
learning-based dehazing 
approaches

Those methods that had a worse 
performance than LSID-FCNN 
in the objective evaluations of 
Table  2 are marked with an 
asterisk

Method Number of 
parameters

DehazeNet [22]* 8240
MSCNN [23]* 8014
FPCNet [27] 1.04 × 105

AOD-NET [24]* 1833
GMAN [42] 963,459
FAMED-NET [7] 17,991
FFA-NET [44] 4.46 × 105

GFN [28] 514,415
DCPDN [29]* 6.69 × 107

LSID-FCNN 4287

Table 5   Average processing time calculated for 500 620 × 460 pixels 
image for prior-based (rows 1–6) and learning-based (rows 7–12) sin-
gle image dehazing algorithms

Method Environment Processing 
Time (sec-
onds)

DCP [18] Matlab 1.50
FVR [16] Matlab 3.27
BCCR [17] Matlab 5.08
CAP [20] Matlab 2.34
NLD [21] Matlab 4.94
RALE-RD Python 0.08
DehazeNet [22] Matlab 1.84
MSCNN [23] Matlab 3.40
FPCNET [27] MatCaffe 0.26
AOD-NET [24] MatCaffe 0.41
FAMED-NET [7] MatCaffe 1.22
LSID-FCNN Pytorch 0.30
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For real-time applications, the 0.08-s average processing 
time of the RALE-RD algorithm for 620 × 460 images would 
enable a frame rate of 12.5 frames per second (fps) with the 
hardware used in our experiments. In an example application 
such as a search and rescue UAV, the on-board imaging may 
typically range between 25 and 120 fps for 1080p images but 
due to the limited computational resources, the frame rate 
and image size are routinely down-sampled for real-time 
applications such as target detection, where the dehazing is 
one of a number of image processing tasks employed. Given 
that our results were achieved with no GPU acceleration, the 
prior-based RALE-RD approach is useful as it stands for use 
in real-time application scenarios due to its low computation 
requirement.

The learning-based LSID-FCNN approach has a higher 
average runtime of 0.30 s for 620 × 460 images. As GPU 
acceleration typically reduces the runtime for CNN-based 
dehazing algorithms by two orders of magnitude, real-time 
operation is a realistic prospect for systems employing a 
GPU but remains a challenge for those that do not. However, 
the LSID-FCNN approach also has the potential to achieve 
improved results with additional network design and train-
ing configurations, as those presented here are for relatively 
limited training and network depth. While computational 
complexity still presents a challenge as the network grows 
larger and deepens with the pursuit of better performance, 
GPU-based systems have the potential capacity for this.

Future work to improve the performance of the LSID-
FCNN algorithm includes the development of an alternative 
loss function to the simple MSE, which has the potential 
to improve the SSIM performance instead of focussing on 
the PSNR. Second, the network still contains redundancy 
due to the many concatenations used and it may be possible 
to further reduce this with more experimentation. Finally, 
the combination of machine learning and handcrafted prior-
based features presents an attractive proposition. As few 
studies to date have successfully adopted useful features into 
their networks without introducing external interference, this 
presents an interesting area of future investigation.
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