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Abstract
Nowadays, cities and towns all over the world are dotted with high-rise buildings, and floor 
positioning technology has gradually become the focus of indoor positioning research. 
Multi-level buildings with an atrium space structure mainly consist of shopping malls and 
hospital outpatient buildings. This kind of building is widely spread, and they usually have 
a lot of people and a high demand for location-based services. The specific spatial structure 
of the indoor atrium makes the propagation of wireless signals different, which leads to 
most of the wireless signal-based floor positioning methods not working well in such an 
environment. Aiming at this atrium structure environment, this paper proposes a high-pre-
cision multi-method adaptive weighted fusion algorithm based on Bluetooth Low Energy 
signals. In experiments, the real-time dynamic floor positioning accuracy reached 92.7%, 
while the floor positioning accuracy in the 5-s static state was as high as 100%. Besides, 
when using 3 s of test data rolled back, real-time effects could also be achieved, with an 
accuracy of 98.3%. This method can be used alone for real-time floor positioning, it is suit-
able for wireless fidelity signals, and it can provide a highly accurate initial floor reference 
for barometric or inertial methods. It could also be integrated with other methods to pro-
vide highly accurate floor locations for long periods of time. The fingerprint library acqui-
sition in this method saves time and effort. The database volume is small and generalizable 
to a wide range of applications.
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1  Introduction

Applications, such as the Internet of things, location-based services (LBS), and artificial 
intelligence, cannot be realized without positioning technology. People live indoors most 
of the time, and indoor positioning technology can fill the gap left by satellite position-
ing technology in indoor environments like tunnels and buildings. Location-based services 
make it easier for people to perform a variety of daily operations, including convenient 
shopping and searching for family or friends at shopping malls, smart parking and car 
search, airport boarding and pick-up guidance, hospital guidance, and smart storage logis-
tics. With the assistance of indoor positioning technology, services like emergency and 
rescue, fire rescue, personnel alarm and rescue, crowd monitoring, and emergency guid-
ance will be more accurate and efficient. With the socio-economic development and the 
increasing number of high-rise buildings, people’s demand for indoor positioning has long 
been needed for multi-level three-dimensional space, that is, multi-level indoor positioning 
services (Deng et al. 2012; Maneerat et al. 2014a). In most cases, people use floor mark-
ers to directly access the floor location. However, in a larger areas or multi-floor environ-
ments, floor markers are not visible everywhere. Positioning terminals cannot easily "see" 
the floor label, especially when there are blind visual limitations or during emergencies, 
and floor locations are difficult to access. In multi-floor indoor environments, floor iden-
tification is even more important in the field of indoor positioning. In multi-floor indoor 
spaces, to obtain the specific location of the target, the location of the floor must be known 
before you can further determine the specific location of the target and recall the map of 
the floor to display the location (Li et al. 2014). Floor positioning is particularly useful in 
emergencies (Gu et al. 2019). At the scene of a fire, timely and accurate access to the floor 
of the people to be rescued can greatly enhance the overall rescue speed and the chances of 
saving their lives. On October 30, 2019, the Federal Communications Commission (FCC) 
issued a draft order. The draft requires that wireless carriers should provide vertical (or 
z-axis) location data, which for 80 percent of indoor 911 calls must be within 3 m (m) from 
the user’s cell phone1. On March 20, 2020, a 28-year-old Chinese Ph.D. student living in 
the U.S. called 911 for help because his condition was worsening from the coronavirus, 
but the alarm system showed two possible buildings, and the target building and floor as 
well as the room information could not be identified, which led to a subsequent unsuc-
cessful search by five police officers, three firefighters, and one search and rescue dog. The 
caller eventually died in the room2. Such cases demonstrate the importance of both indoor 
positioning and floor positioning. During the outbreak of the COVID-19 in more than 200 
countries worldwide, indoor positioning services can be used to search for and identify 
people suspected of being infected in crowd trajectories. Moreover, the precise location of 
floors also allows for more accurate search results.

Floor identification can be achieved through a variety of methods or techniques, the 
main ones being detecting floor changes using barometric pressure changes (Li et al. 2014; 
Xia et  al. 2015; Ye et  al. 2016; Bai et  al. 2013; Retscher 2007), using a wireless signal 
to decode the target floor (Liu et  al. 2017; Razavi et  al. 2015; Liu et  al. 2012; Campos 
et al. 2014; Alsehly et al. 2011; Gansemer et al. 2009; Lohan et al. 2015; Maneerat et al. 
2014b; Wang et  al. 2010), identifying floor changes using motion sensor data (Ye et  al. 

1  https://​www.​ithome.​com/0/​453/​396.​htm.
2  https://​new.​qq.​com/​omn/​20200​301/​20200​301A0​I3RT00.​html.

https://www.ithome.com/0/453/396.htm
https://new.qq.com/omn/20200301/20200301A0I3RT00.html
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2012, 2014; Xu et  al. 2017; Fetzer et  al. 2018; Ramana et  al. 2016), and the realization 
of floor positioning by multi-method fusion (Ramana et  al. 2016; Ye et  al. 2014; Gupta 
et  al. 2014; Li et  al. 2018; Ashraf et  al. 2019; Haque et  al. 2018; Elbakly et  al. 2018b; 
Peral-Rosado et al. 2015). Since air pressure is related to elevation and changes in elevation 
can be inferred from changes in air pressure, changes in floor level can be inferred from 
the floor height (Li et al. 2014; Xia et al. 2015; Bai et al. 2013). However, the method of 
positioning floors based on barometric pressure requires an initial floor reference or the 
use of a barometric pressure reference from a base station (Maneerat et al. 2014a). Differ-
ent models of barometric pressure sensors take different barometric pressure values at the 
same location and time. That means different terminals that use the base station to monitor 
floor changes need to be calibrated in advance (Li et al. 2014; Xia et al. 2015). As a result, 
these methods are expensive to deploy and have limited calibration accuracy and end-use 
models, making them difficult to apply universally. Similarly, by calculating motion states 
and relative elevation data, high-frequency data from motion sensors can be used to detect 
floor changes. Such methods still require the initial floor information to define the absolute 
floor position (Ye et al. 2012; Fetzer et al. 2018; Ramana et al. 2016). Initial floor deter-
mination plays a significant role in the field of floor positioning. Using the propagation 
characteristics of the wireless signal and the relevant algorithm, the test signal is matched 
with the corresponding fingerprint library to calculate the final floor result (Deng et  al. 
2012; Maneerat et  al. 2014a; Qi et  al. 2019; Abd Rahman et  al. 2014). Wireless signal-
based floor determination does not require additional set up and it has a high degree of 
general applicability. Furthermore, it can be used independently or with other methods for 
floor positioning. For example, it can provide the initial floor information for a barometric 
pressure-based or motion sensor-based method that can obtain readily available floor level 
information (Gu et al. 2019; Ramana et al. 2016; Li et al. 2018). All the initial floor posi-
tioning methods, especially those based on wireless signals, are indispensable in the field 
of floor identification and indoor positioning.

Atrium structures are quite common in multi-level shopping malls or plazas as well as 
in the outpatient buildings of major hospitals as they allow people to obtain information 
about the functions or departments on each floor at a glance as well as provide a wider 
view along with good experience and convenient service. According to Baidu Encyclope-
dia, the atrium space is a form of architectural space, which refers to the courtyard space 
inside a building and is characterized by the formation of an "outdoor space" that is located 

Fig. 1   Photographs of the inside of multi-floor buildings with an atrium space
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inside the building3. It is a kind of shared space formed by the upper and lower floors of 
the building, and some indoor scenes are shown in Fig. 1. Such buildings are now very 
common. Wireless signals have different propagation characteristics in different multi-floor 
indoor layout environments (Honcharenko et al. 1993; Alshami et al. 2017; Shi et al. 2013). 
In the atrium area, the signal attenuation is greatly reduced by the lack of a floor plate to 
block the signal. The attenuation of the signal across floors is not evident in this environ-
ment. Consequently, the effectiveness of most wireless signal-based floor location methods 
in such environments is degraded by changes in signal characteristics Shi and Shin (2013).

Multi-floor buildings with atrium space are widely distributed, mainly in shopping 
malls and hospitals all over small, medium, and large cities. In such environments, where 
people are densely distributed, there is usually a strong demand for LBS. Thus, achieving 

Table 1   Overview of multi floor indoor structures based on a wireless signal for floor positioning
Table 1 Overview of multi-floor indoor structures based on a wireless signal for floor positioning

Literature Indoor floor plan Literature Indoor floor plan

(Maneerat et al. 
2014a)

(Qi et al. 2019)

(Liu et al. 2017)
(Abd Rahman et al. 

2014)

(Razavi et al. 2015) (Alshami et al. 2017)

(Razavi et al. 2015) (Bhargava et al. 2012)

(Liu et al. 2012) (Zhang et al. 2018)

(Campos et al. 2014) (Razavi et al. 2016)

(Alsehly et al. 2011) (Sun et al. 2015)

(Lohan et al. 2015) (Sun et al. 2015)

(Maneerat et al. 
2014b)

(Han et al. 2019)

(Wang et al. 2010) (Maneerat et al. 2016)

(Ramana et al. 2016)
(Elbakly et al. 2018a; 

Zheng et al. 2016; 
Zhao et al. 2017)

No indoor plane or 
test site pattern

(Ye et al. 2014)
(Elbakly et al. 2020)

and (Razavi et al. 
2016)

3  https://​baike.​baidu.​com/​item/%​E4%​B8%​AD%​E5%​BA%​AD%​E7%​A9%​BA%​E9%​97%​B4.

https://baike.baidu.com/item/%E4%B8%AD%E5%BA%AD%E7%A9%BA%E9%97%B4
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high-precision floor positioning in these environments is of great research value. Currently, 
there is very little research devoted to floor positioning and especially initial floor position-
ing in terms of such environments. In our paper, the vast majority of the literature on floor 
positioning based on wireless signals is summarized and organized. Moreover, the interior 
plans of the floor structures of the test site in the literature are summarized and shown in 
Table 1. As shown, there are very few floor positioning experiments in the literature based 
on wireless signals that have been carried out specifically for atrium spaces. The second 
test site in the literature (Razavi et al. 2015) had an atrium space, but since the experimen-
tal area was separated from the atrium space by offices and floor plates, there was not an 
experiment in a multi-floor building with an atrium space.

In the study of algorithms related to wireless signal-based floor positioning, each method 
performs well in the experimental environment in which it is located. However, the peculi-
arities of the multi-floor environment of the atrium space result in most methods being less 
accurate. A Wireless Local Area Network (WLAN) floor determination method based on 
K-means clustering was introduced by Deng et al. (2012). Their methodology is based on 
the idea that the same wireless fidelity (Wi-Fi) access point (AP) has significant variation 
in Received Signal Strength Index (RSSI) from floor to floor. Such methods are effective in 
general multi-floor environments, especially in large-scale multi-floor indoor spaces, such 
as airports. However, in a multi-level space with an atrium structure, the changes of RSSI 
of the same AP on different floors are not obvious, and the signal similarity is very high. 
Therefore, a method based on K-means does not work well for the floor determination for 
the type of environment studied in this paper. Maneerat et al. (2014a) focused on the usage 
of the sum-RSSI floor algorithm for floor determination. This method eliminates the need 
to prepare for the fingerprint library in advance and determines the floor using RSSI from 
the real-time collection. The RSSI outliers are removed first, and then the RSSI averages 
of all APs are aggregated. After that, the floor on which the AP group corresponding to 
the maximum summary average RSSI value is located is finalized as the target floor. This 
method is simple to implement. However, in an atrium structure space, in addition to meet-
ing the condition of having the same number of APs, a better effect can be achieved when 
the APs are evenly distributed on each floor. Moreover, the AP signal of other floors is 
often stronger than the AP signal of this floor, and this often leads to the vulnerability of 
floor positioning to errors. The nearest neighbor floor algorithm was used by Alsehly et al. 
(2011). The application of this method requires the creation of a more complete training 
sample in the early stages. The Wi-Fi signal similarity between multiple floors based on 
the atrium space is relatively high, and the wireless signal is easily affected by the layout 
of the indoor atrium, human activity, and so on. This results in AP signals on other floors 
being stronger than those on the current floor, which ultimately leads to erroneous results. 
The training samples also require a great deal of labor and resources to collect and con-
tinuously maintain to ensure excellent floor positioning accuracy. The other group variance 
algorithm, while having better site coverage, is less accurate than the nearest neighbor floor 
algorithm. Therefore, in multi-floor environments with an atrium space, the high signal 
similarity results in a poor floor positioning effect. The floor signal interval confidence-
based algorithm (Qi et al. 2019) is more suitable for indoor environments with large areas 
and multiple floors, where the AP location is unknown and unevenly distributed. This 
method provides a better positioning result and the fingerprint collection process not only 
saves time but also effort. However, in the multi-floor environment of the atrium space, 
the signal difference between floors is minimal due to the long distance of Wi-Fi signal 
propagation, which makes it difficult to generate an effective signal interval to distinguish 
the signal characteristics of different floors. If the signal interval is too large, then it is not 
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sufficient to distinguish floors; while if it is too small, it is difficult to adapt to changes in 
the indoor environment, such as human activity. The method, therefore, works worse in 
multi-floor environments with an atrium space than in regular multi-floor environments. 
The idea of floor positioning by Zhang et al. (2018) is based on the apparent difference in 
Wi-Fi signal strength between floors. However, in the indoor structure of the atrium space, 
the difference in Wi-Fi signal between adjacent floors is not obvious, and thus it is easy to 
tend to misidentify the floor information.

A Bayesian classification with a Wi-Fi signal-based floor identification algorithm 
(BCFI) was proposed by Zhao et al. (2017). During floor identification using a Wi-Fi sig-
nal, when a Wi-Fi signal propagates through a floor made of mat reinforcement concrete, 
the signal results in a sudden and remarkable attenuation (e.g., 50 cm thick concrete causes 
about 29 dBm attenuation). However, this feature does not exist in a multi-floor environ-
ment with an atrium space. The BCFI algorithm uses the floor with the largest posterior 
probability as the final floor estimation. The BCFI algorithm has good performance in 
terms of accuracy and robustness compared with SkyLoc (Alex et al. 2007) and cluster-
ing algorithms. This paper showed that in the floors with large hollow areas, the BCFI 
algorithm has a relatively small RSSI difference between adjacent floors, which leads to 
a significant reduction in floor recognition accuracy. At this time, the average accuracy 
of floor recognition of the test data only exceeds 15%, which is insufficient. Furthermore, 
another study (Zhao et  al. 2017) introduced the BPFI algorithm for floor identification 
based on barometric pressure. The premise of this algorithm is that, after manual input 
or high-confident floor estimation is used for initialization, the pressure difference can be 
used to determine the relative floor transition to finally complete the floor identification. If 
there is no high-precision initial floor position, then the pressure-based floor positioning 
results will be unreliable. Depending on the ubiquitous Wi-Fi signals and AP locations, 
the StoryTeller method (Elbakly et  al. 2020) can be employed to generate images, build 
the virtual architecture, train the model by using a convolutional neural network (CNN), 
and finally obtain a higher precision result. The basic idea of this method is that APs on 
the target floor experience less attenuation and stronger RSSs are generally received from 
APs on the target floor. This method depends on the relative location of the AP, and it is 
difficult to obtain the location in reality. Meanwhile, this method performs well in ordinary 
buildings with concrete floor slabs. However, for the multi-story environment of the atrium 
spaces, the wireless signal propagation characteristics are different (Chapter  2.6), which 
affects the performance of this method. Moreover, Huang et  al. (2020) proposed a floor 
positioning method for hollow areas. This method combines a variety of sensors to achieve 
high-precision floor positioning. At the same time, the study also points out that the Wi-Fi 
fingerprints between adjacent floors are very similar and it is difficult to accurately localize 
floors. Therefore, it is difficult to accurately identify the floors using only the Wi-Fi-based 
floor positioning method. In hollow areas, the barometric pressure-based floor position-
ing method with "reference barometric pressure" is used to predict the floor. This method 
requires additional deployment and data communication development, which is costly and 
not conducive to popularization and application.

In conclusion, in the multi-floor structure of the atrium space, the signal differences 
between floors are not obvious. Consideration can be given to combining the RSSI dis-
tribution of the wireless signal and the deployment of APs to carry out floor positioning 
from a multi-angle analysis of the signal characteristics, the number of APs, RSSI mean 
value, and so on, which can effectively improve the accuracy of floor positioning in such 
environments and realize high-precision results. In summary, most of the initial floor or 
floor positioning methods based on wireless signals have their advantages in common 
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multi-floor environments, but few have been tested and verified specifically in multi-
floor indoor environments with atrium space structures. Based on the above analysis and 
the analysis of the test of wireless signals in a multi-floor environment with an atrium 
space in Chapter  2, it was found that the signal of the Bluetooth Low Energy (BLE) 
has a shorter transmission distance than a Wi-Fi signal. In the test environment, the 
signal and AP coverage of BLE on different floors was significantly lower than that of 
Wi-Fi, indicating that BLE has more obvious floor differences, and thus a BLE signal is 
more suitable for high-precision floor positioning in such environments. Bluetooth Low 
Energy modules are commonly used today in the intelligent world, and their main appli-
cations include location tags, asset tracking, sports and health sensors, medical sensors, 
smartwatches, remote controls, toys, and so on, with a certain universality. Moreover, 
in the Internet of Things era, the BLE module has become one of the indispensable 
supporting modules. In practical applications, BLE modules are inexpensive, easy to 
deploy, and have a certain universality. A multi-floor environment with an atrium space 
is not an exception, and it is widely distributed with a high volume of indoor traffic, 
making floor positioning in such an environment extremely useful. This paper proposes 
a hybrid method for floor positioning using smartphones and BLE signals specifically 
for indoor multi-floor environments in atrium spaces. Two methods are used to calculate 
the results of the respective floors, assign adaptive weights to the different results, and 
then combine the two results with the normalized weights to make a combined decision 
and then resolve the information of the target floor. The method performs well in the 
multi-floor environment of the atrium space, with a low fingerprint database collection 
effort and low cost, making it easy to apply for general use by the public.

The subsequent chapters are as follows: Chapter  2 describes the spatial distribu-
tion characteristics of wireless signals in a multi-floor environment with indoor atrium 
spaces and compares the differences between Wi-Fi and BLE signals. Chapter 3 intro-
duces the proposed algorithm. Chapter  4 carries out relevant experiments and valida-
tions. Finally, Chapter 5 provides the final summary and perspectives of the main theme.

2 � Spatial distribution characteristics of wireless signals in a multi‑floor 
indoor atrium environment

2.1 � Introduction to the test site

The test site was located at the National Key Laboratory of Navigation Satellite System 
and Equipment Technology, the 54th Research Institute of China Electronics Technol-
ogy Group Corporation (CETC54), Shijiazhuang, Hebei Province, China. In this paper, 
it is referred to as the C7 test site. The C7 test site has three floors of unequal heights, 
with a typical atrium space structure inside. Each floor is about 28 m long and 25 m 
wide, covering an area of about 700 square m. The test site is equipped with a variety 
of equipment and devices specifically designed for indoor positioning research, includ-
ing BLE, Wi-Fi, cameras, pseudo-satellite, and so on. The specific test environment is 
shown in Fig. 2. The blue and red triangles in the figure show the location of the BLE 
installation on the three floors, where the brand of the BLE is Yunli ‘uli E5, priced at 
45 Chinese Yuan per unit. Floors 1–3 of the test site were equipped with 18, 18, and 21 
BLE devices and 26, 30, and 20 Wi-Fi devices.
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2.2 � Introduction of Wi‑Fi/BLE signal acquisition software and experimental data

We used the same signal acquisition software like the one in prior work (Bi et al. 2018), 
which was installed on a smartphone, and with an acquisition frequency of 1 Hz. The soft-
ware could collect and save the RSSI value of every second of all the APs of BLE and 
Wi-Fi that could be searched within a set period of time. We set up two types of meth-
ods for signal acquisition. One was static acquisition where the position and posture of the 
mobile handsets were kept constant during acquisition, also known as standing acquisition. 
Another type of acquisition was the dynamic acquisition in which the position or attitude 
of the phone constantly changed during the acquisition process, also known as walking 
acquisition. The fingerprint library of the floors was chosen in the same way as (Qi et al. 
2019), namely, slow walking to collect the Wi-Fi/BLE signals of each floor, while generat-
ing the interval confidence floor fingerprint library (ICFDB). Besides, there was a test point 
every 3–4 m on each floor, and the static signal was collected to generate a floor fixed-point 

Fig. 2   The C7 test site environ-
ment and the BLE layouts (red 
and blue triangles indicate the 
locations of the BLE devices)

Table 2   Example format of Wi-Fi/BLE FFPDB

Floor_id Test_id MAC_id RSSI1(dBm) RSSI2(dBm) … RSSIn(dBm)

F1 01 C2:02:8E:00:00:71  − 93  − 85 …  − 85
F1 01 C2:02:8E:00:00:73  − 81  − 82 …  − 82
… … … … … … …
F1 02 C2:02:8E:00:03:1A  − 70  − 77 …  − 76
… … … … … … …
F3 19 C2:02:8E:00:03:1B  − 78  − 82 …  − 83
……
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database of fingerprints (FFPDB). Then, a walk was done around each floor and signal data 
per second was collected to generate a library of floor dynamics tests (FDTDB). After that, 
the layout information of each AP is collated and the AP floor location library was gener-
ated (APFDB). The format of the ICFDB from prior work (Qi et al. 2019) and other data-
base formats are shown in Tables 2, 3, 4.

2.3 � Spatial distribution characteristics of Wi‑Fi/BLE signals in multi‑floor atrium 
spaces

In indoor multi-floor environments with an atrium space, the wireless signal becomes more 
“unobstructed” to travel through space without blocking from either floor plates or the cor-
responding walls in the atrium area, and there is a higher signal similarity between adja-
cent floors. To analyze the Wi-Fi/BLE FFPDB, FDTDB, and APFDB, and to display the 
distribution of the signal at each TP of the APs on each floor from the 1st to the 3rd floor, 
the 5-s Wi-Fi/BLE static signal distribution is shown in Fig. 3, while the 1-s BLE real-time 
dynamic signal distribution is shown in Fig. 4. There are 67 TPs in Fig. 3, of which 30 are 
on the first floor, 19 on the second floor, and 18 on the third floor; and there are 275 TPs in 
Fig. 4, of which 90 are on the first floor, 95 on the second floor, and 90 on the third floor. 
Figures  3 and 4 are presented in a two-dimensional table, where the yellow, green, and 
orange areas represent different Wi-Fi/BLE APs or TPs on floors 1–3, respectively. The 
data section shows the strength of the signal in a red gradient; the darker the color, the 
stronger the signal. Different tables from left to right represent the distribution of signals 

Table 3   Example format of 
Wi-Fi/BLE FDTDB

Floor_id Test_tid MAC_List RSSI1(dBm)

F1 001 C2:02:8E:00:00:71  − 93
F1 001 C2:02:8E:00:00:73  − 81
… … … …
F2 001 C2:02:8E:00:03:1A  − 70
… … … …
F3 109 C2:02:8E:00:03:1B  − 78
F3 109 C2:02:8E:00:03:2C  − 79
……

Table 4   Example format of 
Wi-Fi/BLE APFDB

Floor_id MAC_id

F1 C2:02:8E:00:00:71
F1 C2:02:8E:00:00:73
… …
F2 C2:02:8E:00:03:1A
… …
F3 C2:02:8E:00:03:1B
……
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in different RSSI ranges, for example, all the signal values, RSSI ≥  − 80, RSSI ≥  − 70, 
RSSI ≥  − 60, and so on.

Figure  3 shows that Wi-Fi had stronger signal coverage and RSSI than BLE. In the 
multi-floor environment of the atrium space, the Wi-Fi signal had high similarity in the 
adjacent floors, making it difficult to effectively identify the floors with the Wi-Fi signal 
distribution characteristics. The BLE signal propagation distance was short, and the RSSI 
of the BLE AP which was at the deployment floor was significantly better than that of other 
floors when the BLE signal was greater or equal to − 70 dBm. The performance was more 

Fig. 3   The RSSI distribution of Wi-Fi/BLE for 5-s static signals at all the TPs on each floor, respectively

Fig. 4   RSSI distribution of BLE for the 1-s dynamic real-time signal at all TPs on each floor
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prominent when the signal was greater or equal to − 60 dBm, which is when the signal 
distribution has stronger floor properties. As a result, the short transmission distance and 
strong floor signal properties of BLE signals are highlighted. Both these properties indicate 
that BLE signals are more suitable than Wi-Fi for conducting floor positioning in such 
environments. The comparison of the BLE signal data in Figs. 3 and 4 shows that the static 
fixed-point data has better floor properties and high signal coverage as well as good signal 
stability. The 1-s real-time dynamic data has weak floor attribution characteristics as well 
as low signal coverage and poor signal stability. Therefore, from the distribution character-
istics of each signal, only using RSSI as an eigenvalue to calculate the floor location accu-
racy is not reliable enough. Therefore, it is necessary to consider both RSSI and AP layout 
information as the eigenvalue to improve the floor positioning accuracy.

2.4 � Wireless fidelity and BLE signal coverage at different floors of the atrium space

In the test site, the Wi-Fi/BLE FFPDB contained 76 Wi-Fi and 57 BLE APs and as well as 
67 TPs. Figure 5 shows the Wi-Fi/BLE AP signal coverage rate at the current floors, adja-
cent floors, and two floors apart. There is an example of Wi-Fi signal coverage rate on the 
same floor (which is the corresponding data of the left dark green bar chart in Fig. 5). The 
numerator is cumulatively derived from the number of signal frequencies at the TPs of all 
the floor APs of the respective floors, and the denominator is derived from the total number 
of frequencies in the full distribution of the number of APs in all floors in the TPs of the 
respective floors, and the ratio of the two is the signal coverage of the same floor. Figure 5 
shows that, in the test site environment, the coverage of the BLE signal on the current floor 
was only about 80%, with less than 70% coverage on all other floors. Thus, the BLE sig-
nal coverage was significantly weaker than the Wi-Fi signals. This illustrates that the BLE 
signal was less similar in different floors, and the index of differentiating floors performed 
better than the Wi-Fi signal.

When the above test data were integrated again, the ratio of the number of APs collected 
from each test site to the total number of test APs was counted, as shown in Fig. 6. The red 
line in the figure indicates Wi-Fi data, while the blue line indicates BLE data. Each point 
represents the ratio of the number of APs with the signal at each TP to the total number of 
test APs, that is, it is the signal coverage of the Wi-Fi and BLE APs at each TP. Most of 
the Wi-Fi has signal coverage was more than 90% throughout all of the three floors’ TPs. 
This shows that the Wi-Fi signal had a high similarity across different floors and regions 

Fig. 5   The Wi-Fi/BLE AP signal 
coverage rate at the current floor, 
adjacent floors, and two floors 
apart
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throughout the test environment, and the floor properties of the signal were not obvious. 
The BLE data varied, with the number of BLE APs collected at most test sites account-
ing for only about 70% of the total. That is, there was about 30% variability in the AP 
sequences of BLE for different floors. Therefore, the floor difference of the BLE signal was 
better than that of Wi-Fi.

The above analysis of Wi-Fi and BLE signals on multiple floors of the atrium space 
shows that the BLE’s floor recognition is stronger than the Wi-Fi signal because the BLE’s 
transmission distance is less than the Wi-Fi signal. Most floor location algorithms based 
on Wi-Fi signals, however, suffer some degradation in performance in the atrium space 
environment, making it difficult to meet basic requirements. Therefore, in this research, the 
BLE signal is used to carry out the floor positioning test and verify the positioning perfor-
mance according to the peculiarities of a multi-floor environment with an atrium space.

2.5 � Comparison of spatial distribution characteristics of wireless signals 
in a multi‑floor environment with or without an atrium space structure

A 30-s Wi-Fi and BLE signal was collected at the same horizontal location on all three 
floors to find the RSSI distribution of the APs that were installed on the third floor. The 
details are shown in Fig. 7. Figure 7a shows the signal distribution from floors 1–3 of the 
Wi-Fi APs installed on the 3rd floor in our test site. Figure 7b shows the signal distribution 
from floors 2 to 4 of Wi-Fi APs installed on the 4th floor in a common multi-floor environ-
ment (Qi et al. 2019). Figure 7c shows the signal distribution from floors 1–3 of the BLE 
APs installed on the 3rd floor in our test site. As shown, the Wi-Fi signal attenuation on 
the adjacent floors was about 25 dBm in the normal full-floor laminate environment, while 
the attenuation was only about 2 dBm in the atrium space environment. The former value 
is far greater than the latter. In the multi-floor environment of the atrium space, the Wi-Fi 
signal did not vary significantly from one floor to the next. This feature greatly affects the 
accuracy of most floor positioning methods based on Wi-Fi signals. The BLE signal had a 
shorter propagation distance, and the signal attenuation in the atrium space adjacent to the 
floor was about 15 dBm, which was significantly greater than the value of the Wi-Fi signal. 

Fig. 6   The AP coverage of Wi-Fi/BLE at all TPs
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Although BLE has poor signal stability, it is still superior to Wi-Fi for floor positioning in 
the test site environment of this study.

2.6 � Comparative analysis between the floor where the largest RSSI of the AP 
is located and the actual floor of the AP

Aiming at the part of the floor identification method based on the location of the AP, the 
corresponding floor signal was analyzed at the C7 test site, and the floor with the largest 
RSSI in all APs and the real one installing the APs were extracted and then comparatively 
analyzed. The results are shown in Fig. 8. In this figure, the calculated floor represents the 
floor where the AP’s strongest signal was located, and the real floor represents the actual 
floor location of the APs. In the multi-story environment of the atrium space structure, the 
location of the floor where the AP’s strongest signal was located was not necessarily the 
location of the AP’s deployment floor. The Wi-Fi signal propagation distance was rela-
tively long, resulting in only 61% of the two floors having the same location. Moreover, 
BLE performed much better, and it accounted for 86%. The theory of laying the floor AP 
with the strongest signal was weaker in this kind of environment, which easily leads to the 
failure of the method relying on Elbakly et al. (2020) in the atrium structure environment. 
The main reason for this phenomenon is that, first, the lack of floor plate greatly reduces 
the attenuation effect of RSSI, and, secondly, the multipath effect makes the RSSI fluctuate 
greatly (about 10 dBm). The transmission distance corresponding to this signal difference 
(10 dBm) is likely to be greater than the height of the floor. Therefore, it is understandable 
for this phenomenon to occur in an atrium space environment.

(a) Multi-floor Wi-Fi signal in the atrium space (b) Multi-floor Wi-Fi signal without an atrium space

(c) Multi-floor BLE signal in the atrium space

Fig. 7   The RSSI profile of Wi-Fi/BLE signals in the three adjacent floors in multi-floor environments with 
different indoor structures
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2.7 � The RSSI and transmission distance of Wi‑Fi/BLE

Figure 9 shows the RSSI of the Wi-Fi/BLE signal within 100 m as the distance increases 
and the Wi-Fi/BLE RSSI attenuation at a distance of 2–10  m in the indoor horizontal 
ground scene. The transmission distance of Wi-Fi signals was greater than that of BLE 
signals, and the RSSI was stronger than BLE. The signal attenuation of BLE was more 
significant between 2 ~ 10 m. In the multi-story environment of the atrium space, the signal 
difference of BLE on different floors was more obvious, and the effect of floor differentia-
tion was better. Through the analysis of the Wi-Fi/BLE signal, the following two propaga-
tion characteristics of the wireless signal are reflected: (1) During the propagation process, 
the RSSI attenuates with the increase of the transmission distance; (2) The multipath phe-
nomenon of the wireless signal causes the fluctuations of the RSSI to be relatively high. 

(b)

(a)

Fig. 8   Atrium space AP real floor and its largest RSSI floor distribution

Fig. 9   The RSSI and transmission distance of Wi-Fi/BLE and RSSI attenuation within 10 m
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Furthermore, the propagation distance of BLE is shorter than Wi-Fi, and the signal attenu-
ation of BLE at the same propagation distance is more obvious than Wi-Fi (as can be seen 
from the signal attenuation within 10 m shown in Fig. 9). In short, the short transmission 
distance of BLE signals makes the signal difference between different floors more obvi-
ous than Wi-Fi signals, and BLE is better than Wi-Fi when locating floors in this type of 
environment.

3 � The BLE initial floor positioning method based on multi‑algorithm 
fusion

The spatial distribution characteristics of BLE signals in multi-floor environments with an 
atrium space show that the RSSI alone is not sufficient to find the floor position with high 
accuracy. In this study, the RSSI and AP layout data were incorporated into eigenvalues 
together and then solved, and a BLE signal-based, multi-method integrated floor position-
ing algorithm is proposed. The algorithm is divided into an offline stage and an online 
stage. In the offline stage of this study, we trained three datasets. The first dataset used the 
same approach proposed by Qi et al. (2019) to capture fingerprints and then generated a 
database of signal interval confidence fingerprints. The second collected AP set-up infor-
mation to generate a floor location library. The third collected test data, using two algo-
rithms to generate process data then used them for training to derive two weight normaliza-
tion factors. The two factors were used for the two methods during the online phase. In the 
online stage, the BLE test signal is first denoised to generate denoising data. Secondly, the 
signal interval confidence algorithm (Qi et al. 2019) is used to calculate the sum of confi-
dence levels corresponding to each floor from the denoising data, and then the results of 
the sum of confidence levels for each floor are saved. Then the floor 1 with the max result 
is calculated and saved. At the same time, using denoising data and referring to the AP 
floor position database, the signal averages from the denoising data for each floor are cal-
culated and saved. After that, the floor where the maximum signal average value is located 
is judged as the result of floor 2, and the signal average value of each floor is saved. Then, 
based on the two floor results, a weight adaptive normalization process filter is performed. 
Finally, the estimated value of the floor after the filter is calculated, and the estimated value 
is rounded to the resulting floor position, which is the final result of the floor information. 
The specific floor positioning process is shown in Fig. 10.

3.1 � Signal denoising

The test data was the average signals in several seconds collected at an arbitrary station-
ary position. It is denoted as TFtest = {Maci,rssii} (i = 1,2,3,…,n), where Maci is the media 
access control (MAC) address of the i-th BLE and rssii is the corresponding average rssi 
for the ith BLE. How much data needs to be removed for weak signals should be based on 
the training and positioning tests in the test site environments. Our multiple tests suggested 
that BLE signals weaker than − 90 dBm induce noticeable interference with the following 
floor positioning algorithms. Because the floor difference of this part of the signal is weak, 
the corresponding AP cross-floor property is obvious, and this characteristic can be seen in 
Figs. 3 and 4. Therefore, the real-time test signals with RSSI smaller than − 90 dBm were 
considered to be noise and were removed to improve the floor positioning accuracy. The 
signal denoising equation is as follows:
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According to statistics, the proportion of weak signal data that was eliminated was 
only about 3% of all the signals, and most of them were distributed in the farthest posi-
tion from the AP. In practical applications, a variety of factors need to be considered in the 
signal rejection interval, including floor height, AP layout, laminate material and thick-
ness, indoor area, and so on. For example, if the floor height is higher, the floor plank 
is thicker and the atrium space area is larger, then the attenuation of the wireless signal 
is more obvious. In this condition a high-precision floor positioning can also be achieved 
without removing weak signals.

3.2 � Floor positioning algorithm based on maximal average RSSI of the AP

We improved the method algorithm from prior work (Maneerat et  al. 2014a) by adopt-
ing BLE signals instead of Wi-Fi signals. Our method is affected by the number of APs 
allocated on each floor since floor positioning is conducted based on the average RSSI 
from each floor’s APs. Assume that the number of BLE allocated on each floor is Mt, 
where t = 1,2,…, and T denotes the floor. We used the notation BF = [Ft, Mact_i], where 
t_i = 1,2,…, and Mact_i denotes the MAC address of the i-th BLE on the floor t and the 
list of denoising fingerprints; and TF’test = [Macj,rssij], where j = 1,2,…,n’, and n’ < n is the 
number of BLE after signal denoised. By matching TF’test with the MAC addresses in BF 
and using the average RSSI of the AP on the same floor (named rssi_avgt), the target floor 

(1)TF
�

test
=

{

[Maci,rssii], ifrssii ≥ −90dBm

[null], ifrssii < −90dBm

Test signal data

Offline 
stage

Online stage

ICFDB APFDB

Target 
floor 1

denoising

Offline 
stage

Target 
floor 2

Confidence of 
each floor 

average RSS 
of the Aps of 

Each floor

weighted and 
fusion

Weighted 
normalization 

factor

Target floor 
result

Full site 
test data

Training

Fig. 10   Flowchart of the BLE floor positioning algorithm for multi-algorithm fusion
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can be determined by finding the largest rssi_avgt, that is, the floor with the largest BLE 
signal. The equation is as follows:

We summarized the target floor and the corresponding rssi_avg in the list 
F1 = [Fmax_rss, rssi_avg], where Fmax_rss denotes the first to the T-th floor in the test site, and 
rssi_avg = [rssi_avg1, rssi_avg2,…,rssi_avgT]. The list was used as the evidence for assign-
ments of weights and the indicator for integration of mixed floor positioning algorithms.

3.3 � Floor positioning algorithm based on signal confidence intervals

The denoising test signals are used to continue the method. First, following the same pro-
tocol as prior work (Qi et  al. 2019), we tested the fingerprint data and created a finger-
print database of the signal confidence intervals. We then used the denoised test fingerprint 
TF’test to conduct floor positioning.

Based on the original algorithm, we added a procedure of weight assignments and 
stored the confidence levels of different levels obtained in the last second step of the algo-
rithm, which is denoted by F2 = [Finterval,Interval], where Finterval denotes from the first to 
the T-th floor; and Interval = [Interval1, Interval2,…, IntervalT], which were used as the evi-
dence for assignments of weights and the indicator for integration of algorithms to deter-
mine the target floor.

3.4 � Training and calculation of weight normalization factors

We collected the data from the K test sites that were able to cover the entire test site envi-
ronment. By applying the floor positioning algorithm from Chapters  3.2 and 3.3 of this 
paper, we obtained the results summarized in the two lists, F1 and F2. We then extracted 
the maximal and the second maximal values, denoted by max(rssi_avgK), max1(rssi_avgK), 
max(IntervalK), and max1(IntervalK) from rssi_avgk and Intervalk (k = 1,2,…,K) at all the 
test sites according to the intermediate results rssi_avgK and IntervalK from the two lists. 
The initial weights of the two algorithms, q1k and q2k, were calculated by Eq. (4) as follows:

After obtaining the initial weights of the two algorithms from Eq.  (4), denoted by 
q1 = [q11,q12,…,q1K] and q2 = [q21,q22,…,q2K], we calculated the weight normalization fac-
tors w1 for q1 and w2 for q2 so that the two weights could have identical dimensionality. 
The two normalization factors satisfy the following relationship:

In the upcoming procedure of algorithm integration, the weights were to be normal-
ized by the above factors, that is, multiplying the weights and the normalization factors, as 
shown in Eq. (6).

(2)rssi_avgt = average(list(rssij, if Macj ∈ BF(Ft,Mact_i))

(3)The target floor is Fmax_rss = argmax(rssit), t = 1, 2, ...,T

(4)
{

q1k = (max(rssi_avgk) −max 1(rssi_avgk))∕abs(max(rssi_avgk))

q2k = (max(Intervalk) −max 1(Intervalk))∕max 1(Intervalk)

(5)
{

w1 = 1

w2 = sum(q1)∕sum(q2)
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The use of the normalization factors w1’ and w2’ allowed the two methods to have iden-
tical dimensionality in the procedure of algorithm integration.

3.5 � Floor positioning by weighted integration

Based on the floor results Ft1 and Ft2 obtained by the two floor positioning algorithms from 
Sects. 3.2 and 3.3, the intermediate values, rssi_avgt1, rssi_avgt2, intervalt1 and intervalt2, 
corresponding to each algorithm are obtained. Formula (4) is used and the intermediate 
values are combined to generate the weights of the two results, and the calculation formula 
is as follows:

Then, the normalization factor trained in Sect.  3.4 adaptively normalizes the two 
weighted results as follows:

Based on the two normalized new weights wt1 and wt2, the results of the two floors 
are merged and calculated and then rounded. Formula (9) gives the specific calculation 
process.

Finally, the rounded floor result is determined as the target floor, and the floor position-
ing algorithm is completed.

4 � Testing and analysis

To facilitate the verification of the floor positioning performance of the methods, we used 
several methods that are more suitable for floor positioning at the test site. Besides, as each 
method requires, the corresponding fingerprint library was captured and created. At the 
same time, the same test data set was used as much as possible for assessment accuracy 
and performance analysis. The reference data used were as follows: Wi-Fi/BLE ICFDB, 
Wi-Fi/BLE APFDB, and Wi-Fi/BLE FFPDB. The test data was measured using Wi-Fi/
BLE FFPDB and FDTDB to compare the floor positioning accuracy between a 5-s static 
scenario and 1-s motion scenario. The 1-s motion data refers to the real-time test signal 
collected at 1 Hz by walking continuously for a period of time on each floor. The above 
data and a variety of algorithms were adopted to carry out floor positioning tests, and the 
accuracies of each method of floor positioning were compared. At the same time, a com-
parative analysis of each method’s fingerprint database acquisition and maintenance work-
load as well as other indicators was conducted. Figure  3 shows that some of the strong 

(6)

{

w
�

1
= q1 ∗ w1

w
�

2
= q2 ∗ w2

(7)
{

qt1 = abs((rssi_avgt1 − rssi_avgt2)∕max(rssi_avgt1, rssi_avgt2))

qt2 = abs((Intervalt1 − Intervalt2))∕min(Intervalt1, Intervalt2)

(8)

{

wt1 = qt1 ∗ w
�

1

wt2 = qt2 ∗ w
�

2

(9)Fresult = round(Ft1 ∗ wt1 + Ft2 ∗ wt2)
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signal data for the BLE signal reflected strong floor attributes, and most of the AP signals 
were distributed over the installation floor. A small percentage of the signal came from 
APs on adjacent floors, and a very small percentage of the signal came from APs two floors 
apart. The Wi-Fi signal had not only a strong RSSI but also large signal coverage through-
out the three floors of the test site. As a result, Wi-Fi signals had weaker floor properties 
than BLE in the atrium space. Experiments were carried out based on the above wireless 
signal characteristics, and the results were compared and demonstrated.

4.1 � Comparison of Wi‑Fi/BLE accuracy in determining floor positions based 
on the number of APs in different RSSI intervals

Based primarily on the propagation characteristics of wireless signals that are located in a 
multi-floor environment with an atrium space, the number of APs on each floor based on 
different RSSI ranges can be counted to make decisions about the floor level. This method 
visually compares the floor positioning performance of Wi-Fi and BLE signals in such 
environments. The floor determination based on the number of APs can be described as 
follows: Using the 5-s FFPDB of Wi-Fi/BLE, the number of APs on each floor is associ-
ated with the Wi-Fi/BLE APFDB, and the floor with the largest number of APs is identi-
fied as the target floor. Three additional points are added here. The first one is that, if the 
number of APs deployed on each floor is different, then the ratio of the number of APs to 
the number of APs deployed on the current floor can be used as the eigenvalue for deter-
mination. Secondly, the fixed-point static signal is selected, and the 5-s RSSI mean value 
is taken, which can fully reflect the signal characteristics of the test location. Third, the use 
of different signal intervals for comparison can highlight the layered nature of Wi-Fi and 

Fig. 11   Comparison of Wi-Fi/BLE floor positioning accuracy for different RSSI ranges in a multi-floor 
environment with an atrium space
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BLE signals. Different RSSI ranges correspond to different floor positioning accuracies, as 
shown in Fig. 11.

Figure 11 shows that the 5-s static BLE test signal had the highest floor location accu-
racy of 100% when the RSSI was greater or equal to − 70 dBm. The highest accuracy was 
only 82% when the Wi-Fi signal was at RSSI ≥  − 50 dBm, and the Wi-Fi signal was gener-
ally less accurate than the BLE signal. It is also evident that the Wi-Fi signal was gener-
ally stronger than the BLE signal in terms of RSSI throughout the test site. Therefore, the 
Wi-Fi signals in the multi-floor environment of the atrium space structure could reach the 
floors at the more distant locations. The 5-s static test data was also not enough to improve 
the floor level determination accuracy of the Wi-Fi signal, which makes the use of BLE 
for floor positioning more ideal in this environment. Moreover, while the BLE signal in 
Fig. 11 reached 100% accuracy, this accuracy was achieved from test data that was col-
lected in a 5-s static state. Figure 4 also shows that the BLE signal collected in real-time 
dynamics, that is, movement in 1 s, was more volatile and had a smaller sample size. This 
does not guarantee that the BLE signal will always retain sufficient samples and achieve 
high accuracy when taking a value that is greater or equal to -70 dBm. Therefore, if we 
want to obtain the highest floor positioning accuracy, the threshold range of the RSSI needs 
to be derived by a certain amount of professional training. Although this process is compli-
cated, it is effective for most fingerprint-based methods, and thus we can consider whether 
to use it according to the actual situation. In this step, our method directly uses a robust 
method that removes a very small part (about 3%) of the weakest signal.

4.2 � Performance analysis of multiple floor positioning methods

To test the performance of the methods, we selected several floor positioning methods 
more suitable for comparison and analysis at the test site of this study. To ensure some 
degree of fairness, the algorithms were based on the same reference data and test data as 
much as possible. In terms of signals, there were two types of wireless signals, Wi-Fi and 
BLE. In terms of the collecting method, the test data was collected in two states: standing 
still for 5 s and moving in real-time for 1 s. Several methods for locating the floors selected 
in this study are described below.

(1)	 K-nearest neighbor floor positioning algorithm. The steps of this algorithm were pro-
posed by Alsehly et al. (2011). When the data from the fingerprint library of the 5-s 
fixed-point was tested, both Wi-Fi and BLE signals were selected with the scenario 
of K = 1 for comparison. Because the signal corresponding to the 5-s FFPDB can 
already represent the basic characteristics of the signal at the acquisition point, choos-
ing reference points of the same density and using a longer period of time to acquire 
a reference fingerprint library will result in a significant difference in reference data 
from other methods. Moreover, this will result in an inability to reasonably compare 
floor positioning performance with other methods. In this case, we chose the source 
data of the slow-walking acquisition fingerprint database, known as the ICFDB, as the 
reference fingerprint.

(2)	 The strongest average RSSI floor positioning algorithm. This method is based on the 
ideas proposed by Bhargava et al. (2012), which "should select the relevant signal 
indicator attributes to determine the floor since the AP signal attenuates as it passes 
through the ceiling and floor" and "the average signal strength of APs from the same 
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floor will be higher." The algorithm adopts the signal data collected at any TP, corre-
lates the APFDB, counts the average signal value of APs on each floor, and eventually 
determines the floor where the AP group with the largest average signal value is located 
as the target floor.

(3)	 Signal interval confidence algorithm. This algorithm uses de-noised signals to carry out 
floor localization based on the method from Qi et al. (2019). The fingerprint data col-
lected after a slow walk on each level was used to train the optimal signal intervals and 
finally aggregate to generate a Wi-Fi/BLE ICFDB, and we used FFPDB and FDTDB 
as the test data.

(4)	 Bayes algorithm. This method uses Bayes algorithm to carry out floor positioning. 
The method eliminates some of the weak signal APs from the TP data. It also chooses 
the APFDB as a reference. It selects the AP location as the eigenvalue instead of the 
RSSI. Furthermore, a Bayes algorithm calculates the probability that the test fingerprint 
belongs to each floor, and finally the location of the floor with the highest probability 
is determined as the target floor.

(5)	 The proposed method. The specific algorithmic process is explained in detail in Chap-
ter 3. In brief, it is a process of adding adaptive weighted integration to two methods 
to finalize the floor positioning results.

The same reference data was used here to generate a library of reference fingerprints in 
the format required for each method. Wherever possible, floor positioning was carried out 
using the same test data. The floor positioning performance of the five methods is shown in 
Table 5. As shown, the accuracy of the Wi-Fi signal floor positioning was lower than that 
of the BLE signal, except for the real-time dynamic test results of the K-nearest neighbor 
floor algorithm. However, among the five methods in a multi-floor environment, for the 
collection and maintenance, as well as the updating work of the fingerprint database on 
the floor nearest to K, it was the most intensive one, and thus it is not suitable for general 
application in a large indoor multi-floor environment. Moreover, in the floor determina-
tion method using BLE signals, our method had the highest floor positioning accuracy in 
both state modes, that is, 5-s static and real-time dynamic. It also had a modest workload 
of fingerprint database collection, a small quantity of fingerprint library data collection, 
and a low complexity of the online phase algorithm. Furthermore, the general performance 
of the smartphone supports this as well. Besides, in the atrium multi-floor space, the floor 
recognition accuracy by the Bayes algorithm was no better than 15%, which was described 
by Zhao et al. (2017). For these reasons, it is appropriate for our approach to be applied 
universally, especially in a multi-floor environment with an atrium space.

To more vividly show the floor positioning results of each algorithm in the atrium space 
environment, the floor positioning accuracy and the amount of fingerprint database data 
were taken as indicators and shown in a graphical display. In the test, the K-nearest neigh-
bor and the proposed algorithm were used as examples to illustrate the fingerprint library 
acquisition workload. The K-nearest neighbor method requires the selection of multiple 
reference points, and reference points at the test site were established every 7–9 m on aver-
age. In that condition, we make the following assumptions: the entire floor could be laid 
out with an average of 12 reference points; for each reference point, only one direction was 
selected to collect the signal for 60 s; there were 60 BLE APs in the whole test site; and 
the average signal coverage of each AP was about 70%. As a result, the volume of the BLE 
signal fingerprint library data for the entire test site was 12 (reference points) * 3 (floors) 
* 60 (APs) * 70% (AP coverage) = 1512 pieces of data. On the other hand, the acquisition 
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time was 12 (reference points) * 3 (floors) * 1 (minute) + 3 min of floor transition = 39 min. 
In our algorithm, the amount of fingerprint library data collected by the signal ICFDB was 
about 3 (floors) * 60 (APs) = 180 pieces of data plus 60 more AP layouts for a total of 240 
pieces of data, and the fingerprint signal acquisition time for 3 times was 1.5 (minutes 
per floor) * 3 (floors) * 3 (times) = 13.5 min. The most important difference between the 
two methods is that the amount of data in the fingerprint database based on the K-nearest-
neighbor floor positioning algorithm increases exponentially as the number of reference 
points and floor area increases, while the amount of data in the fingerprint database based 
on the method in this research is only a fraction of the increase. As the number of multi-
floor areas and floors increases, the difference in the amount of fingerprint library data 
between the two methods will become more pronounced. The performance of floor loca-
tion based on the K nearest neighbor algorithm is restricted and is not applicable for a wide 
range of universal use.

The detailed data volume and positioning performance display is shown in Fig. 12. As 
shown, of the five BLE-based floor location algorithms, the proposed algorithm achieved 
the highest floor positioning accuracy in both 5-s static state and 1-s real-time dynamic 
motion. The amount of data in the fingerprint database was much smaller than that in an 
ordinary fingerprint database of pointing acquisition, and the overall positioning perfor-
mance was optimal.

Moreover, during the 1-s real-time dynamic data test, the floor location accuracy of the 
method based on the confidence of the signal interval was 89.1% and the maximum mean 
signal floor AP was 86.2%, which can be seen from Table 5. The result increased to 92.7% 
after adaptive weighted fusion of the two methods, which improved the overall floor posi-
tioning accuracy.

4.3 � Comparisons of floor positioning test results of multiple atrium space test sites

To further test the performance of the method in this paper, we chose two other real multi-
floor experimental environments with atrium space, namely, an office building and the 

Fig. 12   Comparison of floor positioning accuracy and fingerprint database data volume by each method
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administrative building of a university. Given the authenticity of the test site and site layout 
restrictions, we could not deploy additional Wi-Fi/BLE devices. The BLE beacon in the 
two test sites was so sparse that it could not support the floor positioning test. Meanwhile, 
the Wi-Fi signal density was higher than BLE, and it could basically meet our require-
ments; thus, we chose the Wi-Fi signal for the multi-method performance comparison. The 
specific indoor environment is shown in Fig. 13, where Fig. 13a, b represent the inner real 
scenes of a college building F1 and administrative building F2, respectively. Figure 13c, d 
are the schematic diagram of the atrium space area of Fig. 13a, b, respectively. Figure 13c, 
d show that the atrium space of the test site F1 is a polygonal irregular structure; the atrium 
space of the test site F2 is a slender rectangular structure. We used a variety of methods to 
compare floor positioning performance.

Given the actual test site layout conditions and the corresponding floor positioning 
method requirements, we employed several advanced machine learning classification 
methods to jointly carry out floor positioning tests at three test sites, C7, F1, and F2, and 
we compared the accuracy of the different methods. The methods included decision tree, 
SVM, KNN, and neural network. The specific floor positioning accuracy results are shown 
in Fig.  14. Each test site in the figure was tested for a 1-s motion state (1  s) and a 5-s 
static state (5 s) test, and the FFPDB and FDTDB (1 s and 5 s) used by each classification 
method were the same. As shown in the figure, except for the accuracy of the decision 
tree classification method in the 1-s real-time positioning test of the C7 test site that was 

(a) office building F1 (b) administrative building F2

(c) schematic diagram F1 (d) schematic diagram F2

Fig. 13   Two additional real office building indoor environments and the corresponding schematic diagrams
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slightly higher than the method in this paper, the two methods with high accuracy of the 
test data in the other test sites were all the methods in our paper. The “average accuracy” 
in the figure represents the average value of the previous groups of histograms. Overall, 
the floor positioning accuracy of our method was better than the four other classification 
methods.

Moreover, among the above algorithms, the analyses can be summarized as follows: (1) 
The proposed algorithm requires a small amount of fingerprint data and location data to 
match and complete the floor positioning; meanwhile, without training the model, the algo-
rithm efficiency is high, and the complexity is low. (2) The decision tree algorithm is more 
suitable for processing small sample size data, and classification training requires multiple 
scanning and sorting of the sample set, resulting in lower algorithm efficiency. (3) The 
SVM algorithm had better adaptability, higher resolution, and generalization performance, 
but it was sensitive to missing data, and the algorithm convergence time was not fast. (4) 
The KNN algorithm is simple and effective, and it relies on the limited nearby samples 
to complete classification. Meanwhile, the algorithm requires a large amount of calcula-
tion, pre-training, and determining the K value. Therefore, misjudging is easy in cases with 
a small sample size. (5) The ANN algorithm requires a large amount of calculation, the 
learning time is long, and the stability of the output results is low, which is not suitable 
for implementation in smartphones. In short, each algorithm has advantages and disadvan-
tages. For the same training and test samples, the accuracy of various algorithms is shown 
in Fig. 14. In the training samples, 20–30 s of signal data were collected at each reference 
point, which was enough to reflect the signal characteristics at the collection location and 
ensure the performance of each classification algorithm. In general, the proposed algorithm 
performed well in the atrium spatial structure environment based on wireless signals in 
terms of computing performance and accuracy.

Fig.14   Comparison of the Wi-Fi floor positioning accuracy of multiple test sites and multiple methods
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5 � Conclusions

Multi-floor environments in atrium spaces are common in the real-world context, but there 
are very few floor positioning methods specifically for this type of environment. In terms of 
the spatial propagation characteristics of the wireless signal, the biggest difference between 
this environment and an ordinary multi-floor setting is that the signal difference between 
floors is smaller. As a result, most floor positioning methods based on wireless signals do 
not work well in such environments. A BLE signal-based floor positioning algorithm is 
proposed for the first time specifically for multi-floor environments with an atrium space, 
and it was tested and verified. The proposed method not only solves floor location prob-
lems independently but also provides an initial floor reference for other relative floor posi-
tioning methods. This method can also be integrated with other methods of floor position-
ing or identifying floor changes, with a wide range of applications. It has a high accuracy 
of floor positioning and low cost as well as good universality.

This paper provides an in-depth analysis of the spatial propagation characteristics of 
Wi-Fi and BLE signals in a multi-floor environment with an atrium space. It was found 
that the BLE signal performed significantly better than the Wi-Fi signal; therefore, the 
BLE signal was chosen for the floor positioning process in this environment. This research 
proposed a self-adaptation weighted integration of the BLE signal AP-based RSSI mean 
maximum floor and interval confidence floor determination method. Compared with other 
related methods, our method was found to have the highest floor positioning accuracy. The 
performance was tested in both of the two motion states. It was found that the floor posi-
tioning accuracy was up to 100% in the 5-s static state; while the positioning accuracy 
was as high as 92.7% in the 1-s real-time motion state, which is a significant improvement 
over the accuracy of the other four floor positioning methods. In terms of the workload of 
fingerprint database acquisition, the algorithm in this study saves both time and effort in 
acquiring the fingerprints. By walking slowly in the corridor area, the signal is captured 
with minimal volume of data, and the fingerprint database can be quickly captured and 
updated in case of any equipment changes.

There are some other things to consider. Regarding fingerprint library construction, the 
method in this paper was the same as the one based on wireless signal fingerprint position-
ing in most indoor positioning methods. They all involve the maintenance and updating of 
the fingerprint database. In practice, the timely updating of the fingerprint database needs 
to be considered. If the increase, removal, or displacement of positioning equipment is 
encountered, then a timely adjustment of the signal interval confidence fingerprint database 
to the AP floor positioning database is required. This work has been described in detail in 
related papers and will not be discussed here again. For the problem of heterogeneity of 
equipment, there is also special research detailing and solving this problem. The focus of 
this paper is on the methodical implementation of floor positioning. Moreover, to achieve 
both real-time effect as well as high accuracy, the rollback filtering of the real-time signal 
and the signal data of the first n seconds under the walking condition can be considered. 
After that, the floor determination is finally made by using the filtered signals. The accu-
racy can be further improved from the original 1-s real-time dynamics. The method in this 
study has been experimentally validated to achieve real-time floor positioning using 3  s 
of RSSI mean rollback data in motion, and its accuracy was as high as 98.2%, which was 
improved by nearly 5% over the 1-s data and was also in real-time.

Finally, it is difficult to directly obtain the location of the BLE beacon in reality, but 
there are many methods (Burgess et al. 2015; Gao et al. 2016; Abd Rahman et al. 2013) 
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to be adopted mainly depending on the BLE signal characteristics to estimate the floor of 
the BLE, including the weighted centroid method (Lohan et al. 2017; Razavi et al. 2015). 
Even if there is no BLE deployment condition due to special circumstances, Wi-Fi signals 
can also be used instead, and, through the method steps analyzed in this paper, the floor 
positioning can be found in a multi-floor atrium space environment, and a satisfactory floor 
location estimate can be obtained.
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