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Abstract We address the Electricity Contract Selection Problem (ECSP), of find-
ing best parameters of an electricity contract for a client based on his/her past
records of electricity consumption over a fixed time period. The objective is to op-
timize the electricity bill composed by some fixed cost, the cost of the subscription
of the electricity contract and penalties due to overpowering when consumption
exceeds subscribed power. The ECSP can be formulated as a convex separable op-
timization problem subject to total order constraints. Due to this special structure,
ECSP is a special case of two well known classes of convex separable optimization
problems, namely the minimum network flow under convex separable cost and min-
imizing convex separable functions under chain constraints. Both classes are well
treated in the litterature and can be solved in polynomial time [1, 2, 5, 11, 13, 14].
In particular, the algorithm in [2] achieves the best theoretical time complexity
assuming that computing the objective function value at one specific point can be
done in constant time. However, when we work on a big amount of historic data
as in ECSP, the time required for evaluating the objective function cannot be as-
sumed to be O(1) anymore. In this paper, we propose a new algorithm for ECSP
which is specially designed to reduce the computational effort over large scale his-
torical data. We present numerical results showing that our algorithm outperforms
the algorithm in [2] when applied to consumption data of various types of clients.
A robust version of ECSP based on a Seasonal and Trend decomposition approach
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for modelling consumption uncertainty is also investigated. The resulting worst-
case cost minimization problem is shown to be efficiently solvable using the same
algorithm as for deterministic ECSP.

Keywords electricity contract, convex separable optimization, robust optimiza-
tion, active constraint set

1 Introduction

Optimally selecting an energy contract is an important issue for many industrial
customers which have an electricity contract for each delivery point. Contracts
may need to fix the maximum of total energy consumption in kilowatt-hours and
the maximum of peak demand in kilowatt over a large period, typically one year.

The electricity contract problem discussed in [6] can be formulated as a linear
program and solved as such in polynomial time. In the problem discussed in [6],
there is a fixed cost when the peak demand does not exceed the contract capacity
and some additional cost for excess demand.

Combining the optimal energy contract selection problem with a lot sizing
problem by considering renewable energy sources has been investigated in [16].

Using a pricing based on the so-called ”subscribed power” tends to enforce
people to adapt their electricity consumption behaviour in order to match with
the subscription [18]. This subscribed power is based on billing the cost of the
electricity contract, the cost of some penalty of overpowering with respect to the
maximum peak demand defined in the contract and some other fixed costs.

In this paper, we investigate an optimal electricity contract selection problem
(ECSP) based on subscribed power which is formulated as minimizing a convex
separable function subject to total order constraints. The problem is addressed
both in the deterministic case and in the case when consumption data are subject
to uncertainty. The paper is organized as follows. Section 2 presents the context
and proposes a formulation of the optimization problem considered in its determin-
istic version. Section 3 presents an efficient algorithm based on an active constraint
set approach to solve the optimal selection of electricity contracts. Section 4 inves-
tigates a robust version of the problem in which uncertainties on consumption are
taken into account. Section 5 presents a series of computational results obtained,
both for the deterministic case and for the robust version of the problem. Section
6 presents the main conclusions and some perspectives for future research.

2 Modelling the problem

2.1 Mathematical formulation of ECSP

In France, ENEDIS is responsible for the management of 95% of the electricity
distribution network. The tariffs for using the electricity grid are referred to as
TURPE (see enedis.fr).

Over the year, consumption periods are classified into several predefined cate-
gories, where each category may have it own consumption behaviour. Under the 5th
version of TURPE, denoted TURPE5, K = 5 categories are considered, namely:
winter peak hours (1), winter full hours (2), winter off-peak hours (3), summer
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full hours (4) and summer off-peak hours (5). Electricity used during peak hours
is billed at a higher rate than electricity used during off-peak hours, creating an
incentive for homeowners to reduce energy usage during peak hours. Let T be
the total number of 10 minute periods (e.g. T = 52560 for a year) and Ti the
total number of 10 minutes period in category i. Let M = {1, . . . , 12} be the set
of all months of the study period, and ∀i ∈ {1, . . . ,K}, Mi is the subset of M
corresponding to category i. For example, for the winter peak hours category with
i = 1, M1 = {1, 2, 12} which corresponds to the three months of winter. Each small
10 minute period t belongs to a category i and a month m ∈Mi, noted as t ∈ Ti,m,
and for each t there is a required consumption level ct.

Selecting an electricity contract defined by TURPE5 is to choose for each
category of consumption i a value of subscribed power xi ≥ 0 (in kW). The problem
of selecting a best contract thus consists in determining a K-dimensional non-
negative vector x = (x1, . . . , xK) minimizing the bill due by the consumer. For
each category i the corresponding subscribed power xi represents thresholds of
consumption, viewed as a commitment of maximum peak demand for each 10
minutes period.

There is an annual cost for the subscription equal to
∑
i sixi (for given si > 0

in e /kW/year), this cost is an increasing linear function of x. Excess demand
of consumption, called overpowering, is allowed but in that case extra penalty
costs are due. The overpowering quantity for t is δt(xi) = max(0, ct-xi). For each

category i and month m ∈ Mi, the penalty cost is pi
√∑

t∈Ti,m
δt(xi)2 (for given

pi > 0 in e /kWh), which is a decreasing function of xi. There is also some fixed
cost unrelated to subscribed power (e.g. consumption, transports and taxes) which
is not necessary to our analysis. The objective function of the problem is the total
annual cost F (x) defined as the sum of the annual costs Fi(xi) for the various
categories i ∈ {1, ...,K} :

Fi(xi) = sixi + pi
∑
m∈Mi

√ ∑
t∈Ti,m

δt(xi)2. (1)

(see Figure 1 for a graphical representation of a function Fi(xi)).

Fig. 1: Objective function for category i: Fi(xi)
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In order to ensure the stability of the network load, TURPE5 imposes that
subscribed powers in high consumption categories (e.g. winter peak hours) must be
lower than subscribed powers in low consumption categories (e.g. summer off-peak
hours). This results into a series of K-1 constraints of the form ∀i < K, xi ≤ xi+1,
defining a total order on the xi values.

Let ci (resp.: c̄i) be the smallest (resp.: greatest) value of consumed power
during the time slots in category i. Then we denote by c (resp.: c̄) the smallest
(resp.: greatest) consumed power among the instance. Then the xi variables should
meet the bound constraints 0 ≤ c ≤ xi ≤ c̄. Let C = c̄ − c + 1 be the number of
integer values among which the optimal solution is searched. This parameter C
together with the number of categories K will be useful for expressing the worst-
case time complexity of our algorithm.

The ECSP can then be formulated as the following mathematical program P:

P : min F (x) =
K∑
i=1

Fi(xi) (2)

s.t. xi ≤ xi+1, 1 ≤ i ≤ K-1, (3)

c ≤ xi ≤ c̄, 1 ≤ i ≤ K, (4)

The constraints (3) are called the order constraints and the constraints (4) are the

bound constraints. A solution for P is a K-dimensional vector x = (x1, . . . , xK)T

satisfying the constraints (3) and (4). The objective function (2) is separable and
convex as stated in the following Proposition 1.

Proposition 1 Each Fi is convex with respect to xi.

Proof For all i ∈ {1, . . . , T}, let gt(xi) be an univariate convex function such that
gt(xi) ≥ 0 for all xi ≥ 0.

For all x ∈ IRT , let us denotes G(x) =
√∑T

i=1 gt(xi)
2 the Euclidean Norm (L2)

of


g1(x1)

.

.

.

gT (xT )

 i.e. G(x) =

∥∥∥∥∥∥∥∥
g1(x1)

.

.

.

gT (xT )

∥∥∥∥∥∥∥∥.

Let x̄ =


x̄1.
.
.
.
x̄T

 ≥ 0, x̂ =


x̂1.
.
.
.
x̂T

 ≥ 0 and λ ∈ [0, 1].

From the convexity of the gt functions and the fact that the norm is a non
decreasing function on the set of non negative vectors, it holds:

g1(λx̄1 + (1-λ)x̂1) ≤ λg1(x̄1) + (1-λ)g1(x̂1)

...

gT (λx̄T + (1-λ)x̂T ) ≤ λgT (x̄T ) + (1-λ)gT (x̂T )

Therefore: ∥∥∥∥∥∥∥∥
g1(λx̄1 + (1-λ)x̂1)

.

.

.

gT (λx̄1 + (1-λ)x̂1)

∥∥∥∥∥∥∥∥ ≤
∥∥∥∥∥∥∥∥
λg1(x̄T ) + (1-λ)g1(x̂T )

.

.

.

λgT (x̄T ) + (1-λ)gT (x̂T )

∥∥∥∥∥∥∥∥
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Now, from the convexity of the Euclidean norm, it follows:∥∥∥∥∥∥∥∥
λg1(x̄1) + (1-λ)g1(x̂1)

.

.

.

λgT (x̄T ) + (1-λ)gT (x̂T )

∥∥∥∥∥∥∥∥ ≤ λ
∥∥∥∥∥∥∥∥
g1(x̄1)

.

.

.

gT (x̄T )

∥∥∥∥∥∥∥∥+ (1-λ)

∥∥∥∥∥∥∥∥
g1(x̂1)

.

.

.

gT (x̂T )

∥∥∥∥∥∥∥∥
In view of this, the following inequality is shown to hold:∥∥∥∥∥∥∥∥

g1(λx̄1 + (1-λ)x̂1)
.
.
.

gT (λx̄T + (1-λ)x̂T )

∥∥∥∥∥∥∥∥ ≤ λ
∥∥∥∥∥∥∥∥
g1(x̄1)

.

.

.

gT (x̄T )

∥∥∥∥∥∥∥∥+ (1-λ)

∥∥∥∥∥∥∥∥
g1(x̂1)

.

.

.

gT (x̂T )

∥∥∥∥∥∥∥∥
and from this, we conclude that:√√√√ T∑

i=1

gt(λx̄i + (1-λ)x̂i)2 ≤ λ

√√√√ T∑
i=1

gt(x̄i)2 + (1-λ)

√√√√ T∑
i=1

gt(x̂i)2,

which proves the desires convexity property of G.
For each category i the subscription cost is linear in xi and the penalty cost

is of the form: piGi(xi) with Gi(xi) =
√∑Ti

i=1 gt(xi)
2, where gt(xi) = δt(xi) is a

convex function of xi. Thus, for each category i, Fi is convex w.r.t. xi. ut

2.2 State of the art and motivation

The ECSP can be reformulated as a minimum separable convex cost network
optimization problem in a graph featuring K nodes and 2K−2 arcs (see Appendix).
Thus, in order to solve P, one might well consider applying some of the existing
solution procedures, in particular:

– the algorithm proposed in [13, 14] which, in our case, would lead to a worst-case
complexity O(K3logC);

– the algorithms proposed in [1] and in [11] which would lead to a worst-case
complexity O(K2log(K)log(KC)).

For a survey of solution algorithms for convex cost network optimization problems
and related nonlinear optimization problems, we refer the reader to [9]. Note that
all the previous algorithms use various versions of minimum cost flow network
algorithms running on various specific types of graphs. Some of these graphs could
be of very big size (e.g. the number of the arcs could be KC in the graph con-
sidered in [1]) and the construction of these graphs is not taken into account in
the time complexity of algorithm. Moreover, the algorithms in [1] and [11] need
advanced data structures such as dynamic trees to achieve the time complexity
of O(K2log(K)log(KC)). Without them, the worst-case complexity would remain
O(K3logC).

The ECSP also belongs to the class of convex separable function minimization
problems under total order constraints. This class of problem appears in the con-
text of isotonic regression which is a well-known problem in statistics. Given K
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data c1, . . . , cK , the Isotonic Regression Problem (IRP) consists in finding K val-
ues x1, . . . , xK minimizing the norm p distance between the solution and the data
subject to order constraints x1 ≤ · · · ≤ xK . Formally, it is formulated as follows:

min p

√∑
i

(xi − ci)p

s.t. x1 ≤ x2 ≤ . . . ≤ xK .

The generalized IRP is obtained when the objective function is replaced by any
convex separation function.
One of the most efficient algorithms for solving generalized IRP has been proposed
by Ahuja and Orlin [2] under the name of ’Scaling PAV’. Assuming that computing
(1) at any x in RK can be done in constant time O(1), its complexity is O(Klog(C)).
In Scaling PAV, instead of calculating the exact optimal solution of each Fi(xi)
at each iteration, one only updates the intervals to which the optimal solution
should belong. The K intervals are all initially set equal to (c, c̄) and reduced by
one half after each iteration. As new order constraints are successively detected
and saturated, the number of intervals is progressively decreased as variables are
fusioned. After log2(Cε ) iterations, all the intervals have reduced length less than
ε, and an ε-optimal solution is found. Since, in each iteration, one works with a at
most K intervals, the worst-case time complexity of Scaling PAV is O(Klog(C)).

Obviously, the Scaling PAV algorithm could be applied to the ECSP addressed
here. However, in this context of application, the evaluation of the resulting com-
plexity has to be completely reconsidered, because careful examination reveals
that the computational effort required to compute each value Fi(xi) involved in
the objective function (2) cannot be assumed to be O(1). Indeed, from the ex-
pression given in (1), it is readily seen that computing Fi(xi) for any given value
of xi, requires O(N+(xi)) arithmetic operations, where N+(xi) is defined as the
number of time steps t in Ti such that ct > xi. Thus, for large values of xi (i.e.
values close to max(ct, t ∈ Ti), both N+(xi) and the computation time are reduced.
By contrast, for smaller values of xi, N

+(xi) can be of the same order of magni-
tude as |Ti|, the total number of time steps in the definition of Fi, thus leading
to possibly much bigger computation time. For further discussion and illustration
of this dependence of N+(xi) on xi, please refer to the forthcoming Section 3.2.
Clearly, since |Ti| (the number of consumption data in the category i) can be much
larger than K, the number of decision variables, this parameter turns out to be a
key factor to be taken into account in the evaluation of an algorithm for solving
P. Thus, in the search for computational efficiency in the solution of ECSP, the
dependence of N+(xi) (a measure of the computational effort) with respect to xi
has to be taken into account.

In the present paper, we propose a special-purpose algorithm for solving ECSP
which will turn out to be practically more efficient than Scaling PAV, thanks to
a proper exploitation of the specific features of the problem pointed out above.
The proposed algorithm, which will be called Optim SP, is based on the same
scheme of iterative active constraint set detection as Scaling PAV. However, its
implementation makes essential use of an extended asymmetric binary search pro-
cedure, thanks to which the computational effort required in each iteration to
minimize the relevant part of the objective function (2) can be significantly re-
duced, as compared with usual binary search. It is also worth mentioning here
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that this possibility of resorting to this extended binary search procedure could
not be applied within the Scaling PAV algorithm for the following reason: when
running Scaling PAV, at any given step all the intervals must have the same length,
and this cannot be the case in case of using the proposed extended binary search.

3 Optim SP: an efficient algorithm based on an active constraint set

approach

For k ∈ {1, . . . ,K-1}, let the kth order constraint denote the constraint xk ≤ xk+1.
For k ∈ {0, . . . ,K-1} let Pk denote the relaxation of the problem P where the last
K − 1 − k order constraints are relaxed, i.e. the order constraints in Pk are only
the first k order constraints:

Pk : min F (x)

s.t. xi ≤ xi+1, 1 ≤ i ≤ k,
c ≤ xi ≤ c̄, 1 ≤ i ≤ K.

Note that P0 is the relaxation of P without the order constraints and PK−1 is P

itself.
More generally, for B ⊆ {1, . . . ,K − 1}, let P(B) denote the relaxation of P where
all the order constraints are relaxed except those indexed in B:

P(B) : min F (x)

s.t. xi ≤ xi+1, i ∈ B,
c ≤ xi ≤ c̄, 1 ≤ i ≤ K.

In addition, we denote P=(B) the restriction of P(B) where the order constraints
in B are set to equality:

P=(B) : min F (x)

s.t. xi = xi+1, i ∈ B,
c ≤ xi ≤ c̄, 1 ≤ i ≤ K.

Note that, if B = ∅, then P=(B) = P0.

3.1 Algorithm’s overview

Optim SP initially solves P0 and then performs K-1 iterations thus solving suc-
cessively P1, P2, . . . , PK−1. For k = 0, . . . ,K − 1, let xk = (xk1 , . . . , x

k
K)T denote

the optimal solution of Pk found by Optim SP and let Bk denote the set of the
indices of the active order constraints in Pk associated with xk, i.e. the order
constraints in Pk that xk satisfies at equality. At each iteration k = 1, . . . ,K − 1,
Optim SP sets B ← Bk−1 and x ← xk−1. Then Optim SP iteratively finds the
order constraint of greatest index i in Pk violated by x, updates B ← B ∪ {i} and
finds a new x by solving P=(B). If no such index can be found then Optim SP sets
xk ← x and Bk ← B and terminates the iteration k. Optim SP can be formally
stated as Algorithm 1.
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Algorithm 1 Optim SP

1: Set B ← ∅
2: Solve P=(B) and set x equal to the obtained optimal solution.
3: for k from 1 to K-1 do
4: Set b← True.
5: repeat
6: Find the greatest index 1 ≤ i ≤ k such that xi > xi+1.
7: Set b← False if such an index does not exist.
8: if b=True then
9: Set B ← B ∪ {i}

10: Solve P=(B) and update x.
11: end if
12: until b=False
13: end for
14: return x

Algorithm 2 Ajustable binary search

1: function yopt← A Search(FI(y), y, ȳ, a)
2: ε← 0.1
3: repeat
4: ymid← b(y + a ∗ ȳ)/(1 + a)c
5: left cost← FI(ymid− ε)
6: right cost← FI(ymid+ ε)
7: if left cost ≤ right cost then
8: ȳ ← ymid
9: a← 1

10: else
11: y ← ymid
12: end if
13: until y + 1 = ȳ
14: yopt← ymid
15: return yopt
16: end function

3.2 Adjustable binary search for optimizing univariate convex functions F (x)

Each step of Algorithm 1 requires the solution of a problem of univariate convex
function minimization over a given interval. To achieve this, we propose an ex-
tended binary search procedure called A Search, formally stated as Algorithm 2.
A Search is an adjustable version of binary search which depends on the input
parameter a > 0. Thus, for given univariate convex function FI and an interval [y,
ȳ] where I ⊂ {1, . . . ,K} and FI(y) =

∑
j∈I Fj(y), the function A Search returns:

yopt = argmin
y≤y≤ȳ
y integer

FI(y).

The adjustable binary search starts with a lower bound y and an upper bound
ȳ. Until yopt is found, the algorithm computes the integer middle point ymid =
b(y+a ∗ ȳ)/(1 + a)c according to a parameter a, and computes objective values
left cost and right cost for the two neighbours at ymid-ε and ymid+ε, then it
updates either y or ȳ.

Please note that the standard binary search procedure corresponds to the
choice of a = 1 in A Search. For this value of a, ymid is the middle of the interval
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(y, ȳ). For a > 1, ymid is no longer the middle of the interval, and we refer to
this case as ‘asymmetric binary search’. The motivation behind the use of a > 1
stems from the observation that the computational effort O(N+

i (xi)) required to
compute the value of one (individual aggregated) component of the objective func-
tion as defined in (1) is strongly dependent on the value of the parameter xi. This
dependence is illustrated in Figure 3 on three typical examples of ECSP corre-
sponding to data sets D1 and D5, two of the data sets used in the computational
experiments discussed in Section 3 below. More precisely, Figure 3(A) corresponds
to dataset D1 and i = 1; Figure 3(B) corresponds to data set D1 and i = 5; Figure
3(C) corresponds to data set D5 and i = 4.

histogram (A) histogram(B) histogram (C)

N+
i (xi) for (A) N+

i (xi) for (B) N+
i (xi) for (C)

Fig. 3: Histograms and curves showing the dependence of N+
i (xi) on xi for three examples

which are part of the data sets D1 and D5 described in Section 5.

Note that when a > 1 does not allow anymore the binary search to continue
on the smaller subinterval on the right of ymid, we set the value of a to 1 (see
line 9 of Algorithm 2) and resume the last iterations with the standard symmetric
binary search. With this switch on the value of a, as our binary search scheme
performs at least as well as the symmetric binary search scheme on all iterations
except perhaps one, it can be checked that the number of iterations in A Search

is at most log2(ȳ − y) + 1.

3.3 Solving P=(B)

To perform line 2 in Optim SP which consists in solving P=(∅), i.e. solving P0,
we call the A Search function for minimizing each Fi(x) for i = 1, . . . ,K, i.e. xi
= A Search(Fi(x), ci, c̄i, a). It easy to see that after execution of line 2, x is an
optimal solution of P=(B) with B = ∅.

We now explain the procedure corresponding to line 10 of Optim SP which
consists in solving P=(B) with B 6= ∅. Let us suppose that we are in iteration
k (1 ≤ k ≤ K − 1) and we are ready to execute line 10 after having added an
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index i to B in line 9. Let B′ = B \ {i}, i.e. the value of B before executing line
9. Let x′ be the optimal solution of P=(B′), i.e. the value of x before the line
10, we have then x′i > x′i+1. Let i and ī respectively denote the smallest and the
greatest indices of the block of consecutive indices in B which contains i. Let I =
{i, i+ 1, . . . , ī, ī+ 1}. Line 10 is executed by just calling A Search(FI(x), x′ī, x

′
i, a)

where FI(x) =
∑
j∈I Fj(x). This function call returns an integer value yopt and

the update of x (in line 10 of Algorithm 1) is done as follows: xj ← x′j for j /∈ I
and xj ← yopt for j ∈ I.

3.4 Correctness of Optim SP

A partition of the index set {1, 2, . . . ,K} (of the variables) J = {J1, . . . , Jk} is
called a block partition if its elements are subsets (or blocks) of consecutive indices.
Given an x ∈ RK , x is conform to J if xi = xj for all i and j belonging to the
same block in J . The correctness of Optim SP is based on well-known results in
the literature. In particular, we quote here the following lemma (Lemma 2 in [2]
which uses results in [5]) appropriately restated to fit our context.

Lemma 1 [2] If J = {J1, . . . , Jk} is a block partition of {1, 2, . . . ,K} such that there

exists a x ∈ RK conform to J which is also feasible for P then x is an optimal solution

for P.

Then we can state:

Theorem 1 The solution x output by Optim SP is optimal for P.

Proof As we cannot find a greatest index 1 ≤ i ≤ K − 1 such that xi > xi+1, x

is feasible for P. Let B̄ denote the last value of B after termination of Optim SP

then B̄ is the set of active constraints that x satisfies at equality. Let us build a
block partition J of {1, 2, . . . ,K} from B̄ as follows:

– For each of block of consecutive indices I in B̄ with i and ī as respectively the
smallest and the greatest indices in I, let us refer to {i, i+ 1, . . . , ī, ī+ 1} as a
block in J .

– For an index 1 ≤ j ≤ K, if neither j nor j− 1 belongs to B̄, then let us refer to
{j} as a single block in J .

It is then easy to see that x is a feasible solution of P conform to J . Hence, by
Lemma 1, x is optimal for P. ut

3.5 Complexity of Optim SP

Proposition 2 The worst-case time complexity of Optim SP is O(K2log(C)) pro-

vided that the evaluation of each Fi(x) at a specific point x can be done in O(1).

Proof We can see that the worst case occurs when the set B in line 10 of Optim SP

contains successively 1, 2, . . . ,K − 1 elements and Optim SP calls K − 1 times
A Search(FI(x), x′ī, x

′
i, a) in line 10 with the sets I (as defined in Section 3.3)

containing successively 2, 3, . . . ,K elements. Hence, the total number of times that
the functions Fi(x) (i = 1, . . . , k) are minimized in the executions of A Search
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is K(K+1)
2 − 1. We should also include the minimization of each Fi(x) in the K

calls of A Search for solving P0 at line 2 of Optim SP. Hence, overall there are
K(K+1)

2 − 1 + K = K(K+3)
2 − 1 minimizations of Fi(x) in the calls of A Search.

In each minimization of Fi(x) by A Search, Fi(x) is evaluated at most log2(C) +
1 times as pointed out in Section 3.2. Hence, the number of evaluations of the
functions Fi(x) is O(K2 log(C)) in the worst case. ut

.

4 Optim SP for a robust version of the problem

Now, if we consider input data as forecasted consumption, actual realisation of
electricity consumption can be anticipated to be different from the forecast. Indeed
the deviation from predicted consumption can create greater overpowering, the
consequence being to increase the electricity bill. In the sequel, we discuss a robust
version of the problem of optimal selection of electricity contract and show how it
can still be solved using Optim SP algorithm.

4.1 Modelling customer demand

Customer demands are often represented as stochastic process based on influenc-
ing factors. Those influencing factors are often external condition (temperature,
climate...), physical characteristic of dwelling (type, age...), devices and occupants
(occupation and behaviour...), prices and subscriptions [3, 12, 21]. Works on light-
ning energy in large office building show that consumption can be accurately
simulated by considering occupant behaviour and seasonal variations, and can
be described using e.g. Poisson and Normal distribution [21]. The consumption
model is useful to predict consumption in the short-term (1 day), medium-term
(3 days), long-term (7 days) [19] and very long-term (1 year) [3]. Many works are
based on precise modelling of each device in household [10, 15, 17]. The authors
of [8] present an approach based on hidden Markov chains for the modelling and
statistical analysis of electric consumption curves.

The ”Seasonal and Trend decomposition using Loess” (STL) method [7] de-
composes the consumption as:

raw data(t) = trend(t) + seasonal(t) + remainder(t).

The ’trend’ component corresponds to non-stationary long-term evolution of con-
sumption, the ’seasonal’ component corresponds to periodical evolution (e.g. pe-
riod = 1 week), and the remainder (or the residual) variation is what is left over
after fitting the model and will be viewed as a realisation of some random process.

In the following, consumption is viewed as a time series in which each sample
is collected every 10 minutes. For each category i, we apply the STL method to de-
compose the time series and the important parameter to characterize uncertainty
is taken to be the standard deviation σi of the remainder. Then for 10 minute pe-
riod t ∈ {1, . . . , Ti} we will typically consider that consumption can deviate from
the trend + seasonal forecast by a value represented as an independent realisation
of the appropriate probability distribution. In Section 5 below, it will be assumed
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that the residuals are independent realizations of some known probabilistic dis-
tribution (typically a truncated normal distribution) with zero mean and known
standard deviation.

4.2 Robust problem formulation

We propose here to define a robust version of the problem using a concept of uncer-
tainty set similar to the one introduced in [4]. Following the latter, the uncertainty
set, corresponding to ν uncertain parameters µ1, . . . , µν , each taking bounded val-
ues between 0 and β, and having a very small probability of all simultaneously
taking their maximum value β, would typically be the polyhedron defined by the
inequalities 0 ≤ µi ≤ β and

∑ν
i=1 µi ≤ Γβ, where Γβ is the so-called budget of

uncertainty. Increasing Γβ increases the range of possible scenarios against which
robustness is to be achieved, thus improving the robustness of the solutions ob-
tained but at the expense of increasing the solution cost.

For each category i, let v = (v1, . . . , v|Ti|) be the variable vector of possible
deviations, where deviations typically are bounded as −bt ≤ vt ≤ bt. However, in
view of the max operator in the expression of the penalty cost, negative deviations
will not increase the objective function value. We consider that for a given category
i, all bt (t ∈ Ti) are equal and we denote bi this common value. Finally, we consider
each deviation is bounded as 0 ≤ vt ≤ bi, where the value bi is chosen to be of the
same order of magnitude as the standard deviation σi (typically bi = r ∗ σi with r

chosen between 2 and 3).
In line with [4], denoting Bi the budget of uncertainty for category i, we al-

low a total deviation at most equal to Bi, thus the deviation v has to satisfy the
constraint:

∑Ti

t=1 vt ≤ Bi. As an indication about how to choose Bi, consider n re-
alisations of a random variable normally distributed with zero mean and standard
deviation σi. The sum of those n random realisations has a variance σ2 = nσ2

i , i.e.
its standard deviation is σ =

√
nσi. In line with this remark, taking Vi to be an

integer value of the same order as
√
Ti, we define the uncertainty set Ui as:

Ui = {v|0 ≤ vt ≤ bi, ∀t,
Ti∑
t=1

vt ≤ Bi = Vibi}.

For defining the robust version of the problem, the overpowering quantity for
period t is now δrt (xi, vt) = max(0, (ct+vt)-xi), note that δrt (xi, vt) = δt(xi − vt).
For given xi, the worst-case penalty cost for category i in the robust version of
the problem is obtained as the maximum value over the uncertainty set Ui of the
penalty cost function, which is defined as:

Πr
i (xi) = max

v∈Ui

∑
m

√ ∑
t∈Ti,m

(δrt (xi, vt))2. (5)

The objective function for the robust formulation is F r(x) =
∑
i F

r
i (xi) =∑

i sixi + piΠ
r
i (xi) and the robust version of ECSP can be stated as:

Pr : min F r(x)

s.t. xi ≤ xi+1, 1 ≤ i ≤ K-1,

c ≤ xi ≤ max
1≤i′≤K

{c̄i′ + bi′}, 1 ≤ i ≤ K.
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We note that in the above formulation, the upper bound values on the variables
xi have been changed to take into account the possible increase of the maximum
value of consumption by bi for category i.

Proposition 3 Each Πr
i (xi) is convex in xi.

Proof For any fixed v ∈ Ui, we know from Proposition 1 that the function:∑
m

√ ∑
t∈Ti,m

(δrt (xi, vt))2

is convex in xi. Now, since the maximum value in (5) is to be determined with
respect to the (finite) set of extreme points of Ui, Π

r
i is recognized as the pointwise

maximum of a finite collection of functions, each of which is convex in xi. This
proves the claimed result. ut

Corollary 1 Each F ri is convex in xi, and hence Pr is a convex program.

4.3 Using Optim SP to solve the robust version of the problem

Since it appears that the robust version of the optimum contract selection problem
has the same structure as the deterministic version, Optim SP algorithm turns out
to be readily applicable to the robust version of the optimum contract selection
problem. However in each call to A Search function, for a given category i and
a given value xi, whenever we have to evaluate the value F ri (xi), we need now to
solve the sub-problem (5).

Proposition 4 For a given xi, any optimal solution to the sub-problem (5) features

Vi components equal to bi, all the other components being 0.

Proof For a category i, the objective of the sub-problem is to maximize a convex
function w.r.t. v, and it is a well-known fact that the maximum is reached at
an extreme point of the polyhedron representing the uncertainty set Ui. Now, we
just have to observe that, since Vi has been assumed to be an integer value, each
extreme point of the polyhedron Ui features exactly Vi non zero components equal
to their upper bound values bi. ut

For the category i and given xi, according to proposition 4 the maximization
sub-problem (5) is solved when the Vi uncertain parameters that maximize the
objective function are found i.e. we need to find how to best dispatch those Vi
time slots over the months Mi. This optimum dispatch problem, (5) can be cast
into a Multiple-Choice Knapsack Problem (MCKP) with integer variables, which
according to [20] can be solved in worst-case time complexity O(N) (N = Vi ∗ |Mi|
is the number of items). Let us explain how this MCKP is formulated.

Let the variable zm,n = 1 if the algorithm assigns n ∈ {0, . . . , Vi} deviations to
the month m ∈Mi, else zm,n = 0. Let Tni,m denote the subset of t ∈ Ti,m achieving
the n highest values of ct.

Proposition 5 For a given category i and month m, if exactly n deviation parameters

vt, t ∈ Ti,m, may take on their upper bound value bi, then the worst-case cost value for

month m is obtained when vt = bi, for all t ∈ Tni,m.
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Proof For a given category i and month m, the penalty cost function is maximized
by setting maximum deviations for period t with the highest nonzero δrt values,
i.e. exactly n deviation parameters may take on their upper bound value bi, then
the maximum cost value is obtained when vt = bi for all t ∈ Tni,m. ut

According to proposition 5, when n parameters are set equal to their upper
bound bi the partial objective cost for month m is:

γm,n =
√ ∑
t∈Tn

i,m

(δrt (xi, bi))2 +
∑

t∈Ti,m\Tn
i,m

(δrt (xi, 0))2.

The MCKP to be solved in order to determine the worst-case cost is then:

MKCP: max

Mi∑
m=1

Vi∑
n=0

γm,n zm,n

s.t.

Mi∑
m=1

Vi∑
n=0

n zm,n ≤ Vi,

Vi∑
n=0

zm,n ≤ 1, ∀m,

zm,n ∈ {0, 1}, ∀m∀n.

Recall that Mi ⊆M and Vi is an integer value of the same order of magnitude
as
√
Ti (≤

√
T ), thus for a given xi determining the optimal value of (5) takes

O(|M | ∗
√
T ) worst-case time complexity. Therefore we can state:

Proposition 6 The worst-case time complexity of Optim SP applied to the robust

version of the optimum contract selection problem is O(K2M
√
T logC).

5 Computational experiments

5.1 Experiments on the deterministic version of ECSP

This section is devoted to a detailed computational study of the Optim SP algo-
rithm on a series of typical real instances of the ECSP problem. For each instance,
the evolution of CPU time as a function of the value chosen for the a parameter
is analyzed. The results obtained are also compared against those which would be
obtained by using the Scaling PAV algorithm on the same data.
In our computational experiments, we consider 5 data sets referred to as D1 to D5.
Each data set is defined by specifying the 52560 values of electricity consumption
of the customer under consideration, recorded in every 10-minute period along a
full year (2017). This set of values is decomposed into 5 subsets (time categories)
T1 to T5, and each Ti is in turn decomposed into several subsets (corresponding to
the relevant months during which consumption has been observed (these subsets
are denoted Ti,m for some m in M). Data set D1 corresponds to a big factory in
the food industry with subscribed power typically in the range 5000-7500 KW;
data set D2 corresponds to a company providing maintenance of transportation
equipment with subscribed power typically in the range 1500-2500 KW; data set
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D1 D2

[c1, ..., cK ] [2269, 2056, 72, 1769, 1152] [1430, 1242, 1189, 910, 358]
[c̄1, ..., ¯cK ] [5536, 6732, 6667, 7539, 7189] [2419, 2446, 2307, 1822, 1768]

x0 [5536, 6573, 6395, 6949, 6738] [2419, 2425, 2254, 1730, 1691]
x∗ [5536, 6479, 6479, 6914, 6914] [2317, 2317, 2317, 2317, 2317]

D3 D4

[c1, ..., cK ] [533, 284, 208, 183, 2] [480, 193, 321, 375, 315]
[c̄1, ..., ¯cK ] [1514, 1596, 1603, 1610, 1588] [723, 737, 667, 722, 680]

x0 [1514, 1568, 1465, 1541, 1481] [723, 736, 643, 700, 627]
x∗ [1514, 1526, 1526, 1533, 1533] [711, 711, 711, 711, 711]

D5

[c1, ..., cK ] [735, 545, 664, 572, 665]
[c̄1, ..., ¯cK ] [1302, 1464, 1818, 2292, 1594]

x0 [1302, 1449, 1238, 1716, 1449]
x∗ [1302, 1382, 1382, 1662, 1662]

Table 1: Main characteristics of the data sets D1, . . . , D5

D3 corresponds to an industrial bakery with subscribed power typically in the
range 1000-1500 KW; D4 and D5 correspond to two big hotels with subscribed
power typically in the range 500-1500 KW.
The main characteristics of each data set are shown in Table 1, namely:

– for each time category, the minimum and maximum values of the ct values for
t ∈ Ti ;

– for each time category i, the minimum value x0
i of Fi(xi), the component of

the objective function corresponding to time category i ; it is observed that in
all cases, the resulting 5 values do not meet the order constraints imposed in
ECSP;

– the five components x∗1, . . . , x∗5 of the optimum solution x∗ to the ECSP
problem, which can be observed to satisfy the order constraints xi ≤ xi+1

(i = 1, . . . , 4).

Table 2 displays the computational results obtained with scaling PAV (first line
of the table labelled ’sPAV’) and Optim SP (in the following lines for values of
a ranging from 1 to 8) for the various instances corresponding to the data sets
D1 to D5. For each instance, the column labelled ‘#evalF’ provides the number
of calls to the A Search procedure; the column labelled ’Total N+’ provides the
the evaluation of the resulting total number of arithmetic operations as measured
using the N+

i (xi) values; the column labelled ‘cpu’ indicates the resulting total
cpu time (in milliseconds).

All tests reported have been carried out using Python 3.6.8 on an environment
of 8-thread quad-core processor with 16 GB RAM and 2.8 GHz CPU running
Windows 10 (64 bits).
The results shown in Table 2 suggest the following comments:

– in all cases but D5, the Optim SP algorithm significantly outperforms Scal-
ing PAV in terms of CPU time for a chosen between 4 and 8, and the com-
parison remains favorable in the wider range 2 ≤ a ≤ 8. For the data set D5,
conclusions are less clear, but one can observe that there are still two values of
a for which Optim SP outperforms Scaling PAV.

– in most cases, it can be observed that there is a fairly wide range of values of a
for which Optim SP achieves improved efficiency as compared with one of the
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D1 D2

a #evalF Total N+ cpu #evalF Total N+ cpu
sPAV 130 113117 44 110 62766 28

1 192 103498 50 253 72739 34
2 174 39913 25 256 29724 15
3 172 18923 10 234 14463 8
4 167 11286 6 246 12082 8
5 166 7754 5 252 15993 9
6 183 5929 4 248 13183 8
7 168 4801 5 257 11984 7
8 169 4037 5 255 10989 7

D3 D4

a #evalF Total N+ cpu #evalF Total N+ cpu
sPAV 110 101162 38 90 93442 41

1 162 90373 44 199 77807 37
2 149 49375 24 171 34229 17
3 149 24729 11 169 18330 9
4 144 11882 6 164 9760 5
5 134 6426 4 162 6597 4
6 139 4248 3 159 22971 11
7 146 3434 3 160 20586 11
8 147 2977 2 174 19567 11

D5

a #evalF Total N+ cpu
sPAV 110 15022 7

1 167 23838 12
2 162 24938 12
3 155 14982 8
4 161 11746 6
5 157 9481 5
6 160 24505 13
7 167 22706 12
8 167 21914 11

Table 2: Computational results on the deterministic version of ECSP for the data sets D1, . . . ,
D5

best previously known algorithms for solving problems of minimizing a convex
separable function under order constraints. This shows that Optim SP features
a good deal of robustness with respect to the a parameter, and that the choice
of a particular value for the parameter a is not a critical issue: a practical
consequence of this is that a good value for a will be easily obtained on an
experimental basis, by observing the behavior of the Optim SP algorithm on
a sample of a few typical instances of the problem for a few values of a in the
range (2, 8).

– if, for each result shown in Table 2, one computes the ratio cpu/TotalN+, it
is observed that all values obtained typically range between 5e− 4 and 7e− 4,
which shows that cpu is, up to small fluctuations, proportional to TotalN+.
This confirms the relevance of our analysis based on the use of TotalN+ as a
measure of computational effort.
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Category Months ci c̄i Ti b
√
Tic σi

Winter peak hours Dec-Feb 2269 5536 1488 38 115
Winter full hours Nov-Mar 2056 6732 8688 93 124

Winter off-peak hours Nov-Mar 72 6667 11562 107 104
Summer full hours Apr-Oct 1769 7539 13920 117 144

Summer off-peak hours Apr-Oct 1152 7189 16902 130 134

Table 3: Information on remainder of STL decomposition applied the dataset D1

5.2 Results with Optim SP on the robust version of ECSP

This section presents various computational experiments carried out on the robust
version of ECSP.

5.2.1 Analysis of uncertainties through STL decomposition

Information on categories and values of the standard deviation (σi) of remainder
obtained by applying STL decomposition to the data set D1 are shown in table
3 (similar results would be observed for the other data sets). For example, the
winter peak hours cover three months from December to February and Ti = 1488
10-minute periods, and the standard deviation of remainder is σi = 116.

Statistical tests on remainders reveal that they are uncorrelated, have zero
means and are normally distributed, then by considering a truncated normal dis-
tribution between −3σi and 3σi will give correct representation of deviation of the
consumption. In our experiments, the robust parameter bi is chosen to be 3 ∗ σi
(r = 3), and we will use parameter corresponds to Bi = Vi ∗bi (with Vi = bq∗

√
Tic)

for different values of q ∈ [0, 0.2, 0.5, 1]. Notice that for q = 0 the deterministic ver-
sion of the problem is obtained. For the summer off-peak hours, the different values
of q considered correspond to the values 0, 26, 65 and 130 for Vi.

5.2.2 Numerical results concerning the robust version for the data set D1

Table 4 provides comparative information about the costs of various optimal or
sub-optimal solutions to both the deterministic version (q = 0) and the robust
version (q > 0) of ECSP for data set D1. Table 4 decomposes into three parts:

– the first part of the table concerns the contract currently used by the company
(a big factory in the food industry), the corresponding solution (6200, 7000,
7000, 7300, 7300), is called the reference solution; the deterministic cost of this
reference solution, as well as its costs in terms of the robust objective function
for q = 0.2, 0.5, 1 are provided.

– the second part concerns the optimal solutions to the deterministic ECSP (for
q = 0) and the robust versions of ECSP (for q = 0.2, 0.5, 1);

– the third part provides:
(a) the deterministic cost 111296 of the optimal robust solution obtained for

q = 0.5 and q = 1, namely: (5881, 6837, 6837, 7341, 7341);
(b) for q = 0.2, 0.5, 1, the robust objective function values of the optimal

deterministic solution (5536, 6479, 6479, 6914, 6914).
The results in Table 4 suggest the following comments:
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q Subscribed Power (SP) Cost cpu
0 6200, 7000, 7000, 7300, 7300 112275

0.2 6200, 7000, 7000, 7300, 7300 114274
0.5 6200, 7000, 7000, 7300, 7300 114315
1 6200, 7000, 7000, 7300, 7300 114315
0 5536, 6479, 6479, 7316, 7316 107576 25

0.2 5881, 6837, 6837, 7287, 7287 113750 2235
0.5 5881, 6837, 6837, 7341, 7341 113771 2404
1 5881, 6837, 6837, 7341, 7341 113771 2755
0 5881, 6837, 6837, 7341, 7341 111296

0.2 5536, 6479, 6479, 6914, 6914 118212
0.5 5536, 6479, 6479, 6914, 6914 121448
1 5536, 6479, 6479, 6914, 6914 123161

Table 4: Comparing the costs of various solutions to the deterministic and robust versions of
ECSP for data set D1

(i) the comparison of the costs of the optimal solutions (part 2 of the table)
with the costs of the reference solution shows that the latter is suboptimal
in all cases: the difference is 4.2% for q = 0, 0.4% for q=0.2, and 0.5% for
q = 0.5 and q = 1. It is thus observed that the reference solution turns out
to be a fairly good approximation (to within 0.5% or so) of the optimal
robust solutions for all the (strictly positive) values of q considered.

(ii) the comparison between the last three lines of part 2 and the last three
lines of part 3 shows the benefit provided by the optimal robust solution
over the optimal deterministic solution in the presence of uncertainty: when
q = 0.2, the optimal robust function value is 113750, whereas the robust
objective function value for the optimal deterministic solution is 118212,
showing that the former leads to an improvement in cos 3.8% over the
latter. The same comparison for q = 0.5 and q = 1 would lead to 6.3% and
7.6% improvement respectively.

(iii) The comparison between the first line of part 2 of the table and the first
line of part 3 shows that the difference between the deterministic objective
function value of the optimal robust solution for q = 0.5 and q = 1, and the
optimal deterministic solution value (111296-107576= 3720) represents an
increase by 3.3%. This value can be interpreted as the price of robustness.

(iv) the cpu times required for solving the robust versions of ECSP are about
100 times more than for solving the deterministic version, however they
typically do not exceed two or three seconds, which is quite acceptable
from the point of view of practical applicability.

To conclude, let us point out that, in spite of the fact that the results in Table
4 only concern the instance D1, quite similar conclusions would be obtained by
analyzing the other data sets D2, . . . , D5.

5.2.3 Computational efficiency of Optim SP on the Robust ECSP

In addition to the results discussed in Section 5.2.2, we provide in Table 5 results
showing the computational efficiency of Optim SP applied to the robust version
of ECSP, in a form similar to Table 2. In these experiments, the value q = 0.5 has
been taken. The main comments suggested by the results shown in Table 5 are the
following:
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– since the computational effort required to calculate the value of each component
of the objective function of the robust problem is significantly bigger than for
the deterministic case, it is all but surprising to observe significantly increased
cpu values. On average, they can be seen to be multiplied by a factor in the
range 50-100.

– concerning the influence of varying the value of the a parameter in the range a =
1 to a = 8, a behavior similar to the one observed for the deterministic case can
be noticed: for all instances (except D5) Optim SP outperforms Scaling PAV
for a wide range of values for a.

– the relationship between cpu and the Total N+ measure of computational ef-
fort, which was almost linear in the deterministic case, is more intricate in the
case of the robust ECSP; this is mainly due to the significant overhead induced
by the need of repeatedly solving the MCKP discussed in Section 4.3.

D1 D2
a #evalF Total N+ cpu #evalF Total N+ cpu

sPAV 130 5733875 3815 110 2781354 2363
1 198 4786268 4058 213 3537792 3271
2 173 1398527 2046 183 1067315 1803
3 181 490332 1534 180 461635 1578
4 173 223949 1401 176 302938 1406
5 170 130601 1254 176 178908 1362
6 182 82507 1327 196 324828 1559
7 175 55507 1267 185 274221 1457
8 172 50018 1255 183 243549 1472

D3 D4
a #evalF Total N+ cpu #evalF Total N+ cpu

sPAV 110 4399366 3024 100 3949268 2834
1 163 4121953 3512 201 3074664 2971
2 148 1900657 2237 184 949165 1832
3 152 570448 1413 174 295506 1387
4 151 202383 1282 174 129488 1325
5 143 106005 1099 172 76850 1279
6 144 64673 1076 175 56555 1290
7 139 45094 1036 177 916144 1747
8 145 39596 1065 185 864616 1757

D5
a #evalF Total N+ cpu

sPAV 110 539235 1115
1 171 825202 1695
2 160 171727 1273
3 156 643125 1472
4 156 432818 1388
5 161 355929 1398
6 166 1192940 1930
7 163 1078631 1810
8 167 997721 1773

Table 5: Computational results on the robust version of ECSP (q = 0.5) for the data sets D1,
. . . , D5.
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6 Conclusion and future works

This paper proposes an efficient polynomial-time algorithm based on an active
constraint set approach for the electricity contract selection problem (ECSP). This
problem is formulated as minimizing a convex separable function subject to total
order constraints. The computational results obtained show that the algorithm
features improved CPU time as compared with Scaling PAV [2], one of the best
existing methods for this problem.

The robust version of the problem has also been investigated. The construction
of an uncertainty set representing realistic scenarios of deviation between realized
consumption and forecasted values has been proposed, based on the so-called Sea-
sonal and Trend decomposition method (STL). It has been shown that the robust
version of ECSP can be efficiently solved using the same algorithm as for the
deterministic version. However, taking uncertainty into account requires comput-
ing worst-case values of the objective function. The latter problem is reduced to
solving a multiple-choice knapsack problem, which is polynomially solvable.

An interesting direction for future research will be to generalize the approach
of robustness. In the present paper, it has been assumed that each consumption
of a given category i can only deviate by a value bi which is the same for all the
time periods in the category. The next step is to have more detailed evaluation of
the σ values within each category, the standard deviation may be different from
one month to the next (e.g. the consumption of summer off-peak hours in June
may be quite different than the one in September). Another interesting subject
for future investigation would be to use more accurate stochastic models, possi-
bly capturing statistical dependence from one time instant to the next to better
represent uncertainties.
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Appendix

We state in this appendix the reformulation of P as a separable convex cost net-
work flow problem.

The graph to be considered contains K nodes numbered 1, 2, . . . ,K and a set
of 2K − 1 arcs, decomposed into K ’primary arcs’ and K − 1 ’secondary arcs’.

– the set of primary arcs contains the K − 1 arcs of the form (i, i + 1) for i =
1, . . . ,K − 1, together with a ’return arc’ (K, 1). The flow value xi on each of
these arcs (including xK for the return arc) has to meet the bound constraints
0 ≤ xi ≤ C (and 0 ≤ xK ≤ C) and the corresponding cost function is Fi (FK
for the return arc);

– the set of secondary arcs is composed of K − 1 arcs of the form (1, j) for
j = 2, . . . ,K. The flow value sj on each of these arcs has to meet the bound
constraints 0 ≤ sj ≤ C, and the associated cost function is identically 0.

Problem P then reduces to determining a minimum cost circulation on the above
graph. We observe that the flow values sj on the secondary arcs play the role of
slack variables for the constraints xj−1 ≤ xj for j = 2, . . . ,K.


