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In this paper, the existence of multiplicity distinct weak solutions is proved for differentiable functionals for perturbed systems of
impulsive nonlinear fractional differential equations. Further, examples are given to show the feasibility and efficacy of the key
findings. This work is an extension of the previous works to Banach space.

1. Introduction

This paper explores the perturbed impulsive fractional differ-
ential system

By (tu) + Gy, (tu) + hy(u; (1)),

mw%@w@»

(fbp (oDt t)) te[0, 1),
DY

l<i<n j=1,2,-m

(.

u;(0) = ()
(1)

where u = (u, uy, -+ u,), n>1,0<a, <1 for 1 <i<n, ,Df
and D} are the left and right Riemann-Liouville fractional
derivatives of order a;, respectively, ¢,(s)= |s|P%s, s#0,
¢,(0)=0, p>1, >0, 4>0, T>0, and F,G: [0, T] xR"
— R are L'-Caratheodory functions, and they satisfy in
the following standard summability condition:

sup (max {|F(-8)], [G(E)], | Fy; (-£)], |G (£

o)

[El<c, (2)

€L (fo, 1))

for any ¢, >0 with £=(§,,,,---,&,) and [¢| =1/ Y&

and h; : R — R is a (p — 1)-Lipschitz continuous function
with the Lipschitz constant L; >0, i.e.,

hi(§1) = hi(&)] < Lil&, —52|p71’ (3)

for every &,,&, € R, satisfying h,(0)=0 for 1<i<n. The
operator A is defined as 0 <, <t <--:<t, +1=T and

A(LD5 9, (6DFw) (1)) = Dyt ¢, (;D5'w) (1))

- D¢, (50 ws) (1), Y


https://orcid.org/0000-0002-0165-4992
https://orcid.org/0000-0002-5526-165X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9957952

where

(D¢, (D7) (1] ) = Tim D¢, (5D5'w) (1),
j
(7] c % — : X c % (5)
Dr'¢, (6D;'w;) (tj> = th*r{}szT ¢, (6D¢'u;) (1),
7

and I; € C(R, R) is a (p — 1)-Lipschitz continuous function
with the Lipschitz constant Ll-j >0, ie.,

&) L&) <Lyl -5 ©

Here, F, and G, are the partial derivatives of F and
G with respect to u; for 1 <i<n, respectively.

In science and engineering, fractional differential equa-
tions (FDEs) have recently proved to be useful methods for
modeling a broad variety of phenomena. In viscoelasticity,
electrochemistry, power, porous media, and electromagne-
tism, for instance, see [1-33] and the references therein.
Many articles have recently investigated the existence of solu-
tions to boundary value problems for FDEs, and we refer the
reader to one of them [2, 18-20, 34-46] and the references
therein. For example, Kamache et al. [40] investigated the
existence of three solutions for a class of fractional p-Lapla-
cian systems using a variational structure and critical point
theory.

In [36], we investigated the existence of solutions of the
periodic boundary value problem for a nonlinear impulsive
fractional differential equation with periodic boundary con-
ditions:

Dz"‘u(t) = f(t, u, Du), )

te (0, 1]\ttt O<a <1,
Jim ~u(t) = u(1) ®)
Jim (7D%(t) = Du(1), ©)
Jim, (1) 7 (u(t) = u(t)) =L(0) - (10)
lim (t=1)"" (D"u(t) - D*u(t)) =L(u(t). (1)

t—tt
j

where D*u(t) = (,Dfu)(t) = (1/(I'(2 - a)))(d/dt) [( (t = 7)™
u(t)dr is the standard Riemann-Liouville fractional deriva-
tive, D**u=D*(D"u) is the sequential Riemann-Liouville
fractional derivative presented by Miller and Ross on p. 209
of [14], 0< ty <t <--:<t,, =1, Ij,Tj eCR,R)(j=1,--,m),
and f is continuous at every point (¢, u,v) € [0, 1] x Rx R.
By using the method of upper and lower solutions and its
associated monotone iterative method, the author studies
the existence and uniqueness of the solution of the periodic
boundary value problem for the nonlinear impulsive frac-
tional differential equation (7).

Upon using variational methods and critical point the-
ory, the presence of one weak solution for the system was also
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demonstrated in [19] with g =0and [;; =0 fori=1,--,nand
j = 1, cee, M.

Impulsive effects are a common phenomenon triggered
by short-term perturbations that are negligible in relation
to the original operation’s total duration. Such perturbations
can be approximated fairly well as instantaneous changes of
state or in the form of impulses. Such phenomena governing
equations can be interpreted as impulsive differential equa-
tions. There has been a surge in interest in the study of
impulsive differential equations in recent years, as these
equations provide a natural framework for mathematical
modeling of many real-world phenomena, especially in con-
trol theory, physics, chemistry, population dynamics, bio-
technology, economics, and medical fields. Under such
boundary conditions, the presence of solutions for impulsive
differential equations with variational structures is deter-
mined by variational methods. See, for example, [36] as well
as the references therein. Many scholars have recently stud-
ied fractional differential equations with impulses using var-
iational methods, fixed point theorems, and critical point
theory, due to the rapid growth in the theory of fractional cal-
culus and impulsive differential equations, as well as their
broad applications in a variety of fields (see, for example,
[35, 44] and the references therein for a thorough discussion,
as well as the sources therein for more details). For example,
Gao et al. provided sufficient conditions for the existence and
uniqueness of solutions for a class of impulsive integrodiffer-
ential equations with nonlocal conditions involving the
Caputo fractional derivative using the Schaefer fixed point
theorems (see [45]).

The existence of infinitely many solutions for the system
(1) was discussed in [46] using variational methods. Some
new parameters to guarantee that the system (1), in the case
u =0, has at least two nontrivial and nonnegative solutions
were obtained in [30] under appropriate hypotheses and
using variational methods.

Recently, in Reference [27], perturbed systems of impul-
sive nonlinear fractional differential equations were studied,
including continuous nonlinear Lipschitz terminology where
at least three distinct weak solutions were demonstrated based
on the modern critical point theory of differentiable functions,
but here, we will prove the existence of three distinct weak
solutions for differentiable functionals for perturbed systems
of impulsive nonlinear fractional differential equations.

Most precisely, in this work, we extend the last work [38]
to Banach space, where we show that there are at least three
weak solutions for the system (1), which involves two param-
eters A and y. Furthermore, we do not need any asymptotic
conditions of the nonlinear term at infinity in our new find-
ings. The proof is based on a three-critical point theorem
proved by Bonanno and Candito in [32], which we will revisit
in the following section (Theorem 1). Theorem 10 is our
most important finding. As a result, Theorem 11 can be
deduced. Theorem 11 is shown in Example 1. When it comes
to a scalar situation (n = 1), we obtain Theorems 14 and 15 as
special cases of Theorems 10 and 11. Theorem 15 is shown in
Example 2. Under appropriate conditions on the nonlinear
term at zero and at infinity, we obtain the presence of at least
two positive solutions in Theorem 16.
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The present paper is organized as follows. In Section 2,
we recall some basic definitions and preliminary results,
while Section 3 is devoted to the existence of multiple weak
solutions for the eigenvalue system (1).

2. Preliminaries

Let X be a nonempty set and @,¥ : X — R be two func-
tions. For all 7, r,, r; > infy @, r, > r{, 73 > 0, we define

(sUPrcot(con ¥ (1)) ~ (1)
r—O(u)

. Y(v) - ¥ (u)
) = f -1 D) — Dl
B(rys73) ue@’llr(lfoo,r) SUPvea 1 r, r,) D(v) - D(u)

>

¢o(r)= inf

ued™! (-co,r)

(12)

SUP e (—o0,r,+73)

Y(rZ’ 7'3) = r—’
3

a(ry, 1, 13) =max {@(ry), @(r;), y(r2:73) }-

Theorem 1 ([32], Theorem 3.3). Let X be a reflexive real
Banach space; let @ : X — R be a coercive and continuously
Gateaux differentiable and sequentially weakly lower semi-
continuous functional whose Gateaux derivative admits a
continuous inverse on X*, where X* is the dual space of X,
and let ¥ : X — R be a continuously Gateaux differentiable
functional whose Gateaux derivative is compact, such that

(a,): @ is convex, and inf @ = ©(0) =¥(0) = 0.

(a,): for every u,, u, € X such that ¥(u;) >0 and ¥ (u,)
> 0, one has

sil{})ﬁ}?’(sul +(1-s)u,)=0.

(13)

Assume that there are three positive constants r,, t,, and
r; with r; < r,, such that

(a3)p(r;) < B(rpr2)s
(ag)@(rz) <P(rp>r2)s
(as)y(ro13) <P(rp 1)

(14)

Then, for each A€]1/B(r;,1,), lla(r;, 1, 15)], the func-
tional @ — AY admits three distinct critical points u,, u,,
and u; such that u, € ®@!(-oo,r,), u, € @ [r,,r,), and u,
€@ (00,1, +15).

Now, we introduce some important fractional calculus
concepts and properties that will be used in this paper.

Let C°([0, T), R") be the set of all functions x € Cy°([0,
T), R") with x(0) = x(T) = 0 and the norm
(15)

Iy = mas (1)

Denote the norm of the space LF([0, T],R") for 1<p
<00 by

T
HwU=Lw@P&- (16)

The following lemma yields the boundedness of the Rie-
mann-Liouville fractional integral operators from the space
LP([0, T],R") to the space LP([0, T]),R"), where 1<p < co.

Definition 2 [35]. The left and right Riemann-Liouville frac-

tional derivatives of order «; for the function u are defined in
the following forms, respectively,

ﬁ% (J;(t - s)‘“fu(s)ds), t>0,
e ([ e euoas), e,
(17)

where u is a function defined on [0, T] and o; > 0 for 1 <i < m,
and I'(a;) is the standard gamma function given by

0D‘;"'u(z‘) =

tD?"u(t) =

I'(z)= J+Ooz"‘f1ezdz. (18)

0
Definition 3 (see [40]). Let a; >0 for 1 <i<n and n e N.

(i) If ;€ (n—1,n) and ue AC" ([0, T],R"), then the
left and right Caputo fractional derivatives of order
a; for function u denoted by §D;'u and D u, respec-
tively, exist almost everywhere on [0, T] and for 1 <
i <n, where §{D;"u and {D'u are represented by

1 t
cp%y = _ a1 (n) 3 T,
oDf'u 7F(n—ai)J0(t s) u(s)ds, te[0,T|
(19)
piy = D T(t—s)”_“f_lu(”)(s)ds telo,T]
T I(n-a)), ’ T

respectively.

(ii) If a;=n—1 and u € AC"([0, T], R"), then §D/ ' u(t)
and ¢{D"'u(t) are represented by {D} ' u(t) = u"V

() and (D u(t) = (-1)" " ul* V(1)
Lemma 4. Let 0<a;<1 for 1<i<n, 1<p<oo, and ue

LP([0, T],R"). Then

(xl

HOD;X’ u

*T@+1) ’ 0.1, t€ [0, TJ.
(o) F(oc,-+1)”“”LP<[o)r]> for§e(0,1], €0, T]

(20)

Proposition 5 (see [40]). From fractional integration, we
have

T T
J[OD;“u(t)]v(t)dt=J [DFv(t)]u(t)dt, a>0, (21)

0



provided that u e LP([0, T],R), ve LI([0, T],R), and p> 1,
(1lp)+(llg)<1+aorp#1,q+1,(1lp)+(1/lq) =1+

Definition 6 (see [40]). Let 0 < ; <1 for 1 <i<n. The frac-
tional derivative space H' (0, T) (denoted by Hy' for short)
is defined by the closure C°([0, T], R), that is,

Hy =Cy(0, T) R), (22)
with respect to the weighted norm
oo , T
it = ([ ooFuoPdes | o )ae 2
0 0

for every u; € Hy and for 1<i<n.

Remark 7. It is obvious that the fractional derivative space
H,' is the space of functions u; € L”([0, T],R) having an
a; order Riemann-Liouville fractional derivative ,D,%u; €
LP([0, T],R) and u;(0) =u;(T) =0 for 1 <i<n. From [12]
(Proposition 3.1), we know that for 0<a; <1, the space
Hy' is a reflexive and separable Banach space.

Lemma 8 (see [40]). Let O< a; < I for 1 <i<m,and 1 <p <00
. For any u; € Hy', we have

T #,
[uill 1 < T+ 1) o D? (1) - (24)
Moreover, if a; > 1/p, then
a;=(1/p) a
ul| < D 'u;(t)|],,» 25
o Fai ity w i 0 Ol 2

where (1/p) + (1/q) = 1. Upon using (23), we observe that

T 1ip
|ui||ai=||0D?"ui(t)HLp=(J0|0D?iui(t)|1)dt) ., Vu,€HY,

(26)
for 1 <i<mn, which is equivalent to (15). Then, we have

Z 241175 —SZ (£ (27)
and if a; > 1/p, then

Z llls <MZ [ (28)

Journal of Function Spaces

with

TP
S=max{—— —,1<i<ny,
(I'(a; + 1))

TPei~1

(29)
M {(rmi TP (- Dar 7

SiSn}.

Now, we let X be the Cartesian product of n Sobolev spaces
Hy, -, Hy, ie, X=H, x--xH,", which is a reflexive
Banach space endowed wzth the norm

(30)

[ (up> -

||—Z||u

Obviously, X is compactly embedded in (C°([0, T]))".

Definition 9. We mean by a (weak) solution of the system (1)
any function u = (uy, ---, u,) € X such that

n

T
; -2
ZJ (loDus(6) oD (1) - o DfF it
0

Zjh )dHii ,
2

n T T
AZJ F, (t)dt — J G, (t,u)v(t)dt =0,
i-1Jo iw1Jo
(31)
for every v = (v, ---,v,) € X.
Put
H;(x) :J h,(&)dE, forallx e R, (32)
0
for1<i<n.

We need the following conditions:

(H1): l/p<a;<lforl<i<n.

(H2): I;;(0) =0, and there exists a constant L;; > 0 such
that

|71

Iij(sz)‘ < Lyjls; = s,/

‘Iz‘j(sl) -

foranys;,s, €R(i=1,--,n,j=1,---,m).

(H3): 2
where C= MAXKje(1 . ) jie{1,---ym
,Tl,1<i<n}.

(L;TP%/(T'(a; + 1))P7) + MCml|al|, < 1
1L;j and @ =max {a;(t), € [0



Journal of Function Spaces

Put

i1 L,TP% l<i<
o=min{l- —"— —_ 1<i<ny,
(I'(e+ 1))

1+ LT 1<i<
= max — _1<i<n},
g (o + 1)) .

Q; =0 - MCmlja|,
Q, =0+ MCm||al|,

3. Main Results

In this section, we present our key findings regarding the
existence of at least three weak system solutions (1). For

any ¢ > 0, we denote by Q(¢) the set {(x;, ---,x,) € R" : (1/p)
Y %P <c}. For positive constants 8 and 7, set
T
G ::J max G(t, x5 -+ x,)dt,
0 (*¥1>%,)€Q(0) (35)

G(t, x5+ x,)dt.

n = inf
(0. TJx[0." (20t )]~ X[0, (201, )]

For the rest of this article, positive constants will be used
(@ and #), and let ® and # be the vectors in R" defined by

= ({/@, y@),
(36)
n=(2-o)n - T2=a,)n)
respectively.
Set
1 T
Ci(a;,y) = tP1-%) g
V)= ooty {J
a-nT
+J (tl—oc ( )/T)l oc) d
yT
T 1 1 (37)
RGO
a-nT
-1-(( —V)T)l’“"]p}’
for 0 <y < 1/p, and
K, =max {C;(a;, y), 1 <i<n}, (38)

K, =min {C;(«;, y

Fixing four positive constants 0,, 0,, 05, and #, put

. 1
8, ¢ =min {— min
’ pM

0,165 - pMA [T E( t@zdt 0, (65 - 65) — pMA [T F(t, ©5) dt}
G% G%

>

Q0] - pMA [T F(t,©,)dt
G9

K ng,nf - /\(ji‘T‘”TF(t, n)dt - [T F(t, ®l)dt>
TG, - G" ’

(39)
for 0 <y < 1/p.

Theorem 10. Let F:[0,T]xR"— R be nonnegative.
Assume that there exist positive constants y < 1/p, 0,, 0,, 05,
and n with 8, < (pMK ,n)""y and (pMK ,nQ,/Q,)""1 <0, <
0, such that

(A1):

. ng(t,®1)dt) ng(t,®2)dt’ [LE(t,@;)dt
% % 05 - 67

(40)
Lo [V E(t )de — [ (L ©,)dt
pM K no,np '
Then, for every
KnynP L in
[V E (s iydt = [ F(t,©,)dt PM
D % e-a
TF(t,0,)dt’ ['F(t,@,)dt ["F(t,0,)dt ||
0 1 0 2 0 3
(41)

and every nonnegative function G : [0, T| x R" — R satisfy-
ing G > 0, there exists 8, ; > 0 given by (39) such that, for each
p € (0,8, ¢l the system (1) has at least three solutions u,, u,,
and uz such that max,cjo gy [u;(t)] <6}, max,co 7y [u(t)] <6,
and max, (o 77 |us(t)| < 65.

Proof. Our aim is to apply Theorem 1 to the system (1). We
take X =Hy' x ---x Hy" and introduce the functionals @

and ¥ for u = (uy, u,, -, u3) € X, as follows:
1 n
0= 52l - Zj H (0 (1)) dt
0 m (4 (42)
+ ZZa, J L;j(s)ds,
i=1 j=1
T u(’
¥ (u) =J0F( (t))dt + XL G(t, u(t))dt, (43)



and we put
IH(u) = @(u)

Clearly, @ and ¥ are continuously Gateaux differentiable
functionals whose Gateaux derivatives at the point u € X are
given by

- AP (u). (44)

(45)

for every v = (v}, v,, ---, v,) € X. Clearly, ®', %' € X*, and we
easily observe that inf, @ = ®(0) = ¥(0) = 0.

We can show by (42) that @ is sequentially weakly lower
semicontinuous. Indeed, taking the sequentially weakly lower
semicontinuity property of the norm into account and since
H, is continuous for i =1, -+, n, it is enough to prove that

i Zn: a, Ju. ) (s)ds, (46)

j=li=1

is weakly continuous in X. In fact, for {u, = (uy5 -+ u) }
c X, if {u;} converges to u in X, then there exists S, > 0 such
that ||u; ||, < S,. Therefore, we have

j=li=1 0 j=1i=1 0
m n u(t;) 47
SZZat kalij(s)ds “47)
j=1i=1 u;(t;)
< Symn||al| ||t = v o — 0,
M o1-q
— %, 0,yT],
VT €[0,yT]
D“"w-(t) — i (tl_o‘i _ (t _ }/T)l_‘x‘),
0+t i YT
n 1-«a 1-a
(7%~ (t—yT i
yp (v T)

—(1-p)T)"™), te](1-
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where S, =maXe(i...uy jef, - mhsiss, Lij(S)- S0, we have |®
(uy) — D(u) | —0; thus, @ is weakly continuous. Hence,
@ is sequentially weakly lower semicontinuous in X. We
show what is required. Since h; (0) =0, one has |h;(x;)| < L
|x;|P~! for i=1, -+, n; from (43) and the condition (H2), we
see that

n m
ZZ illaillcol 14115,

Q n 0_, n

1

=LY fwilly <= Y lwl, -

P i=1 pi:l i=1 j=1

¢ - L, TP
< Z jNe -y P
p;HuI”{xi Z ( 4+ )) ||x

I
SRS
=
=
=
+
S
M=
™M=
o~
=
B
?
=

(=}

n
2
2 i

IN

o |
0

(48)

and bearing the condition (H3) in mind, it follows

lim o, @(u) = +00; namely, @ is coercive and convex.
For 0 < y < 1/p, define w = (w;, w5, -*-, w,) by
r@-aw)n
—t, tel0,yT],
VT €[0,yT]
w(t)=q T2-a)y, teT.(1-y)T], (49)
I2-a)n

=S (=1, te)t-)TT)

for 1 <i<n. Clearly, w;(0)=w;(T)=0 and w; € L? ([0, T])
for 1 <i<n. A direct calculation shows that

€T, (1-y)T], (50)

T T),
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for 1 <i < n. Furthermore,

J oD w;(t) | dt = (iT) {JYT (=a)p gy

J — (t—yT)"%)"dt
T

~(t- (l—y)T)l‘“')Pdt}

- (t—yT)""

=prP Ci(;> ),
(51)
for 1 <i<n. Thus, w € X, and
i[5, =" Cle> ¥)s (52)
for 1 <i < n. By using (50) and (52), we have
Kynoif < @(w) <K nonf. (53)

7
@ (~coyr)) ={ueX: d(u)<r}
Q{ueX i l”p < }
“Jduex: <P
_{ eX:— ZH . < } -

" M
“duex: Y ulr < 220
o1 ' Q
n
- {uex : Znuiniose‘f}.
i=1

Hence, since F is nonnegative, one has
T
sup J F(t, u(t))
ued™! (—oosr;)J 0

T
SJ max F(t, %1, %y, =+, x,,)dt (55)
0 (X%, %, )€Q(6;)

T
sj F(t,0,)dt.

0

In a similar way, we have

sup )JTF(t u(t)) < JTF(t 0,)dt,

ued! (—oo;r2 0 0

(56)
T T
Choose r, = (Q,/pM)8], r, = (,/pM)65, and r3 = (Q,/p sup J F(t, u(t)) SJ F(t, ®;)dt.
M)(6: - 65). From the conditions 8, > 6,, 8, < (pMK,n)"" ued (—cosry+r3) 0 0
n, and (pMKanZ/Ql)”Pn < 0,, we achieve r; >0 and r; <@
w) <t,. From the definition of @ and considering Equa- Therefore, since 0 € ®~!(-co;r,;) and ®(0) =¥(0) =0,
2 g Lq 1
tions (24), (27), and (50), one has one has
SUP,cqp-! (—ooyr, V(u))-¥Y(u) sup .., W(u
q)(rl) - inf ( ed™( ) ) < pue(D (—o0,r1) ( )
ued (~co,r)) r = (D(u) ”1 (57)
By (oury S [F(8 (0) + (NG (0)]de_pM [TE(t,©,)dt + ()G
" o 9117 ’
Uy ¥ (8) _ SUPuctr ey Jg (FCE 4(0)) + (NG w(O)lde _pM TR O,)dt+ (WG
(P(rz) < r - r ep > ( )
2 2 Q )
)/(T’ ’ ) _ Supue@’l(—oo,r2+r3)lp(u) _ Supue@’l(—oo,r2+r3)fg[F(t’ u(t)) + (/\/”)G(t’ u(t))] PM jo d (M/A)
2 T3 Q; 913) - 912)
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On the other hand, for each u € @ — 1(—c0, 1, ), one has
s [ B (L m)dt = [ (6 ©,)dt + (ud) (TG =G [SVTE(t m)dt = [ F(1,©,)dt + (w/d) (TG, — G*) )
r,7y) 2 > . (60
e D) - () Kine7
Since p < §; ;> one has Hence, from (57)-(67), we get
LQIG‘f—pMAJ"gF(t, 0,)dt (61) a(ry, 155 13) < P(r1572)- (68)
pM G91 ’
Therefore, (a,) and (a,) of Theorem 1 are verified.
This means Now, we show that the functional I, satisfies the
assumption (a,) of Theorem 1. Let u* = (uj,u;, -, u})
J"O (£,0,)dt + (WA)G 1 and u** = (u}*u3*, ,u;*) be two local minima for I,.
1pM)8 T (62)  Then, u* and u** are critical points for I,; they are weak
(@/p 1 solutions for the system (1). Since we assumed F is nonnega-
Y g
Furth tive and since G is nonnegative, for fixed A >0 and y > 0, we
urthermore, have  F(t,su* + (1-s)u**) + (W/A)G(¢t, su* + (1-s)u™*) > 0,
and consequently, ¥(t, su* + (1-s)u**) >0 for all s€0,1].
K nont - A(I F(t,n)dt - fo 1)dt) Hence, Theorem 1 implies that for every
p< 5 . (63)
TG,-G"
Ae Kinoy 2 in
This means JONTE, 7)dt - [LE(t,©,)dt PM
' ° (69)
T _ T _
I e O TG, 1y
K, norp 1 [ F(t.©))dt [ [F(t,®,)dt [ F(t,0;)dt
Then, and p € [0, §,, G, the functional I, has three critical points u;,
i=1,2,3, in X such that ®(u;) <r;, O(u,) <r,, and O(u;)
Jo (t,©,)dt + (u/A)G* <1y + 13, that is, max,pq ry|uy ()] < 0}, max,ejo 1|1, (¢)] <65,
(Q /pM)elf and max,(q ry|u3(t)| < 05. Then, taking into account the fact
1 J“(IT*V)T F(t,7)dt - Ig F(t,®,)dt + (uid) (TG _ Gel) thgt the weak solqtions of the system (1) are exactly .critical
<<l il . points of the functional I, we have the desired conclusion. O
A Kyn,nP
(65) For positive constants 6,, 8,, and #, set

In a similar way, we have

[CE(t,©,)dt + (W))G”
(QI/pM)GP

(1
<1<Jy

(t,0,)dt + (u/A) (TG, - G*)
Kyne,nP

F(t,)dt ~ [ F(

>

(66)

[VE(t, ©;)dt + (w/h) G
(Qu/pM) (65 - 65)
1 JOITE (s, f)dt - [F(t,©,)dt + (wh) (TG, - GV

K, no,nt
(67)

& —pMA(TF(t,©,)dt
S/QG::min Lmin Q% —p “[0( ) ,
s pM Gel
0,0 - 2pM)ngF((t, 0,920,132, -, 94/\'75))dt
G(6,192)

10, — 2pMA [ F(t,0,)dt }
G° ’

K”Qz’TD A([ (t’ldt_ro

TG, - G”

£6,)dt) }

(70)

where 0 <y < 1/p.
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Theorem 11. Let F : [0, T] x R" — R satisfy the condition
F(t,x), %5, -+, x,) 20 for all (t,x;,%, ,x,)€[0, T] xR".
Assume that there exist positive constants y<1/p, 0;, 0,
and n  with 0, <min {5, pMK,n)""n}  and
(2pMK n@,/(o = MCml|al|,))"""n < 6, such that

(A2):
{ng(t, ®,)dt 2[F(t, @4)dt}
ax 7 , 7
(71)

(Q; + pMK n,)n” Q_ min
pMJ"I "R, 7)dt P

7
. 0 6,
[VE(t,@))dt 2[) F(t,0,)dt [ |

and every nonnegative function G : [0, T] x R" — R satisfy-
ing G¥ > 0, there exists SA,G given by (70) such that, for each
p € (0,8, ¢l the system (1) has at least three solutions u,, u,,

AeA =

(72)

o J‘;T NT g F(t,7)dt and uz such that max,co 7y | u;(t) | <6, max,cop | u,(t) | <
< Q, + pMK ng, P : 0,//2, and max, (o7 | #5(t) | <6,.0
Proof. Choose 6, = 0,/{/2 and 6, = 0,. So, by using (A2), one
Then, for every has
T
[TE(t@yde  20oF(60u02.00%2,,00%2)dt 5(T(1@,)dt < o JSVEmnd .
0 6, T8 Q +pMK ng, o
T
JoF(t.©s)dt _2[[F(t,©,)d . 0, "E(t, ﬂ)d (74)
6, - 65 A Q; + pMK, ng, "
Moreover, taking into account that 8, < #, by using (A2), ~ Example 1. Consider the following system:
we have
(DY (85 (6D C (1)) = AF,, (112 8) + WG, (11, 10) + Iy (), £€[0,1] 141,
DV (5 (oD 15(1))) = AF,, (uy, t1y) + UG, (41, 1) + by (1), £€[0,1], £ 15,
ITE -
o Jyr TRt - [(F(t,©,)dt AP, (5025, (0) (1)) = Iy (1, (1)) j=1,2,
PMK,nQ, n ADR 5 (DY (1) (1)) = Ly (1)), =12,
o Sy TEmde o [TR(Le))dr w(0) = (1) =0,
PMK nQ, P PMK g, & 15(0) = 1(1) =0,
76
o he"FE (76)
PMK nq, nt where
(1
- % G Ul U
PMK ng,(Q, + pMK,ng,) P e Milite if x;x, 0,
(1-y)T . —1/]x, | ifx, =
= & L E(E n)dt. F(xy,x,) = c 320, % £0. (77)
Q; + pPMK, nQ, P e Vil ifx; #0, x, =0,

(75)

Hence, from (A2), (73), and (74), it is easy to see that the
assumption (A1) of Theorem 10 is satisfied, and since the
critical points of the functional @ — A¥ are the weak solu-
tions of the system (1), we have the conclusion. |

Now, we present the following example in which the
hypotheses of Theorem 11 are satisfied.

0 ifx; =0, x, =0.

hy(x,) = (1/10%) sin’x; and h,(x,) = (1/10°)(1 — cos’x,)
for every (x,x,) €R, t; =1/3, t, =1/2, and I;;(§) = (1/10%)
& for every £ € R and for i,j=1,2. By expressions of h,
and h,, we have H,(x;) = (1/2.10%)(x; — (1/2) sin 2x,) and
H,(x,) = (1/2.10%)(2x; + (1/2) sin 2x,) for every (x;,x,) €
R. Choosing y =1/4,0, =107%,6, = 108, and 7 = 1, we clearly
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observe that all assumptions of Theorem 11 are satisfied.
Hence, for every

Lo 0.5(I'(0.65))*(1- (1/(106(1“((1.?5))2)) (— ()1/(5 x 10°(I'(0.65))*)))
e—l/F 1.35 +e—1/[‘ 1.3

, 31:8304(1+ (1/(10°(I'(1.65 N?)) +

e~ 1/I(1.35)
= (1/(10°(I'(1.65))%)) = (1/(5 x 10°(I'(0.65))*))  10**
(I(0.65))* o110t |

(78)

(1/(5x 10°(I'(0.65))%)))
+ e UI(13) ?

and every nonnegative function G : R” — R satisfying G’
>0, there exists &} ;> 0 such that, for each y € [0, 8, o[, the
system (74) has at least three solutions u,, u,, and u; such
that max, o,y | 4, (¢) | <107, max,c 7 |u,(t)| < 10%/v/2, and
max,eo. ) | 45(t) | <10°.0

Remark 12. When F does not depend on ¢, in Theorem 10,
the assumption (A1) can be written as

o {F101), 201 FO)

DT (79)
_ o (L-2)TF) - TR®)
M K, no,nP >
as well as
— K, no,n? o '
A »—] (1 — ZY)TF(f]) — TF(®1) > pTM min
e 6 e-4
F(©,)" F(©,)" F(©;) [ |
6,1)@ = min {1% min { Qle;17 _Pé\/IQIAF((Bl) )
0.0, - PMAF(®,) ¢ (6 - 65) - pMAF(O) }
Gez ’ G93 5
. KanzﬂP - )t((l - Zy)TF(;?) _ TF(®1))
TG,,’ — Gel .
(30)

In this case, in Theorem 11, the assumption (A2) follows
the form

>

(81)

S ICARELCN) D L
o 0 Q +pMKng, 1P

Journal of Function Spaces

as well as

>

A= (Ql+PMK1”Qz)11P’ Q - 9117 ) GZ
pM(1-2y)TF(n) " pTM F(@,) 2F(O,)

LM min J @O ~PMTAF(©))

Gh

! .
0, ¢ =min

0,60 — 2pMTAF (t, 0,14/2,0,1/2, -+, 94/\Pﬁ)
G
0,04 -~ 2pTMAF(©,)
. e

>

>

Kynoyn? - A(1-2y)TF(n) -
TG, - Gh

TF(1,0)))

(82)

Remark 13. We observe that, in our results, no asymptotic
conditions on F and G are needed and only algebraic condi-
tions on F are imposed to guarantee the existence of solu-
tions. Moreover, in the conclusions of the above results,
one of the three solutions may be trivial since the values of
F, (t,0,0,--,0) and G, (¢,0,0,---,0) for every t€[0,T], 1
< I<n,are not determined.

As an application of Theorem 10, we consider the follow-
ing problem:

(D (9, oDEu(1)) = Af(tu) + ug(tw) + h(w),  te[0.T], t#t,
A(DF 9, (DFn (1) (1) ) = L (u(1)), =12,
u(0)=u(T) =0,

(83)

where 1/p << 1,A> 0,4 >0, T >0, ,D*and , D7 denote the
left and right Riemann-Liouville fractional derivatives of
order a, respectively, a, =ess inf (o 7 a(t), f,g: [0, T xR

— R are L'-Caratheodory functions, and h : R — [0,+
00) is a (p—1)-Lipschitz continuous function with the
Lipschitz constant L > 0, i.e.,

[h(x;) = h(x;)| < L|x; =%,/ (84)

for every x,,x, € R, satisfying h(0) =0, I; € C(R, R) for j=
1,2,---,m, such that I;(0) =0,0 < t; <t, <<t <t, =T,
and I; is a (p - 1)-Lipschitz continuous function with the
Lipschitz constant L; > 0 such that

|Ij (s1) -1 (52)| <L; Is1 _Sz‘P_l’ (85)
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for any s;, s, € R, satisfying 1,(0) =0, for j=1,2, ---, m. Put

X

F(t,x) =Jf(t, &)dt,

0

forevery(t, x) € [0, T] x R,

’ (86)
G(t,x) =J g(t,&)dt, forevery(t,x) € [0, T| xR,
0
and H(x) = [(h(&)dt for every x € R.
Set
g=1- "
(e
p=1+ LT
P Tar)ya
B Tpa—l
M= ,
oy(L(e)) (= 1)q + 1)
Q =0~ MCmal|,
0, =0+ MCm|a||
2 ]l (&7)
1 vt
Clay)= ——3 J P19 dt
p(yTY" o
(1-nT
+ J (Fe = (t—yT)")Pdt
yT
T
+ J [(tl—a _ (t _ yT)l—ot)
(1-nT
-1-( —y)T)l‘“]P},
for 0 <y < 1/p. We suppose that
_ L. TP* —
K=—"" __ +MCmla|_ <1, (88)
(o ), &
where C=maxc(; ..., {L;}-
For positive constants 6 and #, set
T
G ::J maxG(t, x)dt,
0 |x\£\y§ (89)

G”I = inf G.
[0,T]X[0.I'(2-a)]

Obviously, if g changes sign on [0, T], then clearly
G200

Now, we give the following straightforward consequences
of Theorems 10 and 11, respectively.

Theorem 14. Let f : [0, T| x R— R be a nonnegative L'
-Caratheodory function. Assume that there exist positive con-

stants y<1/p, 0,, 0, 0; and n with 0,>0, 0,<

11

(pMC(a, 7)) "1, and (pMC(a, y)2,/3,) "1 < 6, such that

o o -8

o JiTEI@-amydt- [TF(44/8))dt
PMC(, y)R; P -

{ﬁF(t, {/97) dt jZF(t, {/Gj) dt J“ZF(t, {/6—3) dt}

<

(90)

Then, for every

P
reA" = |Ca,y)e 1 ,
{ SR (2= anydt - [ F(54/8; ) dt

T o
c— mmn{ —————
pM { ng(t, </571) dt

8 0, -0,
[oF (6 4/8;)at [3F(e4/8)de | |

(o1)

and every nonnegative L'-Caratheodory function g : [0, T)
xR — R, there exists 8;’g > 0 given by

G

i Q.07 - pMA[F(1, /8, ) dt
8:{9 :=min { — min R
. M

G G

. 0,6 —pMAJ'ZF(t, {/9_2) dt g,(65-65) —p]\i/I)L‘fZF(t, (/6_3> dt }

Clay)an = A(Ji5" F( T2 - amydt - [ F(1 /8, )dt)
' TG, - G ’

(92)

such that, for each p € [0,8) ;|, the system (83) has at least
three solutions u;, u,, and us such that max oy | u;(t) | <
0, max,cjo 7y | u5(t) | <0, and max, (o | us(t) | <6;.0

Proof. By a similar argument as given in the proof of The-
orem 10, we ensure the existence of the weak solutions u,
Uy, and uy such that max,cjo g | 4, (t) | <0y, max,¢o 7y | u,(t)
| <0,, and max,co 7 | u3(t) | <6;. Now, we show that the
weak solutions u,, u,, and u; are nonnegative. To this end,
let u, be a nontrivial weak solution of the problem (83).
Arguing by a contradiction, assume that the set of = {t €]0,
T): uy(t) <0} is nonempty and of positive measure. Put
v(t) =min {0, u, ()} for all ¢ € [0, T]. Clearly, ¥ € H*, and
one has
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! -2
|, (atooDrum( Do) - DEw(t )
0
T m
- Joh(uo(t))v(t) £ Y a(t),(u(t))o()  (93)
=1
T T
A 76 wpoar-p| gt w0
0 0
Thus, from our sign assumptions on the data, we have
0= (1K) | aloluDiu (o
< | alDruworae- | nonm@dr (o
o o
+ Y aft t;))u(t) 0.
1
Hence, since K < 1, 1, =0 in A and we arrive at a contra-
diction. O

Theorem 15. Let f : [0, T) x R — R be a nonnegative L'
-Caratheodory function. Assume that there exist positive con-

stants y<1/p, 0,, 0, and n with 6,<min {y,
(pMC(a, )1} and (2pMC(a, 7)0,/0,) "1 < 8, such that

J"gF(t, {/67)dt ZJZF(t, {/é;)dt

max

0} ’ 0} (95)
_ (I-p)T d
< Q; fyT F(t, T(2-a)n)dt
Q; +PMC(a,y)Q; " .
Then, for every
A€ (él +pMC(0c, )Qz)n" é—i min
pMj E(t,T(2-a)n)dt pM
(96)

6 0,
I§F<t, {/(71) dt’ 2f§F(t, {/62) dt

and every nonnegative function g : [0, T] x R — R satisfy-
ing G% > 0, there exists 84 > 0 given by

1 (2.6 -phr f§F<t, </01)dt
6/’{’; :=min { — 5 ,
> pM GY

>

Q0% - 2pMAJ; F(1.0,92)dt 68 — 2phN [T E(r,6,)dt
' 2G0V? ’ 2G%

Cley)en - A(I

"F(,T(2-a)) - ['F ( {/E)dt)}

0,
TG,-G™

(97)
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such that, for each y € (0,8}, the system (83) has at least
three solutions u;, u,, and us such that max oy | u;(t) | <
0;, max, o | uy(t) | <0,//2, and max, o | u3(t) | <6,.0

Here, in order to illustrate Theorem 15, we present the
following example.

Example 2.
DY (05 (0D u(t))) = Af (u) + pg(u) + h(u),  t€[0,1], t#t;,
AWD s (D2, (1) (1)) =Li(u(t)), i=12
u(0)=u(1) =0,
(98)
where
6x°, x<1,
fx)=1e6 (99)
- x>1
X
h(x) = (1/10%) sin’x, for every x € R, t, =1/4, t,=1/5,
and I,(§) = (1/10°)&’, for every £€ R and for j=1,2. By

expression, we have

x<1,

) :{6ln (x)+1,

Taking y=1/4, 6, =107, 6, = 10%, and 1 = 1, we clearly
observe that all assumptions of Theorem 15 are satisfied.
Then, for each

(100)
x> 1.

Ae} 0.6(I'(0.8))*(1 - (1/(10%(I'(1.8)) )2) (1/(3x 107(I'(1.8))%)))
(I'(1.2))
(1/(3x107(I'(1.8))*)))

>

, 89282(1+ (L(10°(I(1.8))*)) +
(P(1.2))?
- (UEx107(r(1.8)%)) 10
61In (10%) +1 |’
(101)

- (1/(10%(I(1.8))%))
1.2(I(0.8))°

and every nonnegative continuous function g: R — R,
there exists §, , > 0 such that, for each y1 € [0, 5, /[, the system
(83) has at least three nonnegative weak solutions u,, u,, and
uy such that max,go ry | u; (£) | <107, max,go 1 | u,(t) | <10*
1¥/2, and max, (o 1) | u5(t) | <10*.0

Now, we list some consequences of Theorem 15 as
follows.

Theorem 16. Let f be a nonnegative continuous and nonzero
function such that

IR )

X—+00 |x|P_1

=0, 102
x—0" |x|p—1 ( )
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for every A > A, where

pMTF(F(Z ~an) >0, F(I'(2-a)y) > 0}.

(103)

Then, there exists

B ) 1 ) 61911) _PM/\TF(VGT)
fiy,, = min i min

>

G

6,60 - 2pMATF<64/\’/§) 06" - 2pMATF ({/@)
' 2G04V2 ’ 269 ’

Clavy)n =M ((1-2y) TF(I (2~ ) ~ TF({/8) ) )
' TG, - G ’

(104)

where 0,, 0,, and y are positive constants with y < 1/p, such
that for each p € [0, i) |, the problem

(D5 (9, (D5 u(1)) ) = AF(w) + pug(w) + h(u),

A(D5 9, (Dfus (1) (1)) =L (u(t)), j=1.2,
u(0)=u(T) =0,

€0, T], t#t;

(105)

where g : R — R is a nonnegative continuous and nonzero
function, has at least two distinct positive weak solutions.OJ

Proof. Fix A > A", put F(x) = [(f(§)d¢ for all x € R, and let
> 0 such that F(I'(2 — a)y) >0 and

(106)

S (@1 +pPMC(a, y)0)) 1
PMF(I(2-a)n)

From (102), there is 6, >0 such that 6; <min {#,
(pMC(a,y))"*5} and F({/6,)16, <0,/pMTA and 6,>0
such that (2pMC(a, M)3,/a,)""1 <6, and F({/0,)10, <g,/2
PpMTA. Therefore, Theorem 11 ensures the conclusion. [

Finally, by way of example, we point out the following
simple consequence of Theorem 16 when y = 0.

Theorem 17. Let f : R — R be a continuous function such
that xf (x) > 0 for all x + 0 and

16

=0. (107)

x—0* |x|P_1 |x|—+0c0 |x|P_1

13
Then, for every A > A, where
1= et ZPN{C(“’ )@
pMT (108)

max < in r]P in (_W)P
" {f F{TC=a)) F<r<2—«x>n>}’

the problem (105), in the case y =0, has at least four distinct
nontrivial weak solutions.

Proof. Setting

if x <0,

fi(x)= {0’
1 f(x),
0,

if x<0,

(%)= { (=),

and applying Theorem 16 to f; and f,, we have the result. O

if x>0,
(109)

if x>0,
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