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Abstract
The production of numerical relativity waveforms that describe quasi-circular
binary black hole mergers requires high-quality initial data, and an algorithm
to iteratively reduce residual eccentricity. To date, these tools remain closed
source, or in commercial software that prevents their use in high performance
computing platforms. To address these limitations, and to ensure that the
broader numerical relativity community has access to these tools, herein we
provide all the required elements to produce high-quality numerical relativity
simulations in supercomputer platforms, namely: open source parameter files to
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numerically simulate spinning black hole binaries with asymmetric mass-ratios;
open source Python tools to produce high-quality initial data for numerical
relativity simulations of spinning black hole binaries on quasi-circular orbits;
and open source Python tools for eccentricity reduction, both as stand-alone
software and also deployed in the Einstein Toolkit’s software infras-
tructure. This open source toolkit fills in a void in the literature at a time when
numerical relativity has an ever increasing role in the study and interpretation
of gravitational wave sources. As part of our community building efforts, and
to streamline and accelerate the use of these resources, we provide tutorials
that describe, step by step, how to obtain and use these open source numerical
relativity tools.

Keywords: numerical relativity, initial data, black holes, eccentricity reduction

(Some figures may appear in colour only in the online journal)

1. Introduction

Numerical relativity [1–4] plays a central role in contemporary gravitational wave astrophysics
[5–8]. The use of numerical relativity waveforms has been essential to develop approximate
waveform models that are extensively used for gravitational wave detection and parame-
ter estimation [9–13]. The construction of numerical relativity waveform catalogs [14–19]
has enabled in-depth analyses of the astrophysical properties of gravitational wave sources
[20–23].

As gravitational wave astrophysics continues to probe the gravitational wave spectrum
[24–28], numerical relativity will be essential to enable and interpret new discoveries,
enlighten our understanding of the physics of these sources, and provide constraints that may
further establish general relativity or favor alternatives theories of gravity [29–31].

Advancing our understanding of gravitational wave sources depends critically on the pro-
duction of high quality numerical relativity waveforms that, in the case of binary black hole
mergers, span an 8D parameter space that includes mass-ratio, two 3D vectors that define the
individual spin of the binary components, and orbital eccentricity, (q, s1, s2, e), respectively.
It is then apparent that despite the existence of thousands of numerical relativity waveforms,
we need to be creative about how to combine them to densely sample this high dimensional
signal manifold [32, 33]. It is also clear that we need to continue producing numerical relativ-
ity waveforms to describe sources whose parameters are not accurately captured by existing
approximate waveform models or available numerical relativity waveforms.

In order to empower the broader numerical relativity community to participate in the
construction of numerical relativity waveform catalogs, we introduce open source Python
libraries that have been tested and deployed within the Einstein Toolkit [34] to stream-
line and accelerate these activities. This approach builds upon our previous software devel-
opment that consisted of open source Python libraries to post-process numerical relativity
data to extract the waveform strain at future null infinity [35]. These combined tools provide
the required end-to-end software infrastructure to utilize the Einstein Toolkit for the
construction of high-quality numerical relativity waveform catalogs.

This manuscript is organized as follows. Section 2 describes our approach to construct high-
quality initial data, and to post-process the data products of numerical relativity simulations to
remove residual eccentricity. We put these tools at work in section 3, where we show that we
can produce nearly circular initial data, and that our method for eccentricity reduction produces
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waveforms with eccentricities of order O ∼ 10−4 after just one iteration. We summarize this
work, and outline future research directions in section 4. We present a tutorial that describes
how to obtain and use these libraries in appendix A.

2. Methods

In this section we describe the approach followed to produce high-quality initial data for
binary black hole simulations. Thereafter, we briefly introduce the method used for eccentricity
reduction.

2.1. Initial data production

The first guesses for the tangential, pφ, and radial, pr, components of the momenta for the black
hole binary system are generated using techniques presented in [36, 37]. They extract momenta
components from Hamilton’s equations of motion in post-Newtonian (PN) theory, combined
with high-PN-order expressions for the gravitational-wave flux, dEGW/dt, and the tidal energy
injected into the black holes, dM/dt.

The Hamiltonian contains orbital [38], spin–orbit [38–40], spin–spin [38, 41, 42], and
spin–spin–spin [43] terms up to and including 3.5 PN order.

The high-PN-order expressions for dEGW/dt incorporate nonspinning and precessing-spin
terms [44, 45], and are adjusted to account for the tidal energy injected into the black holes
dM/dt [46].

The above expressions were implemented in the open-source, Python-based NRPyPN soft-
ware, which is part of NRPy+ (‘Python-based code generation for numerical relativity. . . and
beyond!’) [47]. A tutorial for using the software is given in appendix A.1 below. In short, the
expression for tangential momentum pφ(r) up to and including 3.5 PN order is taken from
[36] and validated up to 3 PN order against [37], and up to 3.5 PN order against the original
Mathematica notebooks used by [36].

Meanwhile, the expression for radial momentum pr up to and including 3.5 PN order is
derived in NRPyPN as follows. First, Hamilton’s equations of motion imply that

dr
dt

=
∂H
∂pr

. (1)

Next we Taylor expand ∂H/∂pr in powers of pr, about pr = 0, to obtain (to first order in
pr):

pr ≈
(

dr
dt

− ∂H
∂pr

∣∣∣∣
pr=0

) (
∂2H
∂p2

r

∣∣∣∣
pr=0

)−1

, (2)

where

dr
dt

=

(
dEGW

dt
+

dM
dt

) [
dHcirc

dr

]−1

, (3)

and

dHcirc(r, pφ(r))
dr

=
∂H(pr = 0)

∂r
+

∂H(pr = 0)
∂pφ

∂pφ
∂r

, (4)

are given explicitly in terms of binary input parameters and MΩ (as given to 3.5 PN order by
[36]).
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2.2. Eccentricity reduction

The algorithm we describe in this section was introduced in [36], and was originally devel-
oped as a Mathematica notebook. As part of this work, we have re-written this eccentricity
reduction method using Python libraries, optimized it, and tailored it to conduct automated,
large-scale, numerical relativity campaigns on high performance computing platforms.

This eccentricity reduction method is applied to remove eccentricity from a numerical rel-
ativity simulation whose initial data were produced with the method described in the previous
section. Once the numerical simulation has progressed enough, typically between 500M to
600M of evolution, we process the relevant data files, as described in appendix A, to compute
correction factors, λφ,λr, of the initial components of the momenta p0

φ and p0
r .

To compute λφ,λr we assume that oscillations induced as a result of eccentricity in the
orbital frequency, Ω, take the form

RΩ = A + B cos(Ωrt +Ψ), (5)

where A, B and Ψ are coefficients to be determined, and Ωr is the frequency of the radial
oscillations. Using the 1 PN order quasi-Keplerian parametrization [48], we can obtain closed
form expressions for these correction factors

λφ = 1 +

[
B

4Ω0
− γ

B(3η + 1)
8r0Ω0

]
cos Ψ, (6)

λr = 1 +
Bη

2r1/2
0 Ω0 |p0

r |

[
1 + γ

1
r0

]
sin Ψ, (7)

where η = m1m2/(m1 + m2) is the symmetric mass ratio, (m1, m2) represent the masses of the
binary components, r0 is the initial orbital separation, and Ω0 is the quasi-circular initial orbital
frequency calculated at 3.5 PN order [36]. In appendix A.1 we describe how to use simulation
data and analytical approximations to compute the correction factors λφ and λr.

3. Results

In this section we combine the tools described above for initial data production and eccentricity
reduction. We selected two binary black hole systems whose properties are described in table 1.
These include the separation between the punctures, D[M]; the 3D spin vectors of the black
holes, si = (χx

i ,χy
i ,χ

z
i ), with i = {1, 2}; and the mass-ratio of the binary system, q. Iteration

zero corresponds to the simulation run with the initial data for the momenta, (pr, pφ), provided
by our toolkit. Iteration 1 utilizes our eccentricity correction software to estimate values for
the momenta that best describe a nearly quasi-circular binary black hole system. Notice that
these systems span two different mass-ratios, q ∈ {1, 3}, and several spinning, non-precessing
configurations.

The results presented in table 1 show that for all the binary systems under consideration,
our toolkit produces systems whose initial eccentricities are e0 ∼ 10−3. Furthermore, these
eccentricity values are reduced to e0 ∼ 10−4 after just one iteration, clearly indicating that our
eccentricity reduction algorithm does remove residual eccentricity by 2 − 3X after just one
iteration. It is worth highlighting that initial data codes used to simulate quasi-circular binary
black holes typically produce systems with residual eccentricity e0 ∼ 10−2 for iteration zero.
However, our initial data produces simulations with eccentricities e0 ∼ 10−3 from the very first
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Table 1. Summary of the astrophysical and orbital parameters of three binary black hole
systems used to test our open source toolkit for the production of initial data and eccen-
tricity reduction. Notice that in all cases the initial eccentricity is of order e0 ∼ O

(
10−3

)

for the zeroth iteration, and it is reduced to e0 ∼ O
(
10−4

)
after just one iteration.

D[M] (χx
1,χy

1,χz
1) (χx

2,χy
2,χz

2) q Iter # pr[×10−4] pφ[×10−2] e0[×10−3]

11.0 (0.0, 0.0, −0.4) (0.0, 0.0, −0.5) 1.0 0 −8.60 9.293 2.43
S_q_1 1 −7.70 9.284 0.74
9.0 (0.0, 0.0, 0.4) (0.0, 0.0, −0.5) 3.0 0 −7.50 7.652 1.70
S_q_3 1 −6.60 7.650 0.71

Figure 1. Top panels: results of the eccentricity reduction procedure for simulation
S_q_1. Top-left panel: eccentricity estimator results for the zeroth and first itera-
tions. Top-right panel: gravitational wave signal, extracted at future null infinity, after
eccentricity reduction. Bottom panels: as top panels, but for simulation S_q_3.

iteration. In other words, these ready-to-use tools produce high-quality numerical relativity
waveforms after a minimal number of iterations.

Figure 1 presents two types of results. The left panels present results for the eccentricity
estimator eΩ of the orbital frequency defined in equation (3.13) of [36]. These results show, as
discussed previously, that even the zeroth iteration is already nearly circular. The right panels
present waveforms of the first iteration extracted at future null infinity [35].

These results indicate that the open source tools presented in this article, along with the
tutorials and configuration files released with this work, will provide the required building
blocks to enable a broader cross section of the numerical relativity community to participate
in the production of numerical relativity waveform catalogs.
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4. Conclusions

Numerical relativity simulations [1–3] of binary black hole mergers were produced a decade
before the first gravitational wave detection of these astrophysical events was realized by the
advanced LIGO detectors [24]. Over the last decade, numerical relativity software stacks have
matured to the point of automating and streamlining the production of large-scale numerical
relativity catalogs [14–19]. Nonetheless, the available number of numerical relativity wave-
forms is not sufficient to densely cover the high dimensional signal manifold spanned by these
astrophysical events.

Furthermore, essential tools to produce initial data and to automate eccentricity reduction
continue to be kept as closed source software or licensed software. Neither of these solutions
is adequate if we aim to enable a larger cross section of the numerical relativity community to
participate in the production of numerical relativity waveforms to accurately infer the astro-
physical properties of compact binary sources. This need will become a pressing issue as
advanced gravitational wave detectors gradually reach design sensitivity, and the number of
detections reaches the expected number of one event for every 15 min of searched data.

The deployment of these tools as stand-alone software and within the Einstein Toolkit builds
upon our community building efforts to produce and release scientific software that streamlines
the production of high quality initial data, automates eccentricity reduction, and facilitates
post-processing of numerical relativity data products to extract numerical relativity waveforms
at future null infinity [35]. These user-friendly tools will allow new users to use and further
develop open source numerical relativity software, using the Einstein Toolkit as the
driver for such activities.
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Appendix A. Step by step tutorial

The tools introduced below may be used as stand-alone scientific software or within the
software infrastructure of the Einstein Toolkit.
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A.1. Initial data production

NRPyPN is part of the open-source NRPy+ (‘Python-based code generation for numerical
relativity. . . and beyond!’) [47], and provides the zeroth estimate for low-eccentricity initial
data in this paper. To obtain this estimate from NRPyPN, first clone the NRPy+ github
repository:

git clone https://github.com/zachetienne/nrpytutorial.git
Then (assuming that Python 2 or 3 is installed withpip), installSymPy [49] andJupyter:
pip install -U sympy jupyter
Next, from within the nrpytutorial/NRPyPN/directory, run
jupyter notebook NRPyPN.ipynb
A Jupyter notebook will open, in which the binary black hole initial data parameters for ini-

tial separation, spins, and mass ratio can be specified in the code cell at the bottom of the note-
book. When the code cell is run (shift + enter), the radial pr and tangential momenta pφ
to 3.5 PN order (largely following [36] but fully documented in the linked Jupyter notebooks)
will be output. These momenta can be directly inserted into a Bowen-York binary black hole
initial data solver (the TwoPunctures thorn was used in this work). For example, for a
binary orbiting in the xy-plane with black holes initially located on the x-axis at x = ±a (with
the center of mass at the origin, x = y = z = 0), ±|pr| will correspond to the x-component of
momentum px for the puncture at x = ∓a, respectively. One may also choose ±|pφ| to corre-
spond to the y-component of momentum py for the puncture at x = ±a or ∓a, depending on
whether a clockwise or a counterclockwise orbit is desired.

A.2. Eccentricity reduction

Our eccentricity code is an available as a Python3 module on GitHub [50]
git clone https://github.com/ncsagravity/eccred
Then, assuming Python 3 is installed, run:
python >>> import EccRed >>> EccRed.ComputeCorrections

(‘output_glob’, MinTime = X, MaxTime = Y)
Where output_glob is a shell pattern (glob) that matches all directories containing output

files, and MinTime and MaxTime are time bounds. For best results, MinTime should be
shortly after any ‘junk’ radiation has passed from the vicinity of the black holes and any initial
gauge transition has settled, and MaxTime should be close to when the time plunge occurs.

Four correction values as well as the estimated eccentricity will be returned from
EccRed.ComputeCorrections. In order, they are λr, λφ computed using two differ-
ent methods (from PN expansion and from an eccentricity estimator respectively), and δR, the
correction factors to radial and tangential momentum components and (additive) correction to
initial orbital separation respectively. These corrections can then be applied to the respective
initial values.

The code expects two sets of files in the output directories: (i) a file TwoPunctures.bbh
as produced by the TwoPunctures thorn that describes the parameters of the initial black
holes, and (ii) a set of puncture location files puncturetracker-pt_loc. . . asc as produced by the
PunctureTracker thorn. Columns pt_loc_x[0], pt_loc_x[1] etc, are expected to contain
the location of the original plus and minus punctures. This matches the setup in [51].

In the event that EccRed.ComputeCorrections throws a runtime error, a likely
solution is to adjust MinTime or MaxTime to better characterize the time domain of
inspiral.
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A.3. Automated eccentricity reduction

To automate the process of eccentricity reduction using Simulation Factory [52] the
Python module can be called as a command line script

./EccRed.py --tmin X --tmax X --input-parfile
‘input_parameter_file’\--output-parfile ‘output_parameter_file’
‘output_glob’

Which automatically applies the correction factors to TwoPunctures’ radial and tangen-
tial momentum parameters found in input_ parameter_ file and produces a new parameter file
in output_ parameter_ file.

The eccentricity reduction code provides a fragment of code in RunScript.part that
can be inserted into Simulation Factory’s run script files to automate the process of
extending a simulation until sufficient data has been produced, estimating eccentricity, com-
puting correction factors, applying them to the parameter file and submitting a new round of
eccentricity reduction.

The fragment contains placeholders @ECC_TARGET@ and @ECC_TIME@ for the esti-
mated eccentricity at which to stop the iteration and the time for which to simulate before
applying the correction algorithm:

sim create --define ECC_TARGET ‘ECC_TARGET’ --define
ECC_TIME ‘ECC_TIME’...

Which starts the automated process.
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