
RESEARCH Open Access

Intent-driven cloud resource design
framework to meet cloud performance
requirements and its application to a
cloud-sensor system
Chao Wu* , Shingo Horiuchi, Kenji Murase, Hiroaki Kikushima and Kenichi Tayama

Abstract

In cloud service delivery, the cloud user is concerned about “what” function and performance the cloud service
could provide, while the cloud provider is concerned about “how” to design proper underlying cloud resources to
meet the cloud user’s requirements. We take the cloud user’s requirement as intent and aim to translate the intent
autonomously into cloud resource decisions. In recent years, intent-driven management has been a widely spread
management concept which aims to close the gap between the operator’s high-level requirements and the underlying
infrastructure configuration complexity. Intent-driven management has drawn attention from telecommunication industries,
standards organizations, the open source software community and academic research. There are various application of
intent-driven management which are being studied and implemented, including intent-driven Software Defined Network
(SDN), intent-driven wireless network configuration, etc. However, application of intent-driven management into the cloud
domain, especially the translation of cloud performance-related intent into the amount of cloud resource, has not been
addressed by existing studies. In this work, we have proposed an Intent-based Cloud Service Management (ICSM)
framework, and focused on realizing the RDF (Resource Design Function) to translate cloud performance-related intent into
concrete cloud computation resource amount settings that are able to meet the intended performance requirement.
Furthermore, we have also proposed an intent breach prevention mechanism, P-mode, which is essential for commercial
cloud service delivery. We have validated the proposals in a sensor-cloud system, designed to meet the user’s intent to
process a large quantity of images collected by the sensors in a restricted time interval. The validation results show that the
framework achieved 88.93 ~ 90.63% precision for performance inference, and exceeds the conventional resource approach
in the aspects of human cost, time cost and design results. Furthermore, the intent breach prevention mechanism P-mode
significantly reduced the breach risk, at the same time keeping a high level of precision.

Keywords: Intent-driven cloud management, Cloud resource, Cloud performance, Intent breach prevention

Introduction
According to our interviews with cloud service operators
and analysis of the form of current cloud service deliv-
ery, a gap has been existing between the cloud user and
the cloud provider, such that the cloud user and cloud
provider “speak different languages” during the cloud
service delivery. On the one hand, the cloud user is

concerned about the “what”, that is the functionality,
performance etc. that the cloud service is able to pro-
vide, and the cloud user tends to communicate with the
cloud provider in terms of these “service-level” require-
ments e.g. the cloud-based web service needs to be able
to “process 1000 requests per second,”. On the other
hand, the cloud provider needs to know what types of
VM are needed to realize the functionality required, and
how much cloud computation resource, e.g. number of

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: chao.wu.ex@hco.ntt.co.jp
Tokyo, Japan

Journal of Cloud Computing:
Advances, Systems and Applications

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications
          (2021) 10:30 
https://doi.org/10.1186/s13677-021-00242-w

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-021-00242-w&domain=pdf
http://orcid.org/0000-0002-3740-8531
http://creativecommons.org/licenses/by/4.0/
mailto:chao.wu.ex@hco.ntt.co.jp


vCPUs, is necessary to meet the performance require-
ments, and thus the cloud provider tends to communi-
cate in this “resource-level language”. In this work, we
focus on solving the complexity required to translate the
user’s performance requirements into the amount of re-
sources needed.
To close the gap between the cloud user and the cloud

provider, translation from the cloud user’s service-level
requirements to the resource requirements is necessary.
Currently, the “translation” relies heavily on human ex-
perience and the skills either of the cloud user or of the
cloud provider. As a result, if relying on the user to
translate their service-level requirement to resource de-
mands, it will result in a skills barrier for the user which
prevents users with inadequate experience and skills of
cloud infrastructure from using the service. Conversely,
if relying on the cloud provider to translate the service
requirements into the resource demand, the human-
based translation leads to high human cost, long service
lead time and potentially low resource efficiency for the
cloud provider in delivering the cloud service.
In this work, we take the user’s service-level require-

ment as the intent of the cloud user, and we aim to re-
solve the complexity of translating the cloud user’s
performance-related intent, into concrete cloud resource
requirements, e.g. the number of vCPUs, and the size of
vMemory that satisfies the intent. The main contribu-
tions of our work are as follows:

(1) We have investigated and analyzed the current
activities concerning intent-based management
from the standardization organizations and open
source software communities along with academic
studies, and summarized their definitions, scope, and
application scenarios of intent-based management.
From these investigations we can see that intent-based
management to meet the user’s performance
requirements has barely been studied.

(2) We have proposed an Intent-based Cloud Manage-
ment (ICSM) framework and focus on the realization
of the RDF (Resource Design Framework), which is
able to translate the user’s intent about performance
into cloud computation amount, e.g. the amount of
vCPU, memory, etc., required. The validation experi-
ment shows that the RDF is able to realize a precision
of 88.9 ~ 90.6% for resource design, and reduce time
costand human cost compared to the conventional
resource design approach.

(3) In commercial service delivery, breach of intent will
result in a serious penalty to the cloud provider as
well as a decrease in user satisfaction, so we have
proposed an intent breach prevention mechanism,
P-mode for RDF, which lower the intent breach
risk. The validation experiment shows that P-mode

reduces intent breach risk in the aspect of breach
extent, breach duration and breach time by 42.25%,
66.05% and 43.02% respectively.

(4) We have conducted an experiment in a cloud-
sensor system scenario to validate RDF’s precision,
reduction of human and time cost, and resource de-
sign results compared to the conventional resource
design approach. We have also validated the intent
breach prevention effect of the proposed breach
prevention mechanism for RDF.

The composition of this work is as follows. In section
II, we introduce the background and the challenges of
cloud service management, and the demand for an in-
tent-driven cloud management framework. In section III,
we introduce the related intent-driven management stud-
ies from the perspectives of academia, standardization
bodies and the open source software community. In sec-
tion IV, we introduce our proposed ICSM (Intent-based
Cloud Service Management) framework, with a focus on
the RDF (Resource Designer Function), which translates
the intent into cloud computation resource amount. We
also introduce the proposal of an intent breach prevention
mechanism for RDF in this section. In section V, we de-
scribe our validation experiment of RDF in a cloud sensor
system scenario. In section VI, we give the validation re-
sults of RDF. In section VII, we conclude the work and
introduce plans for future work.

Background and problem statement
An increasing number of individual users, enterprises
and organizations are utilizing a cloud for conducting
computing tasks, saving and sharing content, hosting
end user-facing services, etc. Although cloud service
business models vary hugely depending on different sce-
narios, we can conclude that there are usually 2 main
parties in a cloud service business model as following.
Cloud provider: the party who is responsible for pro-

viding the cloud resources.
Cloud user: the party who consumes the cloud re-

sources (the virtual machine (VM), virtual central pro-
cessing unit (vCPU), virtual memory, etc.) to process
their computation workload.
The cloud user and the cloud provider can be from

the same organization but play different roles, e.g., an
application engineer who is the cloud user and a cloud
engineer who is the cloud provider in the same com-
pany, or in different organizations, e.g., an engineer of
an e-commerce company who is the cloud user and the
public cloud service provider who is the cloud provider.
Between the 2 parties, a profound gap has been exist-

ing, in that cloud users speak service-layer language while
cloud resource providers speak resource-layer language.
As shown in Fig. 1, when requesting cloud services,

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 2 of 22



cloud users tend to tell the cloud provider about their
service-layer functional and non-functional require-
ments, such as a service’s functionality requirements, re-
quirements about ability to handle workload, security
requirements, and reliability requirements. For example,
an engineer from an e-commerce company will be con-
cerned about whether the e-commerce service that runs
on the cloud is able to handle 1000 transactions per sec-
ond, and provide the highest levels of security and reli-
ability, rather than how these requirements are met and
how the cloud resource that accommodates the e-
commerce service is implemented. In other words, the
cloud user is more concerned about “what” require-
ments need to be met when using the cloud rather than
“how” to meet the requirements. We call the cloud
user’s service layer requirements intent in this work. In
contrast, cloud providers, when providing the cloud ser-
vices to the cloud user, need to decide concrete cloud
resource configurations, such as the necessary types of
instance, the SFC (Service Function Chain), the amount
of vCPU, and memory to be allocated to each instance
in the SFC to meet the cloud user’s service-layer require-
ments. In other words, the cloud provider needs to
translate the user’s intent about the cloud service
(“what”) into “how” the service is implemented to meet
the user’s requirements. In Table 1, we give 3 practical
examples that illustrate the gap between the cloud users’
intents and the cloud provider’s concerns. Specially, in
this work, we put our focus on how to translate the
user’s requirements (intent) about performance (the abil-
ity to handle workload) to the amount of resource (num-
ber of vCPU, size of vMemory) that meets these
requirements.
According to our investigation into current cloud ser-

vice delivery, there are two main approaches to translate
the user’s intent about the cloud service (“what”) into
“how” the service is implemented: the cloud-consultant

approach and self-service approach. In the cloud-consult-
ant approach, cloud users are supported by cloud con-
sultants from the cloud provider, who collect users’
service-layer requirements and determine the resource
details accordingly. However, this puts a huge workload
on cloud operators, causes high OPEX and needs a rela-
tively long time to deliver service. In the self-service ap-
proach, cloud users are provided with a management
interface to manage cloud resources and need to decide
their required resource by themselves on the basis of
their service requirements. Thus, users need to be skilled
in cloud issues in order to decide and manage cloud re-
sources. In both approaches, translation of service layer
requirements into resources heavily relies on human
decisions.
The translation of performance-related intent into

amount of cloud resource involves understanding both
the cloud-based applications’ workload patterns, and the
underlying cloud resource configuration patterns, and
most importantly, the complex relationship between the
two. What is more, the increasing variety of service re-
quirements and high flexibility in cloud resource config-
uration add to the complexity of the decision-making
process. Thus, resource design support for cloud re-
source decisions is essential for lowering the barriers for
the cloud users to use clouds, as well as for reducing the
service delivery lead time and cost of cloud resource de-
sign for cloud providers.

Related work
The concept of intent-driven management has drawn at-
tention and been applied in various network manage-
ment areas, such as SDN, wireless networks etc. It aims
to free the network operator from complex underlying
infrastructure configuration issues by letting the oper-
ator define “what” state the managed entity is intended
to be in, rather than “how” to achieve the state. In this

Fig. 1 Cloud user and cloud provider speaking different layers of “language”

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 3 of 22



section, we will introduce current work of intent-driven
management from the perspectives of academia,
standardization organization activities and open source
software community activities.

Latest studies about intent-driven management in
standard organizations
ETSI ENI defines in its work item ENI-005 [1] that in-
tent uses a controlled language to express the goals of
the policy, without describing how to accomplish the
goals. The intent could be applied in various network
domains, such as wireless network, data center, etc. It
has also started a work item “Intent Aware Network
Autonomicity” [2] in the year 2019 in which the intent
translation process, intent management lifecycle, exter-
nal interfaces of intent translation function are studied.
TMForum has established the “Autonomous Network

Whitepaper Release 2” [3] in the year 2020, which aims
to give guidelines to realize closed-loop management in
4 domains including resource domain closed-loop man-
agement, service domain closed-loop management, busi-
ness domain closed-loop management and user-domain
closed-loop management. Intent-driven management is
defined as one of the key technical mechanism to realize
the goal.
3GPP SA5 in its release17 has studied the concepts,

scenarios, and solutions for intent-driven management,
which enables simplifying the management interfaces
(TR28.821) [4], and the normative work for intent-
driven management has started in TS28.312 [5]. They
define intent as “a desire to reach a certain state for a
specific service or network management workflow with
more focus on “what” than traditional management”.

3GPP has defined a wide variety of intent-driven man-
agement scenarios based on the following categorization:
Intent categorizes based on user types:

– Intent from Communication Service Customer
– Intent from Communication Service Provider
– Intent from Network Operator

Intent categorizes based on management scenario
types

– Intent for network and service design/planning
– Intent for network and service deployment
– Intent for network and service maintenance
– Intent for network and service optimization/

assurance

ETSI ZSM has named intent-driven management as
one of the closed-loop goal in the work item “Closed-
loop automation”;
“Enablers” [6]. Detailed studies about the intent and its

role in closed-loop automation are still in progress.

Open source communities
The most influential open source intent-driven manage-
ment implementations are from Open Network Operat-
ing System (ONOS) and OpenDayLight.
ONOS defines intent as an immutable model object

that describes an application’s request to the ONOS core
to alter the network’s behavior, and it has a module
called Intent Framework [7]which handles the intent by
compiling intent into ONOS configurations and install-
ing the intent.

Table 1 Examples where cloud user concerns are about “What” while the cloud provider needs to decide “how”

Cloud type Scenario Cloud user Cloud provider Cloud user’s
concerns (intents)

Cloud provider’s concerns
(resource decisions)

Public cloud MLaaS Common MLaaS
users

MLaaS provider Time taken to
accomplish a given
training task, etc.

Amount of computation resources to
be allocated in order to meet the
training time restrictions from the
user

NFV implemented
on Private cloud

vEPC Network traffic
management
department in a
CSP

Virtualization
platform
management
department in a CSP

- High reliability of
the communication
service

- Packet processing
capacity and latency

- SFC composition (e.g. add standby
SFC) to realize the high reliability
requirement

- Amount of computation resources
to be allocated in order to meet
the packet processing capacity and
latency requirement

Public cloud Ecommerce service
on cloud

E-commerce
company

Public cloud provider - High reliability,
security levels of
the communication
service

- Packet processing
capacity and latency

- SFC composition (e.g. add standby
SFC, add packet filtering instance
to SFC) to realize the high reliability
and security requirements

- Amount of computation resources
to be allocated in order to meet
the packet processing capacity and
latency requirement

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 4 of 22



OpenDayLight [8] has introduced a Network Intent
Composition (NIC), which is an interface that allows cli-
ents to express a desired state in an implementation-
neutral form. They have implemented the NIC through
which the operator is able to manipulate the network
topology, QoS in a vendor-neutral approach.
Both of the open source software implementations are

mainly targeted at SDN management area.

Academic activities
Intent-driven management has also been studied in
academia. Numerous studies have been done in differ-
ent application scenarios of intent-driven manage-
ment. The main scenarios include: (1) intent-driven
SDN management, which is highly related to the
work of ONOS, Opendaylight, for example [9, 10]; (2)
Natural language-based intent translation e.g. [11]; (3)
Traffic control, e.g. [12].
In this work, we mainly introduce related work espe-

cially focused in intent-driven management in cloud
area.
In [13], the author has proposed an intent-based ap-

proach to defining the north-bound interface between
the VIM (Virtual Infrastructure Manager) and the higher
management and orchestration layers defined by the
ETSI MANO framework. The authors aim to define
vendor-independent, intent-based interfaces so that
making the service requests agnostic to the specific tech-
nology adopted by each SDN domain.
In [14], the authors have proposed an intent-based

network solution that refines intents into service chains
of VNFs by employing soft goal interdependency graphs
and clustering. The paper has studied a scenario where a
security-related intent is interpreted in to SFC using the
proposed technique.
In [15], the author has proposed an over-the-top

intent-based networking framework that aims to auto-
mate the 5G slice resource provisioning. The natural
language based intent is mapped to concreate resources
according to pre-defined SFC template.
In [16], the author has mainly discussed how to com-

pose an intent using logical labels and proposed a label
management system to map the intent into an entity
group. The entity group in this work refers to the rela-
tionship between logical or physical resource.
In the most recent years (2020~), there have come

more academic studies about intent-based management,
from which we have selected the four most relative
works in cloud management area.
In [17], the authors have addressed the challenge that

managing diverse security equipment requires significant
security knowledge of the various network security
equipment for the security service provider/consumer.
They have proposed an IBCS (Intent-Based Cloud

Services for Security Applications) that translates intents
of security service consumers into low-level security pol-
icies and maps the required security functionality into
concrete virtual machines in the cloud environment.
In [18], the authors have focused on the task to match

between cloud resources and processing tasks in accord-
ance with multiple attributes as well as treats the inter-
ests of both provider and the user fairly. They have
proposed an intent-based resource matching strategy in
cloud that is aimed to improve the accuracy and effi-
ciency of matching and overall satisfaction of both
parties.
In [19], the authors have addressed the complexity for

the network service provider to manually organize the
systems to fulfill the service requirements, dependencies,
and constraints derived from the system components.
They have proposed a search-based system that trans-
lates the customer’s service requirement which is a high-
level, abstract topology with quantitative constraints into
concrete network components and network connections.
In [20], the authors have addressed the challenge that

IoT users who are not experts in IoT-cloud environ-
ments may find it difficult to set up the right configur-
ation for diverse IoT equipment which supports
different protocols and services. They have proposed an
IoT device configuration translator for intent-based IoT-
cloud services to solve the problem. The translator
translates the IoT user’s intent natural language on IoT
device configuration into low-level IoT configurations in
XML format of YANG (Yet Another Next Generation).
We can see from the investigation of related work that

although intent-based management has been studied by
standards organizations, open source communities and
academic bodies for various areas including cloud man-
agement, most of the focus of intent-based manage-
ment’s application in the cloud management area has
been the translation from a non-performance related in-
tent into an SFC template. To the best our knowledge,
translation of cloud performance-related intent into
cloud resource amount has barely been studied. How-
ever, as introduced in sections I and II, translating
performance-related intent is a highly complex task that
demands operator’s knowledge and experience of the re-
lationship between performance, various cloud-based
workloads and numerous configuration patterns of re-
source amounts, and we will address the challenge by
proposing the RDF to assist in the translation of
performance-related intent.

ICSM framework and RDF
To solve the challenge in Section II, we have proposed
an Intent-based Cloud Management (ICSM) framework
(Fig. 2) to automate the translation process from intent
to resource requirements in our preliminary work [21].

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 5 of 22



In the current work, we focus on the realization and val-
idation of one of the functional blocks of ICSM, RDF,
which is responsible for deciding the cloud computation
resource amount in accordance with the performance
requirements.
To briefly introduce our preliminary work on ICSM, the

input of the ICSM framework is the user’s intent about
the cloud service, i.e. functionality and non-functionality
service-layer requirements. The ICSM framework trans-
lates the user’s intent to a Resource Descriptor which is
the output of the ICSM framework. The Resource De-
scriptor includes 2 types of resource information: (1) the
information of cloud resource composition that meets the
functionality requirements, i.e. service type requirement,
security requirement, reliability requirement, etc., and (2)
the information about the resource amount that meets the
performance requirement. The Resource Descriptor could
be generated in resource orchestrator-compatible format,
to enable seamless deployment from intent to resource
provisioning.
There are 3 main functional blocks in the ICSM

framework, namely Requirement Parser, Resource Com-
poser, and Resource Designer Function (RDF). The Re-
quirement Parser is responsible for parsing the user’s
intent into atom cloud requirements related to function-
ality, security, reliability and performance. The Resource
Composer decides the composition of the Service Func-
tion Chain (SFC) in accordance with the functionality,
security and reliability requirements. The RDF is respon-
sible for deciding the cloud computation resource
amount in accordance with the performance require-
ment. The functional blocks can be used separately. In

particular, for RDF, it could be used as a stand-alone
function as long as the performance-related intent is
available.
In the following part of this section, we will illustrate

the detailed realization of RDF which translates the
user’s intent about performance into the necessary re-
source amount. We will firstly analyze the factors that
need to be considered for resource design (section IV-1),
then propose the architecture of RDF (section IV-2), and
finally introduce the intent breach prevention mechan-
ism of RDF (section IV-3).

Factors affecting decisions on resource amount
In this section, we will analyze the factors that need to
be taken into consideration when deciding the cloud re-
source amounts, i.e., decide the amount of vCPUs, vir-
tual memory, and storage etc. to be allocated to each
instance to meet the performance intent.

(1) Workload and application performance
requirements

The cloud user processes their application workload in
the cloud environment, and requires the performance re-
quirements to be met. Workload here refers to the type,
features, and amount of processing. The performance re-
quirements can be divided into two main categories: the
processing time restriction and the processing percentage
restriction. Table 2 gives two examples of workload and
the corresponding performance requirements. For a cer-
tain workload, the computation resources allocated to the
VM instances directly affect the processing time and

Fig. 2 Overview of Intent-based Cloud Management framework & example of input and output of ICSM. LB: Load Balancer FW: Firewall WS: Web
Server DB: Database

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 6 of 22



percentage achieved. Thus, workload and performance re-
quirements must be considered when deciding the re-
source amount allocated for VMs.

(2) Environmental conditions

Environmental conditions in this work are the condi-
tions of the physical host to which the VM is allocated.
Static environmental conditions include the CPU clocks
and memory architecture etc. of the host; dynamic con-
ditions include the resource usage of the host. Because
the static environmental conditions are of relatively low
variation and are not subject to change for a relatively
long time span for a given cloud provider, we focus on
dynamic environmental conditions in this work. Changes
in dynamic environmental conditions such as the host’s
resource usage affect the performance of VMs. On the
basis of this analysis, to satisfy the performance require-
ments, environmental conditions clearly need be consid-
ered when the resource amount is decided.

(3) Virtual machine performance requirements

The purpose of virtual machine performance re-
quirements is to enhance the other features, e.g., the
stability of the cloud-based service/application. The
cloud user can optionally set virtual machine per-
formance requirements. In this work we focus on a
typical virtual machine performance requirement: VM
resource usage restriction. The VM resource usage re-
striction restricts the resource usage inside VMs to be
within a desired range. For instance, putting restric-
tions on the resource usage inside the VM, e.g., 50%–
80%, prevents resources from being overused or un-
derused, and thus improves the resource efficiency,
avoids service interruption, and prevents bottlenecks
from occurring. To meet the VM resource usage re-
strictions, suitable amounts of resources must be allo-
cated to VMs.
Based on the analysis, and to design the resources in

accordance with the performance-related intent, we
propose an RDF whose inputs are the workload, per-
formance requirements, and environmental conditions,
and outputs are the resource configuration that meets
the performance intent.

Closed-loop RDF framework
The RDF system is a closed-loop system as shown in
Fig. 3, where logs about the performance, etc., are col-
lected from the cloud environment, and knowledge
about the resource and performance causal relationship
is abstracted from the logs. The knowledge is then used
to make decision about the resource amount configur-
ation for the intent, and the resource configuration is
implemented in the cloud environment and provided to
the cloud users, and logs about the performance, etc. are
collected.
RDF has three phases as shown in Fig. 3: knowledge

abstraction, decision making and implementation, and
information collection.

Knowledge abstraction
In the knowledge abstraction phase, the models are
trained on the basis of the collected log data about
workload, resource, environmental conditions and per-
formance. The log data comes from data collected dur-
ing the previous service providing period, or can be
collected using active workload testing. In this phase
RDF trains regression models of which the feature vector
includes the workload information, the environmental
condition information, and the resource configuration
information, and the objective vector includes the appli-
cation performance and the virtual machine perform-
ance. To prevent intent breach, which is crucial in
commercial cloud service delivery, the RDF administra-
tor needs to set RDF to N-mode or one of the P-modes,
to let the model also gain knowledge about intent
breach. The N-mode and P-modes are discussed in de-
tail in the following section IV-3. The trained model,
also called the hypothesis is passed to the decision mak-
ing functional block.

Decision making and implementation
In this phase, first, the workload requirement, the current
environment conditions, and combinations of the vCPU
number and memory size are input to the hypothesis to
infer the performance. Next, if the inferred application
performance and virtual machine performance satisfy both
the application performance requirements and the virtual
machine performance requirements, the corresponding
combination of resource amounts are output as resource

Table 2 Example of workload and performance requirements

Workload Performance

Type Features Amount Processing time restriction Processing percentage
restriction

Web server Web page size, etc. Requests per second Keep average process time of
requests under 1 s

Successful request rate per
second

Neural network Layers, neurons, activation
functions, etc.

Number of pixels, number
of images, etc.

Keep training time under 10 s ...

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 7 of 22



solutions. Finally, the resource solution is embedded in a
resource orchestration template/command e.g. yaml and
sent to resource orchestrators, and at the same time, the
resource solution is also sent back to the cloud provider
for confirmation or manual adjustment if necessary. The
provider is able to confirm/revise the resource decision
and instruct launching of the VMs accordingly.

Information collection phase
In accordance with the resource decision, the resource
orchestrators allocate the resources and activate the
VMs, and the service is provided to the cloud user. The
performance and system logs such as resource usage of
the host and the VM are collected and potentially used
to update the models.

Intent breach prevention mechanism of RDF
In commercial cloud service delivery, intent is an im-
portant aspect of an SLA (Service Level Agreement). In-
tent breach happens when user’s intent is not met by the
provided cloud service and resources. If the intent is
breached, the cloud provider needs to refund the intent
breach penalty cost to the user. For instance, the cloud
user and the cloud provider agree that the cloud re-
source must provide the cloud service with performance
no worse than the performance intent int. If the per-
formance becomes worse than int, the cloud provider
needs to refund an amount of breach penalty p to the

cloud user. Thus, a mechanism to prevent intent breach
and so to increase the user’s satisfaction is necessary, es-
pecially in commercial cloud service delivery. In this sec-
tion, we will first introduce the typical intent breach
penalty patterns, and then we will introduce the N-mode
of RDF that adopts an existing unbiased loss function to
train the model of RDF, and we will discuss its draw-
backs in preventing intent breaches, i.e. the design mo-
tivation for the intent breach mechanism. After that, we
will introduce the proposed intent breach prevention
mechanism P-mode, and illustrate the biased loss func-
tion we propose for P-mode that is able to simultan-
eously retain the precision of the RDF model and lower
the risk of intent breach. The validation results for N-
mode and P-mode are presented in section VI.
On the basis of interviews with the cloud service oper-

ator, we find that the intent breach penalty can be cate-
gorized in the following 3 types, according to how the
breach penalty p is calculated with respect to the num-
ber of times an intent breach occurs, the breach extent
or the breach duration.

– Breach times penalty (BTP)
– Breach extent penalty (BEP)
– Breach duration penalty (BDP)

For BTP, each time the intent is breached, i.e., the real
performance of the cloud service is worse than the

Fig. 3 RDF architecture

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 8 of 22



intended performance (intent), a fixed penalty α is im-
posed on the cloud provider, and otherwise no penalty is
imposed on the cloud provider. Thus the penalty for a
cloud service order is formulated as the following:

p ¼ 0; if perf is no worse than int
α; if perf is worse than int

�
ð1Þ

where perf is the real cloud performance, int is the per-
formance intent, and α is a constant that specifies the
penalty when an intent breach happens.
For BEP, each time the intent is breached, i.e., the real

performance of the cloud service is worse than the
intended performance (intent), a penalty is imposed on
the cloud provider according to the percentage differ-
ence between the real performance and the performance
intent, i.e., the intent breach extent. Otherwise no pen-
alty is imposed on the cloud provider. Thus for a cloud
service order, the penalty is formulated as:

p ¼ 0; if perf is no worse than int
β perf − intj j=perf ; if perf is worse than int

�
ð2Þ

where β is a constant that specifies how much penalty is
imposed according to the breach extent when an intent
breach happens.
For BDP each time the intent is breached, a penalty is

imposed on the cloud provider according to the duration
of intent breach. Thus for a cloud service order, the pen-
alty is formulated as:

p ¼ 0; perf is no worse than int
γ�dur; perf is worse than int

�
ð3Þ

where dur is the intent breach duration, and γ is a con-
stant that specifies the how much penalty is imposed ac-
cording to the breach duration when an intent breach
happens.
To prevent intent breach, it is necessary to allocate

sufficient resources to ensure that the real cloud per-
formance is better than the intent. Meanwhile, from the
resource efficiency perspective, allocating excessive re-
sources is able to increase the real performance but re-
sults in a cost increase. Thus it is necessary for RDF to
ensure that the real performance is better than the in-
tent but at the same time close to the intent .
As mentioned in Section IV-2, in the knowledge ab-

straction phase of RDF, RDF trains a set of regression
models on the basis of the collected log data. The fea-
ture vector includes the workload information, the envir-
onmental condition information, and the resource

configuration information, and the objective vector in-
cludes the application performance and the virtual ma-
chine performance.
If we apply existing “unbiased” loss functions such as

MAE, MSE, and MAPE to RDF as shown in (4), (5) and
(6) respectively to train the model, the RDF is set in N-
mode [22–24]. Note that “unbiased” here means that,
for the same real performance, perfi, either the real per-
formance perfi is worse than the inferred performance hi,
or the real performance perfi is better than the inferred
performance hi, but as long as the absolute difference
between the real performance and the inferred perform-
ance |perfi − hi| is identical, the model will take it as the
same loss.

LMAE ¼ 1
m

Xi¼m−1

O
perf i−hij j ð4Þ

LMSE ¼ 1
m

Xi¼m−1

O
perf i−hij j2 ð5Þ

LMAPE ¼ 1
m

Xi¼m−1

O
perf i−hij j=perf i ð6Þ

However, in the case of service delivery, the inference
may lead to different risk level of intent breach, even if
the absolute difference between the real performance
and the inferred performance |perfi − hi| is the same, de-
pending on whether the real performance perfi is better
or worse than the inferred performance hi. We will give
an example to illustrate this. For example, assume that
the cloud user has an intent to encode a 100GB in 10 s
using a given encoder that runs on a VM, and would like
to know how much computation resource is needed to
be allocated to the VM to meet the intent. Let’s consider
2 situations where the absolute difference between the
real performance and the inferred performance is the
same:

(1) The inferred performance is better than the real
performance. Assume that the RDF model infers
that for the given amount of workload, i.e.,
encoding a 100GB video, allocating 4 vCPUs to the
VM to process the workload will result in a task
taking 9.9 s (inferred performance hi), while the real
performance is 10.1 s. In this case, when RDF used
the model to determine resources, it decided that 4
vCPUs were sufficient to meet the intent and
instructed the resource orchestrator to implement
the service with 4 vCPUs. However, in
implementation, allocating 4 vCPUs to the VM to
process the workload took 10.1 s (real
performance), so intent breach happened since that
the real performance was worse than the intended
performance of 10 s.

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 9 of 22



(2) The real performance is better than the inferred
performance. Assume that the RDF model infers
that for the given amount of workload, i.e.,
encoding a 100GB video, allocating 4 vCPUs to the
VM to process the workload will result in a task
taking 10.3 s (inferred performance hi) while the
real performance is 10.1 s. In this case, when RDF
used the model to determine resources, it decided
that 4vCPUs were unable to meet the intent and
searched for other available resource design
solutions. Thus prevented the intent breach
happening.

In both the 2 cases described above, the absolute dif-
ference between the real performance and the inferred
performance is the same at 0.2 s. However, while in case
(1) the inferred performance is better than the real per-
formance, and resulted in a higher intent breach risk, in
case (2) the inferred performance is worse than the real
performance, and resulted in a lower intent breach risk.
This observation indicates the N-mode loss functions’

drawbacks in distinguishing inferences that lead to dif-
ferent risk levels of intent breach. On the basis of the
observation, we have proposed the P-mode. P-mode is
able to lower the intent breach risk by adopting our pro-
posed loss functions LBTP, LBEP, LBDP. These loss func-
tions impose a penalty on performance inferences that
lead to a high risk to intent breach.
On the basis of the breach penalty patterns, we have

proposed 3 models for P-mode, which are PBTP, PBEP,
PBDP. The loss functions of P-mode models (7), (9), and
(10) below, are composed of 2 parts. The first part is the
unbiased loss function, for which, in this work, we use
MSE. However, when the first unbiased loss function is
MAE or MAPE, the P-mode loss function could be for-
mulated in a similar way. The second part is the penalty
function which is imposed on the total loss function
when the inferred performance penalty hi is better than
the real performance perfi.
For PBTP, the cloud provider sets RDF mode in the

knowledge abstraction phase to PBTP mode, and so dur-
ing the learning process, the loss function LBTP is
applied:

LBTP ¼ 1
m

Xi¼m−1

O
perf i−hij j þ ε�bið Þ ð7Þ

and,

bi ¼ 0; perf i is no worse than hi
1; perf i is worse than hi

�
ð8Þ

where m is the number of training data records, and

perfi is the real performance value for ith training data
records, hi is the inferred performance value of ith train-
ing data, and ε is an adjustable constant. As we can see
from the formula of LBTP, a fixed penalty is added to the
absolute error between the real performance and in-
ferred performance when the real performance is worse
than the inferred performance.
For PBEP, the cloud provider sets the RDF mode in the

knowledge abstraction phase to PBEP mode, and so dur-
ing the learning process, the loss function LBEP is
applied:

LBEP ¼ 1
m

Xi¼m−1

O
perf i−hij j þ ε�bi� perf i−hij jð Þ ð9Þ

As we can see from the formula of LBEP, the weighted
difference between the real performance and the inferred
performance is added to the absolute error between the
real performance and inferred performance when the
real performance is worse than the inferred
performance.
For PBDP, the cloud provider sets the RDF mode in the

knowledge abstraction phase to PBDP mode, so that dur-
ing the learning process, the loss function LBDP is
applied:

LBDP ¼ 1
m

Xi¼m

O
perf i−hij j þ ε�bi�durið Þ ð10Þ

where duri is the duration of intent breach for the ith
training data. As we can see from the formula of LBDP,
the weighted intent breach duration is added to the ab-
solute error between the real performance and inferred
performance when the real performance is worse than
the inferred performance.
In the case where the intent is process time restriction,

when the required process time restriction is not met,
the intent breach duration duri equals the real process
time, i.e. perfi. Thus in this case, the loss function for
LBDP is rewritten as,

LBDP ¼ 1
m

Xi¼m

O
perf i−hij j þ ε�bi�perf ið Þ ð11Þ

To conclude, RDF has two modes: Normal mode (N-
mode) and intent breach Prevention mode (P-mode). N-
mode is the baseline mode in which no intent breach
prevention mechanism is applied. The objective of P-
mode is to enhance the service quality and user’s satis-
faction by suitably adding bias to performance inference
to decrease intent breach risk while ensuring high infer-
ence accuracy of performance.

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 10 of 22



Application of RDF to a sensor-cloud system
In this work, we have applied RDF to a sensor-cloud sys-
tem as shown to validate RDF. In this section, first we
will illustrate the demand for RDF of a sensor-cloud sys-
tem (V-1), then we will introduce the experiment setup
to simulate the sensor-cloud system and illustrate how
the performance-related logs are collected from the sim-
ulated sensor-cloud system (V-2).

RDF for a cloud-sensor system
Sensor-cloud systems are widely used in various scenar-
ios such as smart cities, smart agriculture, autonomous
security monitoring and analysis of public facilities, au-
tonomous disaster monitoring and detection, remote
medical care, etc. In a cloud-sensor system, numerous
sensors and smart devices generate enormous amounts
of data at a high rate, and it is usually difficult for
humans to analyze all the data and make decisions. Thus
to utilize the data, most of the systems adopt learning
mechanisms to continuously analyze the data and con-
duct decisions or provide assistance in decision making.
Central cloud infrastructures provide high computation
ability and are usually used to implement the learning
mechanism. In most of the cases, it is essential to adapt
to new situations in the scenarios, continuously learning
from the enormous amount of collected data on the
cloud.
For the operator/administrator of the sensor-cloud

system, it is important to carefully allocate sufficient
cloud resource to ensure that the learning program’s
process of training data implemented on the cloud does
not fall behind the generation speed of newly collected
training data, otherwise, there will be a growing queue
of newly generated training data waiting to be used for
training, and the learning mechanism will not be able to
capture the new situations in real time. For instance, in
a sensor-cloud system, if the system collects 100 sets of
training data per second, while the computation ability
provided by the central cloud to the learning mechanism
is only able to train the model on 20 sets of training
data, there will be a growing stock of un-trained data,
and the features in the newly collected un-trained data
will not be reflected in the model in real time. In other
words, the challenge for the cloud user of a sensor-cloud
system is that, when using the cloud to train on continu-
ously collected data, it is necessary to ensure that it takes
no more than a given execution time restriction to train
on a certain amount of data using a certain model in a
given time restriction.
However, it is an extremely skill-demanding process

for the operator/administrator of the sensor-cloud sys-
tem to determine the necessary amount of cloud re-
source to meet the training time restriction for various
learning model variations, training set features, etc. To

resolve the challenge, we have applied RDF to this sce-
nario. In this validation experiment, we focus on the typ-
ical sensor-cloud system where the collected data is
image data, and the learning mechanism on the central
cloud is a neural network based learning mechanism
(Fig. 4). To give an example of the scenario, in a smart
transport system, cameras (sensors) set in the transport
system collect images of the current traffic situation, and
on the basis of the collected images, information includ-
ing the presence of cars, bikes and pedestrians is ab-
stracted utilizing image recognition and a machine
learning mechanism. On the basis of this information,
the transport system administrator (system or human)
optimizes the transport system, e.g. traffic light duration,
etc. To adapt to new traffic situations, the image recog-
nition model needs to be updated frequently using new
collected images. RDF in this scenario is aimed at deter-
mining the necessary cloud resource to meet the training
time requirements for various neural network based
learning models and various image training data sets of
different sizes.

Experiment setup
To show the application of RDF to the sensor-cloud sys-
tem scenario, we have constructed an experiment envir-
onment for the sensor-cloud system as shown in Fig. 5.
The experimental cloud platform is used to collect the
log data, which is used to train the models in RDF.
The summaries of hardware and software used in the

experiment are shown in Table 3 and Table 4 respectively.
In the experiment, to collect the log data for the afore-

mentioned sensor-cloud system where the collected sen-
sor data is images and the learning mechanism deployed
on the central cloud is a neural network, we have imple-
mented a cloud computation node and a set of tools
(Table 4). The performance log data (the execution time
of the neural network) is collected under the conditions
of using various resource amounts (number of vCPUs,
memory), image data sets of various numbers of pixels,

Fig. 4 Validation scenario: a cloud-Sensor System where the
collected data is image data, and the learning mechanism on the
central cloud is a neural network based learning mechanism

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 11 of 22



and color channels for training neural networks of vari-
ous layers, neurons, and activation function. In other
words, we keep the resource amount and workload fea-
tures (image features and neural network features) vari-
able, and record the performance data for the different
combinations.
In the following part of this section, we will first intro-

duce the procedure and parameter settings used to col-
lect the log data, which is automated by the log data
collection workflow controller (also called workflow-C,
implemented in Python). We will then introduce the
tools that the workflow-C takes control of; these tools
are used to generate image datasets and the neural net-
work, to control the resource amount, to monitor the
performance, etc.
The workflow controller is implemented in Python to

enable autonomous data collection. Figure 6 shows the
log data collection workflow controller’s process for col-
lecting the log data.
As shown is Fig. 6, the workflow to collect the data is

as follows.
There are external loops and internal loops to collect

the data. In each external loop, the resource amount for
the VM and the environment conditions is set for the
internal loops contained in the loop. In each internal

loop, the workload (the image data set, the neural net-
work) is set, and the neural network is trained using the
image dataset with the given amount of cloud resource,
and the performance is recorded. Each external loop is
repeated for LE times and each internal loop is repeated
for LI times. The detailed operations in the loop is as
follows (Fig. 6).
Note that in the experiment, values of the resource

amount, values of environmental conditions, the work-
load (the image training dataset parameters and the
image recognition models) are chosen randomly each
time with equal possibility (uniform distribution) in the
range as shown in Table 5 to simulate a wide variety of
scenarios and collect comprehensive log data.

(1) If the external loop has been repeated fewer than
LE times, continue to (2); if not, end the collection.

(2) As the external loop starts, the workflow controller
randomly selects the resource amount allocated to
the VM. In the experiment, the number of vCPUs
allocated to the VM is selected from the range 1 ~ 8
with equal possibility as shown in Table 5, and the
size of vMemory allocated to VM is selected from
the range 16 ~ 64GB with equal possibility. Then
the workflow-C instructs the resource controller to
allocate the resource and activate the VM.

(3) As the internal loops starts, the workflow-C in-
structs the training image generation tool to gener-
ate randomly an image dataset according to the
range in Table 5 with equal possibility, and instructs
the neural network generation to randomly generate
a random image recognition model from the range
shown in Table 5. The image recognition models
are trained using the generated dataset on the VM

Fig. 5 Experiment setup to simulate the sensor-cloud system

Table 3 Hardware specifications of central cloud servers

Specifications Value

Model Fujitsu PRIMERGY RX2530 M2

CPU Xeon 5 E-2509v 8core

Memory 128 GB

Disk 1 TB

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 12 of 22



for 5 times, and the average training time (also
called execution time in this paper) is recorded.
After the training process, the log data about the re-
source amount (log [resource]), environmental con-
ditions (log [environment]), workload (log
[workload]), and performance (log [performance])
are aggregated as one set of log data. The columns
of the log data are as shown in Table 6.

(4) If this internal loop has been repeated fewer than LI
times, go back to (3); if not, go back to (1).

We have set the number of external loop LE (Loop Ex-
ternal) to 500 and the number of internal loop LI (Loop
Internal) to 50 and collected around 23,000 sets of valid
log data in this experiment.

We have also implemented several local controllers
(Table 4) to control the workload patterns, resource
patterns and collected log data under these condi-
tions. All these controllers take instructions from
workflow-C, and control the resource amount, gener-
ate the workload (the training dataset and neural
network) in accordance to the instructions. As men-
tioned above, the values for these parameters are
chosen randomly with equal possibility (uniform
distribution) in the range as shown in Table 5. The
different controllers categorized by the functions are
as follows:

(1) To control the central cloud environment and
cloud resource variations:

On the computation node, we have implemented a
resource amount controller that is responsible for al-
locating various patterns of computation resources to
VMs. We have also implemented an environmental
condition controller that is responsible for generate
background resource usage including host CPU usage,
memory usage to simulate the environmental condi-
tions. The controller is built based on Stress-ng [25]
which is able to stress the resource usage of a host to
a given percentile.

(2) To generate the training images dataset (the
workload)

We have implemented a training image dataset gener-
ation tool using Python to generate various training
image datasets of random pixels, random color channels,
and of a random size. It is implemented from scratch
based on python

Table 4 Software used in the validation experiment

Software used Role of the software

Log data collection workflow controller
(also called workflow-C)

To take control of log data collection workflow and instruct other controllers (described below
and in section V-2) to enable autonomous data collection

Openstack Virtualization infrastructure management

KVM Hypervisor of the cloud

Resource controller (scratch) To control the resource amount allocated to the VM according to the workflow-C′ instruction

Environmental condition controller
(Stress-ng [25])

To simulate the environmental conditions of the host according to the workflow-C′ instruction

Training image dataset generation tool
(scratch)

To generate a training data set of a given number of images with a given number of pixels
and color channels according to the workflow-C′ instruction

Neural network generation tool (based
on Tensorflow [26]))

To generate image recognition models of given layers, given number of neurons in each layer
and activation functions according to the workflow-C′ instruction

Neural network training tool (based on
Tensorflow [26])

To train the generated model with the generated image dataset using the given amount of
resource on the VM

Training time monitoring tool (based
on Tensorflow [26])

To record the execution time of for the generated model and training data set using the given
amount of resource on the VM

Tools marked scratch is built from scratch

Fig. 6 Workflow to collect log data in the experiment

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 13 of 22



(3) To generate the image recognition model and train
it on the central cloud

We have implemented a neural network generation tool
using Python and Tensorflow [26] to generate various
image recognition models. The models are based on neural
networks, which are composed of different numbers of con-
volution layers and dense layers, and different numbers of
neurons and activation functions for each layer.
The generated training image dataset and the gener-

ated image recognition model are input to the neural
network training tool (implemented using Python and
Tensorflow [26]), and the model is trained on the VM
with the given amount of resource.

(4) To monitor the performance

A training time monitoring tool is implemented on the
basis of Tensorflow [26] to record the execution time to
train the generated image dataset using the generated neural
network on the VM with the given amount of resource.

RDF validation results
As introduced in Sections I and II, the objective of RDF
is to resolve complexity in translating a cloud user’s in-
tent into a concrete cloud resource configuration that
satisfies the intent, so reducing the human and time cost
involved in the resource design to meet the user’s intent,
while at the same time ensuring high precision in

Table 5 Random parameter range of workload, resource and environmental conditions in the experiment

Parameter settings Random value range

Training image data set variation Number of training images [1 ~ 30]*1000

Training image pixels horizontal[4 ~ 64], vertical [4 ~ 64]

Image recognition model variation Number of dense layers 1–20

Number of neurons for each dense layer 1–50

Number of convolutional layers 1–20

Number of neurons for each convolutional layer 1–50

Activation function for each layer softmax, relu, sigmoid

Resource amount range Number of vCPUs allocated to VM 1 ~ 8

Size of vMemory allocated to VM 16 ~ 64GB

Environmental conditions range CPU usage of host 0 ~ 100%

Memory usage of host 0 ~ 100%

Table 6 Keys and descriptions of collected log data, i.e. training data for RDF models

Key Description

Log [resource] vcpu the number of vCPUs allocated to the VM

vmemory the memory size allocated to the VM

Log [environment condition] host_mem_usage the memory usage of the host

host_vCPU_usage the CPU usage of the host

Log [workload] image_pixels the horizontal and vertical pixels of the input image

convlayer_num the number of convolution layers

conv1_neurons the number of neurons in the first convolution layer

.... ....

Conv20_neurons the number of neurons in the 20th convolution layer

denselayer_num the number of dense layers

dense1_neurons the number of neurons in the 1 st dense layer

.... ....

Dense20_neurons the number of neurons in the 20th dense layer

conv_activation the activation function of the convolution layers

dense_activation the activation function of the dense layers

Log [performance] excutime the average training time

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 14 of 22



resource design. Thus, to evaluate the effectiveness of
RDF, we have evaluated it to see whether RDF is able to
design resource precisely with less human and time cost
compared to the conventional resource design approach.
Furthermore, we have proposed intent breach preven-
tion mechanisms (PBTP, PBEP, and PBDP for RDF) to re-
duce the intent breach risk, thus ensuring high user
satisfaction. Thus in this chapter, we will firstly evaluate
the effect and advantage of RDF over the conventional
resource design approach by evaluating the RDF’s preci-
sion and the human and time cost compared to the con-
ventional resource design approach (VI-1); then we will
evaluate the effectiveness of RDF’s intent breach preven-
tion mechanism (VI-2).

Evaluation of effectiveness of RDF
In this subsection, we will evaluate the effectiveness and
advantage of RDF over the conventional resource design
approach by evaluating the RDF’s precision and the hu-
man and time cost compared to the conventional re-
source design approach.
As introduced in section IV, in the knowledge abstrac-

tion phase, RDF trains a model which is able to infer the
performance for given resource configurations, workload
and environmental conditions. The model is then used
in the decision making phase to infer the performance
for all the available resource configurations, and on the
basis of the inferred performance, a resource configur-
ation that meets the performance requirements specified
by the intent is chosen as the output of RDF. Thus, the
performance inference precision is the key factor that
decides the resource design precision of RDF. Figure 7
shows an example of a resource design result produced
by RDF. For a given user intent, RDF infers the perform-
ance (horizontal axis), i.e. training execution time in the
validation scenario for each available resource combin-
ation (vertical axis). The blue vertical line in the figure
shows the performance intent i.e. the execution time re-
striction requirement-training time no longer than 0.05
s. For each inferred performance that meets the intent,
the corresponding resource amount combination (mem-
ory/vCPU) is outputted as a recommended resource
amount combination for the intent. The user or operator
may further choose from the recommended resource
amount combinations on the basis of other strategies,
e.g. choose the resource amount with the lowest cost.
From the example, we can see that the performance in-
ference precision is the key factor that influences the
correctness of the resource design by RDF. We will illus-
trate the performance inference precision evaluation in
the following paragraphs.
We trained RDF N-mode and P-mode models using

the 23,000 sets of log data collected in the experiment.
We used neural network regression to train the RDF

models. The reason for using neural network regression
is that thanks to rehearsal experiments, it was observed
that the relationship between the model input and out-
put is non-linear, and neural network based models sur-
pass other models (e.g., linear regression, polynomial
regression) in performance inference precision. To find
the optimal model design for N-mode and P-mode, we
have used 5-fold validation to calculate the precision of
inference precision. To calculate the precision under 5-
fold cross-validation, the log data is split into 5 sets ran-
domly, and for the first iteration, the first set is used to
test the model and the rest are used to train the model.
In the second iteration, the second set is used as the
testing set while the rest serve as the training set. This
process is repeated until each of the 5 sets has been used
as the testing set. The average of the precision of the 5
iterations is then calculated as the precision of the
model.
Furthermore, we have performed a grid search of

neural network parameters including layers, neurons,
optimizer, and activation function to find the optimal
parameter settings that maximize the precision of each
N-mode and P-mode model. (The range of grid search is
omitted due to limited space.).
RDF’s performance inference result of one set of test

data is shown in Fig. 8. The horizontal axis is the real
(observed) performance and the vertical axis is the in-
ferred performance. We can see that for the N-mode
model and P-mode model, the data points converge to
the line where the inferred performance and the real
performance are equal.
Figs. 9, 10 and Table 7 show the statistical precision

evaluation result of performance inference by RDF. We
have evaluated the average MAPE, MAE and the preci-
sion of the 5-fold cross-validation.
The performance inference precision is defined as the

following,

Precision ¼
Pm

i¼11− extreali − extpredictedi

��� ���= extreali

m
ð9Þ

where m is the number of evaluation data sets, extreali

is the ith observed execution time, and extpredictedi is the
ith inferred execution time of the machine learning in
the evaluation data set for the given resource configur-
ation, workload and environmental conditions.
Table 7 shows the precision evaluation results for

RDF’s N-mode model (NMAPE is the N-mode model
trained with the conventional loss function MAPE) and
the P-mode model. For the evaluation matrix MAPE, the
RDF models have achieved MAPE between 9.3707% and
11.0672%, among which NMAPE has performed the best.

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 15 of 22



For the evaluation matrix MAE, the RDF models have
achieved MAE between 0.0209 and 0.0282 s, where PBTP
performed the best. For the evaluation matrix, the
models achieved 89.1031–90.6293 precision, and NMAPE

performed the best. That means that for a given set of
workload, resource combination, and environmental
conditions, the mean percentage difference between the
inferred performance and real performance is no more
than 11.0672%. Thus on the basis of the models, the re-
sources were designed precisely.
To evaluate the advantage of RDF, we want to com-

pare it with the conventional resource design approach.
According to our investigation of related research (sec-
tion III), since to the best our knowledge, translation of

cloud performance-related intent into cloud resource
amount has barely been studied, we have compared RDF
with the resource design approach currently used in the
cloud industry. As introduced in section II, according to
our interviews with cloud operators, currently there are
two main approaches to translating the user’s intent
about the cloud service (“what”) into “how” the service is
implemented: the cloud-consultant approach and the
self-service approach. In both approaches, translation of
service layer requirements into resources relies heavily
on human decisions. We have compared the RDF with
the conventional human decision-based design approach
from the time cost, human resource cost and resource
design result aspects.

Fig. 7 An intent example of the application engineer for the sensor-cloud system (above) and the performance inference and Resource Design
for the intent example by RDF

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 16 of 22



For the time cost, since RDF infers the performance
for all available resource configuration patterns and
chooses the resource configuration that meets the intent,
the time consumed to design the resource is dependent
on the number of available resource configuration pat-
terns. Figure 11 and Table 8 show the average resource
design time against the number of resource configur-
ation patterns. We can see from the results that the re-
source design time of RDF increases as the number of

resource amount variations increases, and the relation-
ship between the two can be approximated as linear. For
commercial cloud services such as AWS EC2, the avail-
able resource configurations, also called instance types,
are usually limited to tens to hundreds of variations, and
according to the results (Fig. 11 and Table 8), RDF is
able to find the resource configuration to meet the per-
formance requirement in 2.11 s (RDF execution time for
1000 resource amount variations) for a given workload.

Fig. 8 Performance inference result of rdf: comparison between observed execution time and inferred execution time

FIG. 9 MAPE of N-mode and P-mode models FIG. 10 MAE of N-mode and P-mode models

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 17 of 22



As for the conventional human-based resource design
approach, the design time largely varies according to the
designer’s skill level and other factors, and, according to
our interviews, usually hours to days is needed to design
the cloud resource for a human-based design approach.
Thus RDF largely surpasses the conventional human-
based resource design approach in the aspect of time
cost by reducing resource time from hours-days to
seconds.
For the human resource cost, since the design of the

cloud resource requires the designer to have knowledge
and experience about the cloud platform and the rela-
tionship between workload, resource and performance,
it results in a high human cost for the cloud provider or
cloud user. RDF automates the resource design by utiliz-
ing the knowledge (model) abstracted from history log
data, so, as long as models are built for RDF, only minor
human cost is demanded in the resource design process.
Thus the application of RDF for cloud resource design
could greatly save human cost compared to the conven-
tional approach. Note that to implement RDF, an inter-
view with the targeted application’s administrator is
necessary to identify the types of performance require-
ment, and this process requires human involvement.
Nevertheless, training the designers for the task is neces-
sary for the conventional human-based approach, and
this usually takes more human cost than the interview
human cost for RDF.

For the resource design result, RDF enumerates all
available resource amount configurations, and infers the
performance for each available configuration and thus is
able to output all the configurations that meet the per-
formance requirement. It would be challenging for con-
ventional human-based resource design to find all
resource configurations that meet the performance re-
quirement. As for the precision of the resource design
result, as mentioned before (Table 7), RDF achieves at
least 89.1% precision in inferring the performance for
given workload and resource configuration; in other
words, RDF is able to ensure that the designed resource
is able to ensure that the error between the performance
it promises to achieve and the performance it actually
achieves is on average 10.9%. In contrast, for the
human-based conventional resource design approach,
the difference varies largely according to the skill of the
resource designer.
To conclude (Table 9), compared to conventional

resource design approaches, RDF is able to shorten
the resource design time from hours-days to seconds-
minutes, to significantly reduce the human cost
necessary by automating the resource design process
utilizing the knowledge abstracted from log data, and
to find all resource amount variations that meet the
user’s intent. As a result, it enables the user to
choose the optimal resource design result in accord-
ance with price policy, etc.

Evaluation of intent breach prevention mechanism in RDF
To evaluate the intent breach prevention mechanism P-
mode of RDF, we have designed 3 evaluation functions,
namely Ebreach-times, Ebreach-extent, Ebreach-duration.
To evaluate how the RDF model performs in inferring

performance that leads to intent breach, from the aspect
of whether a breach happens, we use the evaluation
metric Ebreach − times. Ebreach − times is a value between 0
and 1; the higher Ebreach − times is, the more likely it is
that an intent breach will happen.

Table 7 Precision of n-mode and p-mode models

RDF models MAPE(%) MAE Precision (%)

PBEP 10.8969 0.0217 89.1031

PBDP 10.4655 0.0282 89.5345

PBTP 11.0672 0.0209 88.9328

NMAPE 9.3707 0.0219 90.6293

The best peformance for each evalution matrix is marked as bold.

Fig. 11 RDF execution time for different numbers of resource
amount variations

Table 8 Analysis of RDF execution time for different numbers
of resource amount variations

Number of available resource
amount variations

Mean RDF
execution time

Standard
derivation

10 0.0745 0.000502111

50 0.1502 0.001627085

100 0.2566 0.004818735

500 1.0813 0.011302444

1000 2.1073 0.02394739

5000 13.302 0.18511307

10,000 20.1451 0.148079558

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 18 of 22



Ebreach−times ¼
Pm

i¼1 bboolð Þ
m

ð10Þ

bbool ¼ 0; if extreali ≤ extpredictedi

1; if extreali > extpredictedi

(
ð11Þ

To evaluate how the RDF models perform in inferring
performance that leads to intent breach from the aspect
of the extent to which the intent is breached, we use the
evaluation metric Ebreach − extent.

Ebreach−extent ¼
Pm

i¼1 bextentð Þ
m

ð12Þ

bextent ¼
0; if extreali ≤ extpredictedi

extreali − extpredictedi

extreali

; if extreali > extpredictedi

8><
>:

ð13Þ
To evaluate how the RDF models performs at inferring

performance that leads to intent breach from the aspect
of the length of time that the intent is breached, we use
the evaluation metric Ebreach − duration.

Ebreach−duration ¼
Pm

i¼1 bdurationð Þ
m

ð14Þ

bduration ¼ 0; if extreali ≤ extpredictedi

extreali ; if extreali > extpredictedi

(
ð15Þ

Table 10 Figs. 12, 13 and 14 show the intent breach
risk Ebreach-times, Ebreach-extent, Ebreach-duration of P-mode
models PBTP, PBEP, PBDP compared with the baseline N-
mode model NMAPE which applies a MAPE loss func-
tion. From the result we can see that P-mode models are
able to reduce the intent breach risk with regard to
breach times, breach extent, and breach duration, com-
pared to the baseline NMAPE. The details are as follows:
For breach extent risk Ebreach-extent, all of the three P-

mode models outperform N-mode models, and PBTP
performs the best, achieving a reduction of 45.25% com-
pared to the baseline N-mode model. For breach dur-
ation risk Ebreach-duration, all of the three P-mode models
outperform N-mode models, and PBDP has realized a sig-
nificant reduction of 66.05% compared to the baseline
N-mode model. For breach times risk Ebreach-times, and
PBTP performed the best, achieving a reduction of
43.02% risk compared to the baseline model.
At the same time, P-mode models maintain almost the

same level of precision compared to the baseline model
(Table 7). For performance inference MAPE, the highest
increase in MAPE is witnessed in PBTP which increases
the MAPE to 11.0672% compared with the NMAPE for
which MAPE is 9.3707%. For performance inference
MAE, the highest increase in MAE is witnessed in PBDP
which increases MAE to 0.0282 compared with the
NMAPE of which MAE is 0.0219; PBEP and PBEP even re-
duce the MAE by a small extentFor performance infer-
ence precision, the highest decrease of precision is
witnessed in PBTP which reduces the precision to
88.9328% compared with NMAPE for which the precision
is 90.6293%. Thus, we can state that P-mode models
PBTP, PBEP, and PBDP significantly reduce the intent
breach risk at the cost of a relatively small decrease in
inference precision.

Table 9 Effect of RDF compared to conventional resource design approach

Conventional Resource
design Approach

RDF

Human resource cost Human experience with cloud design Necessary Not necessary

Time cost Design time Hours-days Seconds-minutes

Resource design results Whether able to find all resource variations
that meets the requirements

Difficult Yes

Optimal resource design Difficult Yes

Table 10 Intent breach risk evalution of n-mode and p-mode models

Ebreach-extent Ebreach-duration Ebreach-times Reduction of Ebreach-extent
compared with NMAPE

Reduction of Ebreach-duration
compared with NMAPE

Reduction of by Ebreach-times

compared with NMAPE

PBEP 0.031 0.112 0.3664 45.25% 45.61% 36.72%

PBDP 0.0438 0.0699 0.402 22.41% 66.05% 30.58%

PBTP 0.0333 0.1206 0.3299 40.95% 41.44% 43.02%

NMAPE 0.0564 0.206 0.579 – – –

The best peformance for each evalution matrix is marked in bold

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 19 of 22



Furthermore, it is observed from the results that the
specific P-mode model designed on the basis of a certain
intent breach penalty pattern naturally outperforms
other P-models for the intent breach risk evaluation
matrix that is based on the same intent breach pattern.
For instance, PBTP which is designed on breach time
penalty patterns outperformances the other P-mode and
N-mode models when the evaluation matrix is Ebreach--
times. Thus, the administrator of RDF could easily choose
the corresponding P-mode in accordance with the intent
breach penalty pattern agreed between the cloud pro-
vider and cloud user in commercial cloud service
delivery.

Conclusion and future work
In this work, we have addressed the gap between the
cloud user’s service-level requirements, also called the
cloud user’s intent in this work, and the cloud pro-
vider’s concerns, such as the necessary resource
amount to meet the intent, and have introduced the
current human skill-based approaches to “translate”

user’s intent to resource amount and the drawbacks
of such approaches. Next, we introduced our investi-
gation of related work; we found that although
Intent-based Management has been applied in various
scenarios including SDN, 5G, and traffic management,
barely any work has been done on realizing intent-
based cloud management. To resolve the challenge of
translating user’s intent into resource configurations,
we have proposed an Intent-based Cloud Service
Management (ICSM) framework, and focused on the
design and realization of the Resource Designer Func-
tion (RDF) which translates the cloud user’s intent
about service performance into resource amount,
which the cloud provider is concerned with. Further-
more, to lower the risk of intent breach, which is cru-
cial in commercial cloud service delivery, we have
proposed an intent-breach prevention mechanism. To
validate the effectiveness of RDF, we have applied
RDF to a sensor-cloud system scenario.
From the evaluation results, the proposed RDF

achieved 88.9328 ~ 90.6293% precision for performance
inference for a given workload and resource amount, so
on the basis of the models, resources can be precisely
designed in accordance with the cloud performance in-
tent. Furthermore, RDF exceeds the conventional re-
source design approach in the aspects of time cost,
human cost, and resource design results.
Additionally, to reduce intent breach risk and thus

enhance user satisfaction in commercial cloud service
delivery, we have validated the intent breach preven-
tion mechanism (P-mode) for RDF. The proposed P-
mode models PBDP, PBEP, and PBTP are able to reduce
intent breach risk significantly in the aspects of
breach extent, breach duration and the number times
a breach occurs at the price of a small precision
trade-off. It is also observed that the specific P-mode
model designed on the basis of a certain intent

Fig. 12 Ebreach-extent of N-mode and P-mode models

Fig. 13 Ebreach-duration of N-mode and P-mode models

Fig. 14 Ebreach-times of N-mode and P-mode models

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 20 of 22



breach penalty pattern naturally outperforms other P-
models for the intent breach risk evaluation matrix
that is based on the same intent breach pattern. Thus
the administrator of RDF could choose the type of P-
mode in accordance with the intent breach penalty
pattern that is agreed between the cloud user and the
cloud provider.
Ongoing and future work for ICSM includes: 1) to val-

idate RDF’s effectiveness in various cloud-based service
scenarios including Virtual Network Function (VNF),
etc.; 2) to carry out a trial experiment to verify its effect-
iveness in a real business environment; and 3) to expand
the application of intent-driven management from the
cloud domain to the end-to-end service by collaboration
with intent-based management frameworks of other do-
mains including the transport NW domain, wireless do-
main, etc.

Acknowledgements
Not applicable.

About the authors
Chao Wu (Research Engineer, NTT Access Network Service Systems
Laboratories) received the bachelor degree in engineering from Zhejiang
University in 2009 and the master degree in engineering from Waseda
University in 2013. In 2014, she joined NTT Access Network Service Systems
Laboratories, where she has been researching and developing management
mechanisms for telecommunications, especially in cloud and virtualization.
Shingo Horiuchi (Senior Research Engineer, NTT Access Network Service
Systems Laboratories) received a B.E. and M.E. in engineering from University
of Tokyo, in 1999 and 2001. He joined NTT Access Network Service Systems
Laboratories in 2001. He has been researching and developing access
network operation systems. He has been engaged in the standardization
work for operation support systems in TM Forum as a member of the Open
Digital Architecture Project since 2014. He is a member of IEICE.
Kenji Murase (Senior Research Engineer, NTT Access Network Service
Systems Laboratories) received a B. E and M.E. in engineering from Waseda
University, Tokyo, in 2004 and 2006. He joined NTT Communications the
same year and is currently engaged in developing operation support
systems of access networks.
Hiroaki Kikushima (Research Engineer, NTT Access Network Service Systems
Laboratories) received a B.E. and M.E. in electrical engineering from the
University of Yamanashi, in 1994 and 1996. He joined NTT Software
Headquarters in 1996. He also worked at NTT COMWARE’s AI Business
Strategy Office, where he created various new services.
Kenichi Tayama (Senior Research Engineer, Supervisor, Group Leader, NTT
Access Network Service Systems Laboratories) received a B.E. and M.E. in
electrical engineering from the University of Electro-Communications, Tokyo,
in 1993 and 1995. He joined NTT Optical Network Systems Laboratories in
1995. He also worked at NTT EAST’s IT Innovation Department and NTT-ME’s
Network Operation Center, where he researched and developed network
operations support systems. He is a member of IEICE.

Authors’ contributions
Chao Wu and Horiuchi Shingo jointly designed and directed this research.
Kenji Murase, Hiroaki Kikushima contributed to the validation experiment of
this work. Kenji Tayama contributed to the design of framework of this work.
All authors reviewed and approved the final manuscript.

Funding
Funding information is not applicable.

Availability of data and materials
Since the data and the code used in this work are confidential information
of NTT Laboratories, and will be used for further studies, we cannot provide
them to the public.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 11 December 2020 Accepted: 19 March 2021

References
1. ETSI GS ENI 005 V1.1.1 Experiential Networked Intelligence (ENI) System

Architecture (work in progress). https://portal.etsi.org/webapp/WorkProgra
m/Report_WorkItem.asp? WKI_ID=5408. Accessed 20 Feb 2021

2. DGR/ENI-0013 Experiential Networked Intelligence (ENI) Intent Aware
Network Autonomicity” (work in progress). https://portal.etsi.org/webapp/
WorkProgram/Report_WorkItem.asp? WKI_ID=58217. Accessed 20 Feb 2021

3. Autonomous Networks: Empowering Digital Transformation for Smart
Societies and Industries. https://www.tmforum.org/resources/whitepapers/a
utonomous-networks-empowering-digital-transformation-for-smart-
societies-and-industries/. Accessed 20 Feb 2021

4. 3GPP TR 28.812 Telecommunication management: study on scenarios for
Intent-driven management services for mobile networks (work in progress).
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.a
spx?specificationId=3553. Accessed 20 Feb 2021

5. 3GPP TR 28.312 management and orchestration intent-driven management
services for mobile network” (work in progress. https://portal.3gpp.org/
desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=
3553. Accessed 20 Feb 2021

6. DGS/ZSM-009 Zero-Touch Network and Service Management (ZSM) Closed-
loop automation: Enablers (work in progress). https://portal.etsi.org/webapp/
WorkProgram/Report_WorkItem.asp? WKI_ID=58053. Accessed 20 Feb 2021

7. ONOS Intent Framework. https://wiki.onosproject.org/display/ONOS/Intent+
Framework. Accessed 20 Feb 2021

8. OpenDayLight Network Intent Composition. https://wiki.opendaylight.org/
view/NetworkIntentCompositionUseCase. Accessed 20 Feb 2021.

9. Zhang H et al (2017) Demo abstract: an intent solver for enabling intent-
based SDN. INFOCOM, Atlanta. https://doi.org/10.1109/INFCOMW.2017.811
6514.

10. Elkhatib Y et al (2018) Benchmarking the ONOS intent interfaces to ease 5G
service management. GLOBECOM, Abu Dhabi. https://doi.org/10.1109/
GLOCOM.2018.8648078

11. Jacobs AS et al (2019) Deploying natural language intents with Lumi.
SIGCOMM, Beijing. https://doi.org/10.1145/3342280.3342315

12. Tian B et al (2019) Safely and automatically updating in network ACL
configurations with intent language. SIGCOMM, Beijing. https://doi.org/1
0.1145/3341302.3342088

13. Callegati F et al (2017) Performance of intent-based virtualized network
infrastructure management. ICC, Paris. https://doi.org/10.1109/ICC.2017.
7997431

14. E. J. Scheid, et al. (2017) INSpIRE: integrated NFV-based intent refinement
environment. In: IM, Lisbon. doi: https://doi.org/10.23919/INM.2017.7987279

15. Aklamanu F et al (2018) Intent-based real-time 5G cloud service
provisioning. Globecom, Abu Dhabi. https://doi.org/10.1109/GLOCOMW.201
8.8644457

16. Kang J et al (2017) LMS: label management service for intent-driven
cloud management. IFIP/IEEE IM, Lisbon. https://doi.org/10.23919/INM.2
017.7987278

17. Kim J, Kim E, Yang J, Jeong J, Kim H, Hyun S, Yang H, Oh J, Kim Y, Hares S,
Dunbar L (2020) IBCS: intent-based cloud Services for Security Applications.
IEEE Communication Magazine 58(4):45–51. https://doi.org/10.1109/MCOM.
001.1900476

18. He L, Qian Z (2020) Intent-based resource matching strategy in cloud. J
Information Sci 538:1–18. https://doi.org/10.1016/j.ins.2020.05.045

19. Kuwahara T et al (2021) An intent-based system configuration design for IT/
NW services with functional and quantitative constraints. IEICE Trans
Commun. https://doi.org/10.1587/transcom.2020CQP0009

20. Chung C et al (2020) A Design of IoT Device Configuration Translator for
Intent-Based IoT-Cloud Services. ICACT, PyeongChang. https://doi.org/10.23
919/ICACT48636.2020.9061282

21. C. Wu and H. Shingo (2018) Intent-based Service Management. In: ICIN
2018, Paris. . doi: https://doi.org/10.1109/ICIN.2018.8401600

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 21 of 22

https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?
https://www.tmforum.org/resources/whitepapers/autonomous-networks-empowering-digital-transformation-for-smart-societies-and-industries/
https://www.tmforum.org/resources/whitepapers/autonomous-networks-empowering-digital-transformation-for-smart-societies-and-industries/
https://www.tmforum.org/resources/whitepapers/autonomous-networks-empowering-digital-transformation-for-smart-societies-and-industries/
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3553
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3553
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3553
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3553
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3553
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://doi.org/10.1109/INFCOMW.2017.8116514
https://doi.org/10.1109/INFCOMW.2017.8116514
https://doi.org/10.1109/GLOCOM.2018.8648078
https://doi.org/10.1109/GLOCOM.2018.8648078
https://doi.org/10.1145/3342280.3342315
https://doi.org/10.1145/3341302.3342088
https://doi.org/10.1145/3341302.3342088
https://doi.org/10.1109/ICC.2017.7997431
https://doi.org/10.1109/ICC.2017.7997431
https://doi.org/10.23919/INM.2017.7987279
https://doi.org/10.1109/GLOCOMW.2018.8644457
https://doi.org/10.1109/GLOCOMW.2018.8644457
https://doi.org/10.23919/INM.2017.7987278
https://doi.org/10.23919/INM.2017.7987278
https://doi.org/10.1109/MCOM.001.1900476
https://doi.org/10.1109/MCOM.001.1900476
https://doi.org/10.1016/j.ins.2020.05.045
https://doi.org/10.1587/transcom.2020CQP0009
https://doi.org/10.23919/ICACT48636.2020.9061282
https://doi.org/10.23919/ICACT48636.2020.9061282
https://doi.org/10.1109/ICIN.2018.8401600


22. de Myttenaere A, Golden B, le Grand B, Rossi F (2016) Mean absolute
percentage error for regression models. Neurocomputing 192:38–48.
https://doi.org/10.1016/j.neucom.2015.12.114

23. Cort J. Willmott, et al. (2005) Advantages of the mean absolute error (MAE)
over the root mean square error (RMSE) in assessing average model
performance. Clim Res 30(1):79–82. https://doi.org/10.3354/cr030079

24. Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute
error (MAE)? - arguments against avoiding RMSE in the literature. Geosci
Model Dev 7(3):1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

25. Stress-ng. http://manpages.ubuntu.com/manpages/zesty/man1/stress-ng..
Accessed 20 Feb 2021

26. M. Abadi, et al. (2016) Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. https://arxiv.org/abs/1603.04467.
Accessed 20 Feb 2021

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Wu et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:30 Page 22 of 22

https://doi.org/10.1016/j.neucom.2015.12.114
https://doi.org/10.3354/cr030079
https://doi.org/10.5194/gmd-7-1247-2014
http://manpages.ubuntu.com/manpages/zesty/man1/stress-ng
https://arxiv.org/abs/1603.04467

	Abstract
	Introduction
	Background and problem statement
	Related work
	Latest studies about intent-driven management in standard organizations
	Open source communities
	Academic activities

	ICSM framework and RDF
	Factors affecting decisions on resource amount
	Closed-loop RDF framework
	Knowledge abstraction
	Decision making and implementation
	Information collection phase

	Intent breach prevention mechanism of RDF

	Application of RDF to a sensor-cloud system
	RDF for a cloud-sensor system
	Experiment setup

	RDF validation results
	Evaluation of effectiveness of RDF
	Evaluation of intent breach prevention mechanism in RDF

	Conclusion and future work
	Acknowledgements
	About the authors
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	References
	Publisher’s Note

